The present disclosure relates to a flat panel displays and, in particular, driving sequences for AMOLED displays with a pentile arrangement of pixels.
Flat panel displays have become larger and have been offered in new shapes. For example, aspect ratios of displays for mobile devices have increased from 16:9 to 21:9. In addition, refresh frequencies (i.e., frame rates) for these displays have increased. For example, frame rates of displays for mobile devices have increased from 60 Hertz (Hz) to 120 Hz. Both of these display trends correspond to an increase in power consumption by electrical circuitry driving the displays.
When the length of a display is increased, each column of the display includes additional pixels. All pixels in each column are controlled by signals carried by a column data line. When the length of the display is increased, these signals must have a higher switching frequency in order to control the additional pixels. In other words, to maintain (or increase) a frame rate, while increasing a length of the display, requires a high column line switching frequency (e.g., >100 kilohertz). In addition to the additional pixel circuits in a column signal line increasing the capacitance of the data lines, the increase of the switching frequency further linearly increases the dynamic power consumption in the driving circuitry. This power consumption trend for some example displays is shown in TABLE 1.
In a general aspect, a display device includes a plurality of subpixels of a first color, a plurality of subpixels of a second color, and a plurality of subpixels of a third color, a plurality of scan lines, and a plurality of column lines. The plurality of subpixels of the