Ocular system with anchoring implant and therapeutic agent

Information

  • Patent Grant
  • 10406029
  • Patent Number
    10,406,029
  • Date Filed
    Monday, October 12, 2015
    9 years ago
  • Date Issued
    Tuesday, September 10, 2019
    5 years ago
Abstract
Ocular implants, delivery devices and methods for treating ocular disorders are disclosed. One method involves inserting an implant on one side of an eye. The implant has an anchor on a distal end portion and an outlet opening that is disposed proximal of the anchor. The implant is advanced across the eye to the other side of the eye. The anchor is inserted into eye tissue on the other side of the eye. A therapeutic agent is eluted using the implant.
Description
BACKGROUND OF THE INVENTIONS

Field of the Inventions


The present application relates generally to medical devices and methods for reducing the intraocular pressure in an animal eye and, more particularly, to shunt-type stenting devices for permitting and/or enhancing aqueous outflow from the eye's anterior chamber toward existing outflow pathways and associated methods thereof for the treatment of glaucoma in general.


Description of the Related Art


The human eye is a specialized sensory organ capable of light reception and able to receive visual images. The trabecular meshwork serves as a drainage channel and is located in the anterior chamber angle formed between the iris and the cornea. The trabecular meshwork maintains a balanced pressure in the anterior chamber of the eye by allowing aqueous humor to flow from the anterior chamber.


About two percent of people in the United States have glaucoma. Glaucoma is a group of eye diseases encompassing a broad spectrum of clinical presentations, etiologies, and treatment modalities. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, resulting in blindness if untreated. Lowering intraocular pressure is the major treatment goal in all glaucomas.


In glaucomas associated with an elevation in eye pressure (intraocular hypertension), the source of resistance to outflow of aqueous humor is mainly in the trabecular meshwork. The tissue of the trabecular meshwork allows the aqueous humor, or aqueous, to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueous veins, which form the episcleral venous system. Aqueous humor is a transparent liquid that fills the region between the cornea, at the front of the eye, and the lens. The aqueous humor is continuously secreted by the ciliary body around the lens, so there is an essentially constant flow of aqueous humor from the ciliary body to the eye's anterior chamber. The anterior chamber pressure is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) or uveal scleral outflow (minor route). The trabecular meshwork is located between the outer rim of the iris and the back of the cornea, in the anterior chamber angle. The portion of the trabecular meshwork adjacent to Schlemm's canal (the juxtacanilicular meshwork) causes most of the resistance to aqueous outflow.


Glaucoma is grossly classified into two categories: closed-angle glaucoma, also known as “angle closure” glaucoma, and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior chamber angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous humor from the anterior chamber of the eye.


Open-angle glaucoma is any glaucoma in which the angle of the anterior chamber remains open, but the exit of aqueous through the trabecular meshwork is diminished. The exact cause for diminished filtration is unknown for most cases of open-angle glaucoma. Primary open-angle glaucoma is the most common of the glaucomas, and it is often asymptomatic in the early to moderately advanced stage. Patients may suffer substantial, irreversible vision loss prior to diagnosis and treatment. However, there are secondary open-angle glaucomas which may include edema or swelling of the trabecular spaces (e.g., from corticosteroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.


Current therapies for glaucoma are directed at decreasing intraocular pressure. Medical therapy includes topical ophthalmic drops or oral medications that reduce the production or increase the outflow of aqueous. However, these drug therapies for glaucoma are sometimes associated with significant side effects, such as headache, blurred vision, allergic reactions, death from cardiopulmonary complications, and potential interactions with other drugs. When drug therapy fails, surgical therapy is used. Surgical therapy for open-angle glaucoma consists of laser trabeculoplasty, trabeculectomy, and implantation of aqueous shunts after failure of trabeculectomy or if trabeculectomy is unlikely to succeed. Trabeculectomy is a major surgery that is widely used and is augmented with topically applied anticancer drugs, such as 5-flurouracil or mitomycin-C to decrease scarring and increase the likelihood of surgical success.


Approximately 100,000 trabeculectomies are performed on Medicare-age patients per year in the United States. This number would likely increase if the morbidity associated with trabeculectomy could be decreased. The current morbidity associated with trabeculectomy consists of failure (10-15%); infection (a life long risk of 2-5%); choroidal hemorrhage, a severe internal hemorrhage from low intraocular pressure, resulting in visual loss (1%); cataract formation; and hypotony maculopathy (potentially reversible visual loss from low intraocular pressure).


For these reasons, surgeons have tried for decades to develop a workable surgery for the trabecular meshwork.


The surgical techniques that have been tried and practiced are goniotomy/trabeculotomy and other mechanical disruptions of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation, and goniocurretage. These are all major operations and are briefly described below.


Goniotomy/Trabeculotomy: Goniotomy and trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed due to cellular repair and fibrosis mechanisms and a process of “filling in.” Filling in is a detrimental effect of collapsing and closing in of the opening created in the trabecular meshwork. Once the openings close, the pressure builds back up and the surgery fails.


Trabeculopuncture: Q-switched Neodynium (Nd) YAG lasers also have been investigated as an optically invasive technique for creating full-thickness holes in trabecular meshwork. However, the relatively small hole created by this trabeculopuncture technique exhibits a filling-in effect and fails.


Goniophotoablation/Laser Trabecular Ablation: Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172 and involves the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This was demonstrated not to succeed by clinical trial. Hill et al. disclosed the use of an Erbium:YAG laser to create full-thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341-346, 1991). This technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although morbidity was zero in both trials, success rates did not warrant further human trials. Failure was again from filling in of surgically created defects in the trabecular meshwork by repair mechanisms. Neither of these is a viable surgical technique for the treatment of glaucoma.


Goniocurretage: This is an ab interno (from the inside), mechanically disruptive technique that uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip. Initial results were similar to trabeculotomy: it failed due to repair mechanisms and a process of filling in.


Although trabeculectomy is the most commonly performed filtering surgery, viscocanulostomy (VC) and non-penetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are ab externo (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap. In the VC procedure, Schlemm's canal is cannulated and viscoelastic substance injected (which dilates Schlemm's canal and the aqueous collector channels). In the NPT procedure, the inner wall of Schlemm's canal is stripped off after surgically exposing the canal.


Trabeculectomy, VC, and NPT involve the formation of an opening or hole under the conjunctiva and scleral flap into the anterior chamber, such that aqueous humor is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye. These surgical operations are major procedures with significant ocular morbidity. Where trabeculectomy, VC, and NPT were thought to have a low chance for success in particular cases, a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous humor through the surgical opening will continue. The risk of placing a glaucoma drainage device also includes hemorrhage, infection, and diplopia (double vision).


Examples of implantable shunts and surgical methods for maintaining an opening for the release of aqueous humor from the anterior chamber of the eye to the sclera or space beneath the conjunctiva have been disclosed in, for example, U.S. Pat. No. 6,059,772 to Hsia et al., U.S. Pat. No. 6,050,970 to Baerveldt, U.S. Pat. No. 6,468,283 to Richter et al., and U.S. Pat. No. 6,471,666 to Odrich.


All of the above surgeries and variations thereof have numerous disadvantages and moderate success rates. They involve substantial trauma to the eye and require great surgical skill in creating a hole through the full thickness of the sclera into the subconjunctival space. The procedures are generally performed in an operating room and have a prolonged recovery time for vision.


The complications of existing filtration surgery have prompted ophthalmic surgeons to find other approaches to lowering intraocular pressure or treating tissue of trabecular meshwork.


The trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous and, as such, are logical targets for tissue stimulation/rejuvenating or shunting in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue are displaced and functions of the existing physiologic outflow pathways are restored.


As reported in Arch. Ophthalm. (2000) 118:412, glaucoma remains a leading cause of blindness, and filtration surgery remains an effective, important option in controlling the disease. However, modifying existing filtering surgery techniques in any profound way to increase their effectiveness appears to have reached a dead end. The article further states that the time has come to search for new surgical approaches that may provide better and safer care for patients with glaucoma.


SUMMARY OF THE INVENTIONS

There is a great clinical need for an improved method of treating glaucoma that is faster, safer, and less expensive than currently available drug or surgical modalities. The methods disclosed herein include ab interno and ab externo procedures that involve non-flap operations. The methods herein may further comprise using an innovative stenting device.


The trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous and, as such, are logical targets for the treatment of glaucoma. Various embodiments of glaucoma devices and methods are disclosed herein for treating glaucoma by an ab interno procedure or an ab externo procedure, with respect to trabecular meshwork. The “ab interno” procedure is herein intended to mean any procedure that creates an opening from the anterior chamber through trabecular meshwork outwardly toward Schlemm's canal or toward scleral/cornea wall. This ab interno procedure may be initiated through the scleral wall or cornea wall into the anterior chamber as a first step. The “ab externo” procedure is herein intended to mean any procedure that creates an opening on the scleral wall through trabecular meshwork inwardly toward the anterior chamber. In most “ab externo” procedures disclosed herein, an instrument is passed through or contacts Schlemm's canal before entering trabecular meshwork and approaching the anterior chamber. The trabecular meshwork can generally be said to be bordered on one side by the anterior chamber and on the other side by Schlemm's canal.


Glaucoma surgical morbidity would greatly decrease if one were to bypass the focal resistance to outflow of aqueous only at the point of resistance, and to utilize remaining, healthy aqueous outflow mechanisms. This is in part because episcleral aqueous humor exerts a backpressure that prevents intraocular pressure from falling too low, and one could thereby avoid hypotony. Thus, such a surgery may virtually eliminate the risk of hypotony-related maculopathy and choroidal hemorrhage. Furthermore, visual recovery would be very rapid, and the risk of infection may be very small, reflecting a reduction in incidence from 2-5% to about 0.05%.


Copending U.S. application Ser. No. 09/549,350, filed Apr. 14, 2000, entitled APPARATUS AND METHOD FOR TREATING GLAUCOMA, now U.S. Pat. No. 6,638,239, and copending U.S. application Ser. No. 09/704,276, filed Nov. 1, 2000, entitled GLAUCOMA TREATMENT DEVICE, now U.S. Pat. No. 6,736,791, disclose devices and methods of placing a trabecular shunt ab interno, i.e., from inside the anterior chamber through the trabecular meshwork, into Schlemm's canal. The entire contents of each one of these copending patent applications are hereby incorporated by reference herein. This application encompasses both ab interno and ab externo glaucoma shunts or stents and methods thereof.


One technique performed in accordance with certain aspects herein can be referred to generally as “trabecular bypass surgery.” Advantages of this type of surgery include lowering intraocular pressure in a manner which is simple, effective, disease site-specific, and can potentially be performed on an outpatient basis.


Generally, trabecular bypass surgery (TBS) creates an opening, a slit, or a hole through trabecular meshwork with minor microsurgery. TBS has the advantage of a much lower risk of choroidal hemorrhage and infection than prior techniques, and it uses existing physiologic outflow mechanisms. In some aspects, this surgery can potentially be performed under topical or local anesthesia on an outpatient basis with rapid visual recovery. To prevent “filling in” of the hole, a biocompatible elongated hollow device is placed within the hole and serves as a stent. U.S. Pat. No. 6,638,239 and the corresponding PCT application, PCT/US01/07398, filed Mar. 8, 2001, published as WO 01/78631A2, the entire contents of which are hereby incorporated by reference herein, disclose trabecular bypass surgery in details.


As described in U.S. Pat. Nos. 6,638,239 and 6,736,791, a trabecular shunt or stent for transporting aqueous humor is provided. The trabecular stent includes a hollow, elongate tubular element, having an inlet section and an outlet section. The outlet section may optionally include two segments or elements, adapted to be positioned and stabilized inside Schlemm's canal. In one embodiment, the device appears as a “T” shaped device. In another embodiment, the device appears as a “L” shaped device. In still another embodiment, the device appears as a “I” shaped embodiment.


In accordance with some embodiments disclosed herein, a delivery apparatus (or “applicator”) is used for placing a trabecular stent through a trabecular meshwork of an eye. Certain embodiments of such a delivery apparatus are disclosed in U.S. application Ser. No. 10/101,548, filed Mar. 18, 2002, entitled APPLICATOR AND METHODS FOR PLACING A TRABECULAR SHUNT FOR GLAUCOMA TREATMENT, and U.S. Provisional Application No. 60/276,609, filed Mar. 16, 2001, entitled APPLICATOR AND METHODS FOR PLACING A TRABECULAR SHUNT FOR GLAUCOMA TREATMENT, the entire contents of each of which are hereby incorporated by reference herein.


The stent has an inlet section and an outlet section. In one embodiment, the delivery apparatus includes a handpiece, an elongate tip, a holder and an actuator. The handpiece has a distal end and a proximal end. The elongate tip is connected to the distal end of the handpiece. The elongate tip has a distal portion and is configured to be placed through a corneal incision and into an anterior chamber of the eye. The holder is attached to the distal portion of the elongate tip. The holder is configured to hold and release the inlet section of the trabecular stent. The actuator is on the handpiece and actuates the holder to release the inlet section of the trabecular stent from the holder. When the trabecular stent is deployed from the delivery apparatus into the eye, the outlet section is positioned in substantially opposite directions inside Schlemm's canal. In one embodiment, a deployment mechanism within the delivery apparatus includes a push-pull type plunger.


Some embodiments disclosed herein relate to devices for reducing intraocular pressure by providing outflow of aqueous from an anterior chamber of an eye. The device generally comprises an elongated tubular member and cutting means. The tubular member is adapted for extending through a trabecular meshwork of the eye. The tubular member generally comprises a lumen having an inlet port and at least one outlet port for providing a flow pathway. The cutting means is mechanically connected to or is an integral part of the tubular member for creating an incision in the trabecular meshwork for receiving at least a portion of the tubular member.


In one embodiment, a self-trephining glaucoma stent is provided for reducing and/or balancing intraocular pressure in an eye. The stent generally comprises a snorkel and a curved blade. The snorkel generally comprises an upper seat for stabilizing the stent within the eye, a shank and a lumen. The shank is mechanically connected to the seat and is adapted for extending through a trabecular meshwork of the eye. The lumen extends through the snorkel and has at least one inlet flow port and at least one outlet flow port. The blade is mechanically connected to the snorkel. The blade generally comprises a cutting tip proximate a distal-most point of the blade for making an incision in the trabecular meshwork for receiving the shank.


Some embodiments disclosed herein relate to methods of implanting a trabecular stent device in an eye. In one embodiment, the device has a snorkel mechanically connected to a blade. The blade is advanced through a trabecular meshwork of the eye to cut the trabecular meshwork and form an incision therein. At least a portion of the snorkel is inserted in the incision to implant the device in the eye.


Some embodiments provide a self-trephining glaucoma stent and methods thereof which advantageously allow for a “one-step” procedure in which the incision and placement of the stent are accomplished by a single device and operation. This desirably allows for a faster, safer, and less expensive surgical procedure. In any of the embodiments, fiducial markings, indicia, or the like and/or positioning of the stent device in a preloaded applicator may be used for proper orientation and alignment of the device during implantation.


Among the advantages of trabecular bypass surgery is its simplicity. The microsurgery may potentially be performed on an outpatient basis with rapid visual recovery and greatly decreased morbidity. There is a lower risk of infection and choroidal hemorrhage, and there is a faster recovery, than with previous techniques.


Some embodiments disclosed herein relate to a medical device system for treating glaucoma of an eye comprising using OCT (optical coherence tomography) as an imaging and locating system for trabecular stent placement. In one embodiment, the procedure would first be set up with triangulation or some means to reliably establish the implant location in x, y, and z coordinates by using OCT within a few microns, most preferably in a non-invasive, non-contact manner. Having acquired the target space or location, the trabecular stent device would then be injected into place either via an ab interno procedure or an ab externo procedure. An article by Hoerauf et al. (Greafe's Arch Clin Exp Ophthalmol 2000; 238:8-18 published by Springer-Verlag), the entire contents of which are incorporated herein by reference, discloses a slit-lamp adapted optical coherence tomography of the anterior segment.


Some embodiments disclosed herein relate to a “foldable” stent wherein the size of the stent is reduced in order to place it through a yet smaller ocular entrance wound, as small as half or less than the size of the unfolded stent. The small wound size aids in recovery, to reduce the likelihood of complications, and to reduce the preparation and extent of the surgical environment. In another embodiment, the device is positioned through the trabecular meshwork in an ab externo or ab interno procedure. Reliable visualization (OCT, UBM, gonioscope, electromagnetic or other means) is a key enabler for micro precision surgery such as a trabecular bypass surgery using a microstent.


Some embodiments disclosed herein relate to a medical device system with trephining capability, wherein a cutting mechanism is on or as part of the applicator for purposes of making the hole in trabecular meshwork for stent insertion. In one aspect, a cutting tip may protrude through the lumen of the stent. In another, the tip extends down the side of the snorkel without entering the lumen. In still another, the tip either passes through the lumen or down the side and further extends to the tip of the stent that is the leading edge during insertion. In one embodiment, the cutting tip can be designed to retract after making the incision but before insertion of the stent into Schlemm's canal if it interferes with the insertion operation. It could also be retracted after insertion of the stent into Schlemm's canal.


Some embodiments disclosed herein provide an implant for treating glaucoma, the implant having a longitudinal implant axis and comprising an outflow portion through which a portion of the longitudinal implant axis passes. The outflow portion is shaped and sized to be introduced into Schlemm's canal with the portion of the longitudinal implant axis at an angle to Schlemm's canal. The outflow portion if further shaped and sized to be received within Schlemm's canal regardless of the rotational orientation of the outflow portion about the portion of the longitudinal implant axis during the introduction. The implant also comprises an inflow portion in fluid communication with the outflow portion, the inflow portion being configured to permit communication of fluid from the anterior chamber of the eye to the outflow portion.


Some embodiments disclosed herein provide an implant for treating glaucoma that comprises an outflow portion that is sized and shaped to be received within Schlemm's canal. The outflow portion may comprise an outflow portion base having an outflow opening and at least one standoff member disposed to space the outflow opening from a wall of Schlemm's canal, such that the opening is unobstructed by the canal wall.


Some embodiments disclosed herein provide an implant for treating glaucoma. The implant has a longitudinal implant axis and comprises a first portion at a first end of the longitudinal implant axis. The first portion is sized and configured to reside in Schlemm's canal such that the first portion has a maximum dimension along a longitudinal axis of Schlemm's canal that is not substantially greater than a dimension of the first portion that runs perpendicular to both the longitudinal axis of Schlemm's canal and to the longitudinal implant axis. The implant also comprises a second portion at a second end of the longitudinal implant axis, the second portion being configured to provide fluid communication between the anterior chamber and the first portion.


Some embodiments disclosed herein provide an implant for treating glaucoma that comprises an outflow portion that is sized and shaped to be received within Schlemm's canal and an inflow portion that is in fluid communication with the outflow portion. The inflow portion is configured to be disposed in the anterior chamber of the eye. The implant also comprises a central portion extending between the inflow and outflow portions. The outflow portion has a diameter that is no more than three times the diameter of the central portion.


In accordance with one embodiment disclosed herein, an implant for treating glaucoma is provided. The implant includes a longitudinal implant axis, and comprises an outflow portion through which the longitudinal implant axis passes. The outflow portion is shaped and sized to be introduced into Schlemm's canal with the portion of the longitudinal implant axis at an angle to Schlemm's canal. The outflow portion is also shaped and sized to be received within Schlemm's canal regardless of a rotational orientation of the outflow portion about the longitudinal implant axis during the introduction. The implant also comprises an inflow portion configured to permit communication of fluid from the anterior chamber of the eye to the outflow portion.


In accordance with another embodiment disclosed herein, an implant for treating glaucoma is provided. The implant comprises an outflow portion, sized and shaped to be received within Schlemm's canal. The outflow portion comprises an outflow portion base having an outflow opening and at least one standoff member disposed to space the outflow opening from a wall of Schlemm's canal, such that the outflow opening is unobstructed by the canal wall.


In accordance with a further embodiment disclosed herein, an implant for treating glaucoma is provided The implant includes a longitudinal implant axis and comprises a first portion at a first end of the longitudinal implant axis. The first portion is sized and configured to reside in Schlemm's canal, such that the first portion has a maximum dimension along a longitudinal axis of Schlemm's canal that is not substantially greater than a dimension of the first portion that runs perpendicular to both the longitudinal axis of Schlemm's canal and to the longitudinal implant axis. A second portion at a second end of the longitudinal implant axis is configured to provide fluid communication between the anterior chamber and the first portion.


In accordance with yet another embodiment disclosed herein, an implant for treating glaucoma comprises an outflow portion, sized and shaped to be received within Schlemm's canal. An inflow portion is in fluid communication with the outflow portion, the inflow portion configured to be disposed in the anterior chamber of the eye. A central portion may extend between the inflow and outflow portions. The outflow portion having a diameter that is no more than three times the diameter of the central portion.


In accordance with yet another embodiment disclosed herein, an instrument for delivering implants for treating an ophthalmic condition is provided. The instrument comprises an elongate body sized to be introduced into an eye through an incision in the eye. A plurality of implants is positioned in the elongate body. The elongate body further comprises an actuator that serially dispenses the implants from the elongate body for implanting in eye tissue.


In accordance with another embodiment disclosed herein, a method of implanting a plurality of implants for treating glaucoma is provided. The method includes inserting an instrument into an eye through an incision, utilizing the instrument to deliver a first implant through a wall of Schlemm's canal at a first location, and utilizing the instrument to deliver a second implant through a wall of Schlemm's canal at a second location, without removing the instrument from the eye between the deliveries of the implants.


In accordance with yet another embodiment disclosed herein, a method of implanting a plurality of implants for treating glaucoma is provided. The method includes inserting an instrument into an eye through an incision, utilizing the instrument to deliver a first implant through a wall of Schlemm's canal at a first location, and utilizing the instrument to deliver a second implant through a wall of Schlemm's canal at a second location, wherein the locations are determined from morphological data on collector channel locations.


In accordance with yet another embodiment disclosed herein, a method of implanting a plurality of implants for treating glaucoma is provided. The method comprises inserting an instrument into an eye through an incision, utilizing the instrument to deliver a first implant through a wall of Schlemm's canal at a first location, and utilizing the instrument to deliver a second implant through a wall of Schlemm's canal at a second location. The locations are determined by imaging collector channel locations.


In accordance with a further embodiment disclosed herein, a method of implanting a plurality of implants for treating glaucoma is provided. The method comprises inserting an instrument into an eye through an incision, utilizing the instrument to deliver a first implant through a wall of Schlemm's canal at a first location, and utilizing the instrument to deliver a second implant through a wall of Schlemm's canal at a second location. The locations are angularly spaced along Schlemm's canal by at least 20 degrees.


In accordance with yet another embodiment disclosed herein, a method of implanting a plurality of implants for treating glaucoma is provided. The method comprises inserting an instrument into an eye through an incision, utilizing the instrument to deliver a first implant through a wall of Schlemm's canal at a first location, utilizing the instrument to deliver a second implant through a wall of Schlemm's canal at a second location. The first and second locations are substantially at collector channels.


In accordance with another embodiment disclosed herein, a method of implanting a plurality of implants for treating glaucoma is provided. The method comprises inserting an instrument into an eye through an incision, utilizing the instrument to deliver a first implant through a wall of Schlemm's canal at a first location, and utilizing the instrument to deliver a second implant through a wall of Schlemm's canal at a second location. The implants have different flow characteristics.


In accordance with yet another embodiment disclosed herein, a method of implanting a plurality of implants for treating glaucoma is provided. The method comprises inserting an instrument into an eye through an incision, utilizing the instrument to deliver a first implant into the posterior segment of the eye, and utilizing the instrument to deliver a second implant into the posterior segment of the eye at a second location. The instrument is not removed from the eye between the deliveries of the implants.


In accordance with a further embodiment disclosed herein, a method of implanting a plurality of implants for treating glaucoma is provided. The method comprises serially dispensing a plurality of preloaded implants from an instrument into eye tissue at a respective plurality of locations within the eye.


In some embodiments, an implant for treating glaucoma is disclosed. The implant preferably comprises an inlet portion configured to be positioned in the anterior chamber of an eye and an outlet portion in fluid communication with the inlet portion, the outlet portion configured to be positioned at least partially in Schlemm's canal of the eye. The implant also preferably comprises a scleral anchor extending from the outlet portion. The scleral anchor is configured to penetrate partially the sclera of the eye when the implant is positioned in the eye such that aqueous humor flows from the anterior chamber into the inlet portion, then into the outlet portion, and then into Schlemm's canal.


The implant may further comprise a stop that limits penetration of the implant through the sclera. For example, the stop may comprise a base of said outlet portion, an interface between the outlet portion and the scleral anchor, or at least one portion of said scleral anchor configured to radially extend into the sclera. Other means for limiting penetration of the implant through the sclera may also be used.


In some embodiments, the implant comprises a solid-walled tube having at least two ends. The tube may have multiple openings along a wall of said tube, the openings being spaced apart from the two ends. The tube may have a cross-sectional shape selected from the group consisting of a circle, an ellipse, a rectangle, a square, and a polygon. Other shapes may also be used.


In some embodiments, the scleral anchor may comprise a screw configured to penetrate partially the sclera. In further embodiments, the scleral anchor may comprise a sharp end, a conical shape, a screw, at least one protrusion, or a circumferential indentation.


In some embodiments, an implant for treating glaucoma is disclosed wherein the implant comprises an inlet portion that is configured to be positioned in the anterior chamber of an eye and an outlet portion in fluid communication with the inlet portion. The outlet portion is preferably configured to be positioned at least partially in Schlemm's canal of the eye. The outlet portion comprises a bulbous portion having at least two outlet openings along a surface of said bulbous portion, and the outlet openings are in fluid communication with the outlet and inlet portions.


In some embodiments the surface of the bulbous portion is polyhedral. In further embodiments, the bulbous portion has a shape that comprises at least part of a sphere or at least part of an ellipsoid. In a further embodiment, the bulbous portion is substantially hemispherical in shape.


For purposes of summarizing, certain aspects, advantages and novel features of the inventions disclosed herein have been described herein above. Of course, it is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, the inventions may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other advantages as may be taught or suggested herein.


These and other embodiments of the inventions will become apparent to those skilled in the art from the following detailed description of exemplary embodiments having reference to the attached figures, the inventions not being limited to any particular preferred embodiment(s) disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:



FIG. 1 is a coronal cross-sectional view of an eye;



FIG. 2 is an enlarged cross-sectional view of an anterior chamber angle of the eye of FIG. 1 with a trabecular stent;



FIG. 3 is a schematic and partial sectional view of an eye illustrating an implanted glaucoma stent in accordance with one embodiment of at least one of the inventions disclosed herein;



FIG. 4 is a side elevational view of the stent of FIG. 3;



FIG. 5 is a top plan view of the stent of FIG. 3;



FIG. 6 is a bottom plan view of the stent of FIG. 3;



FIG. 7 is a front elevational view of the stent of FIG. 3 (along line 7-7 of FIG. 4);



FIG. 8 is a rear elevational view of the stent of FIG. 3 (along line 8-8 of FIG. 4);



FIG. 9 is an enlarged top plan view of a forward end of the stent of FIG. 3;



FIG. 10 is a top plan view of a modification of an inlet end of the stent of FIG. 3;



FIG. 11 is a top plan view of another modification of the inlet end of the stent of FIG. 3;



FIG. 12 is a top plan view of yet another modification of the inlet end of the stent of FIG. 3;



FIG. 13 is a top plan view of still another modification of the inlet end of the stent of FIG. 3;



FIG. 14 is schematic and partial sectional view of an eye illustrating a modification of the implanted glaucoma stent of FIG. 3;



FIG. 15 is a schematic and partial sectional view of an eye illustrating a further modification of the implanted glaucoma stent of FIG. 3;



FIG. 16 is a side elevational view of yet another modification of the glaucoma stent of FIG. 3;



FIG. 17 is a top plan view of the stent of FIG. 16;



FIG. 18 is a bottom plan view of the stent of FIG. 16;



FIG. 19 is a front elevational view along line 19-19 of FIG. 16;



FIG. 20 is a rear elevational view along line 20-20 of FIG. 16;



FIG. 21 is a side elevation view of still another modification of the glaucoma stent of FIG. 3;



FIG. 22 is a top plan view of the stent of FIG. 21;



FIG. 23 is a bottom plan view of the stent of FIG. 21;



FIG. 24 is a front elevational view along line 24-24 of FIG. 21;



FIG. 25 is a rear elevational view along line 25-25 of FIG. 21;



FIG. 26 is a front elevational view of a modification of the glaucoma stent illustrated in FIG. 3;



FIG. 27 is a right side elevational view of the stents illustrated in FIG. 26 as viewed along the line 27-27;



FIG. 28 is a right side elevational view of the glaucoma stent illustrated in FIG. 26, as viewed along the line 28-28;



FIG. 29 is a schematic and partial sectional view of an eye illustrating a temporal implantation of a glaucoma stent using a delivery apparatus having features and advantages in accordance with at least one of the inventions disclosed herein;



FIG. 30 is an oblique elevational view of an articulating arm stent delivery/retrieval apparatus having features and advantages in accordance with an embodiment of at least one of the inventions disclosed herein;



FIG. 31 is a schematic and partial sectional view of a portion of an eye and illustrating an implantation of a glaucoma stent using a delivery apparatus extending through the anterior chamber of the eye;



FIG. 32 is a schematic and partial sectional view of a Schlemm's canal and trabecular meshwork of an eye with another glaucoma stent extending from the anterior chamber of the eye, through the trabecular meshwork, and into a rear wall of the Schlemm's canal;



FIG. 33 is an enlarged cross-sectional view of a distal portion of the stent illustrated in FIG. 32;



FIG. 34 is a schematic and partial sectional view of the eye of FIG. 32 and a side elevational view of a modification of the stent illustrated in FIG. 32;



FIG. 35 is a schematic and partial sectional view of the eye illustrated in FIG. 32, and a side elevational view of a photomodification of the stent illustrated in FIG. 32;



FIG. 36 is a schematic and partial sectional view of the eye illustrated in FIG. 32, and a side elevational view of another modification of the stent of FIG. 32;



FIG. 37 is a schematic and partial sectional view of the eye illustrated in FIG. 32, and a side elevational view of a further modification of the implant illustrated in FIG. 32;



FIG. 38 is a schematic and partial sectional view of the eye illustrated in FIG. 32 and a side elevational view of another modification of the stent illustrated in FIG. 32;



FIG. 39 is a schematic and partial sectional view of the eye illustrated in FIG. 32, and a side elevational view of the further modification of the implant illustrated in FIG. 32;



FIG. 40 is a schematic and partial sectional view of the eye illustrated in FIG. 32, and a side elevational view of yet another modification of the stent illustrated in FIG. 32;



FIG. 41 is a schematic and partial sectional view of an eye and the side elevational view of yet another modification of the stent illustrated in FIG. 32;



FIG. 42 is a schematic and partial sectional view of the eye illustrated in FIG. 32, and a side elevational view of yet another modification of the implant illustrated in FIG. 32;



FIG. 43 is an enlarged schematic and partial cross-sectional view of an anterior chamber angle of an eye having a valve stent implanted therein;



FIG. 44 is an enlarged cross-sectional view of an anterior chamber angle of an eye including an osmotic membrane device implanted therein;



FIG. 45 is an enlarged cross-sectional view of an anterior chamber angle of an eye illustrating an implantation of a glaucoma stent using an ab externo procedure;



FIG. 46 is a schematic and partial sectional view of the eye illustrated in FIG. 32 and a side elevational view of another modification of the implant illustrated in FIG. 32;



FIG. 47 is an enlarged schematic and partial sectional view of the eye illustrated in FIG. 32 and including a drug release device implanted therein;



FIG. 48 is a flow diagram illustrating a method for treating glaucoma;



FIG. 49A is an enlarged schematic illustration showing an anterior chamber, trabecular meshwork and a Schlemm's canal of an eye and an oblique elevational view of yet another modification of the stent illustrated in FIG. 32;



FIG. 49B is an oblique elevational view of a modification of the stent illustrated in FIG. 49A;



FIG. 49C is a side elevational view of another modification of the stent illustrated in FIG. 49A;



FIG. 50A is a cross-sectional view of the eye portion showing anatomically the trabecular meshwork, Schlemm's canal and one collector duct;



FIG. 50B is a cross-sectional view of FIG. 50A with a portion of a stent mechanically inserted into one of the collector ducts;



FIG. 51A is a side elevational view of a stent delivery applicator with a steerable distal section for multiple stent deployment;



FIG. 51B is a schematic and partial sectional view of the distal section of the stent delivery applicator of FIG. 51A;



FIG. 51C is a cross-sectional view, section 1-1 of FIG. 51B;



FIG. 51D is an oblique side elevational view of the steerable section of the delivery applicator illustrated in FIG. 51A and including an optional ultrasonically enabled distal end;



FIG. 52A is a partial sectional and side elevational view of a distal section of a modification of the stent delivery applicator illustrated in FIG. 51A;



FIG. 52B is a partial sectional and side elevational view of a distal section of the stent delivery applicator illustrated in FIG. 51A having been inserted through a trabecular meshwork with the stent disposed within the distal section;



FIG. 52C is a partial sectional and side elevational view of a distal section of the stent delivery applicator illustrated in FIG. 51A having been inserted through a trabecular meshwork and after the sheath of the distal portion has been withdrawn;



FIG. 52D is a partial sectional and side elevational view of a distal section of the stent delivery applicator illustrated in FIG. 51A having been inserted through a trabecular meshwork, and after the sheath and a cutting member have been withdrawn;



FIG. 53 is an oblique side elevational and partial sectional view of a further modification of the stent illustrated in FIG. 32;



FIG. 54A is a sectional view of yet another modification of the stent delivery applicator illustrated in FIG. 51A;



FIG. 54B is an enlarged sectional view of a distal end of the applicator illustrated in FIG. 54A and including two implants disposed over a trocar of the device, this portion being identified by the circle 2-2 in FIG. 54A;



FIG. 54C is a sectional view of the applicator device taken along section line 3-3 of FIG. 54A;



FIGS. 55 A-C show multiple views of an embodiment of a trabecular stent.



FIGS. 56 A-B show multiple views of another embodiment of a trabecular stent;



FIGS. 57 A-B show multiple views of a trabecular stent having a modified center bulb with anchors;



FIGS. 58 A-B show multiple views of another embodiment of a trabecular stent;



FIGS. 59 A-C show multiple views of another embodiment of a trabecular stent;



FIGS. 60 A-B show multiple views of another embodiment of a trabecular stent with scleral anchors;



FIGS. 61 A-B show multiple views of another embodiment of a trabecular stent with scleral anchors;



FIGS. 62 A-B show multiple views of a trabecular stent with screws;



FIGS. 63 A-B show multiple views of another embodiment of a trabecular stent;



FIGS. 64 A-B show a dual blade mushroom stent and its associated trocar delivery system;



FIG. 65 shows a perspective view of a G2 injector;



FIG. 66 shows a top view of the G2 injector of FIG. 65;



FIG. 67 shows a side cross-sectional view of a G2 injector stem, showing solid trocar portion;



FIGS. 68 A-C show three modes of a side cross-sectional view of a G2 injector stem, showing irrigating trocar portion;



FIGS. 69 A and B show two modes of the G2 injector: (A) in the cocked orientation; (B) in the deployed orientation;



FIGS. 70 A and B show two pusher tube locations of the button geometry;



FIG. 71 shows a schematic of effective shorting of a pusher tube in the G2 injector; and



FIG. 72 illustrates where the pusher-tube resides when the G2 injector is cocked.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The preferred embodiments described herein relate particularly to surgical and therapeutic treatment of glaucoma through reduction of intraocular pressure and/or stimulation of the trabecular meshwork tissue. While the description sets forth various embodiment-specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the inventions disclosed herein. Furthermore, various applications of the inventions disclosed herein, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein.



FIG. 1 is a cross-sectional view of an eye 10. FIG. 2 is an enlarged sectional view of the eye showing the relative anatomical locations of a trabecular meshwork 21, an anterior chamber 20, and a Schlemm's canal 22. A sclera 11 is a thick collagenous tissue which covers the entire eye 10 except a portion which is covered by a cornea 12.


With reference to FIGS. 1 and 2, the cornea 12 is a thin transparent tissue that focuses and transmits light into the eye and through a pupil 14, which is a circular hole in the center of an iris 13 (colored portion of the eye). The cornea 12 merges into the sclera 11 at a juncture referred to as a limbus 15. A ciliary body 16 extends along the interior of the sclera 11 and is coextensive with a choroid 17. The choroid 17 is a vascular layer of the eye 10, located between the sclera 11 and a retina 18. An optic nerve 19 transmits visual information to the brain and is the anatomic structure that is progressively destroyed by glaucoma.


With continued reference to FIGS. 1 and 2, the anterior chamber 20 of the eye 10, which is bound anteriorly by the cornea 12 and posteriorly by the iris 13 and a lens 26, is filled with aqueous humor (hereinafter referred to as “aqueous”). Aqueous is produced primarily by the ciliary body 16, then moves anteriorly through the pupil 14 and reaches an anterior chamber angle 25, formed between the iris 13 and the cornea 12.


As best illustrated by the drawing of FIG. 2, in a normal eye, aqueous is removed from the anterior chamber 20 through the trabecular meshwork 21. Aqueous passes through the trabecular meshwork 21 into Schlemm's canal 22 and thereafter through a plurality of collector ducts and aqueous veins 23, which merge with blood-carrying veins, and into systemic venous circulation. Intraocular pressure is maintained by an intricate balance between secretion and outflow of aqueous in the manner described above. Glaucoma is, in most cases, characterized by an excessive buildup of aqueous in the anterior chamber 20 which leads to an increase in intraocular pressure. Fluids are relatively incompressible, and thus intraocular pressure is distributed relatively uniformly throughout the eye 10.


As shown in FIG. 2, the trabecular meshwork 21 is adjacent a small portion of the sclera 11. Exterior to the sclera 11 is a conjunctiva 24. Traditional procedures that create a hole or opening for implanting a device through the tissues of the conjunctiva 24 and sclera 11 involve extensive surgery, as compared to surgery for implanting a device, as described herein, which ultimately resides entirely within the confines of the sclera 11 and cornea 12. A trabecular stent 229 can be placed bypassing the trabecular meshwork 21 with a proximal terminal 227 exposed to anterior chamber 20 and a distal terminal 228 exposed to Schlemm's canal 22.



FIG. 3 schematically illustrates the use of one embodiment of a trabecular stenting device 30 for establishing an outflow pathway, passing through the trabecular meshwork 21, described in greater detail below. FIGS. 4-9 are different views of the stent 30. Advantageously, and as discussed in further detail later herein, a self-trephining stent allows a one-step procedure to make an incision in the trabecular mesh 21 and place the stent or implant 30 at the desired or predetermined position within the eye 10. Desirably, this facilitates and simplifies the overall surgical procedure.


In the illustrated embodiment of FIGS. 3-9, the shunt or stent 30 generally comprises an inlet portion or “snorkel” 32 and a main body portion or blade 34. The snorkel 32 and blade 34 are mechanically connected to or in mechanical communication with one another. A generally longitudinal axis 36 extends along the stent 30 and/or the body portion 34.


In the illustrated embodiment of FIGS. 3-9, the stent 30 comprises an integral unit. In modified embodiments, the stent 30 may comprise an assembly of individual pieces or components. For example, the stent 30 may comprise an assembly of the snorkel 32 and blade 34.


In the illustrated embodiment of FIGS. 3-9, the snorkel 32 is in the form of a generally elongate tubular member and generally comprises an upper seat, head or cap portion 38, a shank portion 40 and a lumen or passage 42 extending therethrough. The seat 38 is mechanically connected to or in mechanical communication with the shank 40 which is also mechanically connected to or in mechanical communication with the blade 34. Longitudinal axis 43 extends along the snorkel 32 and/or the lumen 42.


In the illustrated embodiment of FIGS. 3-9, the seat 38 is generally circular in shape and has an upper surface 44 and a lower surface 46 which, as shown in FIG. 3, abuts or rests against the trabecular meshwork 21 to stabilize the glaucoma stent 30 within the eye 10. In modified embodiments, the seat 38 may efficaciously be shaped in other suitable manners, as required or desired, giving due consideration to the goals of stabilizing the glaucoma stent 30 within the eye 10 and/or of achieving one or more of the benefits and advantages as taught or suggested herein. For example, the seat 38 may be shaped in other polygonal or non-polygonal shapes and/or comprise one or more ridges which extend radially outwards, among other suitable retention devices.


In the illustrated embodiment of FIGS. 3-9, and as best seen in the top view of FIG. 5, the seat top surface 44 comprises fiducial marks or indicia 48. These marks or indicia 48 facilitate and ensure proper orientation and alignment of the stent 30 when implanted in the eye 10. The marks or indicia 48 may comprise visual differentiation means such as color contrast or be in the form of ribs, grooves, or the like. Alternatively, or in addition, the marks 48 may provide tactile sensory feedback to the surgeon by incorporating a radiopaque detectable or ultrasound imaginable substrate at about the mark 48. Also, the seat 38 and/or the seat top surface 44 may be configured in predetermined shapes aligned with the blade 34 and/or longitudinal axis 36 to provide for proper orientation of the stent device 30 within the eye 10. For example, the seat top surface 44 may be oval or ellipsoidal (FIG. 10), rectangular (FIG. 11), hexagonal (FIG. 12), among other suitable shapes (e.g. FIG. 13).


In the illustrated embodiment of FIGS. 3-9, and as indicated above, the seat bottom surface 46 abuts or rests against the trabecular meshwork 21 to stabilize and retain the glaucoma stent 30 within the eye 10. For stabilization purposes, the seat bottom surface 46 may comprise a stubbed surface, a ribbed surface, a surface with pillars, a textured surface, or the like.


In the illustrated embodiment of FIGS. 3-9, the snorkel shank 40 is generally cylindrical in shape. With the stent 30 implanted, as shown in FIG. 3, the shank 40 is generally positioned in an incision or cavity 50 formed in the trabecular meshwork 21 by the self-trephining stent 30. Advantageously, and as discussed further below, this single step of forming the cavity 50 by the stent 30 itself and placing the stent 30 in the desired position facilitates and expedites the overall surgical procedure. In modified embodiments, the snorkel shank 40 may efficaciously be shaped in other suitable manners, as required or desired. For example, the shank 40 may be in the shape of other polygonal or non-polygonal shapes, such as, oval, ellipsoidal, and the like.


In the illustrated embodiment of FIGS. 3-9, and as best seen in FIG. 3, the shank 40 has an outer surface 52 in contact with the trabecular meshwork 21 surrounding the cavity 50. For stabilization purposes, the shank outer surface 52 may comprise a stubbed surface, a ribbed surface, a surface with pillars, a textured surface, or the like.


In the illustrated embodiment of FIGS. 3-9, the snorkel lumen 42 has an inlet port, opening or orifice 54 at the seat top surface 44 and an outlet port, opening or orifice 56 at the junction of the shank 40 and blade 34. The lumen 42 is generally cylindrical in shape, that is, it has a generally circular cross-section, and its ports 54, 56 are generally circular in shape. In modified embodiments, the lumen 42 and ports 54, 56 may be efficaciously shaped in other manners, as required or desired, giving due consideration to the goals of providing sufficient aqueous outflow and/or of achieving one or more of the benefits and advantages as taught or suggested herein. For example, the lumen 42 and/or one or both ports 54, 56 may be shaped in the form of ovals, ellipsoids, and the like, or the lumen 42 may have a tapered or stepped configuration.


Referring in particular to FIG. 3, aqueous from the anterior chamber 20 flows into the lumen 42 through the inlet port 54 (as generally indicated by arrow 58) and out of the outlet port 56 and into Schlemm's canal 22 (as generally indicated by arrows 60) to lower and/or balance the intraocular pressure (IOP). In another embodiment, as discussed in further detail below, one or more of the outlet ports may be configured to face in the general direction of the stent longitudinal axis 36. In modified embodiments, the snorkel 32 may comprise more than one lumen, as needed or desired, to facilitate multiple aqueous outflow transportation into Schlemm's canal 22.


In the illustrated embodiment of FIGS. 3-9, the blade longitudinal axis 36 and the snorkel longitudinal axis 43 are generally perpendicular to one another. Stated differently, the projections of the axes 36, 43 on a common plane which is not perpendicular to either of the axes 36, 43 intersect at 90°. The blade longitudinal axis 36 and the snorkel longitudinal axis 43 may intersect one another or may be offset from one another.


In the illustrated embodiment of FIGS. 3-9, the main body portion or blade 34 is a generally curved elongated sheet- or plate-like structure with an upper curved surface 62 and a lower curved surface 64 which defines a trough or open face channel 66. The perimeter of the blade 34 is generally defined by a curved proximal edge 68 proximate to the snorkel 32, a curved distal edge 70 spaced from the proximal edge 68 by a pair of generally straight lateral edges 72, 74. The first lateral edge 72 extends beyond the second lateral edge 74 and intersects with the distal edge 70 at a distal-most point 76 of the blade 34. Preferably, the blade 34 defines a blade cutting tip 78.


In the illustrated embodiment of FIGS. 3-9, and as shown in the enlarged view of FIG. 9, the cutting tip 78 comprises a first cutting edge 80 on the distal edge 70 and a second cutting edge 82 on the lateral edge 72. The cutting edges 80, 82 preferably extend from the distal-most point 76 of the blade 34 and comprise at least a respective portion of the distal edge 70 and lateral edge 72. The respective cutting edges 80, 82 are formed at the sharp edges of respective beveled or tapered surfaces 84, 86. In one embodiment, the remainder of the distal edge 70 and lateral edge 72 are dull or rounded. In one embodiment, the tip 78 proximate to the distal-most end 76 is curved slightly inwards, as indicated generally by the arrow 88 in FIG. 5 and arrow 88 (pointed perpendicular and into the plane of the paper) in FIG. 9, relative to the adjacent curvature of the blade 34.


In modified embodiments, suitable cutting edges may be provided on selected portions of one or more selected blade edges 68, 70, 72, 74 with efficacy, as needed or desired, giving due consideration to the goals of providing suitable cutting means on the stent 30 for effectively cutting through the trabecular meshwork 21 (FIG. 3) and/or of achieving one or more of the benefits and advantages as taught or suggested herein.


Referring in particular to FIG. 9, in one embodiment, the ratio between the lengths of the cutting edges 80, 82 is about 2:1. In another embodiment, the ratio between the lengths of the cutting edges 80, 82 is about 1:1. In yet another embodiment, the ratio between the lengths of the cutting edges 80, 82 is about 1:2. In modified embodiments, the lengths of the cutting edges 80, 82 may be efficaciously selected in other manners, as required or desired, giving due consideration to the goals of providing suitable cutting means on the stent 30 for effectively cutting through the trabecular meshwork 21 (FIG. 3) and/or of achieving one or more of the benefits and advantages as taught or suggested herein.


Still referring in particular to FIG. 9, in one embodiment, the ratio between the lengths of the cutting edges 80, 82 is in the range from about 2:1 to about 1:2. In another embodiment, the ratio between the lengths of the cutting edges 80, 82 is in the range from about 5:1 to about 1:5. In yet another embodiment, the ratio between the lengths of the cutting edges 80, 82 is in the range from about 10:1 to about 1:10. In modified embodiments, the lengths of the cutting edges 80, 82 may be efficaciously selected in other manners, as required or desired, giving due consideration to the goals of providing suitable cutting means on the stent 30 for effectively cutting through the trabecular meshwork 21 (FIG. 3) and/or of achieving one or more of the benefits and advantages as taught or suggested herein.


As shown in the top view of FIG. 9, the cutting edge 80 (and/or the distal end 70) and the cutting edge 82 (and/or the lateral edge 72) intersect at an angle θ. Stated differently, θ is the angle between the projections of the cutting edge 80 (and/or the distal end 70) and the cutting edge 82 (and/or the lateral edge 72) on a common plane which is not perpendicular to either of these edges.


Referring to in particular to FIG. 9, in one embodiment, the angle θ is about 50°. In another embodiment, the angle θ is in the range from about 40° to about 60°. In yet another embodiment, the angle θ is in the range from about 30° to about 70°. In modified embodiments, the angle θ may be efficaciously selected in other manners, as required or desired, giving due consideration to the goals of providing suitable cutting means on the stent 30 for effectively cutting through the trabecular meshwork 21 (FIG. 3) and/or of achieving one or more of the benefits and advantages as taught or suggested herein.


The stent 30 of the embodiments disclosed herein can be dimensioned in a wide variety of manners. Referring in particular to FIG. 3, the depth of Schlemm's canal 22 is typically about less than 400 microns (μm). Accordingly, the stunt blade 34 is dimensioned so that the height of the blade 34 (referred to as H41 in FIG. 4) is typically less than about 400 μm. The snorkel shank 40 is dimensioned so that it has a length (referred to as L41 in FIG. 4) typically in the range from about 150 μm to about 400 μm which is roughly the typical range of the thickness of the trabecular meshwork 21.


Of course, as the skilled artisan will appreciate, that with the stent 30 implanted, the blade 34 may rest at any suitable position within Schlemm's canal 22. For example, the blade 34 may be adjacent to a front wall 90 of Schlemm's canal 22 (as shown in FIG. 3), or adjacent to a back wall 92 of Schlemm's canal 22, or at some intermediate location therebetween, as needed or desired. Also, the snorkel shank 40 may extend into Schlemm's canal 22. The length of the snorkel shank 40 and/or the dimensions of the blade 34 may be efficaciously adjusted to achieve the desired implant positioning.


The trabecular stenting device 30 (FIGS. 3-9) of the exemplary embodiment may be manufactured or fabricated by a wide variety of techniques. These include, without limitation, molding, thermo-forming, or other micro-machining techniques, among other suitable techniques.


The trabecular stenting device 30 preferably comprises a biocompatible material such that inflammation arising due to irritation between the outer surface of the device 30 and the surrounding tissue is minimized. Biocompatible materials which may be used for the device 30 preferably include, but are not limited to, titanium, titanium alloys, medical grade silicone, e.g., SILASTIC™, available from Dow Corning Corporation of Midland, Mich.; and polyurethane, e.g., PELLETHANE™, also available from Dow Corning Corporation.


In other embodiments, the stent device 30 may comprise other types of biocompatible material, such as, by way of example, polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, and/or a mixture of the aforementioned biocompatible materials, and the like. In still other embodiments, composite biocompatible material may be used, wherein a surface material may be used in addition to one or more of the aforementioned materials. For example, such a surface material may include polytetrafluoroethylene (PTFE) (such as TEFLON™), polyimide, hydrogel, heparin, therapeutic drugs (such as beta-adrenergic antagonists and other anti-glaucoma drugs, or antibiotics), and the like.


In an exemplary embodiment of the trabecular meshwork surgery, the patient is placed in the supine position, prepped, draped and anesthetized as necessary. A small (less than about 1 mm) incision, which may be self sealing can then be made through the cornea 12. The corneal incision can be made in a number of ways, for example, by using a micro-knife, among other tools.


An applicator or delivery apparatus is used to advance the glaucoma stent 30 through the corneal incision and to the trabecular meshwork 21. Some embodiments of such a delivery apparatus are disclosed in U.S. application Ser. No. 10/101,548, filed Mar. 18, 2002, entitled APPLICATOR AND METHODS FOR PLACING A TRABECULAR SHUNT FOR GLAUCOMA TREATMENT, and U.S. Provisional Application No. 60/276,609, filed Mar. 16, 2001, entitled APPLICATOR AND METHODS FOR PLACING A TRABECULAR SHUNT FOR GLAUCOMA TREATMENT, the entire contents of each one of which are hereby incorporated by reference herein. Some embodiments of a delivery apparatus are also described in further detail below. Gonioscopic, microscopic, or endoscopic guidance can be used during the trabecular meshwork surgery.


With the device 30 held by the delivery apparatus, the blade 34 of the device 30 is used to cut and/or displace the material of the trabecular meshwork 21. The snorkel shank 40 can also facilitate in removal of this material during implantation. The delivery apparatus is withdrawn once the device 30 has been implanted in the eye 10. As shown in FIG. 3, the snorkel seat 38 can rest on a top surface 94 of the trabecular meshwork 21 with the snorkel shank 40 extending through the cavity 50 (created by the device 30) in the trabecular meshwork 21, and with the blade 34 extending inside Schlemm's canal 22.


Advantageously, the embodiments of the self-trephining stent device 30 allow for a “one-step” procedure to make an incision in the trabecular meshwork and to implant the stent in the proper orientation and alignment within the eye to allow outflow of aqueous from the anterior chamber through the stent and into Schlemm's canal to lower and/or balance the intraocular pressure (IOP). Desirably, this provides for a faster, safer, and less expensive surgical procedure.


Many complications can arise in trabecular meshwork surgeries, wherein a knife is first used to create an incision in the trabecular meshwork, followed by removal of the knife and subsequent installation of the stent. For instance, the knife may cause some bleeding which clouds up the surgical site. This may require more effort and time to clean the surgical site prior to placement of the stent. Moreover, this may cause the intraocular pressure (IOP) to rise or to fall undesirably. Thus, undesirably, such a multiple step procedure may demand crisis management which slows down the surgery, makes it less safe, and more expensive.



FIG. 14 is a simplified partial view of an eye 10 illustrating the implantation of a self-trephining glaucoma stent device 30a having features and advantages in accordance with one embodiment. The stent 30a is generally similar to the stent 30 of FIGS. 3-9 except that its snorkel 32a comprises a longer shank 40a which extends into Schlemm's canal 22 and a lumen 42a which bifurcates into two output channels 45a.


In the illustrated embodiment of FIG. 14, the shank 40a terminates at the blade 34. Aqueous flows from the anterior chamber 20 into the lumen 42a through an inlet port 54a (as generally indicated by arrow 58a). Aqueous then flows through the output channels 45a and out of respective outlet ports 56a and into Schlemm's canal 22 (as generally indicated by arrows 60a). The outlet channels 45a extend radially outwards in generally opposed directions and the outlet ports 56a are configured to face in the general direction of the stent longitudinal axis 36 so that they open into Schlemm's canal 22 and are in proper orientation to allow aqueous outflow into Schlemm's canal 22 for lowering and/or balancing the intraocular pressure (IOP). As indicated above, fiducial marks or indicia and/or predetermined shapes of the snorkel seat 38 allow for proper orientation of the blade 34 and also the output channels 45a and respective ports 56a within Schlemm's canal.


In the illustrated embodiment of FIG. 14, two outflow channels 45a are provided. In another embodiment, only one outflow channel 45a is provided. In yet another embodiment, more than two outflow channels 45a are provided. In modified embodiments, the lumen 42a may extend all the way through to the blade 34 and provide an outlet port as discussed above with reference to the embodiment of FIGS. 3-9.



FIG. 15 is a simplified partial view of an eye 10 illustrating the implantation of a self-trephining glaucoma stent device 30b having features and advantages in accordance with one embodiment. The stent 30b is generally similar to the stent 30 of FIGS. 3-9 except that its snorkel 32b comprises a longer shank 40b which extends into Schlemm's canal 22 and a lumen 42b which bifurcates into two output channels 45b.


In the illustrated embodiment of FIG. 15, the shank 40b extends through the blade 34. Aqueous flows from the anterior chamber 20 into the lumen 42b through an inlet port 54b (as generally indicated by arrow 58b). Aqueous then flows through the output channels 45b and out of respective outlet ports 56b and into Schlemm's canal 22 (as generally indicated by arrows 60b). The outlet channels 45b extend radially outwards in generally opposed directions and the outlet ports 56b are configured to face in the general direction of the stent longitudinal axis 36 so that they open into Schlemm's canal 22 and are in proper orientation to allow aqueous outflow into Schlemm's canal 22 for lowering and/or balancing the intraocular pressure (IOP). As indicated above, fiducial marks or indicia and/or predetermined shapes of the snorkel seat 38 allow for proper orientation of the blade 34 and also the output channels 45b and respective ports 56b within Schlemm's canal.


In the illustrated embodiment of FIG. 15, two outflow channels 45b are provided. In another embodiment, only one outflow channel 45b is provided. In yet another embodiment, more than two outflow channels 45b are provided. In modified embodiments, the lumen 42b may extend all the way through to the blade 34 and provide an outlet port as discussed above with reference to the embodiment of FIGS. 3-9.



FIGS. 16-20 show different views of a self-trephining glaucoma stent device 30c having features and advantages in accordance with one embodiment. The stent 30c is generally similar to the stent 30 of FIGS. 3-9 except that it has a modified blade configuration. The stent 30c comprises a blade 34c which is a generally curved elongated sheet- or plate-like structure with an upper curved surface 62c and a lower curved surface 64c which defines a trough or open face channel 66c. The perimeter of the blade 34c is generally defined by a curved proximal edge 68c proximate to the snorkel 32, a curved distal edge 70c spaced from the proximal edge 68c by a pair of generally straight lateral edges 72c, 74c which are generally parallel to one another and have about the same length.


In the illustrated embodiment of FIGS. 16-20, the blade 34c comprises a cutting tip 78c. The cutting tip 78c preferably includes cutting edges formed on selected portions of the distal edge 70c and adjacent portions of the lateral edges 72c, 74c for cutting through the trabecular meshwork for placement of the snorkel 32. The cutting edges are sharp edges of beveled or tapered surfaces as discussed above in reference to FIG. 9. The embodiment of FIGS. 16-20 may be efficaciously modified to incorporate the snorkel configuration of the embodiments of FIGS. 14 and 15.



FIGS. 21-25 show different views of a self-trephining glaucoma stent device 30d having features and advantages in accordance with one embodiment. The stent 30d is generally similar to the stent 30 of FIGS. 3-9 except that it has a modified blade configuration. The stent 30d comprises a blade 34d which is a generally curved elongated sheet- or plate-like structure with an upper curved surface 62d and a lower curved surface 64d which defines a trough or open face channel 66d. The perimeter of the blade 34d is generally defined by a curved proximal edge 68d proximate to the snorkel 32, a pair of inwardly converging curved distal edges 70d′, 70d″ spaced from the proximal edge 68d by a pair of generally straight respective lateral edges 72d, 74d which are generally parallel to one another and have about the same length. The distal edges 70d′, 70d″ intersect at a distal-most point 76d of the blade 34d proximate a blade cutting tip 78d.


In the illustrated embodiment of FIGS. 21-25, the cutting tip 78d preferably includes cutting edges formed on the distal edges 70d′, 70d″ and extending from the distal-most point 76d of the blade 34d. In one embodiment, the cutting edges extend along only a portion of respective distal edges 70d′, 70d.″ In another embodiment, the cutting edges extend along substantially the entire length of respective distal edges 70d′, 70d.″ In yet another embodiment, at least portions of the lateral edges 72d, 74d proximate to respective distal edges 70d′, 70d″ have cutting edges. In a further embodiment, the tip 78d proximate to the distal-most end 76d is curved slightly inwards, as indicated generally by the arrow 88d in FIG. 21 and arrow 88d (pointed perpendicular and into the plane of the paper) in FIG. 22, relative to the adjacent curvature of the blade 34d.


In the embodiment of FIGS. 21-25, the cutting edges are sharp edges of beveled or tapered surfaces as discussed above in reference to FIG. 9. The embodiment of FIGS. 21-25 may be efficaciously modified to incorporate the snorkel configuration of the embodiments of FIGS. 14 and 15.



FIGS. 26-28 show different views of a self-trephining glaucoma stent device 30e having features and advantages in accordance with one embodiment. The stent device 30e generally comprises a snorkel 32e mechanically connected to or in mechanical communication with a blade or cutting tip 34e. The snorkel 32e has a seat, head or cap portion 38e mechanically connected to or in mechanical communication with a shank 40e, as discussed above. The shank 40e has a distal end or base 47e. The snorkel 32e further has a lumen 42e which bifurcates into a pair of outlet channels 45e, as discussed above in connection with FIGS. 14 and 15. Other lumen and inlet and outlet port configurations as taught or suggested herein may also be efficaciously used, as needed or desired.


In the illustrated embodiment of FIGS. 26-28, the blade 34e extends downwardly and outwardly from the shank distal end 47e. The blade 34e is angled relative to a generally longitudinal axis 43e of the snorkel 32e, as best seen in FIGS. 27 and 28. The blade 34e has a distal-most point 76e. The blade or cutting tip 34e has a pair of side edges 70e′, 70e,″ including cutting edges, terminating at the distal-most point 76e, as best seen in FIG. 26. In one embodiment, the cutting edges are sharp edges of beveled or tapered surfaces as discussed above in reference to FIG. 9.


Referring to FIGS. 26-28, in one embodiment, the blade 34e includes cutting edges formed on the edges 70e′, 70e″ and extending from the distal-most point 76e of the blade 34d. In one embodiment, the cutting edges extend along only a portion of respective distal edges 70e′, 70e.″ In another embodiment, the cutting edges extend along substantially the entire length of respective distal edges 70e′, 70e.″ In yet another embodiment, the blade or cutting tip 34e comprises a bent tip of needle, for example, a 30 gauge needle.


In general, any of the blade configurations disclosed herein may be used in conjunction with any of the snorkel configurations disclosed herein or incorporated by reference herein to provide a self-trephining glaucoma stent device for making an incision in the trabecular meshwork for receiving the corresponding snorkel to provide a pathway for aqueous outflow from the eye anterior chamber to Schlemm's canal, thereby effectively lowering and/or balancing the intraocular pressure (IOP). The self-trephining ability of the device, advantageously, allows for a “one-step” procedure in which the incision and placement of the snorkel are accomplished by a single device and operation. In any of the embodiments, fiducial markings or indicia, and/or preselected configuration of the snorkel seat, and/or positioning of the stent device in a preloaded applicator may be used for proper orientation and alignment of the device during implantation.


In many cases, a surgeon works from a temporal incision when performing cataract or goniometry surgery. FIG. 29 illustrates a temporal implant procedure, wherein a delivery apparatus or “applicator” 100 having a curved tip 102 is used to deliver a stent 30 to a temporal side 27 of the eye 10. An incision 28 is made in the cornea 10, as discussed above. The apparatus 100 is then used to introduce the stent 30 through the incision 28 and implant it within the eye 10.


Still referring in particular to FIG. 29, in one embodiment, a similarly curved instrument would be used to make the incision through the trabecular meshwork 21. In other embodiments, a self-trephining stent device 30 may be used to make this incision through the trabecular meshwork 21, as discussed above. The temporal implantation procedure illustrated in FIG. 29 may be employed with the any of the various stent embodiments taught or suggested herein.



FIG. 30 illustrates one embodiment of an apparatus comprising an articulating stent applicator or retrieval device 100a. In this embodiment, a proximal arm 106 is attached to a distal arm 108 at a joint 112. This joint 112 is movable such that an angle formed between the proximal arm 106 and the distal arm 108 can change. One or more claws 114 can extend from the distal arm 108, in the case of a stent retrieval device. Similarly, this articulation mechanism may be used for the trabecular stent applicator, and thus the articulating applicator or retrieval device 100a may be either an applicator for the trabecular stent, a retrieval device, or both, in various embodiments. The embodiment of FIG. 30 may be employed with the any of the various stent embodiments taught or suggested herein.



FIG. 31 shows another illustrative method for placing any of the various stent embodiments taught or suggested herein at the implant site within the eye 10. A delivery apparatus 100b generally comprises a syringe portion 116 and a cannula portion 118. The distal section of the cannula 118 has at least one irrigating hole 120 and a distal space 122 for holding the stent device 30. The proximal end 124 of the lumen of the distal space 122 is sealed from the remaining lumen of the cannula portion 118. The delivery apparatus of FIG. 30 may be employed with the any of the various stent embodiments taught or suggested herein.


In one embodiment of the invention, a delivery apparatus (or “applicator”) is used for placing a trabecular stent through a trabecular meshwork of an eye. Certain embodiments of such a delivery apparatus are disclosed in U.S. application Ser. No. 10/101,548, filed Mar. 18, 2002, entitled APPLICATOR AND METHODS FOR PLACING A TRABECULAR SHUNT FOR GLAUCOMA TREATMENT, and U.S. Provisional Application No. 60/276,609, filed Mar. 16, 2001, entitled APPLICATOR AND METHODS FOR PLACING A TRABECULAR SHUNT FOR GLAUCOMA TREATMENT.


The stent has an inlet section and an outlet section. The delivery apparatus includes a handpiece, an elongate tip, a holder and an actuator. The handpiece has a distal end and a proximal end. The elongate tip is connected to the distal end of the handpiece. The elongate tip has a distal portion and is configured to be placed through a corneal incision and into an anterior chamber of the eye. The holder is attached to the distal portion of the elongate tip. The holder is configured to hold and release the inlet section of the trabecular stent. The actuator is on the handpiece and actuates the holder to release the inlet section of the trabecular stent from the holder. When the trabecular stent is deployed from the delivery apparatus into the eye, the outlet section is positioned in substantially opposite directions inside Schlemm's canal. In one embodiment, a deployment mechanism within the delivery apparatus includes a push-pull type plunger.


In some embodiments, the holder comprises a clamp. In some embodiments, the apparatus further comprises a spring within the handpiece that is configured to be loaded when the stent is being held by the holder, the spring being at least partially unloaded upon actuating the actuator, allowing for release of the stent from the holder.


In various embodiments, the clamp comprises a plurality of claws configured to exert a clamping force onto the inlet section of the stent. The holder may also comprise a plurality of flanges.


In some embodiments, the distal portion of the elongate tip is made of a flexible material. This can be a flexible wire. The distal portion can have a deflection range, preferably of about 45 degrees from the long axis of the handpiece. The delivery apparatus can further comprise an irrigation port in the elongate tip.


Some embodiments include a method of placing a trabecular stent through a trabecular meshwork of an eye, the stent having an inlet section and an outlet section, including advancing a delivery apparatus holding the trabecular stent through an anterior chamber of the eye and into the trabecular meshwork, placing part of the stent through the trabecular meshwork and into a Schlemm's canal of the eye; and releasing the stent from the delivery apparatus.


In some embodiments, the method includes using a delivery apparatus that comprises a handpiece having a distal end and a proximal end and an elongate tip connected to the distal end of the handpiece. The elongate tip has a distal portion and being configured to be placed through a corneal incision and into an anterior chamber of the eye. The apparatus further has a holder attached to the distal portion of the elongate tip, the holder being configured to hold and release the inlet section of the trabecular stent, and an actuator on the handpiece that actuates the holder to release the inlet section of the trabecular stent from the holder.


In one embodiment, the trabecular stent is removably attached to a delivery apparatus (also known as “applicator”). When the trabecular stent is deployed from the delivery apparatus into the eye, the outlet section is positioned in substantially opposite directions inside Schlemm's canal. In one embodiment, a deployment mechanism within the delivery apparatus includes a push-pull type plunger. In some embodiments, the delivery applicator may be a guidewire, an expandable basket, an inflatable balloon, or the like.


Screw/Barb Anchored Stent



FIGS. 32 and 33 illustrate a glaucoma stent device 30f having features and advantages in accordance with one embodiment. This embodiment of the trabecular stent 30f includes a seat 38f, a shank 40f, and a solid barbed or threaded screw-like extension or pin 126 with barbs 128 for anchoring. The shank 40f extends distally from the seat 38f, and barbed pin 126 extends from a distal or base portion 130 of the stent 30f.


In use, the stent 30f (FIG. 32) is advanced through the trabecular meshwork 21 and across Schlemm's canal 22. The barbed (or threaded) extension 126 penetrates into the back wall 92 of Schlemm's canal 22 up to the shoulder or base 130 that then rests on the back wall 92 of the canal 22. The combination of a shoulder 130 and a barbed pin 126 of a particular length limits the penetration depth of the barbed pin 126 to a predetermined or preselected distance. In one embodiment, the length of the pin 126 is about 0.5 mm or less. Advantageously, this barbed configuration provides a secure anchoring of the stent 30f As discussed above, correct orientation of the stent 30f is ensured by appropriate fiducial marks, indicia or the like and by positioning of the stent in a preloaded applicator.


Referring to FIG. 32, the aqueous flows from the anterior chamber 20, through the lumen 42f, then out through two side-ports 56f to be directed in both directions along Schlemm's canal 22. Alternatively, flow could be directed in only one direction through a single side-port 56f In other embodiments, more then two outlet ports 56f, for example, six to eight ports (like a pin wheel configuration), may be efficaciously used, as needed or desired.


Still referring to FIG. 32, in one embodiment, the stent 30f is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30f may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Deeply Threaded Stent



FIG. 34 illustrates a glaucoma stent device 30g having features and advantages in accordance with one embodiment. The stent 30g has a head or seat 38g and a shank or main body portion 40g with a base or distal end 132. This embodiment of the trabecular stent 30g includes a deep thread 134 (with threads 136) on the main body 40g of the stent 30g below the head 38g. The threads may or may not extend all the way to the base 132.


In use, the stent 30g (FIG. 34) is advanced through the meshwork 21 through a rotating motion, as with a conventional screw. Advantageously, the deep threads 136 provide retention and stabilization of the stent 30g in the trabecular meshwork 21.


Referring to FIG. 34, the aqueous flows from the anterior chamber 20, through the lumen 42g, then out through two side-ports 56g to be directed in both directions along Schlemm's canal 22. Alternatively, flow could be directed in only one direction through a single side-port 56g. In other embodiments, more then two outlet ports 56g may be efficaciously used, as needed or desired.


One suitable applicator or delivery apparatus for this stent 30g (FIG. 34) includes a preset rotation, for example, via a wound torsion spring or the like. The rotation is initiated by a release trigger on the applicator. A final twist of the applicator by the surgeon and observation of suitable fiducial marks, indicia or the like ensure proper alignment of the side ports 56g with Schlemm's canal 22.


Referring to FIG. 34, in one embodiment, the stent 30g is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30g may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Rivet Style Stent



FIG. 35 illustrates a glaucoma stent device 30h having features and advantages in accordance with one embodiment. The stent has a base or distal end 138. This embodiment of the trabecular stent 30h has a pair of flexible ribs 140. In the unused state, the ribs are initially generally straight (that is, extend in the general direction of arrow 142).


Referring to FIG. 35, upon insertion of the stent 30h through the trabecular meshwork 21, the ends 144 of respective ribs 140 of the stent 30h come to rest on the back wall 92 of Schlemm's canal 22. Further advancement of the stent 30h causes the ribs 140 to deform to the bent shape as shown in the drawing of FIG. 35. The ribs 140 are designed to first buckle near the base 138 of the stent 30h. Then the buckling point moves up the ribs 140 as the shank part 40h of the stent 30h is further advanced through the trabecular meshwork 21.


The lumen 42h (FIG. 35) in the stent 30h is a simple straight hole. The aqueous flows from the anterior chamber 20, through the lumen 42h, then out around the ribs 140 to the collector channels further along Schlemm's canal 22 in either direction.


Referring to FIG. 35, in one embodiment, the stent 30h is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30h may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Grommet Style Stent



FIG. 36 illustrates a glaucoma stent device 30i having features and advantages in accordance with one embodiment. This embodiment of the trabecular stent 30i includes a head or seat 38i, a tapered base portion 146 and an intermediate narrower waist portion or shank 40i.


In use, the stent 30i (FIG. 36) is advanced through the trabecular meshwork 21 and the base 146 is pushed into Schlemm's canal 22. The stent 30i is pushed slightly further, if necessary, until the meshwork 21 stretched by the tapered base 146 relaxes back and then contracts to engage the smaller diameter portion waist 40i of the stent 30i. Advantageously, the combination of the larger diameter head or seat 38i and base 146 of the stent 30i constrains undesirable stent movement. As discussed above, correct orientation of the stent 30i is ensured by appropriate fiducial marks, indicia or the like and by positioning of the stent in a preloaded applicator.


Referring to FIG. 36, the aqueous flows from the anterior chamber 20, through the lumen 42i, then out through two side-ports 56i to be directed in both directions along Schlemm's canal 22. Alternatively, flow could be directed in only one direction through a single side-port 56i. In other embodiments, more then two outlet ports 56i may be efficaciously used, as needed or desired.


Still referring to FIG. 36, in one embodiment, the stent 30i is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30i may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Biointeractive Stent



FIG. 37 illustrates a glaucoma stent device 30j having features and advantages in accordance with one embodiment. This embodiment of the trabecular stent 30j utilizes a region of biointeractive material 148 that provides a site for the trabecular meshwork 21 to firmly grip the stent 30j by ingrowth of the tissue into the biointeractive material 148. As shown in FIG. 37, preferably the biointeractive layer 148 is applied to those surfaces of the stent 30j which would abut against or come in contact with the trabecular meshwork 21.


In one embodiment, the biointeractive layer 148 (FIG. 37) may be a region of enhanced porosity with a growth promoting chemical. In one embodiment, a type of bio-glue 150 that dissolves over time is used to hold the stent secure during the time between insertion and sufficient ingrowth for stabilization. As discussed above, correct orientation of the stent 30j is ensured by appropriate fiducial marks, indicia or the like and by positioning of the stent in a preloaded applicator.


Referring to FIG. 37, the aqueous flows from the anterior chamber 20, through the lumen 42j, then out through two side-ports 56j to be directed in both directions along Schlemm's canal 22. Alternatively, flow could be directed in only one direction through a single side-port 56j. In other embodiments, more then two outlet ports 56j may be efficaciously used, as needed or desired.


Still referring to FIG. 37, in one embodiment, the stent 30j is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30j may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Glued or Welded Stent



FIG. 38 illustrates a glaucoma stent device 30k having features and advantages in accordance with one embodiment. This embodiment of the trabecular stent 30k is secured in place by using a permanent (non-dissolving) bio-glue 152 or a “welding” process (e.g. heat) to form a weld 152. The stent 30k has a head or seat 38k and a lower surface 46k.


The stent 30k is advanced through the trabecular meshwork 21 until the head or seat 38k comes to rest on the trabecular meshwork 21, that is, the head lower surface 46k abuts against the trabecular meshwork 21, and the glue or weld 152 is applied or formed therebetween, as shown in FIG. 38. As discussed above, correct orientation of the stent 30k is ensured by appropriate fiducial marks, indicia or the like and by positioning of the stent in a preloaded applicator.


Referring to FIG. 38, the aqueous flows from the anterior chamber 20, through the lumen 42k, then out through two side-ports 56k to be directed in both directions along Schlemm's canal 22. Alternatively, flow could be directed in only one direction through a single side-port 56k. In other embodiments, more then two outlet ports 56k may be efficaciously used, as needed or desired.


Still referring to FIG. 38, in one embodiment, the stent 30k is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30k may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Hydrophilic Latching Stent



FIG. 39 illustrates a glaucoma stent device 30m having features and advantages in accordance with one embodiment. This embodiment of the trabecular stent 30m is fabricated from a hydrophilic material that expands with absorption of water. Desirably, this would enable the device 30m to be inserted through a smaller incision in the trabecular meshwork 21. The subsequent expansion (illustrated by the smaller arrows 154) of the stent 30m would advantageously enable it to latch in place in the trabecular meshwork 21. As discussed above, correct orientation of the stent 30m is ensured by appropriate fiducial marks, indicia or the like and by positioning of the stent in a preloaded applicator.


Referring to FIG. 39, the aqueous flows from the anterior chamber 20, through the lumen 42m, then out through two side-ports 56m to be directed in both directions along Schlemm's canal 22. Alternatively, flow could be directed in only one direction through a single side-port 56m. In other embodiments, more then two outlet ports 56m may be efficaciously used, as needed or desired.


Still referring to FIG. 39, in one embodiment, the stent 30m is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30m may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Photodynamic Stent



FIG. 40 illustrates a glaucoma stent device 30n having features and advantages in accordance with one embodiment. This embodiment of the trabecular stent 30n is fabricated from a photodynamic material that expands on exposure to light.


It is commonly known that there is a diurnal variation in the aqueous humor production by the eye—it is higher during the day than it is at night. The lumen 42n of the stent 30n responds to light entering the cornea during the day by expanding and allowing higher flow of aqueous through the lumen 42n and into Schlemm's canal 22. This expansion is generally indicated by the smaller arrows 156 (FIG. 40) which show the lumen 42n (and ports) expanding or opening in response to light stimulus. (The light or radiation energy E is generally given by E=hν, where h is Planck's constant and ν is the frequency of the light provided.) At night, in darkness, the lumen diameter decreases and reduces the flow allowed through the lumen 42n. In one embodiment, an excitation wavelength that is different from that commonly encountered is provided on an as-needed basis to provide higher flow of aqueous to Schlemm's canal 22.


This photodynamic implementation is shown in FIG. 40 for the self-latching style of stent 30n, but can be efficaciously used with any of the other stent embodiments, as needed or desired. As discussed above, correct orientation of the stent 30n is ensured by appropriate fiducial marks, indicia or the like and by positioning of the stent in a preloaded applicator.


Referring to FIG. 40, the aqueous flows from the anterior chamber 20, through the lumen 42n, then out through two side-ports 56n to be directed in both directions along Schlemm's canal 22. Alternatively, flow could be directed in only one direction through a single side-port 56n. In other embodiments, more then two outlet ports 56n may be efficaciously used, as needed or desired.


Still referring to FIG. 40, in one embodiment, the stent 30n is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30n may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Collector Channel Alignment Stent



FIG. 41 illustrates a glaucoma stent device 30p having features and advantages in accordance with one embodiment. This figure depicts an embodiment of a stent 30p that directs aqueous from the anterior chamber 20 directly into a collector channel 29 which empties into aqueous veins. The stent 30p has a base or distal end 160.


In the illustrated embodiment of FIG. 41, a removable alignment pin 158 is utilized to align the stent lumen 42p with the collector channel 29. In use, the pin 158 extends through the stent lumen 42p and protrudes through the base 160 and extends into the collector channel 29 to center and/or align the stent 30p over the collector channel 29. The stent 30p is then pressed firmly against the back wall 92 of Schlemm's canal 22. A permanent bio-glue 162 is used between the stent base and the back wall 92 of Schlemm's canal 22 to seat and securely hold the stent 30p in place. Once positioned, the pin 158 is withdrawn from the lumen 42p to allow the aqueous to flow directly from the anterior chamber 20 into the collector duct 29. The collector ducts are nominally 20 to 100 micrometers (μm) in diameter and are visualized with a suitable microscopy method (such as ultrasound biomicroscopy (UBM)) or laser imaging to provide guidance for placement of the stent 30p.


Referring to FIG. 41, in one embodiment, the stent 30p is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30p may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Barbed Stent (Anterior Chamber to Collector Channel)



FIG. 42 illustrates a glaucoma stent device 30q having features and advantages in accordance with one embodiment. This figure depicts an embodiment of a stent 30q that directs aqueous from the anterior chamber 20 directly into a collector channel 29 which empties into aqueous veins. The stent 30q has a base or distal end 166 and the channel 29 has wall(s) 164.


In the illustrated embodiment of FIG. 42, a barbed, small-diameter extension or pin 168 on the stent base 166 is guided into the collector channel 29 and anchors on the wall(s) 164 of the channel 29. The pin 168 has barbs 170 which advantageously provide anchoring of the stent 30q. The collector ducts 29 are nominally 20 to 100 micrometers (μm) in diameter and are visualized with a suitable microscopy method (such as ultrasound biomicroscopy (UBM)) or laser imaging to provide guidance for placement of the stent.


Referring to FIG. 42, in one embodiment, the stent 30q is inserted through a previously made incision in the trabecular meshwork 21. In other embodiments, the stent 30q may be combined with any of the blade configurations taught or suggested herein to provide self-trephining capability. In these cases, the incision through the trabecular meshwork 21 is made by the self-trephining stent device which has a blade at its base or proximate to the base.


Valved Tube Stent (Anterior Chamber to Choroid)



FIG. 43 illustrates a valved tube stent device 30r having features and advantages in accordance with one embodiment. This is an embodiment of a stent 30r that provides a channel for flow between the anterior chamber 20 and the highly vascular choroid 17. Clinically, the choroid 17 can be at pressures lower than those desired for the eye 10. Therefore, this stent 30r includes a valve with an opening pressure equal to the desired pressure difference between the choroid 17 and the anterior chamber 10 or a constriction that provide the desired pressure drop.


Osmotic Membrane (Anterior Chamber to Choroid)



FIG. 44 illustrates an osmotic membrane device 30s having features and advantages in accordance with one embodiment. This embodiment provides a channel for flow between the anterior chamber 20 and the highly vascular choroid 17. The osmotic membrane 30s is used to replace a portion of the endothelial layer of the choroid 17. Since the choroid 17 is highly vascular with blood vessels, the concentration of water on the choroid side is lower than in the anterior chamber 20 of the eye 10. Therefore, the osmotic gradient drives water from the anterior chamber 20 into the choroid 17.


Clinically, the choroid 17 (FIG. 44) can be at pressures lower than those desired for the eye 10. Therefore, desirably, both osmotic pressure and the physical pressure gradient are in favor of flow into the choroid 17. Flow control is provided by proper sizing of the area of the membrane, the larger the membrane area is the larger the flow rate will be. This advantageously enables tailoring to tune the flow to the desired physiological rates.


Ab Externo Insertion of Stent Via Small Puncture



FIG. 45 illustrates the implantation of a stent 30t using an ab externo procedure having features and advantages in accordance with one embodiment. In the ab externo procedure of FIG. 45, the stent 30t is inserted into Schlemm's canal 21 with the aid of an applicator or delivery apparatus 100c that creates a small puncture into the eye 10 from outside.


Referring to FIG. 45, the stent 30t is housed in the applicator 100c, and pushed out of the applicator 100c once the applicator tip is in position within the trabecular meshwork 21. Since the tissue surrounding the trabecular meshwork 21 is optically opaque, an imaging technique, such as ultrasound biomicroscopy (UBM) or a laser imaging technique, is utilized. The imaging provides guidance for the insertion of the applicator tip and the deployment of the stent 30t. This technique can be used with a large variety of stent embodiments with slight modifications since the trabecular meshwork 21 is punctured from the scleral side rather than the anterior chamber side in the ab externo insertion.


Ab Externo Grommet-Style Stent



FIG. 46 illustrates a glaucoma stent device 30u having features and advantages in accordance with a modified embodiment. This grommet-style stent 30u for ab externo insertion is a modification of the embodiment of FIG. 36. In the embodiment of FIG. 46, the upper part or head 38u is tapered while the lower part or base 172 is flat, as opposed to the embodiment of FIG. 36. The stent 30u is inserted from the outside of the eye 10 through a puncture in the sclera. Many of the other embodiments of stents taught or suggested herein can be modified for similar implantation.


This ultra microscopic device 30u (FIG. 46) can be used with (1) a targeting Lasik-type laser, with (2) contact on eyes, with (3) combined ultrasound microscope, or with (4) other device inserter handpiece.


Targeted Drug Delivery to the Trabecular Meshwork



FIG. 47 illustrates a targeted drug delivery implant 30v having features and advantages in accordance with one embodiment. This drawing is a depiction of a targeted drug delivery concept. The slow release implant 30v is implanted within the trabecular meshwork 21.


A drug that is designed to target the trabecular meshwork 21 to increase its porosity, or improve the active transport across the endothelial layer of Schlemm's canal 22 can be stored in this small implant 30v (FIG. 47). Advantageously, slow release of the drug promotes the desired physiology at minimal dosage levels since the drug is released into the very structure that it is designed to modify.


Dose Response


The programmed (also know as “Targeted”) stent placement refers to the intentional placement of a stent or stents at a particular location or locations in Schlemm's canal for the purpose of providing a benefit in the form of more optimal outflow. For example, a method can be provided which includes assessing the aqueous flow characteristics of an eye. Such characteristics can include, for example, but without limitation, collector channel distribution, collector channel flow characteristics, outflow resistance, outflow capacity, shape/size/tortuosity of Schlemm's canal, and other factors). The method can also include determining an optimal stent placement and implanting stents in one or plurality of positions and procedures. For example, the determination of the desired stent placement can include consideration of a database of cadaver anatomy regarding the number and location of collector channels, the patient's micro-anatomy data, the number of stents to be used, the type of stents to be used, the location of any previously implanted stents whether the desired stent is drug-loaded, gene-loaded or surface treated, and/or any associated drug therapy.



FIG. 48 includes a flow diagram illustrating a decision tree for determining desired stent placement. In the illustrated embodiment, after it is determined that a patient is suffering from excess of intraocular pressure (IOP), a bypass flow model is determined to aid in the decision of whether or not to use single or multiple stents. Optionally, the configuration of collector channels in the patient's eye can be met to aid in the creation of a bypass flow model. Further, other information can be used, such as, for example, but without limitation, outflow resistance, aqueous production, and venous pressure.


The bypass flow model, which can be based on the above-noted information, is determined so as to provide a desired strategy for lowering the excessive intraocular pressure. If it is decided that a single stent should be used, an optimized stent location is first determined based on the bypass flow model. The implantation of the single stent results in reduced IOP. After this implantation, it is again determined if there is a need for further reduction in IOP. If additional IOP reduction is desired, then a further bypass flow model is created. For example, the second bypass flow model can be determined in the same or similar manner as the first bypass flow model described above. In light of the second bypass flow model, an additional stent can be implanted at an optimized location to further reduce IOP.


If it is determined, in light of the first bypass flow model, that multiple stents should be used, the location of the multiple stents is first optimized. Then, the multiple stents are implanted. Afterwards, it is again determined if additional intraocular pressure reduction is needed, and the trimming can continue as noted above.


Multiple Stent Application and Further Stent Designs


Where additional stents are implanted in light of the second bypass flow model, the additional stents can be different from the first stents implanted. For example, where single or multiple stents are implanted in accordance with the first bypass flow model, the additional stents can be of a different type. For example, in one embodiment, the first stent is a G1 (First generation) trabecular stent that has been disclosed in applications incorporated by reference and the second stent is the same G1 trabecular stent. In another embodiment, the second stent is different from the first stent; for example, the second stent is a G2 stent (that is, “injectable axisymmetric stent,” a second generation stent). In still another embodiment, the second stent is smaller than (in some case, larger than) the first stent. The dose response may also relate to the stent configuration or characteristics such as drug-loading or surface treatment enabling enhancing aqueous transport or therapeutic effects on the tissue as needed. Drug-loaded or drug-eluting stent may comprise different type of drugs including, but not limited to, those cited in U.S. patent application Ser. No. 10/046,137 filed Nov. 8, 2001, entitled DRUG RELEASING TRABECULAR IMPLANT FOR GLAUCOMA TREATMENT.


With reference to FIG. 49A, a stent extending between an anterior chamber 20 of an eye, through the trabecular meshwork 21, and into Schlemm's canal 22 of an eye can be configured to be axisymmetric with respect to the flow of aqueous therethrough. For example, as shown in FIG. 49A, the stent 229A comprises an inlet end 230 configured to be disposed in the anterior chamber 20. The second end 231 of the stent 229A is configured to be disposed in Schlemm's canal 22.


At least one lumen 239 extends through the stent 229A between the inlet and outlet ends 230, 232. The lumen 239 defines an opening 232 at the inlet end 230 as well as an outlet 233 at the outlet end 231.


In the illustrated embodiment, an exterior surface 238 of the stent 229A is cone-shaped. Thus, a circumference of the exterior surface 238 adjacent to the inlet end 230 is smaller than the circumference of the outer surface 238 at the outlet end 231.


With the stent 229A extending through the trabecular meshwork 21, the tissue of the trabecular meshwork 221 provides additional anchoring force for retaining the stent 229A with its inlet end 230 in the anterior chamber and its outlet end 231 in Schlemm's canal. For example, the trabecular meshwork 21 would naturally tend to close an aperture occupied by the stent 229A. As such, the trabecular meshwork 221 would tend to squeeze the stent 229A. Because the exterior surface 238 is conical, the squeezing force applied by the trabecular meshwork 221 would tend to draw the stent 229A towards Schlemm's canal 22. In the illustrated embodiment, the stent 229A is sized such that a portion 234 of the stent 229 adjacent to the inlet end 230 remains in the anterior chamber 20 while a portion 235 of the stent 229 adjacent to the outlet end 231 remains in Schlemm's canal 22.


In the illustrated embodiment, the outer surface 238 of the stent 229A is straight. Alternatively, the outer surface 238 can have other contours such as, for example, but without limitation curved or stepped. In one embodiment, the outer surface 238 can be curved in a concave manner so as to produce a trumpet-like shape. Alternatively, the outer surface 238 can be convex.


The stent 229A preferably includes one or plurality of posts or legs 236 configured to maintain a space between the outlet opening 233 and a wall of Schlemm's canal 22. As such, the legs 236 prevent a wall of Schlemm's canal from completely closing off the outlet opening 233 of the stent 229A. In the illustrated embodiment, the legs 236 are coupled to the distal-most surface of the stent 229A and are substantially parallel to an implant axis extending through the stent 229A and between the anterior chamber 20 and Schlemm's canal 22.


This arrangement of the legs 236 and the outlet 233 imparts an axisymmetric flow characteristic to the stent 229A. For example, aqueous can flow from the outlet 233 in any direction. Thus, the stent 229A can be implanted into Schlemm's canal at any angular position relative to its implant axis. Thus, it is not necessary to determine the angular orientation of the stent 229A prior to implantation, nor is it necessary to preserve a particular orientation during an implantation procedure.



FIG. 49B illustrates a modification of the stent 229A, identified generally by the reference numeral 229B. In this embodiment, the stent 229B includes a flange 237 extending radially from the portion 234. Preferably, the flange 237 is configured to retain the first portion 234 within the anterior chamber 20. It is to be recognized that although generally, aqueous will flow from the anterior chamber 20 towards Schlemm's canal 22, the stent 229A, 229B or any of the above-described stents as well as other stents described below, can provide for omni-directional flow of aqueous.



FIG. 49C illustrates another modification of the stent 229A, identified generally by the reference numeral 229C. In this embodiment, the outer surface 238C is not conical. Rather, the outer surface 238C is cylindrical. The stent 229C includes a flange 240 that can be the same size and shape as the flange 237. The legs 236C extend from the flange 240.


Constructed as such, the natural tendency of the tissue of the trabecular meshwork 21 to close the hole in which the stent 229C is disposed, aids in anchoring the stent 229C in place. Additionally, the legs 236C aid in preventing the walls of Schlemm's canal from completely closing the outlet 233C of the lumen 239C.


Device for Mechanically Distending Collector Duct



FIG. 50A is an enlarged cross-sectional view of a portion of the eye 10 showing, anatomically, the trabecular meshwork 21, Schlemm's canal 22, and a collector duct 23 in a natural state. FIG. 50B shows a stent 229C extending into and thereby distending the collector duct 23.


The collector duct 23 has an inner diameter identified generally by the reference numeral D1, when in a relaxed or natural state. Because the collector duct 23 is not typically perfectly round, the diameter D1 can correspond to an “equivalent” diameter. As used herein, the equivalent diameter can be determined by dividing the circumference of the inner surface of the collector duct 23 by π.


The stent 229D is sized to extend from the anterior chamber 20 and into the collector duct 23. Thus, in the illustrated embodiment, the stent 229D includes an upstream end portion 230D and a downstream end portion 243.


The upstream portion 230D is configured to open into the anterior chamber 20. The stent 229D is sized so as to extend from the anterior chamber 20 and into the collector duct 23. In the illustrated embodiment, the stent 229D is sized so as to extend from the anterior chamber 20, through the trabecular meshwork 21, through a portion of Schlemm's canal 22, and into the collector duct 23. However, it is conceived that the stent 229D could bypass Schlemm's canal 22 and extend directly into a portion of the collector duct 23 downstream from Schlemm's canal 22.


The downstream end portion 243 can have an outer diameter D2 that is larger that the diameter D1. Preferably, the end portion 243 is sized and configured for easy insertion into a collect duct 23 without injuring the tissue or tissue surface of the collector duct 23. Thus, when the end portion 243 is disposed in the collector duct 23, the collector duct 23 is distended, i.e., enlarged. As such, the resistance against the outflow of aqueous provided by the collector duct 23 in its natural state can be reduced, thereby reducing IOP.


Preferably, the end portion 243 has a diameter D2 substantially larger than the equivalent diameter D1 of the duct 23 so as to deform the collector duct beyond its elastic threshold into plastic deformation region. As such, the collector duct 23 can aid in anchoring the stent 229D in place.


Applicator for Multiple Stent Implantation and Further Stents



FIG. 51A is a perspective view of a stent delivery applicator 201 configured for multiple stent deployment. The delivery applicator 201 comprises an injection sheath 246 defining a stent lumen 249, a distal stent-holding section 259, and a handle 205.


The handle 205 includes an outer surface preferably configured to be grasped by a human hand. Additionally, the handle can comprise a stent delivery button 203. By way of example, the stent delivery button 203 is configured to cause a stent discharge mechanism to discharge, from the applicator sheath 246, one stent at a time. The applicator 201 can be configured to store and discharge a plurality of any combination of the stents 229, 30, 30a, 30b, 30c, 30d, 30e, 30f, 30g, 30h, 30i, 30j, 30k, 30m, 30n, 30p, 30q, 30r, 30s, 30t, 30u, 30v, 229A, 229B, 229C, and 229D described above and further embodiments and combinations thereof described hereafter, the additional stents described below, or any other ocular stent or implant. In the illustrated embodiment, the applicator 201 is loaded with a plurality of the stents 229C.


The applicator 201 can include other features as well, for example, but without limitation, an optional connector 209 for connecting to an external ultrasound power source, a fluid infusing port 204 for fluid infusion or viscocanolostomy, and a steering mechanism control device 202 configured to control the steering of a steerable section 251 of the applicator 201.


The steerable section 251 can be configured to deflect the distal stent-holding section 259 about at least one axis. Optionally, the steerable section 251 can configured to deflect the distal stent-holding section 259 about at least two axes, one axis being substantially perpendicular to the other. Thus, the portion of the sheath 246 which defines part of the steerable section 251 is flexible. Generally, similar steering mechanisms for deflecting a portion of an medical device, such as endoscopes, are well-known in the art.


With reference to FIG. 51B, in the illustrated embodiment, the steering actuator 202 is connected to a plurality of pulling wires 256A, 256B. The wires 256A, 256B have distal portions 253A, 253B, respectively, disposed distally from the handle 205. The end 252A of the distal wire portion 253A of the first pulling wire 256A is attached to one side of an inner surface of the sheath 246. The second pulling wire 256B has its end 252B of the distal wire portion 253B attached to the opposite side of the inner surface of the sheath 246. The wire ends 252A and 252B are disposed within the steerable distal section 251.


With reference to FIG. 51C, a relatively rigid guide 254 is disposed in the lumen at an appropriate location proximal to the wire ends 252A, 252B. The guide is configured to guide the pull wires 256A, 256B such that the sheath 246 is deflected when the pull wires 256A, 256B are pulled. In the illustrated embodiment, the guide 254 is in the form of a plate member.


The guide 254 can include holes 255A, 255B through which the pulling wires 253A, 253B extend. The guide 254 and the points at which the wire ends 252A, 25B are spaced. As such, when the pull wires 253A, 253B are pulled by actuation of the steering actuator 202, the distal end of the sheath 246 is deflected. For example, as shown in FIG. 51D, when the wire 256A is pulled, the sheath deflects from Position I to Position II.


As noted above, the delivery apparatus 201 can be configured to discharge a plurality of stents, one at a time, for implantation. In the illustrated embodiment, as shown in FIG. 51B, the delivery apparatus 201 includes a plunger 244 connected with the stent delivery button 203. The plunger 244 can comprise one or a plurality of plunger bodies that are joined at the distal plunger end 244B. The distal plunger end 244B has a generally round configuration and smooth surface adapted for evenly pushing a stent, such as the stent 229C, out of the sheath during a deployment phase of an implantation procedure.


As noted above, the sheath 246 defines a lumen 249 having a plunger 244. A space between the plunger 244 and the distal end 242 is reserved for storing a plurality of stents. The sheath 246 includes at least one holding member 245 for each stent 229C stored therein. The holding members 245 are configured to retain the stents 229C in place during storage and use, and to allow the stents 229C to pass when the stent 229C is pushed by the plunger 244.


In the illustrated embodiment, the sheath 146 includes a row of a plurality of holding members 245 upstream and downstream from each stent 229C stored in the sheath 246. Thus, each stent 229C is prevented from unintentionally moving in the upstream and downstream directions.



FIG. 51B illustrates two stents 229C being stored in the sheath 246. However, it is conceived that the sheath 246 and holding members 245 can be configured to hold one, three, or more stents 229C within the stent-holding distal end 259.


The holding member 245 can be a wire configured to exerted a force to hold the stents 229C in place during storage and use, until the plunger 244 is moved to discharge a stent 229C from the end 242. For example, the wire can be made from a spring metal, an elastically deformable plastic, or other material, sized and shaped to retain the stents 229C during storage, and to allow the stents 229C to pass under a force that can be generated by or applied to the plunger 244, toward the end 242. In the illustrated embodiment, the wires forming the holding members 245 extend generally parallel to and convexly into the lumen 249, and thus define stops for preventing unintentional movement of the stents 229C.


Alternatively, the holding members 245 can be in the form of a mechanically or electronically actuatable gate. Such a gate can be configured to move from a closed position in which the stents 229C are retained in the storage positions, and an open position in which the stents 229C can be moved in the downstream direction. A mechanical gate can be formed from members that can be moved or deflected radially from the inner surface of the lumen 249, under the control of a pull wire (not shown). An electronic gate can also include radially moveable or deflectable members controlled by an electronic actuator, such as, for example, but without limitation, solenoids, stepper motors, servo motors, and piezoelectric modules.


Alternatively, piezoelectric modules can be used to form the holding members. For example, small piezoelectric modules can be mounted on the inner surface of the sheath 246 to form stops when in a locked position. The piezoelectric modules can be connected to a power supply with conduits. Thus, when actuated, the piezoelectric modules can contract so as to move to an open position in which the stents 229C can pass.


As noted above, the applicator 201 preferably is configured to eject one stent at a time from the end 242. Thus, the applicator 201 can be configured to move the plunger 244 a predetermined distance each time the button 203 is depressed. For example, the button can be mechanically connected to the plunger 244 so as to move the plunger 244 downstream through the sheath 246 over the predetermined distance. The predetermined distance can be, for example, equal to about the length of the stent 229C.


Alternatively, the plunger can be driven by an electronic actuator (not shown) configured to eject one stent 229C at a time from the sheath 246. For example, the electronic actuator can be configured to drive the plunger 244 over the predetermined distance each time the button 203 is depressed. The electronic actuator can be, for example but without limitation, solenoids, stepper motors, servo motors, and piezoelectric modules. Driver electronics (not shown) can be configured to drive the actuator so as to urge the plunger 244 over the predetermined distance.


Preferably, the end 242 of the sheath 246 is sharpened to define a cutting (microtrephining) tip for creating a hole within the trabecular meshwork 21 for stent placement. Thus, the applicator 201 can be used for cutting the trabecular meshwork 21 and for implanting stents.


A further advantage is provided where the applicator includes an illumination feature for illuminating at least a portion of the implantation site. For example, the illumination feature can be configured to generally illuminate the site at which a stent is to be implanted. Optionally, the illumination feature can be configured to generate a reticule for aligning the applicator with the desired implantation site. In one embodiment, a light source is provided to the tip section 242 of the stent applicator 201 wherein either laser light is provided for cutting/spotting or fiber optic light is provided for illumination.


For example, but without limitation, the illumination feature can comprise a small diameter light pipe or optic fiber element configured to emit a fine point or beam of light and configured to be introduced ab-internally. Additionally, the face or lens of the pipe or element can be configured to be placed against the trabecular meshwork. In one embodiment, the light pipe or optic fiber is the construct material of the sheath 246 of the stent delivery applicator 241A for multiple stent deployment as shown in FIG. 51B. In another embodiment, the light pipe or optic fiber is snugly inserted within the lumen 249 of the applicator sheath 246 or over the outer periphery of the applicator sheath 246. Optionally, the illumination device can be configured such that the point or beam emitting from the light tube would be highly visible from the outside of the eye and serve to guide the implantation of a stent.


As an alternative to including an illumination feature with the applicator 201, simple non-invasive trans-scleral illumination, if of the proper intensity and wavelength, perhaps in a darkened environment, could silhouette the Schlemm's canal, trabecular meshwork, or more probably, the scleral spur with sufficient resolution to enable ab-externo placement of a device into Schlemm's canal. In this case, blood could be backed up in a retrograde manner into Schlemm's canal by the surgeon to provide additional optical density. Imaging means for ab internally imaging the anatomic structures for TBS stent implantation using ultrasound imaging, laser imaging, OCT imaging or multi-wavelength scanning can also be provided.


A further advantage is provided where the applicator 201 also includes an imaging feature. For example, where the applicator 201 includes an imaging feature for transmitting a video representation of an implantation site of a stent to a user of the applicator, an implantation procedure can be further simplified. The imaging feature can utilize any type of known imaging techniques, including, for example, but without limitation, optical, and ultrasonic. In one embodiment, an endoscope is mounted at the tip section 242 of the stent applicator 201 for visualization during stent deployment and/or implantation.



FIG. 51D shows one embodiment of the applicator 201 of FIG. 51A having an ultrasonic imaging system. The illustrated embodiment of the imaging system is included on an applicator with a steerable section. However, it is to be noted that the imaging system can be used on an applicator that does not have a steerable section.


In one embodiment, the ultrasonic imaging system comprises two ultrasonic probes or transducers 206, 207. The transducers 206, 207 can be formed from an ultrasound ring or ultrasound tape. Preferably, the transducers 206, 207 are located adjacent to the distal end 242 of the delivery apparatus 201. As such, the transducers 206, 207 can move with the distal end 242 during an implantation procedure.


The ultrasonic transducers 206, 207 are connected by flexible wires (not shown) through the interior void 243 of the apparatus or through within the sheath 246 to the connector 209 located at the handle 205 so that the ultrasonic signals are directed outwardly and received inwardly relative to the transducers 206, 207. For example, one of the transducers 206, 207 can be configured to emit ultrasonic energy, and the other can be configured to absorb the reflected portion of the emitted ultrasonic energy and to produce a signal indicative of the absorbed energy.


In order to enhance the viewing and positioning of the distal end 242 of the apparatus, an ultrasonic marker 208, which is visible to ultrasonic energy, can be mounted at about the distal end 242 of the applicator 201. For example, but without limitation, such a marker 208 can be in the form of one or a plurality of encapsulated air bubbles. In one illustrative example, the bubble in a marker 208 can be formed by introducing air by a syringe (not shown) penetrating the wall of the sheath 246 and thereafter sealing the hole created by the syringe with epoxy.


Optionally, a plurality of markers 208 can be disposed in the front distal section 259. The markers 208 can be sized and configured to aid in locating and identifying the orientation of the distal end section 259. For example, the markers 208 can be located and/or viewed with external ultrasonic imaging systems (not shown), such as those commonly used in similar medical procedures.


A further advantage is provided where the stent delivery applicator 201 is both steerable and configured for multiple stent implantation. As such, the applicator 201 can be inserted into the anterior chamber 20, through an incision, such as a corneal incision, and multiple stents can then be implanted at different locations without removing the applicator 201 or creating other incisions, described in greater detail below.



FIG. 52A shows another embodiment of the stent delivery distal portion 241, identified generally by the reference numeral 241B, and another embodiment of a stent, identified generally by the reference numeral 229E.


The stent 229E comprises a first (proximal) flange 240E and a second (distal) flange 237E with a plurality of supporting legs or posts 236. The second flange 237E of the stent 229E is configured to be foldable. For example, the first flange 237E can be configured to be elastically foldable toward an upstream direction. As such, the first flange 237E can be folded toward an upstream direction, as illustrated in FIG. 52A when stored in the sheath 246. Thus, after the first flange 237E has been pushed through the end 242, the first flange 237E can resiliently unfold. As such, the first flange 237E can provide enhanced anchoring for the stent 229E when implanted into the trabecular meshwork 21.


A further advantage can be provided where the applicator 201 includes a cutting device that can extend through the lumens 239E of the stents 229E. For example, as shown in FIG. 52A, a cutting device 250 can include a cutting tip 247 and can be configured to extend through the stents 229E during an implantation procedure. As such, the cutting device can being an incision at the center of the site at which the stent 229E is to be inserted through the trabecular meshwork 21. In the illustrated embodiment, the cutting device is in the form of a trocar.


With continued reference to FIG. 52A, the cutting device 250 is configured to be moveable axially through the lumen 249 of the applicator end portion 241B of the sheath 146. Additionally, the cutting device 250 can be moved axially relative to the stent or stents through which it extends.


Another advantage can be provided where the cutting device 250 also includes at least one holding member for holding a stent. For example, the cutting device 250 includes at least one holding device 245, described above with reference to FIG. 51B, can be configured to hold a stent at least during an implantation procedure, and to release the stent at the appropriate time.


Preferably, the holding members 245B are arranged to align the sides of the cutting tip 247 with the distally facing sides of the flange 237E when the flange 237E is folded. For example, as shown in FIG. 52A, when the flange 237E is folded, the distally facing side of the flange 237E is aligned with the sides of the cutting tip 247, as indicated by the dashed-lines identified by the letter “A.” This alignment can be facilitated by arranging the holding members 245B such that the cutting device 250 extends distally from the flange 237E sufficiently to cause the sides of the cutting tip 247 to become aligned with the flange 237E. As such, the sides of the cutting tip 247 and the distally facing side of the flange 237E generate a more smooth surface for penetrating the trabecular meshwork 21 during an implantation procedure.


During operation, the applicator end portion 241B can be pushed into trabecular meshwork 21, with the flange 237E disposed in Schlemm's canal 22, as shown in FIG. 52B. The sheath 246 can then be retracted out of Schlemm's canal 22, leaving the cutting device 250 and stent 229E in place (FIG. 52C).


With the sheath 246 retracted, the first flange 237E can unfold, as indicated by the arrows U in FIG. 52C, thereby providing enhanced anchoring of the stent 229E within Schlemm's canal 22 (FIG. 52D). Additionally, the second flange 240E is within the anterior chamber 20.


As shown in FIG. 52D, the cutting device 250 can then be retracted relative to the applicator end portion 241B and the stent 229E, leaving the stent 229E in place. Optionally, the cutting device 250 and the sheath 246 can be retracted together.


As noted above, the holding members 245 are configured to limit the movement of the stents 229E relative to the cutting device 250. When the cutting device is retracted, the next stent 229E preferably is moved passed (in the downstream direction) the holding member 245 that was previously between the stents 229E. As such, the next stent 229E can be moved into position for implantation. Thus, the holding members 245 preferably are configured to allow the stent 229E to move toward the cutting tip 247 when the cutting device 250 is retracted. For example, the holding members 245 can be controlled so as to retract when the cutting device 250 is retracted.


With reference to FIG. 53, another embodiment of an axisymmetric trabecular stenting device is illustrated therein and identified generally by the reference numeral 229F. For ease of description, but without limitation, the stent 229F is described below with reference to cylindrical coordinates of x, r and angle α as shown in FIG. 53.


The stent 229F comprises an inlet (proximal) section having a first flange 240F, an outlet (distal) section having a second flange 237F and a middle section 284 connecting the inlet section and the outlet section. A lumen 239F of the device 229F is configured to transport aqueous, liquid, or therapeutic agents between the inlet section and the outlet section. As referred to herein, “therapeutic agent” is intended to include pharmaceutical agents, drugs, genes, cells, proteins, and/or growth factors.


The inlet section of the stent 229F has at least one inlet opening 286 and the outlet section comprises at least one outlet opening 287. A further advantage is provided where the outlet section 237F includes at least one opening 287, 288 suitably located for discharging substantially axisymmetrically the aqueous, liquid or therapeutic agents, wherein the opening 287, 288 is in fluid communication with the lumen 285 of the device 281. In the illustrated embodiment, the openings 288 extend radially from the lumen 285 and open at the outwardly facing surface around the periphery of the outlet flange 237F.


In one embodiment of an implantation procedure, Pilocarpine is administered preoperatively to constrict the pupil to provide maximal protection of the lens in phakic individuals and to further open the anterior chamber angle to provide a better view of the surgical site. Topical and retrobulbar anesthetic are recommended. A small self-sealing temporal corneal incision can be made and HEALON® viscoelastic (VE) can be injected to maintain the anterior chamber.


A microscope can be tilted slightly toward the surgeon and the patient's head can be rotated away from the surgeon to provide a suitable view of the nasal trabecular meshwork using a direct-view gonioscope that is placed on the eye. The applicator 201 with a preloaded stent, such as, for example, but without limitation, an one or any combination of the stents a plurality of any combination of the stents 229, 30, 30a, 30b, 30c, 30d, 30e, 30f, 30g, 30h, 30i, 30j, 30k, 30m, 30n, 30p, 30q, 30r, 30s, 30t, 30u, 30v, 229A, 229B, 229C, 229D, 229E, 229F, or any of the other stents described below, is advanced through the corneal wound and across the anterior chamber. The stent is pushed against the trabecular meshwork and moved inferiorly to pierce the trabecular meshwork and guide the stent into Schlemm's canal. After successful implantation and release of the stent, the applicator is withdrawn and the VE is flushed from the eye.


The G2 stent (for example, stent 229F of FIG. 53) can be smaller and of a significantly different design than the G1 stents, thus allowing it to be passed through a smaller corneal incision and be implanted with a simple axial motion. Reduced size and simplified surgical motions may enable implantation of the G2 stent without the use of viscoelastic and therefore eliminate a significant expendable material cost and the time necessary to administer and remove it.


Additionally, viscoelastic use in patients undergoing eye surgery can cause post-operative transient IOP spikes that can further damage the remaining glaucoma-compromised retina. Reduced surgical manipulations reduce the burden on the surgeon and reduce the stimulation and irritation of intraocular tissues. Furthermore, reduction in the corneal incision size raises the possibility that the incision could be made by the G2 applicator, and could potentially reduce the surgical implant procedure to an injectable implant procedure. Injectable stent therapy represents a potentially superior alternative to both end-stage surgical therapy and to patients burdened by the cumulative side effects, complications, and compliance issues associated with drug therapy.


The G2 stent and applicator system are sized, dimensioned and configured for placement through trabecular meshwork in an ab interno or ab externo procedures. FIGS. 54A-C illustrate additional examples of preferred G2 stent and applicator embodiments.



FIG. 54A shows yet another embodiment of a stent injector assembly for multiple stent deployment, identified generally by the reference numeral 260. The stent injector 260 comprises a housing 261 with a distal cap 262 and a distal stent-holding element 263 that is distal from the distal cap 261. Optionally, at least a portion of the distal stent-holding element 263 can be configured to be steerable with a steering mechanism that can be constructed in accordance with the description of the steerable section 251 described above with reference to FIGS. 51A-D.


The stent-holding element 263 can comprise an elongate member 264 with at least one stent slidably disposed thereon. The elongate member 264 can be configured to extend through the lumen of any of the stents 229A, 229B, 229C, 229D, 229E, 229F, or any of the other stents described below.


In the illustrated embodiment, the elongate member 264 extends through the lumen of stents 229G (FIG. 54B). In one embodiment, the distal stent 229G can be the same as the second or proximal stent 229G. In another embodiment, the distal stent and the proximal stent are different in size or configuration for placement at different locations. For example, the proximal and distal stents of FIG. 54B can be any combination of the stents 229A, 229B, 229C, 229D, 229E, 229F, and 229G. Additionally, the applicator 260 can be configured to be loaded with only one, three, or more stents.


In the illustrated embodiment, the distal flange 237G of the stent 229G can be wedge-shaped. For example, the distal end of the flange 237G can have a smaller diameter than that of the proximal end of the flange 237G. As such, the stent 229G can pass more easily through the trabecular meshwork 21. Additionally, the distally facing surface of the flange 237G can be inclined so as to be aligned with a distal surface of the elongate member 264. As noted above with respect to the cutting member 250, the elongate member 264 can be in the form of a trocar.


The stent-holding element further comprises a sleeve 265 configured to support the elongate member 264. The sleeve 265 (for example, made of hypo tubing) can be pressed or bonded onto the distal cap 262 to form a sleeve-cap subassembly. The elongate member 264 can be configured to be axially moveable relative to the sleeve 265, as indicated by the arrow 266 (FIG. 54C).


The housing 261 can also comprise a tip actuator 267 that has a distal end 268 and a proximal end 269. The elongate member 264 can be press fit or bonded into the distal end portion of the tip actuator 267 to form a tip/tip actuator subassembly. In one exemplary but non-limiting embodiment, the elongate member 264 can be a 0.08 mm diameter sharpened rod made from a hard material, such as a metal.


The tip/tip actuator subassembly is fed through the sleeve-cap subassembly and the cap 262 is screwed onto or bonded with the housing 261. The proximal end 269 can include a threaded portion 270 adapted for threaded engagement with a rotation knob 271 located at the proximal end portion of the housing 261. Thus, the coupling mechanism comprises the tip/tip-actuator subassembly screwed into the rotation knob 271 to form an actuator-knob subassembly.


An interlock arrangement 272 is configured to retain the knob 271 on the housing 261 and allow the knob 271 to rotate relative to the housing 261. The interlock arrangement 272 can include an annular rib disposed on the housing 261 and a groove disposed on the knob 271. A clearance is provided between the groove and the rib so as to allow the knob 271 to rotate freely relative to the housing 261. The knob 271 can be pressed onto the housing 261 and thus spins freely on housing 261 without coming off because of an interlock arrangement 272.


With reference to FIGS. 54A and 54C, the housing 261 can include a slot line 273 at a location perpendicular to a longitudinal axis 275 of the housing. One side of the slot line 273 can be drilled through to the opposite side of the housing, thus allowing an anti-rotation pin 274 to extend therethrough.



FIG. 54C shows a top cross-sectional view, identified as section 3-3 of FIG. 54A, with the anti-rotation pin 274 aligned with the slot 276. During assembly, of the injector 260, the tip actuator 267 is rotated until the slot 276 is aligned with the drilled hole adapted for the anti-rotation pin 274 to extend into the drilled hole. The anti-rotation pin 274 is pressed through a first side of housing, through the tip actuator, and through a second opposite side of housing.


In operation, one or more stents are placed over the member 264 and against the blunt front end of the sleeve 265. After the injector approaches the target site, the elongate member 264 and the first stent are pressed into tissue where implantation is to take place. In an ab interno procedure, the first tissue is the trabecular meshwork facing the anterior chamber. In an ab externo procedure, the first tissue is the trabecular meshwork facing Schlemm's canal. Once the first stent is in a proper location, the knob 271 is rotated to withdraw the elongate member 264, leaving the first stent in place. Stents can be snugly held onto the tip 264 with a mechanical feature on the elongate member, such as the holding members 245 described above with reference to FIGS. 51A-D. Optionally, the sleeve 265 can include a mechanical feature for holding stents in place. Further viscoelastic material or other means can be provided for holding the stents so that stent deployment does not occur until desired.


After the first stent is implanted, the injector is slightly withdrawn away from the trabecular meshwork. The tip of the injector is moved and pointed to a second target site without withdrawing the injector from the incision on the sclera. This re-positioning of the injector can be accomplished with a steerable section of the injector 260 noted above.


The term “targeted placement” of trabecular stents refers to the intentional placement of a stent at a particular location in Schlemm's canal for the purpose of providing a maximum benefit in the form of maximum outflow facility. With reference to FIG. 50A, aqueous enters Schlemm's canal 22 through the trabecular meshwork 21 and travels along the canal to exit through the collector channels 23. Schlemm's canal is a narrow channel with approximate dimensions of 250 μm×20 μm with a 40 mm length (Volume ˜0.2 μl) and it provides measurable resistance to the flow of aqueous. Therefore, placing a stent into Schlemm's canal 22 through the trabecular meshwork 21 yields the best improvement in outflow facility when it is placed near a large collector channel 23 or a group of smaller ones that combine to have a larger hydraulic diameter. It is one aspect of the present invention to locate/detect the most appropriate collector channel(s) to implant a trabecular shunting stent adjacent the collector channel(s) 23.



FIGS. 55 A-C show multiple views of an embodiment of a trabecular stent shaped generally as a bee-stinger. The bee-stinger stent 309 is virtually axisymmetric. Multiple stents can be loaded in a stacked configuration within a sleeve of the stent delivery applicator. A trocar preferably runs axially through the stacked stents. The trocar possesses a sharp tip (that is, piercing member) so that it can penetrate the cornea and the trabecular meshwork. A stent implantation system may comprise different type of slidable piercing members including, but not limited to, those cited in U.S. patent application Ser. No. 10/231,342 filed Aug. 28, 2002, entitled GLAUCOMA STENT FOR TREATING GLAUCOMA AND METHODS OF USE, the entire contents of which are hereby incorporated by reference. Wires 301 (that is, anchoring wires or protrusions) arrayed around the perimeter of the outflow orifice fold inward as the stent is pushed through the trabecular meshwork or as loaded in a sheath for application. Once inside Schlemm's canal, the wires reassume their open geometry. In this position, they serve to hold open Schlemm's canal.


Deployment of each stent is achieved either through activation of a piston, plunger or the retraction of the trocar sleeve of the applicator. Multiple stents can be injected without reloading the applicator. Pores 302 (that is, fluid outlet ports) arrayed circularly around the stent surface provide many outflow paths for aqueous flow that enters from the inflow orifice 304 through the stent lumen 303 (that is, fluid passageway). This design presents several advantages. The wires may help to hold Schlemm's canal open and the multiple pores help prevent aqueous clogging. Multiple stent deliveries can be achieved because the stent can be stacked in the applicator. Rotational orientation is not required during implantation as a result of axisymmetric stent design. The cylindrical design should simplify manufacturing process. And the stent can pass through a smaller corneal incision as a result of the stent being crushed during delivery.


In one embodiment, it is contemplated that the wires 301 are inserted into the back wall of Schlemm's canal and into the sclera to assist in anchoring the stent in place. In this embodiment, the stent and the trocar are inserted through the trabecular meshwork and into a portion of the sclera beyond Schlemm's canal. The trocar is removed, and the stent is left in place with the wires protruding into the sclera.



FIGS. 56 A-B show various views of a foldable umbrella trabecular stent. In one embodiment, the foldable umbrella stent 319 is essentially axisymmetric. Multiple stents can be loaded in a stacked configuration onto a trocar of a delivery applicator, and held in place within a sleeve. The tip of the trocar is configured sharp enough that it can penetrate the cornea and the trabecular meshwork. The outflow flange 311 of the stent folds inward as the stent is pushed through the created opening in the trabecular meshwork. Once inside Schlemm's canal, the outflow flange reassumes its open geometry. Deployment of each stent is achieved either through activation of a piston, plunger or the retraction of the trocar sleeve. Multiple stents can be injected without reloading the applicator.


In one embodiment, the stent is provided with a center outflow port 312 connected to the stent lumen 314 and a plurality of side outflow ports 313. The foldable umbrella trabecular stent has the benefits and advantages. The angled outflow flange may hold Schlemm's canal open. Multiple stent deliveries can be achieved because the stent can be stacked in the applicator. Rotational orientation is not required during implantation as a result of axisymmetric stent design. And the stent can pass through a smaller corneal incision as a result of the stent being crushed during delivery.



FIGS. 57 A-B show various views of a trabecular stent having a modified center bulb 324 with anchors. In one embodiment, the center-bulb-with-anchor stent 329 is axisymmetric. In one embodiment, stents can be loaded in a stacked configuration onto a trocar of a delivery applicator, and held in place within a sleeve. The tip of the trocar is sharp enough that it can penetrate the cornea and the trabecular meshwork. In another embodiment, the stent possesses a sharp tip (not shown) so that it can penetrate the cornea and the trabecular meshwork, whereas stents can be loaded in a stacked configuration within a sleeve.


An applied force will bury the sharp tip and grooves 325 into the scleral wall of Schlemm's canal. An outwardly expandable scleral anchor arrangement 323 is provided at the distal end of the stent 329. The sclera will tend to conform to the exterior surface of the sharp tip and grooves. Tissue extending into the grooves will assist with retention strength. Once in position, the outflow ducts 322 bulge open by means of the superelastic properties of a shape-memory material, e.g., Nitinol. The outflow ducts provide a dual purpose. First, they buttress Schlemm's canal; and second, they create multiple pathways for the outflow of aqueous via a stent lumen 321.


Deployment of each stent is achieved either through the activation of the piston, or the retraction of the sleeve. Multiple stents can be injected without reloading the applicator. The trabecular stent having a modified center bulb with anchors has several advantages. Schlemm's canal would be buttressed open by the outflow ducts of the bulb portion. If deployed properly, the bulb will serve to add retention strength. Grooves will bolster the retention strength. Multiple stent deliveries can be achieved because the stent can be stacked in the applicator. Rotational orientation is not required during implantation as a result of axisymmetric stent design. The multiple pores help prevent aqueous clogging. Shape-setting and other memory-shape material, such as Nitinol, are well understood procedure and products. And cylindrical design should simplify manufacturing process.



FIGS. 58 A-B show various views of a mushroom trabecular stent. In one embodiment, the mushroom stent 339 is axisymmetric. Stents can be loaded in a stacked configuration onto a trocar. The tip of the trocar is sharp enough that it can penetrate the cornea and the trabecular meshwork. The domed, or partially bulbous, outflow surface 331 of the stent further widens the openings in the cornea and meshwork. Deployment of each stent is achieved either through activation of a piston, plunger or the retraction of the trocar sleeve. Multiple stents can be injected without reloading the applicator. Once positioned, the domed outflow surface of the stent buttresses Schlemm's canal. Pores 332 arrayed circularly around the domed outflow surface provide many outflow paths for aqueous flow. The flange 333 is for enhancing the stent retention at trabecular meshwork.


The mushroom trabecular stent has several advantages. The domed outflow surface may hold Schlemm's canal open. The multiple pores help prevent aqueous clogging. Multiple stent deliveries can be achieved because the stent can be stacked in the applicator. And rotational orientation is not required during implant as a result of axisymmetric stent design.



FIGS. 59 A-C show various views of a rivet trabecular stent 349. Multiple stents can be loaded in a stacked configuration onto a trocar. The tip of the trocar is sharp enough that it can penetrate the cornea and the trabecular meshwork. After deployment in place, the rivets 341 tend to expand radially outwardly to anchor the stent within sclera wall of Schlemm's canal while the outlets of the stent (depicted in the rivets 341) may be configured to remain within Schlemm's canal.



FIGS. 60 A-B show various views of a trabecular stent with scleral anchors. In one embodiment, the scleral anchor stent 359 is axisymmetric. Stents can be loaded in a stacked configuration within a sleeve. The stent possesses a sharp barbed tip 351 that is sharp enough that it can penetrate the cornea and the trabecular meshwork. The domed outflow surface 352 of the stent further widens the openings in the cornea and meshwork. An applied force embeds the barbed tip into the scleral wall of Schlemm's canal thus creating a scleral anchor.


Deployment of each stent is achieved either through activation of the piston, plunger or the retraction of the sleeve. Multiple stents can be injected without reloading the applicator. Once positioned, the domed outflow surface of the stent buttresses Schlemm's canal. Pores 353 arrayed circularly around the domed outflow surface provide many outflow paths for aqueous flow. The flange 354 is for enhancing the stent retention at trabecular meshwork. The domed outflow surface may hold Schlemm's canal open. The multiple pores help prevent aqueous clogging. Multiple stent deliveries can be achieved because the stent can be stacked in the applicator. And rotational orientation is not required during implantation as a result of axisymmetric stent design.



FIGS. 61 A-B show various views of another trabecular stent with scleral anchors. In one embodiment, the alternate scleral anchor stent 369 is axisymmetric. Stents can be loaded in a stacked configuration within a trocar sleeve. The stent possesses a sharp tip 361 that can penetrate the cornea and the trabecular meshwork. An applied force will embed the sharp tip and grooves into the scleral wall of Schlemm's canal thus creating a scleral anchor while a plurality of outlet pores 363 are configured to remain with Schlemm's canal to permit flow of aqueous therethrough. The sclera will tend to conform to the exterior surface of the sharp tip and grooves 362. Tissue extending into the grooves will assist with retention strength.


Deployment of each stent is achieved either through activation of the piston, plunger or the retraction of the sleeve. Multiple stents can be injected without reloading the applicator. The pores 363 are arrayed circularly around the domed outflow surface and provide many outflow paths for aqueous flow. The multiple pores help prevent aqueous clogging. Multiple stent deliveries can be achieved because the stent can be stacked in the applicator. Rotational orientation is not required during implantation as a result of axisymmetric stent design. Grooves will bolster retention strength. And cylindrical design should simplify manufacturing process.



FIGS. 62 A-B show various views of a trabecular stent with a screw. In one embodiment, the screw stent 379 is generally not axisymmetric. Stents can be loaded in a stacked configuration within a trocar sleeve. A trocar may extend through the axis of the stents. The trocar could possess a sharp tip so that it can penetrate the cornea and the trabecular meshwork. A pilot hole can be created in the scleral wall of Schlemm's canal using the trocar. After the meshwork has been punctured, the threads 371 of the stent can be screwed into the scleral wall of Schlemm's canal, thus creating a scleral anchor. Twisting motion can be accomplished through the use of a piston or other feasible means. Deployment of each stent is achieved either through activation of the piston with rotating means or the retraction of the sleeve. Multiple stents can be injected without reloading the applicator. Pores 372 arrayed circularly around the domed outflow surface provide many outflow paths for aqueous flow. The multiple pores help prevent aqueous clogging. Multiple stent deliveries can be achieved because the stent can be stacked in the applicator. Rotational orientation is not required during implant as a result of axisymmetric stent design. Threads will bolster retention strength. And recessed shaft of the stent may aid with preventing the meshwork from staying pinched shut.



FIGS. 63A-B show various views of a spike trabecular stent. In one embodiment, the spike stent 389 is axisymmetric. Stents are stack-loaded onto a trocar, and kept in place via friction or other retention means. The tip of the trocar is sharp enough that it can penetrate the cornea and the trabecular meshwork with little effort. Deployment of the stent is achieved by advancing the push tube inside the applicator. An applied force will embed the sharp edge of the stent into the scleral wall of Schlemm's canal thus creating a scleral anchor. Multiple stents can be injected without reloading the applicator. Pores 381 arrayed circularly around the cylindrical wall provide many outflow paths for aqueous flow.


In one embodiment, all pores are sized and configured to expose to Schlemm's canal alone so as to pressurize Schlemm's canal before, after, or during stent implantation. In another embodiment, the pores are sized and configured to irrigate Schlemm's canal, trabecular meshwork and/or sclera tissue of Schlemm's canal. The multiple pores help prevent aqueous clogging. Multiple stent deliveries can be achieved because the stent can be stacked in the applicator. Rotational orientation is not required during implantation as a result of axisymmetric stent design. And the tubular geometry simplifies the manufacturing process.



FIGS. 64A-B show a multiple blade mushroom stent 399 and its associated trocar delivery system. In one embodiment, the stent comprises at least one blade. In another embodiment, the stent 399 comprises dual blades, as depicted in FIG. 64B. In a further embodiment, the stent 399 comprises a distal terminal 391 to be placed in Schlemm's canal, a proximal terminal 392 to be placed in the anterior chamber, a middle portion with groove 393 to be placed in the trabecular meshwork, and a distal tip 394 with a plurality of blades 395. One or more multiple blade mushroom stents are placed inside the sleeve 396 of a stent delivery trocar 397.


In one preferred embodiment, the trocar comprises a tri-face trocar tip which is configured to be sharp enough that it can penetrate the trabecular meshwork or the sclera with little effort. In one embodiment of operations, the outer sheath 396 with sharp edge cuts the cornea. The sharp tip of the tri-face trocar 397 penetrates the trabecular meshwork, whereby the trocar is advanced via a pusher tube 398 into the trabecular meshwork until the meshwork rides over the outer sheath. Irrigation is achieved via fluid flow in a fluid passageway between the trocar and the outer sheath. After irrigation, the outer sleeve and trocar are retracted while holding the pusher tube in place. The meshwork would then reside in the stent groove 393. The multiple blades or sharp ends of the mushroom stent are sized and configured to cut and spread open the meshwork during stent insertion.


Controlled Stent Injection


With reference to the drawings, in FIGS. 65-72, an incision tip is shown with a plunger, within a trocar. The distal end of the plunger terminates adjacent a proximal end of a stent and the proximal end of the plunger is used for actuation. In operation, a trocar is brought to rest on the edge of trabecular meshwork, the plunger end is actuated to push the cutting end into trabecular meshwork and into a rear surface of the sclera beyond Schlemm's canal. The trocar provides an arrest against a stop element of the plunger, whereby the cutting edge travel is controlled to a distance D, just sufficient to provide a transscleral incision and placement of the stent. Withdrawal of the plunger removes the trocar cutting element from the slit/opening and the trocar is removed thereafter. The length of the cutting element is between about 1.0 mm and 3.5 mm, although the length could more less than about 1.0 mm or greater than about 3.5 mm. Some embodiments relate to a trocar with the distance D between about 100 microns to a few millimeters, preferably between about 200 microns to 500 microns, although it is contemplated that the distance D could be less than about 100 microns or greater than a few millimeters.


In some embodiments, the injector-type stent delivery applicator (also known as G2 injector) serves the purpose of driving a trabecular stent into Schlemm's canal with possibility of anchoring the distal tip of the stent into the sclera beyond Schlemm's canal. Furthermore, the G2 injector may supply irrigating fluid, e.g., saline, viscoelastic, to inflate the canal. Canal inflation can be performed before, after, or during stent insertion.


In one embodiment, the canal inflation can be achieved by pressurizing or fluid irrigation at one or more than one places along the circumference of Schlemm's canal; for example, at any of quadrant points of the circumference. In another embodiment, the fluid properties (viscosity, composition, drug inclusion, and the like) at more than one place along the circumference of Schlemm's canal may be different from each other. In a further embodiment, the stent delivery applicator comprises more than one applicator tip, wherein a first tip is provided for pressurizing Schlemm's canal and a second tip is provided for stent implantation without removing the applicator out of the eye.



FIG. 65 shows a perspective view of a G2 injector 401 whereas FIG. 66 shows a top view of the G2 injector of FIG. 65. The injector 401 comprises a body 402, a button 403 for deploying a trabecular stent that is held with a lumen of the stem 404, and a cap 405 that is accessible to any irrigating fluid. The injector and stem may be made of any rigid material, such as a metal or plastic. A cross-section of the stem 404 reveals the sharp-tipped trocar 407, stent 406, pusher tube 408, and outer tube 409 as shown in FIG. 67.


In one embodiment, the stem 404 is equipped with a solid trocar that moves back and forth within a lumen of the stent 406. In another embodiment, the stem is equipped with irrigation means for providing irrigating fluid to the injector 401. FIGS. 68A-C illustrate three modes of a side cross-sectional view of a G2 injector stem, showing irrigating trocar portion. In a first mode as shown in FIG. 68A, the hollow trocar 410 comprises a sharp tip 411 for penetrating through tissue and a fluid passage lumen 412 sized and configured for fluid irrigating out of the end port 413 or out of at least one side port 414. After a desired slit or opening is created on the tissue by the sharp tip 411, the trocar 410 is retracted as shown in FIG. 68B. In a later mode as shown in FIG. 68C, the stent 406 is ready to be deployed and implanted in place. As illustrated, fluid irrigation or canal inflation can be performed before, after, or during stent insertion.



FIG. 69 shows two modes of the G2 injector: (A) in the cocked orientation and (B) in the deployed orientation. Stent positioning is performed while the injector 401 is in the cocked orientation. Delivery is accomplished during the motion between the cocked and deployed orientations. This action is triggered with the push of the button. During the loading phase, the stent is loaded onto the trocar 407 when the injector is in the deployed orientation. Loading is accomplished by sliding the stent onto the trocar. The proximal end of the stent preferably seats against the pusher tube. During the cocking phase, the injector 401 is put into the cocked orientation after loading the stent. This is accomplished by rotating the button. The button 403 has an angled slot 421 that the pusher tube resides in during the deployed orientation. FIGS. 70 A and B show two pusher tube locations of the button geometry. As this button is rotated, the pusher tube is forced out of the slot and onto the outer surface 422 of the button shaft 420.



FIG. 71 shows a schematic illustration of effective shorting of a pusher tube in the G2 injector, whereas FIG. 72 illustrates where the pusher-tube resides when the G2 injector is cocked. The button rotation forces the pusher tube 408 to bow from a first position 408B to a second position 408A. Ultimately, this action accomplishes effective shortening of the pusher tube distance extending beyond the interior body. Since the trocar may reside inside of the pusher tube, it too may bow and become effectively shortened. Springs 425 apply a force to the bowed pusher tube 408.


In one embodiment, the button 403 can be rotated 360 degree as shown in FIG. 72. During the rotation, the button may raise axially a slight amount. The pusher tube 408 may reside on the button, just below the slot 421 until it is deployed. When deployed, the pusher tube 408 preferably resides in the slot 421.


The term “Multi-stent therapy” refers to the intentional placement of a stent in each of several locations in Schlemm's canal 22. Since Schlemm's canal 22 has measurable resistance to flow at physiological flow rates, a plurality of stents is strategically placed close to concentrations of collector ducts 23 or a large collector and distributed around Schlemm's canal 22 to maximize the impact of multiple stents.


An injector or device applicator to hold a plurality of serial devices has advantages of placing the device one at a time without reloading the device or without completely withdrawing the applicator out of a portion of the body. The advantages may include saving operating time, reducing redundant incision or injury, or exact positioning for device placement.


By way of example, but without limitation, an injector or device applicator for multiple device deployment may be used for implanting punctum plugs in an eye, for implanting drug-eluting devices into sclera tissue of an eye, implanting drug-eluting devices into tissue of a posterior segment, or implanting cardiovascular stents. Some embodiments relate to a method of multiple device deployment comprising: (a) loading a plurality of devices within a device-retaining space of a device applicator; (b) delivering the applicator to a first target implant site; (c) deploying a first device at the first target implant site; (d) detaching the applicator from the first target implant site; (e) directing the applicator to a second target implant site; (f) deploying a second device at the second target implant site; and (g) withdrawing the applicator.


The device of the exemplary embodiment preferably comprises a biocompatible material such that inflammation arising due to irritation between the outer surface of the device and the surrounding tissue is minimized. Biocompatible materials which may be used for the device 81 preferably include, but are not limited to, titanium, titanium alloys, polypropylene, nylon, PMMA (polymethyl methacrylate), medical grade silicone, e.g., SILASTIC™, available from Dow Corning Corporation of Midland, Mich.; and polyurethane, e.g., PELLETHANE™, also available from Dow Corning Corporation.


In other embodiments, the device of the embodiments may comprise other types of biocompatible material, such as, by way of example, polyvinyl alcohol, polyvinyl pyrolidone, collagen, heparinized collagen, polytetrafluoroethylene, expanded polytetrafluoroethylene, fluorinated polymer, fluorinated elastomer, flexible fused silica, polyolefin, polyester, polysilicon, and/or a mixture of the aforementioned biocompatible materials, and the like. In still other embodiments, composite biocompatible material may be used, wherein a surface material may be used in addition to one or more of the aforementioned materials. For example, such a surface material may include polytetrafluoroethylene (PTFE) (such as TEFLON™), polyimide, hydrogel, heparin, therapeutic drugs (such as beta-adrenergic antagonists and other anti-glaucoma drugs, or antibiotics), and the like.


Although preferred embodiments of the inventions have been described in detail, including a method for treating glaucoma comprising placing a plurality of trabecular stents for transporting aqueous from an anterior chamber to Schlemm's canal, certain variations and modifications will be apparent to those skilled in the art, including embodiments that do not provide all of the features and benefits described herein. It will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the present inventions and obvious modifications and equivalents thereof. In addition, while a number of variations of the present inventions have been shown and described in detail, other modifications, which are within the scope of the present inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the present inventions. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the present inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. An implant for treating an ocular disorder, the implant comprising: a seat comprising a generally elongate tubular member having a proximal portion and a distal portion, configured to be positioned in an anterior chamber of an eye;a therapeutic drug to be eluted from the implant; anda base portion comprising a shank and an anchor having a sharp end, wherein the anchor is attached to a distal portion of the seat through the shank, the anchor disposed at a distal-most portion of the base portion and being adapted to penetrate only partially into a sclera of the eye and secure the implant in the eye, wherein the anchor is solid;wherein a cross-sectional area of the shank is smaller than a cross-sectional area of the seat;wherein at least a portion of the shank is dimensioned to reside in Schlemm's canal.
  • 2. The implant of claim 1 wherein a cross-sectional area of the base portion is smaller than a cross-sectional area of the seat.
  • 3. The implant of claim 1 wherein at least a portion of the base portion is shaped and sized to be received in Schlemm's canal of the eye.
  • 4. The implant of claim 1 wherein the therapeutic agent is an anti-glaucoma drug.
  • 5. The implant of claim 1 wherein the seat comprises a bottom surface adapted to rest against a trabecular meshwork of an eye.
  • 6. The implant of claim 5 wherein the bottom surface of seat comprises a textured surface.
  • 7. The implant of claim 1 further comprising an inlet opening in the proximal portion.
  • 8. The implant of claim 7 wherein the implant further comprises an outlet in fluid communication with the inlet opening.
  • 9. The implant of claim 8 wherein the outlet is disposed proximal of the anchor.
  • 10. The implant of claim 1 wherein the implant further comprises a standoff disposed to space the outlet from a wall of Schlemm's canal.
  • 11. The implant of claim 1 wherein the anchor comprises a conical shape or a screw.
  • 12. The implant of claim 1 wherein the tubular member is solid-walled.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/399,760, filed Feb. 17, 2012, which is a continuation of U.S. patent application Ser. No. 12/246,448, filed Oct. 6, 2008 (the “Ser. No. 12/246,448 application”), now U.S. Pat. No. 8,118,768 B2, which is a divisional of U.S. patent application Ser. No. 11/083,713, filed Mar. 18, 2005 (the “Ser. No. 11/083,713 application”), now U.S. Pat. No. 7,431,710 B2, issued Oct. 7, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 10/634,213, filed Aug. 5, 2003, now U.S. Pat. No. 7,867,186 B2, issued Jan. 11, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 10/118,578, filed Apr. 8, 2002, now U.S. Pat. No. 7,135,009 B2, issued Nov. 14, 2006. The Ser. No. 11/083,713 application is also a continuation-in-part of U.S. patent application Ser. No. 10/667,580, filed Sep. 22, 2003, now U.S. Pat. No. 7,488,303 B1, issued Feb. 10, 2009. The Ser. No. 12/246,448 application is also a continuation-in-part of U.S. patent application Ser. No. 11/598,542, filed Nov. 13, 2006, now U.S. Pat. No. 7,563,241 B2, issued Jul. 21, 2009, which is a continuation of U.S. patent application Ser. No. 10/118,578, filed Apr. 8, 2002, now U.S. Pat. No. 7,135,009 B2, issued Nov. 14, 2006, which claims the priority benefit of U.S. Provisional Application No. 60/281,973, filed Apr. 7, 2001. The present application claims priority to all of the aforementioned applications, and the entireties of each of these priority documents are hereby incorporated by reference.

US Referenced Citations (988)
Number Name Date Kind
2031754 Mills Feb 1936 A
2127903 Bowen Aug 1938 A
3159161 Ness Dec 1964 A
3416530 Ness Dec 1968 A
3710795 Higuchi et al. Jan 1973 A
3717151 Collett Feb 1973 A
3788327 Donowitz Jan 1974 A
3827700 Kaller Aug 1974 A
3863623 Trueblood et al. Feb 1975 A
3915172 Krejci et al. Oct 1975 A
3948271 Aklyama Apr 1976 A
3948871 Butterfield et al. Apr 1976 A
3949750 Freeman Apr 1976 A
3961628 Arnold Jun 1976 A
4030480 Meyer Jun 1977 A
4037604 Newkirk Jul 1977 A
4043346 Mobley et al. Aug 1977 A
4093708 Zaffaroni et al. Jun 1978 A
4113088 Binkhorst Sep 1978 A
4168697 Cantekin Sep 1979 A
4175563 Arenberg et al. Nov 1979 A
4328803 Pape May 1982 A
4402681 Haas et al. Sep 1983 A
4428746 Mendez Jan 1984 A
4449974 Messingschlager May 1984 A
4457757 Molteno Jul 1984 A
4501274 Skjaerpe Feb 1985 A
4554918 White Nov 1985 A
4604087 Joseph Aug 1986 A
4632842 Karwoski et al. Dec 1986 A
4634418 Binder Jan 1987 A
4692142 Dignam et al. Sep 1987 A
4718907 Karwoski et al. Jan 1988 A
4722724 Schocket Feb 1988 A
4733665 Palmaz Mar 1988 A
4743248 Bartoo et al. May 1988 A
4750901 Molteno Jun 1988 A
4787885 Binder Nov 1988 A
4804382 Turina et al. Feb 1989 A
4820626 Williams et al. Apr 1989 A
4826478 Schocket May 1989 A
4846172 Berlin Jul 1989 A
4853224 Wong Aug 1989 A
4863457 Lee Sep 1989 A
4886488 White Dec 1989 A
4936825 Ungerleider Jun 1990 A
4946436 Smith Aug 1990 A
4955881 Eckenhoff Sep 1990 A
4968296 Ritch et al. Nov 1990 A
4986810 Semrad Jan 1991 A
4997652 Wong Mar 1991 A
5005577 Frenekl Apr 1991 A
5041081 Odrich Aug 1991 A
5073163 Lippman Dec 1991 A
5092837 Ritch et al. Mar 1992 A
5098443 Parel et al. Mar 1992 A
5116327 Seder et al. May 1992 A
5127901 Odrich Jul 1992 A
5128145 Edgren et al. Jul 1992 A
5139502 Berg et al. Aug 1992 A
5164188 Wong Nov 1992 A
5171213 Price, Jr. Dec 1992 A
5178604 Baerveldt et al. Jan 1993 A
5180362 Worst Jan 1993 A
5207685 Cinberg et al. May 1993 A
5246451 Trescony et al. Sep 1993 A
5248231 Denham et al. Sep 1993 A
5300020 L'Esperance, Jr. Apr 1994 A
5318513 Leib et al. Jun 1994 A
5326345 Price, Jr. Jul 1994 A
5334137 Freeman Aug 1994 A
5338291 Speckman et al. Aug 1994 A
5342370 Simon et al. Aug 1994 A
5346464 Camras Sep 1994 A
5358492 Feibus Oct 1994 A
5360399 Stegmann Nov 1994 A
5364374 Morrison et al. Nov 1994 A
5370607 Memmen Dec 1994 A
5370641 O'Donnell, Jr. Dec 1994 A
5372577 Ungerleider Dec 1994 A
5378474 Morella et al. Jan 1995 A
5378475 Smith et al. Jan 1995 A
5397300 Baerveldt et al. Mar 1995 A
5433701 Rubinstein Jul 1995 A
5443505 Wong et al. Aug 1995 A
5454796 Krupin Oct 1995 A
5464450 Buscemi et al. Nov 1995 A
5466233 Weiner Nov 1995 A
5476445 Baerveldt et al. Dec 1995 A
5486165 Stegmann Jan 1996 A
5516522 Peyman et al. May 1996 A
5520631 Nordquist et al. May 1996 A
5558629 Baerveldt et al. Sep 1996 A
5558630 Fisher Sep 1996 A
5562641 Flomenblit et al. Oct 1996 A
RE35390 Smith Dec 1996 E
5599534 Himmelstein et al. Feb 1997 A
5626558 Suson May 1997 A
5626559 Solomon May 1997 A
5629008 Lee May 1997 A
5639278 Dereume et al. Jun 1997 A
5645856 Lacy et al. Jul 1997 A
5651782 Simon et al. Jul 1997 A
5652014 Galin et al. Jul 1997 A
5665114 Weadock et al. Sep 1997 A
5670161 Healy et al. Sep 1997 A
5676679 Simon et al. Oct 1997 A
5681275 Ahmed Oct 1997 A
5686425 Lee Nov 1997 A
5702414 Richter et al. Dec 1997 A
5702419 Berry et al. Dec 1997 A
5704907 Nordquist et al. Jan 1998 A
5709854 Griffith-Cima et al. Jan 1998 A
5713844 Peyman Feb 1998 A
5722948 Gross Mar 1998 A
5723005 Herrick Mar 1998 A
5725493 Avery et al. Mar 1998 A
5725529 Nicholson et al. Mar 1998 A
5733327 Igaki et al. Mar 1998 A
5741333 Frid Apr 1998 A
5743868 Brown et al. Apr 1998 A
5752928 de Roulhac et al. May 1998 A
5762625 Igaki Jun 1998 A
5766243 Christensen et al. Jun 1998 A
5767079 Glaser et al. Jun 1998 A
5773019 Ashton et al. Jun 1998 A
5785674 Mateen Jul 1998 A
5800376 Vaskelis Sep 1998 A
5807302 Wandel Sep 1998 A
5810870 Myers et al. Sep 1998 A
5814620 Robinson et al. Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830171 Wallace Nov 1998 A
5865831 Cozean et al. Feb 1999 A
5868697 Richter et al. Feb 1999 A
5869079 Wong et al. Feb 1999 A
5879319 Pynson et al. Mar 1999 A
5882327 Jacob Mar 1999 A
5891084 Lee Apr 1999 A
5902598 Chen et al. May 1999 A
5908449 Bruchman et al. Jun 1999 A
5913852 Magram Jun 1999 A
5932299 Katoot Aug 1999 A
5952378 Stjerschantz et al. Sep 1999 A
5980928 Terry Nov 1999 A
6007510 Nigam Dec 1999 A
6007511 Prywes Dec 1999 A
6033434 Borghi Mar 2000 A
6050970 Baeverldt Apr 2000 A
6059812 Clerc et al. May 2000 A
6063116 Kelleher May 2000 A
6063396 Kelleher May 2000 A
6077299 Adelberg et al. Jun 2000 A
6102045 Nordquist et al. Aug 2000 A
6129761 Hubbell Oct 2000 A
6142990 Burk Nov 2000 A
6146387 Trott et al. Nov 2000 A
6159458 Bowman et al. Dec 2000 A
6165210 Lau et al. Dec 2000 A
6168575 Soltanpour Jan 2001 B1
6174305 Mikus et al. Jan 2001 B1
6186974 Allan et al. Feb 2001 B1
6231597 Deem et al. May 2001 B1
6231600 Zhong May 2001 B1
6241721 Cozean et al. Jun 2001 B1
6248363 Patel et al. Jun 2001 B1
6251090 Avery et al. Jun 2001 B1
6261256 Ahmed Jul 2001 B1
6299895 Hammang et al. Oct 2001 B1
6306114 Freeman et al. Oct 2001 B1
6306120 Tan Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6348042 Warren, Jr. Feb 2002 B1
6358222 Grundei Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6369116 Wong et al. Apr 2002 B1
6375642 Grieshaber et al. Apr 2002 B1
6375972 Guo et al. Apr 2002 B1
6378526 Bowman Apr 2002 B1
6397849 Bowman et al. Jun 2002 B1
6413245 Yaacobi et al. Jul 2002 B1
6416777 Yaacobi Jul 2002 B1
6436427 Hammang et al. Aug 2002 B1
6450984 Lynch et al. Sep 2002 B1
6454787 Maddalo et al. Sep 2002 B1
6455062 Olejnik et al. Sep 2002 B1
6464724 Lynch et al. Oct 2002 B1
6468283 Richter et al. Oct 2002 B1
6494857 Neuhann Dec 2002 B1
6503231 Prausnitz et al. Jan 2003 B1
6508779 Suson Jan 2003 B1
6524275 Lynch et al. Feb 2003 B1
6533768 Hill Mar 2003 B1
6533769 Holmen Mar 2003 B2
6544249 Yu et al. Apr 2003 B1
6548078 Guo et al. Apr 2003 B2
6551618 Baird et al. Apr 2003 B2
6562374 Han et al. May 2003 B1
6576219 Brandt et al. Jun 2003 B2
6582453 Tran et al. Jun 2003 B1
6585753 Eder et al. Jul 2003 B2
6589198 Soltanpour et al. Jul 2003 B1
6589203 Mitrev Jul 2003 B1
6595945 Brown Jul 2003 B2
6605053 Kamm et al. Aug 2003 B1
6623283 Torigian et al. Sep 2003 B1
6626858 Lynch et al. Sep 2003 B2
6638239 Bergheim et al. Oct 2003 B1
6649184 Hammang et al. Nov 2003 B2
6656490 Steinemann et al. Dec 2003 B1
6660870 Ruskinko et al. Dec 2003 B1
6666213 Svadovskiy Dec 2003 B2
6666841 Gharib et al. Dec 2003 B2
6682500 Soltanpour et al. Jan 2004 B2
6692759 Wong et al. Feb 2004 B1
6693093 Chowdhary et al. Feb 2004 B2
6699211 Savage Mar 2004 B2
6699493 Wong Mar 2004 B2
6726666 de Juan, Jr. Apr 2004 B2
6726918 Wong et al. Apr 2004 B1
6730056 Ghaem et al. May 2004 B1
6736791 Tu et al. May 2004 B1
6758837 Peclat et al. Jul 2004 B2
6764698 Byun et al. Jul 2004 B1
6780164 Bergheim et al. Aug 2004 B2
6783544 Lynch et al. Aug 2004 B2
6827699 Lynch et al. Dec 2004 B2
6827700 Lynch et al. Dec 2004 B2
6893413 Martin May 2005 B2
6955656 Bergheim et al. Oct 2005 B2
6962573 Wilcox Nov 2005 B1
6966888 Cullen et al. Nov 2005 B2
6981958 Gharib et al. Jan 2006 B1
6998137 Shih et al. Feb 2006 B2
7033603 Nelson et al. Apr 2006 B2
7048946 Wong et al. May 2006 B1
7083802 Peyman Aug 2006 B2
7094225 Tu et al. Aug 2006 B2
7094226 Yaacobi Aug 2006 B2
7101402 Phelps et al. Sep 2006 B2
7135009 Tu et al. Nov 2006 B2
7144616 Unger et al. Dec 2006 B1
7163543 Smedley et al. Jan 2007 B2
7182747 Kwon Feb 2007 B2
7186232 Smedley et al. Mar 2007 B1
7192412 Zhou et al. Mar 2007 B1
7192484 Chappa et al. Mar 2007 B2
7195774 Carvalho et al. Mar 2007 B2
7220238 Lynch et al. May 2007 B2
7226435 Darnell Jun 2007 B2
7261529 Persyn et al. Aug 2007 B2
7273475 Tu et al. Sep 2007 B2
7294115 Wilk Nov 2007 B1
7297130 Bergheim et al. Nov 2007 B2
7331984 Tu et al. Feb 2008 B2
7364564 Sniegowski et al. Apr 2008 B2
7402156 Kiehlbauch et al. Jul 2008 B2
7431710 Tu et al. Oct 2008 B2
7488303 Haffner et al. Feb 2009 B1
7494487 Timm Feb 2009 B2
7496174 Gertner et al. Feb 2009 B2
7513893 Soroudi Apr 2009 B2
RE40722 Chappa Jun 2009 E
7563241 Tu et al. Jul 2009 B2
7563255 Adamis et al. Jul 2009 B2
7585517 Cooper et al. Sep 2009 B2
7592016 Wong et al. Sep 2009 B2
7638137 Rathjen et al. Nov 2009 B2
7641627 Camras et al. Jan 2010 B2
7678065 Haffner et al. Mar 2010 B2
7678078 Peyman et al. Mar 2010 B1
7680244 Gertner et al. Mar 2010 B2
7680245 Gertner Mar 2010 B2
7695135 Rosenthal Apr 2010 B1
7697663 Gertner Apr 2010 B2
7708711 Tu et al. May 2010 B2
7709049 Chappa May 2010 B2
7749528 DeCarvalho et al. Jul 2010 B2
7776024 Santini et al. Aug 2010 B2
7794751 Chudzik et al. Sep 2010 B2
7811252 Dacquay et al. Oct 2010 B2
7811268 Maldon Ado Bas Oct 2010 B2
7822175 Gertner Oct 2010 B2
7846468 Wong Dec 2010 B2
7850637 Lynch et al. Dec 2010 B2
7857782 Tu et al. Dec 2010 B2
7862531 Yaron et al. Jan 2011 B2
7867186 Haffner et al. Jan 2011 B2
7867205 Bergheim et al. Jan 2011 B2
7879001 Haffner et al. Feb 2011 B2
7879079 Tu et al. Feb 2011 B2
7887517 Santos et al. Feb 2011 B2
7887521 Dacquey et al. Feb 2011 B2
7951155 Smedley et al. May 2011 B2
7953203 Gertner et al. May 2011 B2
7958840 Chappa Jun 2011 B2
7967772 McKenzie et al. Jun 2011 B2
7978819 Gertner et al. Jul 2011 B2
7985415 Giroux Jul 2011 B2
7997460 Pardes et al. Aug 2011 B2
8007459 Haffner et al. Aug 2011 B2
8012136 Collins, Jr. et al. Sep 2011 B2
8034016 Yaron et al. Oct 2011 B2
8034105 Stegmann et al. Oct 2011 B2
8059784 Gertner Nov 2011 B2
8060211 Greenberg et al. Nov 2011 B2
8062244 Tu et al. Nov 2011 B2
8071120 Wong Dec 2011 B2
8073105 Gertner et al. Dec 2011 B2
8075511 Tu et al. Dec 2011 B2
8118768 Tu et al. Feb 2012 B2
8142364 Haffner et al. Mar 2012 B2
8152752 Lynch et al. Apr 2012 B2
8235053 Sanchez et al. Aug 2012 B2
8241656 Chudzik et al. Aug 2012 B2
8267882 Euteneuer et al. Sep 2012 B2
8267995 Castillejos Sep 2012 B2
8273050 Bergheim et al. Sep 2012 B2
8273366 Chauhan et al. Sep 2012 B2
8277830 De Juan, Jr. et al. Oct 2012 B2
8282593 Dacey, Jr. et al. Oct 2012 B2
8298578 De Juan, Jr. et al. Oct 2012 B2
8333726 Rapaki et al. Dec 2012 B2
8333742 Bergheim et al. Dec 2012 B2
8337445 Tu et al. Dec 2012 B2
8343086 Dacey, Jr. et al. Jan 2013 B2
8348877 Tu et al. Jan 2013 B2
8366652 Dacey et al. Feb 2013 B2
8388568 Lynch et al. Mar 2013 B2
8404269 Snyder et al. Mar 2013 B2
8414517 Dacey, Jr. et al. Apr 2013 B2
8419673 Rickard Apr 2013 B2
8439972 Badawi et al. May 2013 B2
8452391 Roy May 2013 B2
8454582 deJuan et al. Jun 2013 B2
8486031 Bogdan Jul 2013 B2
8486052 Varner et al. Jul 2013 B2
8545431 Rickard Oct 2013 B2
8579846 Tu et al. Nov 2013 B2
8579848 Field et al. Nov 2013 B2
8585631 Dacquay Nov 2013 B2
8585664 Dos Santos et al. Nov 2013 B2
8603024 Bohm et al. Dec 2013 B2
8617094 Smedley et al. Dec 2013 B2
8642066 Abe et al. Feb 2014 B2
8656958 Unger et al. Feb 2014 B2
8657804 Home et al. Feb 2014 B2
8721580 Rickard et al. May 2014 B2
8753305 Field et al. Jun 2014 B2
8771217 Lynch et al. Jul 2014 B2
8771220 Nissan Jul 2014 B2
8801648 Bergheim et al. Aug 2014 B2
8808219 Bergheim et al. Aug 2014 B2
8808224 Rickard Aug 2014 B2
8814820 Bergheim et al. Aug 2014 B2
8840578 Dos Santos et al. Sep 2014 B2
8864701 Dos Santos et al. Oct 2014 B2
8882781 Smedley et al. Nov 2014 B2
8956320 Ovchinnikov et al. Feb 2015 B2
8986240 Dos Santos et al. Mar 2015 B2
8998838 Yalamanchili Apr 2015 B2
9066782 Tu et al. Jun 2015 B2
9072588 Bohm et al. Jul 2015 B2
9125721 Field Sep 2015 B2
9132034 Dos Santos Sep 2015 B2
9155653 Field Oct 2015 B2
9155654 Tu et al. Oct 2015 B2
9173775 Haffner et al. Nov 2015 B2
9220632 Smedley et al. Dec 2015 B2
9226851 Gunn Jan 2016 B2
9283115 Lind et al. Mar 2016 B2
9289324 Johnson et al. Mar 2016 B2
9301875 Tu et al. Apr 2016 B2
9492320 Lynch et al. Nov 2016 B2
9554940 Haffner et al. Jan 2017 B2
9561131 Tu et al. Feb 2017 B2
9572963 Tu et al. Feb 2017 B2
9597230 Haffner et al. Mar 2017 B2
9603738 Haffner et al. Mar 2017 B2
9603741 Berlin Mar 2017 B2
9827143 Lynch Nov 2017 B2
9833357 Berlin Dec 2017 B2
9987472 Tu et al. Jun 2018 B2
9993368 Bergheim et al. Jun 2018 B2
20010000527 Yaron et al. Apr 2001 A1
20010053873 Schaaf et al. Dec 2001 A1
20020013546 Grieshaber et al. Jan 2002 A1
20020013572 Berlin Jan 2002 A1
20020026200 Savage Feb 2002 A1
20020082591 Haefliger Jun 2002 A1
20020087111 Ethier et al. Jul 2002 A1
20020099434 Buscemi et al. Jul 2002 A1
20020102307 Guo et al. Aug 2002 A1
20020106395 Brubaker Aug 2002 A1
20020110591 Brubaker et al. Aug 2002 A1
20020110592 Brubaker et al. Aug 2002 A1
20020110635 Brubaker et al. Aug 2002 A1
20020111601 Thompson Aug 2002 A1
20020111603 Cheikh Aug 2002 A1
20020127250 Guo et al. Sep 2002 A1
20020128704 Daum et al. Sep 2002 A1
20020133168 Smedley et al. Sep 2002 A1
20020143284 Tu et al. Oct 2002 A1
20020156413 Williams et al. Oct 2002 A1
20020169468 Brown Nov 2002 A1
20020176844 Ng et al. Nov 2002 A1
20020177856 Richter et al. Nov 2002 A1
20020182185 Wong Dec 2002 A1
20020188282 Greenberg Dec 2002 A1
20020193725 Odrich Dec 2002 A1
20020197298 Yaacobi Dec 2002 A1
20030003129 Yaacobi Jan 2003 A1
20030004209 Hunter et al. Jan 2003 A1
20030010638 Hansard et al. Jan 2003 A1
20030018295 Henley et al. Jan 2003 A1
20030019833 Unger et al. Jan 2003 A1
20030021828 Guo et al. Jan 2003 A1
20030055372 Lynch et al. Mar 2003 A1
20030060752 Bergheim et al. Mar 2003 A1
20030060873 Gertner et al. Mar 2003 A1
20030064088 Carvalho et al. Apr 2003 A1
20030079329 Yaron et al. May 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030095995 Wong et al. May 2003 A1
20030097117 Buono May 2003 A1
20030097151 Smedley et al. May 2003 A1
20030108588 Chen et al. Jun 2003 A1
20030119000 Polansky Jun 2003 A1
20030135149 Cullen et al. Jul 2003 A1
20030139729 Stegmann et al. Jul 2003 A1
20030139784 Morimoto et al. Jul 2003 A1
20030143274 Viegas et al. Jul 2003 A1
20030153863 Patel Aug 2003 A1
20030175324 Robinson et al. Sep 2003 A1
20030181848 Bergheim et al. Sep 2003 A1
20030187384 Bergheim et al. Oct 2003 A1
20030195438 Petillo Oct 2003 A1
20030203003 Nelson et al. Oct 2003 A1
20030208163 Yaron et al. Nov 2003 A1
20030211071 Bologna et al. Nov 2003 A1
20030212383 Cote et al. Nov 2003 A1
20030229303 Haffner et al. Dec 2003 A1
20030236483 Ren Dec 2003 A1
20030236484 Lynch et al. Dec 2003 A1
20040013702 Glover Jan 2004 A1
20040018238 Shukla Jan 2004 A1
20040022853 Ashton et al. Feb 2004 A1
20040024345 Gharib et al. Feb 2004 A1
20040057979 Wong et al. Mar 2004 A1
20040059248 Messner et al. Mar 2004 A1
20040076676 Tojo et al. Apr 2004 A1
20040082939 Berlin Apr 2004 A1
20040088048 Richter et al. May 2004 A1
20040092548 Embleton et al. May 2004 A1
20040092856 Dahan May 2004 A1
20040092911 Yaacobi May 2004 A1
20040102729 Haffner et al. May 2004 A1
20040111050 Smedley et al. Jun 2004 A1
20040111080 Harper et al. Jun 2004 A1
20040115268 Ashton et al. Jun 2004 A1
20040127843 Tu et al. Jul 2004 A1
20040131654 Yaacobi Jul 2004 A1
20040131655 Yaacobi Jul 2004 A1
20040137059 Nivaggioli et al. Jul 2004 A1
20040147870 Burns et al. Jul 2004 A1
20040151714 Soil Aug 2004 A1
20040162545 Brown et al. Aug 2004 A1
20040175410 Ashton et al. Sep 2004 A1
20040176341 Chou et al. Sep 2004 A1
20040176737 Henley et al. Sep 2004 A1
20040180075 Robinson et al. Sep 2004 A1
20040186533 Greenberg et al. Sep 2004 A1
20040186534 Shadduck Sep 2004 A1
20040193095 Shadduck Sep 2004 A1
20040193262 Shadduck Sep 2004 A1
20040208909 Brubaker et al. Oct 2004 A1
20040210181 Vass et al. Oct 2004 A1
20040210185 Tu et al. Oct 2004 A1
20040215126 Ahmed Oct 2004 A1
20040219181 Viscasillas Nov 2004 A1
20040220537 Embleton et al. Nov 2004 A1
20040249404 Haefliger Dec 2004 A1
20040254519 Tu et al. Dec 2004 A1
20040254520 Porteous et al. Dec 2004 A1
20040254521 Simon Dec 2004 A1
20040260227 Lisk, Jr. et al. Dec 2004 A1
20050008673 Snyder et al. Jan 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050042293 Jackson et al. Feb 2005 A1
20050049578 Tu et al. Mar 2005 A1
20050055075 Pinchuk et al. Mar 2005 A1
20050064010 Cooper et al. Mar 2005 A1
20050069893 Flammer et al. Mar 2005 A1
20050112175 Yaacobi May 2005 A1
20050119601 Lynch et al. Jun 2005 A9
20050119737 Bene et al. Jun 2005 A1
20050125003 Pinchuk et al. Jun 2005 A1
20050137538 Kunzler et al. Jun 2005 A1
20050165368 Py et al. Jul 2005 A1
20050171507 Christian et al. Aug 2005 A1
20050175708 Carrasquillo et al. Aug 2005 A1
20050181018 Peyman Aug 2005 A1
20050182350 Nigam Aug 2005 A1
20050184004 Rodgers et al. Aug 2005 A1
20050186245 Hunter et al. Aug 2005 A1
20050186279 Guo et al. Aug 2005 A1
20050192527 Gharib et al. Sep 2005 A1
20050208102 Schultz Sep 2005 A1
20050209549 Bergheim et al. Sep 2005 A1
20050232972 Odrich Oct 2005 A1
20050240143 Dohlman Oct 2005 A1
20050244461 Nivaggioli et al. Nov 2005 A1
20050244464 Hughes Nov 2005 A1
20050244465 Nivaggioli et al. Nov 2005 A1
20050244467 Nivaggioli et al. Nov 2005 A1
20050244470 Hughes et al. Nov 2005 A1
20050244475 Edelman et al. Nov 2005 A1
20050244477 Hughes et al. Nov 2005 A1
20050244500 Whitcup et al. Nov 2005 A1
20050244506 Burke et al. Nov 2005 A1
20050249710 Wong Nov 2005 A1
20050250788 Tu et al. Nov 2005 A1
20050261624 Wilcox Nov 2005 A1
20050261641 Warchol et al. Nov 2005 A1
20050267397 Bhalla Dec 2005 A1
20050267398 Protopsaltis et al. Dec 2005 A1
20050273033 Grahn et al. Dec 2005 A1
20050276841 Davis et al. Dec 2005 A1
20050277864 Haffner et al. Dec 2005 A1
20050281861 Hughes et al. Dec 2005 A1
20050287188 Anderson et al. Dec 2005 A1
20050288619 Savage Dec 2005 A1
20060009498 Whitcup Jan 2006 A1
20060020248 Prescott Jan 2006 A1
20060021623 Varner et al. Feb 2006 A1
20060024350 Miller et al. Feb 2006 A1
20060032507 Tu Feb 2006 A1
20060034929 Brubaker Feb 2006 A1
20060036207 Koonmen et al. Feb 2006 A1
20060039952 Yaacobi Feb 2006 A1
20060039979 Yamada et al. Feb 2006 A1
20060062826 Brubaker et al. Mar 2006 A1
20060079828 Brown Apr 2006 A1
20060083772 DeWitt et al. Apr 2006 A1
20060084907 Bergheim et al. Apr 2006 A1
20060084952 Pallikaris et al. Apr 2006 A1
20060089590 Powell et al. Apr 2006 A1
20060100408 Higuchi et al. May 2006 A1
20060110429 Reiff et al. May 2006 A1
20060116626 Smedley et al. Jun 2006 A1
20060129129 Smith Jun 2006 A1
20060136022 Wong, Jr. et al. Jun 2006 A1
20060155300 Stamper et al. Jul 2006 A1
20060167435 Adamis et al. Jul 2006 A1
20060173397 Tu et al. Aug 2006 A1
20060195055 Bergheim et al. Aug 2006 A1
20060195056 Bergheim et al. Aug 2006 A1
20060200097 Humayun et al. Sep 2006 A1
20060200113 Haffner et al. Sep 2006 A1
20060210604 Dadey et al. Sep 2006 A1
20060216329 Peyman Sep 2006 A1
20060235367 Takashima et al. Oct 2006 A1
20060241749 Tu et al. Oct 2006 A1
20060246112 Snyder et al. Nov 2006 A1
20060246145 Chang et al. Nov 2006 A1
20060253151 Nun Nov 2006 A1
20060257450 Mudumba et al. Nov 2006 A1
20060257451 Varner et al. Nov 2006 A1
20060258994 Avery Nov 2006 A1
20060264453 Mudumba et al. Nov 2006 A1
20060270968 Greenberg et al. Nov 2006 A1
20060276739 Brown Dec 2006 A1
20060292222 Jonasse Dec 2006 A1
20070004998 Rodgers et al. Jan 2007 A1
20070021653 Hattenbach et al. Jan 2007 A1
20070026037 Kloke et al. Feb 2007 A1
20070026048 Greeberg Feb 2007 A1
20070031472 Huang et al. Feb 2007 A1
20070031473 Peyman Feb 2007 A1
20070032734 Najafi et al. Feb 2007 A1
20070038174 Hopkins Feb 2007 A1
20070059336 Hughes et al. Mar 2007 A1
20070073390 Lee Mar 2007 A1
20070078371 Brown et al. Apr 2007 A1
20070088014 Edelman et al. Apr 2007 A1
20070088432 Solovay et al. Apr 2007 A1
20070092570 Missel et al. Apr 2007 A1
20070093740 Shetty Apr 2007 A1
20070106199 Krivoy et al. May 2007 A1
20070106200 Levy May 2007 A1
20070112318 Leahy et al. May 2007 A1
20070118065 Pinchuk et al. May 2007 A1
20070118066 Pinchuk et al. May 2007 A1
20070123812 Pinchuk et al. May 2007 A1
20070154621 Raad Jul 2007 A1
20070156079 Brown Jul 2007 A1
20070179426 Selden Aug 2007 A1
20070185468 Prywes Aug 2007 A1
20070190111 Robinson et al. Aug 2007 A1
20070197957 Hunter et al. Aug 2007 A1
20070202186 Yamamoto et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070212386 Patravale et al. Sep 2007 A1
20070212387 Patravale et al. Sep 2007 A1
20070212388 Patravale et al. Sep 2007 A1
20070212393 Patravale et al. Sep 2007 A1
20070212395 Donello et al. Sep 2007 A1
20070212397 Roth Sep 2007 A1
20070219632 Castillejos Sep 2007 A1
20070233037 Gifford, III et al. Oct 2007 A1
20070244442 Chowhan Oct 2007 A1
20070249984 Molteno Oct 2007 A1
20070260201 Prausnitz et al. Nov 2007 A1
20070260203 Donello et al. Nov 2007 A1
20070268340 Dacquay et al. Nov 2007 A1
20070269487 de Juan et al. Nov 2007 A1
20070270744 Dacquay et al. Nov 2007 A1
20070270748 Dacquay et al. Nov 2007 A1
20070270768 Dacquay et al. Nov 2007 A1
20070270777 Dacquay et al. Nov 2007 A1
20070276315 Haffner Nov 2007 A1
20070282244 Tu et al. Dec 2007 A1
20070282245 Tu et al. Dec 2007 A1
20070292470 Thornton Dec 2007 A1
20070292474 Hsu et al. Dec 2007 A1
20070292596 Chappa et al. Dec 2007 A1
20070293807 Lynch et al. Dec 2007 A1
20070293820 Dacquay et al. Dec 2007 A1
20070293872 Peyman Dec 2007 A1
20070293873 Chang Dec 2007 A1
20070298068 Badawi et al. Dec 2007 A1
20070298073 Whitcup et al. Dec 2007 A1
20070298074 Robinson et al. Dec 2007 A1
20070299516 Cul et al. Dec 2007 A1
20080038316 Wong, Jr. et al. Feb 2008 A1
20080039769 Peyman Feb 2008 A1
20080039792 Meng et al. Feb 2008 A1
20080039931 Jelle et al. Feb 2008 A1
20080045878 Bergheim et al. Feb 2008 A1
20080045911 Borgia et al. Feb 2008 A1
20080051680 Luebcke Feb 2008 A1
20080057101 Roorda Mar 2008 A1
20080057102 Roorda Mar 2008 A1
20080057103 Roorda Mar 2008 A1
20080057123 Grenier et al. Mar 2008 A1
20080058793 Pilla et al. Mar 2008 A1
20080063687 Chou et al. Mar 2008 A1
20080063898 Lally et al. Mar 2008 A1
20080071252 Santini, Jr. et al. Mar 2008 A1
20080075753 Chappa Mar 2008 A1
20080081064 Jelle et al. Apr 2008 A1
20080082078 Berlin Apr 2008 A1
20080086101 Freilich Apr 2008 A1
20080089923 Burkstrand et al. Apr 2008 A1
20080095822 Maquet et al. Apr 2008 A1
20080097379 Daquay et al. Apr 2008 A1
20080097390 Daquay et al. Apr 2008 A1
20080107694 Trogden et al. May 2008 A1
20080108932 Rodgers May 2008 A1
20080108934 Berlin May 2008 A1
20080112923 Hughes et al. May 2008 A1
20080113031 Moodley et al. May 2008 A1
20080114076 Asgharian et al. May 2008 A1
20080125691 Yaron et al. May 2008 A1
20080125712 Dacquay et al. May 2008 A1
20080131372 Huang et al. Jun 2008 A1
20080131481 Hughes Jun 2008 A1
20080131482 Hughes Jun 2008 A1
20080131484 Robinson et al. Jun 2008 A1
20080131486 Huang et al. Jun 2008 A1
20080138382 Huang et al. Jun 2008 A1
20080138408 Venkatesh et al. Jun 2008 A1
20080140024 Yaacobi Jun 2008 A1
20080145405 Kunzler et al. Jun 2008 A1
20080145406 Asgharian et al. Jun 2008 A1
20080147021 Jani Jun 2008 A1
20080152694 Lobl et al. Jun 2008 A1
20080231485 Huang et al. Jun 2008 A1
20080161741 Bone et al. Jul 2008 A1
20080161907 Chen et al. Jul 2008 A1
20080167600 Peyman Jul 2008 A1
20080172014 Whitcup et al. Jul 2008 A1
20080177153 Bachman et al. Jul 2008 A1
20080177220 Lindgren et al. Jul 2008 A1
20080181928 Hokimi-Mehr et al. Jul 2008 A1
20080181929 Robinson et al. Jul 2008 A1
20080183123 Behar-Cohen et al. Jul 2008 A1
20080200860 Tu et al. Aug 2008 A1
20080208334 Jinkerson et al. Aug 2008 A1
20080210322 Unger et al. Sep 2008 A1
20080221501 Cote et al. Sep 2008 A1
20080233171 Whitcup et al. Sep 2008 A1
20080233172 Whitcup et al. Sep 2008 A1
20080233173 Whitcup et al. Sep 2008 A1
20080236669 Unger et al. Oct 2008 A1
20080241222 Whitcup et al. Oct 2008 A1
20080241223 Nivaggio et al. Oct 2008 A1
20080243243 Williams et al. Oct 2008 A1
20080243247 Poley et al. Oct 2008 A1
20080260803 Hughes et al. Oct 2008 A1
20080277007 Unger et al. Nov 2008 A1
20080286336 Shiah et al. Nov 2008 A1
20080286338 Rosenthal et al. Nov 2008 A1
20080289710 Unger et al. Nov 2008 A1
20080292679 Lyons et al. Nov 2008 A1
20080306429 Shields et al. Dec 2008 A1
20080318843 Schultz et al. Dec 2008 A1
20090003525 Gertner et al. Jan 2009 A1
20090036768 Seehusen et al. Feb 2009 A1
20090036818 Grahn et al. Feb 2009 A1
20090043250 Gonnelli Feb 2009 A1
20090043321 Conston et al. Feb 2009 A1
20090047256 Bettinger et al. Feb 2009 A1
20090060981 Chauhan Mar 2009 A1
20090074786 Dor et al. Mar 2009 A1
20090076436 Gharib et al. Mar 2009 A2
20090082321 Edelman et al. Mar 2009 A1
20090082860 Schieber et al. Mar 2009 A1
20090082862 Schieber et al. Mar 2009 A1
20090082863 Schieber et al. Mar 2009 A1
20090092654 de Juan, Jr. et al. Apr 2009 A1
20090093780 Tuitupou et al. Apr 2009 A1
20090118702 Lazar May 2009 A1
20090123515 Taylor et al. May 2009 A1
20090123546 Ashton et al. May 2009 A1
20090132040 Frion et al. May 2009 A1
20090137992 Mallakrishnan May 2009 A1
20090138081 Bergheim et al. May 2009 A1
20090142413 Allen et al. Jun 2009 A1
20090143752 Higuchi et al. Jun 2009 A1
20090148498 Libin et al. Jun 2009 A1
20090149947 Frohwitter Jun 2009 A1
20090151422 Unger et al. Jun 2009 A1
20090155338 Conway et al. Jun 2009 A1
20090157087 Wei et al. Jun 2009 A1
20090162417 Eellis Jun 2009 A1
20090177138 Brown et al. Jul 2009 A1
20090177182 Hickingbotham et al. Jul 2009 A1
20090196903 Kilman Aug 2009 A1
20090204053 Nissan et al. Aug 2009 A1
20090209945 Lobl et al. Aug 2009 A1
20090214619 Reiff et al. Aug 2009 A1
20090220572 Deschatelets et al. Sep 2009 A1
20090220573 Kaufman Sep 2009 A1
20090227933 Karageozian Sep 2009 A1
20090227934 Eutenever et al. Sep 2009 A1
20090240215 Humayun et al. Sep 2009 A1
20090246252 Arps et al. Oct 2009 A1
20090264861 Jain et al. Oct 2009 A1
20090270308 Libin et al. Oct 2009 A1
20090274877 Chan et al. Nov 2009 A1
20090275924 Lattanzio et al. Nov 2009 A1
20090280155 Chappa et al. Nov 2009 A1
20090280158 Butuner Nov 2009 A1
20090286773 Spada et al. Nov 2009 A1
20090287136 Castillejos Nov 2009 A1
20090287274 De Rodder Nov 2009 A1
20090306585 Pang et al. Dec 2009 A1
20090306595 Shih et al. Dec 2009 A1
20090306608 Li et al. Dec 2009 A1
20090312742 Pang et al. Dec 2009 A1
20090326432 Schmidt et al. Dec 2009 A1
20100004581 Brigatti et al. Jan 2010 A1
20100004635 Lin et al. Jan 2010 A1
20100004639 Pang et al. Jan 2010 A1
20100015195 Jain et al. Jan 2010 A1
20100025613 Tai et al. Feb 2010 A1
20100030136 Dacquay et al. Feb 2010 A1
20100040670 Odrich et al. Feb 2010 A1
20100042209 Guarnieri Feb 2010 A1
20100056977 Wandel Mar 2010 A1
20100056979 Smedley et al. Mar 2010 A1
20100057003 Dos Santos Mar 2010 A1
20100057055 Camras et al. Mar 2010 A1
20100068141 Kaushal et al. Mar 2010 A1
20100069842 Dos Santos et al. Mar 2010 A1
20100087774 Haffner et al. Apr 2010 A1
20100092536 Hunter et al. Apr 2010 A1
20100100054 Cormier et al. Apr 2010 A1
20100106073 Haffner et al. Apr 2010 A1
20100114006 Baerveldt May 2010 A1
20100114039 Gazzini May 2010 A1
20100114309 Peyman May 2010 A1
20100119519 Peyman May 2010 A1
20100119580 Guo et al. May 2010 A1
20100119694 Guo et al. May 2010 A1
20100121342 Schieber et al. May 2010 A1
20100124565 Spada et al. May 2010 A1
20100125237 Schocket May 2010 A1
20100129424 Byrne et al. May 2010 A9
20100137780 Singh et al. Jun 2010 A1
20100145180 Abreu Jun 2010 A1
20100152676 Clements Jun 2010 A1
20100152699 Ferrari et al. Jun 2010 A1
20100158980 Kopczynski et al. Jun 2010 A1
20100160870 Clements et al. Jun 2010 A1
20100168644 Brown Jul 2010 A1
20100175767 Unger et al. Jul 2010 A1
20100185138 Yaron et al. Jul 2010 A1
20100189765 Erickson et al. Jul 2010 A1
20100189817 Kruger et al. Jul 2010 A1
20100191103 Stamper et al. Jul 2010 A1
20100191329 Badawi et al. Jul 2010 A1
20100203155 Wei et al. Aug 2010 A1
20100204699 Wei et al. Aug 2010 A1
20100211044 Dacquay et al. Aug 2010 A1
20100222733 Schieber et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100225061 Bath Sep 2010 A1
20100233241 Leahy et al. Sep 2010 A1
20100234791 Lynch et al. Sep 2010 A1
20100234817 Nazzaro et al. Sep 2010 A1
20100239635 McClain et al. Sep 2010 A1
20100239637 Ciolino et al. Sep 2010 A1
20100241046 Pinchuk et al. Sep 2010 A1
20100241055 Dacey, Jr. et al. Sep 2010 A1
20100247606 Robinson et al. Sep 2010 A1
20100249691 Van der Mooren et al. Sep 2010 A1
20100249692 Dacey, Jr. et al. Sep 2010 A1
20100255061 De Juan, Jr. et al. Oct 2010 A1
20100256578 Lust et al. Oct 2010 A1
20100256597 Prausnitz et al. Oct 2010 A1
20100261646 Lavik et al. Oct 2010 A1
20100266664 Asgharian et al. Oct 2010 A1
20100274224 Jain et al. Oct 2010 A1
20100274258 Silvestrini et al. Oct 2010 A1
20100274259 Yaron et al. Oct 2010 A1
20100278898 Hughes et al. Nov 2010 A1
20100318034 Goncalves Dec 2010 A1
20100331796 Leahy et al. Dec 2010 A1
20110009058 Ha et al. Jan 2011 A1
20110009874 Wardle et al. Jan 2011 A1
20110022007 Li et al. Jan 2011 A1
20110046536 Stegmann et al. Feb 2011 A1
20110046728 Shareef et al. Feb 2011 A1
20110053905 Guo et al. Mar 2011 A1
20110066098 Stergiopulos Mar 2011 A1
20110071454 Dos Santos et al. Mar 2011 A1
20110071456 Rickard Mar 2011 A1
20110071458 Rickard Mar 2011 A1
20110071459 Rickard et al. Mar 2011 A1
20110071505 Rickard et al. Mar 2011 A1
20110076318 Hughes et al. Mar 2011 A1
20110091520 Huang et al. Apr 2011 A1
20110092878 Tu et al. Apr 2011 A1
20110098627 Wilcox Apr 2011 A1
20110098632 Behar-Cohen et al. Apr 2011 A1
20110098640 Horne et al. Apr 2011 A1
20110098809 Wardle et al. Apr 2011 A1
20110104155 Rekik May 2011 A1
20110105987 Bergheim et al. May 2011 A1
20110112352 Pilla et al. May 2011 A1
20110112470 Lingenfeider et al. May 2011 A1
20110118649 Stegmann et al. May 2011 A1
20110118835 Silvestrini et al. May 2011 A1
20110125090 Peyman May 2011 A1
20110129516 Jacob et al. Jun 2011 A1
20110129541 Chen et al. Jun 2011 A1
20110130831 Badawi et al. Jun 2011 A1
20110144559 Lafdi et al. Jun 2011 A1
20110152767 Pinedjian Jun 2011 A1
20110166500 Roy Jul 2011 A1
20110172528 Gertner Jul 2011 A1
20110172587 Santini, Jr. et al. Jul 2011 A1
20110182966 Robinson et al. Jul 2011 A1
20110196487 Badawi et al. Aug 2011 A1
20110202020 Lazar Aug 2011 A1
20110207987 DiCarlo et al. Aug 2011 A1
20110224597 Stegmann et al. Sep 2011 A1
20110238036 Ashton Sep 2011 A1
20110238075 Clauson et al. Sep 2011 A1
20110244010 Doshi Oct 2011 A1
20110244014 Williams et al. Oct 2011 A1
20110245753 Sunalp Oct 2011 A1
20110248671 Dos Santos et al. Oct 2011 A1
20110257623 Marshall et al. Oct 2011 A1
20110288396 Iyengar et al. Nov 2011 A1
20110319806 Wardle Dec 2011 A1
20120010702 Stegmann et al. Jan 2012 A1
20120022424 Yamamoto et al. Jan 2012 A1
20120022505 Dacquay et al. Jan 2012 A1
20120035146 Wong et al. Feb 2012 A1
20120035524 Silvestrini Feb 2012 A1
20120059349 Kuo et al. Mar 2012 A1
20120059461 Badawi et al. Mar 2012 A1
20120071809 Tu et al. Mar 2012 A1
20120078158 Haffner et al. Mar 2012 A1
20120078224 Lerner et al. Mar 2012 A1
20120078362 Haffner et al. Mar 2012 A1
20120083765 LaBelle Apr 2012 A1
20120089072 Cunningham, Jr. Apr 2012 A1
20120089073 Cunningham, Jr. Apr 2012 A1
20120089113 Ambati et al. Apr 2012 A1
20120100187 Chappa et al. Apr 2012 A1
20120107371 Zion et al. May 2012 A1
20120109040 Smedley et al. May 2012 A1
20120130467 Selden et al. May 2012 A1
20120136322 Alster et al. May 2012 A1
20120157487 Yuan et al. Jun 2012 A1
20120165933 Haffner et al. Jun 2012 A1
20120177717 Abe et al. Jul 2012 A1
20120179087 Schieber et al. Jul 2012 A1
20120179122 Eilat et al. Jul 2012 A1
20120184892 Bigler et al. Jul 2012 A1
20120203160 Kahook et al. Aug 2012 A1
20120238994 Nazzaro et al. Sep 2012 A1
20120245505 Robinson et al. Sep 2012 A1
20120253300 Kaufman Oct 2012 A1
20120259195 Haffner et al. Oct 2012 A1
20120265149 Lerner et al. Oct 2012 A1
20120277733 Pang et al. Nov 2012 A1
20120289883 Meng et al. Nov 2012 A1
20120302861 Marshall et al. Nov 2012 A1
20120310072 Grieshaber Dec 2012 A1
20120321719 McDonnell et al. Dec 2012 A1
20120323159 Wardle et al. Dec 2012 A1
20130004651 Fu-Giles Jan 2013 A1
20130006164 Yaron et al. Jan 2013 A1
20130006165 Eutenener et al. Jan 2013 A1
20130017244 Huang et al. Jan 2013 A1
20130017262 Mullen et al. Jan 2013 A1
20130018295 Haffner et al. Jan 2013 A1
20130018296 Bergheim et al. Jan 2013 A1
20130018360 Dockendorf et al. Jan 2013 A1
20130023838 Leahy et al. Jan 2013 A1
20130053794 Cadden et al. Feb 2013 A1
20130060227 Singh et al. Mar 2013 A1
20130062809 Ellis Mar 2013 A1
20130071349 Robinson et al. Mar 2013 A1
20130071462 Jarrett et al. Mar 2013 A1
20130079701 Schieber et al. Mar 2013 A1
20130090534 Burns et al. Apr 2013 A1
20130090612 De Juan, Jr. et al. Apr 2013 A1
20130102949 Baerveldt Apr 2013 A1
20130116523 Jung et al. May 2013 A1
20130142858 Kopczynski et al. Jun 2013 A1
20130144128 De Juan, Jr. et al. Jun 2013 A1
20130144202 Field et al. Jun 2013 A1
20130150770 Horvath et al. Jun 2013 A1
20130150773 Nissan et al. Jun 2013 A1
20130150774 Field et al. Jun 2013 A1
20130150776 Bohm et al. Jun 2013 A1
20130150777 Bohm et al. Jun 2013 A1
20130150779 Field Jun 2013 A1
20130150959 Shieber et al. Jun 2013 A1
20130156840 Basinger et al. Jun 2013 A1
20130158381 Rickard Jun 2013 A1
20130158462 Wardle et al. Jun 2013 A1
20130158561 Bhagat Jun 2013 A1
20130165840 Orge Jun 2013 A1
20130172804 Schieber et al. Jul 2013 A1
20130184631 Pinchuk Jul 2013 A1
20130245532 Tu et al. Sep 2013 A1
20130253404 Tu Sep 2013 A1
20130253405 Tu Sep 2013 A1
20130253528 Haffner et al. Sep 2013 A1
20130281910 Tu et al. Oct 2013 A1
20130289467 Haffner et al. Oct 2013 A1
20140034607 Meng et al. Feb 2014 A1
20140035184 Nivaggioli et al. Feb 2014 A1
20140037746 Ashton et al. Feb 2014 A1
20140039456 Lerner Feb 2014 A1
20140046437 Renke Feb 2014 A1
20140052046 Peartree et al. Feb 2014 A1
20140135712 Horne et al. May 2014 A1
20140234389 Shiah et al. Aug 2014 A1
20140276332 Crimaldi et al. Sep 2014 A1
20140294986 Liu et al. Oct 2014 A1
20140303544 Haffner et al. Oct 2014 A1
20150118279 Ghebremeskel et al. Apr 2015 A1
20150223981 Smedley et al. Aug 2015 A1
20150342875 Haffner Dec 2015 A1
20150374546 Hill Dec 2015 A1
20160354245 Horvath et al. Aug 2016 A1
20160354309 Heitzman et al. Dec 2016 A1
20170135857 Hafner et al. May 2017 A1
20170273829 Tu et al. Sep 2017 A1
20170281409 Haffner et al. Oct 2017 A1
20180021170 Haffner et al. Jan 2018 A1
20180028361 Haffner et al. Feb 2018 A1
20180036172 Haffner et al. Feb 2018 A1
20180104102 Lynch et al. Apr 2018 A1
20180177633 Haffner et al. Jun 2018 A1
20180193189 Haffner et al. Jul 2018 A9
20180280194 Heitzmann et al. Oct 2018 A1
20180303665 Heitzmann et al. Oct 2018 A1
20180303752 Haffner Oct 2018 A1
20180325732 Burns et al. Nov 2018 A1
Foreign Referenced Citations (133)
Number Date Country
199876197 Feb 1999 AU
200072059 Jul 2001 AU
2004264913 Dec 2011 AU
2009251058 Dec 2013 AU
2244646 Feb 1999 CA
2442652 Jan 2011 CA
2683224 Dec 2014 CA
92111244 Jul 1993 CH
101396335 Apr 2009 CN
19840047 Mar 2000 DE
10127666 Jan 2003 DE
0387155 Sep 1990 EP
0613383 Aug 1997 EP
0858788 Aug 1998 EP
1100462 May 2001 EP
1296645 Apr 2003 EP
1339438 Sep 2003 EP
1420716 May 2004 EP
1477187 Nov 2004 EP
1534363 Jun 2005 EP
1550471 Jul 2005 EP
1621219 Feb 2006 EP
1637126 Mar 2006 EP
1977724 Oct 2008 EP
2260803 Dec 2010 EP
2260804 Dec 2010 EP
2263621 Dec 2010 EP
2351589 Aug 2011 EP
2982354 Feb 2016 EP
2985012 Feb 2016 EP
2902018 Nov 2016 EP
2048986 Apr 1994 ES
2553658 Apr 1985 FR
2710269 Mar 1995 FR
2721499 Dec 1995 FR
2757068 Jun 1998 FR
2296663 Jul 1996 GB
2003-520077 Jul 2003 JP
3703721 Jul 2005 JP
4031836 Jan 2008 JP
4688444 Feb 2011 JP
2012-198134 Sep 2012 JP
5255402 Apr 2013 JP
5323011 Jul 2013 JP
2013-208434 Oct 2013 JP
2014-193366 Oct 2014 JP
2014-240022 Dec 2014 JP
2022539 Nov 1994 RU
2143250 Dec 1999 RU
WO 8900869 Feb 1989 WO
WO 9118568 Dec 1991 WO
WO 9200112 Jan 1992 WO
WO 9402081 Feb 1994 WO
WO 9413234 Jun 1994 WO
WO 9508310 Mar 1995 WO
WO 95013765 May 1995 WO
WO 9620742 Jul 1996 WO
WO 96038174 Dec 1996 WO
WO 9823237 Jun 1998 WO
WO 1998030181 Jul 1998 WO
WO 9835639 Aug 1998 WO
WO 9837831 Sep 1998 WO
WO 9926567 Jun 1999 WO
WO 9930641 Jun 1999 WO
WO 9956637 Nov 1999 WO
WO 00007565 Feb 2000 WO
WO 0013627 Mar 2000 WO
WO 00037056 Jun 2000 WO
WO 0064390 Nov 2000 WO
WO 0064391 Nov 2000 WO
WO 0064393 Nov 2000 WO
WO 0067687 Nov 2000 WO
WO 0072788 Dec 2000 WO
WO 0141685 Jun 2001 WO
WO 0150943 Jul 2001 WO
WO 0178631 Oct 2001 WO
WO 2001080825 Nov 2001 WO
WO 0197727 Dec 2001 WO
WO 02002076 Jan 2002 WO
WO 0236052 May 2002 WO
WO 02043785 Jun 2002 WO
WO 02074052 Sep 2002 WO
WO 02080811 Oct 2002 WO
WO 02102274 Dec 2002 WO
WO 03015659 Feb 2003 WO
WO 03020172 Mar 2003 WO
WO 03041622 May 2003 WO
WO 03045290 Jun 2003 WO
WO 03073968 Sep 2003 WO
WO 04006890 Jan 2004 WO
WO 04066871 Aug 2004 WO
WO 2003061625 Sep 2004 WO
WO 2004073552 Sep 2004 WO
WO 04098565 Nov 2004 WO
WO 2004093761 Nov 2004 WO
WO 2005107664 Nov 2005 WO
WO 2005110362 Nov 2005 WO
WO 05117780 Dec 2005 WO
WO 06014434 Feb 2006 WO
WO 07084582 Jul 2007 WO
WO 07115259 Oct 2007 WO
WO 2007115259 Oct 2007 WO
WO 2008005873 Jan 2008 WO
WO 2008060359 May 2008 WO
WO 2008061043 May 2008 WO
WO 2008083118 Jul 2008 WO
WO 2008157614 Dec 2008 WO
WO 2009012406 Jan 2009 WO
WO 2009035562 Mar 2009 WO
WO 2009035571 Mar 2009 WO
WO 2009063222 May 2009 WO
WO 2009097468 Aug 2009 WO
WO 2009126569 Oct 2009 WO
WO 2009137085 Nov 2009 WO
WO 2009151543 Dec 2009 WO
WO 2010006053 Jan 2010 WO
WO 10065970 Jun 2010 WO
WO 2010078063 Jul 2010 WO
WO 2010093945 Aug 2010 WO
WO 2010135369 Nov 2010 WO
WO 10141729 Dec 2010 WO
WO 2011020633 Feb 2011 WO
WO 2011127064 Oct 2011 WO
WO 2012019136 Feb 2012 WO
WO 2012071476 May 2012 WO
WO 13022801 Feb 2013 WO
WO 2013119843 Aug 2013 WO
WO 13148275 Oct 2013 WO
WO 2014150292 Sep 2014 WO
WO 2015073571 May 2015 WO
WO 2016042163 Mar 2016 WO
WO 2017030917 Feb 2017 WO
WO 2017053885 Mar 2017 WO
Non-Patent Literature Citations (54)
Entry
US 7,524,280 B2, 04/2009, Connors et al. (withdrawn)
Alexander, L., et al., Disistronic Polioviruses as Expression Vectors for Foreign Genes. 1994. Aids Research and Human Retroviruses. vol. 10, Supplement 2, S57-S60.
Bucciarelli, Patrice D., Working Model is Next Step in Team's Long Journey to Commercial Product, Healthfirst, Business First of Louisville, Louisville.Bizjournals.Com, Feb. 27, 2004.
“Changing Perspectives in Glaucoma Management,” Innovations in Glaucoma 2010.
Emi, Kazayuki, et al., Hydrostatic Pressure of the Suprachoroidal Space, Investigative Ophthalmology & Visual Science, vol. 30, No. 2, Feb. 1989 (pp. 233-239).
Fine, Ben S., et al., “A Clinicopathologic Study of Four Cases of Primary Open-Angle Glaucoma Compared to Normal Eyes”, American Journal of Ophthalmology, vol. 91, No. 1, 1981, pp. 88-105.
Gimbel, H.V., et al., “Small incision trabeculotomy combined with phacoemulsificatin and intraocular lens implantation”, J Cataract Refract Surg, vol. 19:92-96 (Jan. 1993).
Hoskins, H. Dunbar, et al., Diagnosis and Therapy of the Glaucomas, Chapter 4: Aqueous Humor Outflow, 61 edition, pp. 41-66 (1989) (28 pages).
Johnson, et al., Schlemm's Canal Becomes Smaller After Successful Filtration Surgery, (reprinted) ARCM Ophthalmol/vol. 118, Sep. 2000 (www.archophthalmol.com) p. 1251-1256.
Jordon, et al., “A Novel Approach to Suprachoroidal Drainage for the Surgical Treatment of Intractable Glaucoma,” J Glaucoma 15(3): 200-205 (2006).
Kampik, Anselm Franz Grehn, Nutzen and Risiken Augenarzticher Therapie,Hauptreferate der XXXIII, Essener Fortbildung für Augenärzte, allegedly published Dec. 1998. (English translated version enclosed Benefits and Risks of Ophthalmological Therapy).
Katz, L. Jay, MD, A Call for Innovative Operations for Glaucoma, Arch Ophthalmology, Mar. 2000, vol. 118, pp. 412-413.
Klemm, A. Balazs, J. Draeger, R. Wiezorrek, Experimental use of space-retaining substances with extended duration: functional and morphological results, Graefe's Arch Clin Exp Ophthalmol (1995) 233:592-597.
Mermoud, A., et al., “Comparison of deep sclerectomy with collagen implant and trabeculectomy in open-angle glaucoma”, J. Cataracat Refract. Surg., vol. 25, No. 3, Mar. 1999, pp. 323-331 (abstract only).
Miyazaki, Akiko, et al., Postoperative Results of Combined Trabeculotomy, Phacoemulsification and Intraocular Lens Implantation With Self-Sealing Wound, Japanese Journal of Ophthalmic Surgery, 1997, pp. 537-542, vol. 10, No. 4.
Moses, Robert A., M.D.; Circumferential Flow in Schlemm's Canal; American Journal of Ophthalmology, Sep. 1979, vol. 88, No. 3, Part II, :pp. 585-591.
Rizq, et al., Intraocular Pressure Measurement at the Choroid Surface: A Feasibility Study with Implications for Implantable Microsystems, Br J Ophthalmol 2001; 85:868-871, Jul. 2001.
Schocket, Investigations of the Reasons for Success and Failure in the Anterior Shunt-to-the Encircling-Band Procedure in the Treatment of Refractory Glaucoma, Tr. Am. Ophth. Soc., 84:743 (1986).
Shields, M. Bruce, MD, A Study Guide for Glaucoma: Aqueous Humor Dynamics, Copyright 1982, pp. 6-43.
“Transcend Medical CyPass® System—Instructions for Use,” (Release date Apr. 29, 2013).
Tripathi, et al., “Functional Anatomy of the Anterior Chamber Angle”, Biomedical Foundation of Ophthalmology, vol. 1, Chapter 10,pp. 1-74; edited by Thomas Dune and Edward Jaeger, Revised Edition, 1983, —Harper & Row, Publishers.
Tun, et al., Assessment of Trabecular Meshwork Width Using Swept Source Optical Coherence Tomography, 251:6 Graefes Arch. Clin. Exp. Ophthalmol. 1587 (2013).
Wagner, Justin A., Edwards, Aurelie, and Schuman, Joel S., Characterization of Uveoscleral Outflow in Enucleated Porcine Eyes Perfused Under Constant Pressure, Invest Ophthalmol Vis Sci. Sep. 2004; 45(9): 3203-3206 (9 pages).
Webster's Third New International Dictionary of the English Language (Unabridged), definitions of “deploy” and “deployment”, p. 605 (2002) (4 pages).
Wilcox, Michael J. et al., “Hypothesis for Improving Accessory Filtration by Using Geometry”, J. Glaucoma, vol. 3, No. 3, pp. 244-247 (1994).
Wilcox, Michael J. et al. “Performance of a New, Low-volume, High-Surface Area Aqueous Shunt in Normal Rabbit Eyes”, J. Glaucoma, vol. 9, No. 1, pp. 74-82 (Feb. 2000).
Wilson, Ellen D., “Implants offer choices for glaucoma surgeons”, EW Glaucoma, Oct. 11, 1999, website “http://www.eyeorld.org/sep99/999p60.asp”.
European Exam Report, EPO App. No. 08 102 896.1, dated Nov. 4, 2010.
Communication from European Patent Office for European App. No. 08102896.1 (Jul. 2, 2012) (5 pages).
Appeal in European Application No. 08102896.1 dated Aug. 27, 2012.
International Search Report and Written Opinion in PCT/US2016/053570 dated Mar. 9, 2017.
International Preliminary Report on Patentability in PCT/US2016/053570 dated Mar. 27, 2018.
U.S. Appl. No. 13/490,346, filed Jun. 6, 2012, Heitzmann et al.
Bae, et al., “In vitro experiment of the pressure regulating valve for a glaucoma implant”, Journal of Micromechanics and Microengineering 13.5, 13:613-619, No. 5, Sep. 2003.
Cairns, J.E., “Trabeculectomy: Preliminary report of a new method”, Am. J. Ophthalmology, 66:673-79 (1968).
Chen, et al., “Trabeculetomy combined with implantation of sil-icon rubber slice for intractable glaucoma”, Eye Science, 18:95-98, vol. 2, Jun. 2002.
Fiore, P.M., et al., Use of neodymium: YAG laser to open an occluded molteno tube, Ophthalmic Surgery, May 1989; 20(5): 373-74.
Gothwal, et al., “Migration of seton into the anterior chamber”, Eye, 16:85-97, 2002.
Huang, Morgan C., et al., Intermediate-term Clinical Experience with the Ahmed Glaucoma Valve Implant, 127 Am. J. Ophthalmol. 27 (Jan. 1999).
Kershner, Robert, “Nonpenetrating trabulectomy with placement of a collagen drainage device”, J. Cataract Refract. Sug., 21:608-611 (1995).
Krupin, Theodore, et al., Filtering valve implant surgery for eyes with neovascular glaucoma, 89 Am. J. Ophthalmol. 338 (Mar. 1980).
Molteno, A.C.B., et al., Implants for draining neovascular glaucoma, 61 Br. J. Ophthalmol. 120 (1977).
Nguyen, Quang H., et al., Complications of Baerveldt Glaucoma Drainage Implants, 116 Arch. Ophthalmol. 571 (May 1998).
Refojo, “Current status of biomaterials in ophthalmology”, Survey of ophthalmology, 26:257-265, No. 5, 1982.
Saxena, Sandeep. “Clinical Ophthalmology”. 2011. pp. 245.
Scott, et al., “Use of glaucoma drainage devices in the management of glaucoma associated with aniridia”, American Journal of Ophthalmology, 135:155-159, No. 2, Feb. 1, 2003.
Spiegel, Detlev, “Benefits and Risks of Ophthalmological Treatment” Bucherei des Augenarztes | The Ophthalmologist's Library, vol. 139, Oct. 15, 1998.
Stefansson, J., “An Operation for Glaucoma”, American J. Ophthalmology, 8:681-693 (1925).
Tham, et al., “Incisional surgery for angle closure glaucoma”, Seminars in Ophthalmology, 17:92-99, No. 2, Jun. 2002.
Topouzis, Fotis, et al., Follow-up of the Original Cohort With the Ahmed Glaucoma Valve Implant, 128 Am. J. Ophthalmol. 198 (Aug. 1999).
Wilcox et al., Latest Research: Tear Biomarkers, Jun. 29, 2011, 5 pages.
Yan, et al., “Schlemm's Canal and Trabecular Meshworkin Eyes with Primary Open Angle Glaucoma: A Comparative Study Using High-Frequency”, Plos One, 15 pages, Jan. 4, 2016.
Search Report in European Application No. 10778286.4 dated Dec. 8, 2017.
International Search Report and Written Opinion in PCT/US2014/065283 dated Feb. 18, 2015.
Related Publications (1)
Number Date Country
20160100983 A1 Apr 2016 US
Provisional Applications (1)
Number Date Country
60281973 Apr 2001 US
Divisions (1)
Number Date Country
Parent 11083713 Mar 2005 US
Child 12246448 US
Continuations (3)
Number Date Country
Parent 13399760 Feb 2012 US
Child 14881100 US
Parent 12246448 Oct 2008 US
Child 13399760 US
Parent 10118578 Apr 2002 US
Child 11598542 US
Continuation in Parts (4)
Number Date Country
Parent 10634213 Aug 2003 US
Child 11083713 US
Parent 10118578 Apr 2002 US
Child 10634213 US
Parent 10667580 Sep 2003 US
Child 11083713 US
Parent 11598542 Nov 2006 US
Child 12246448 US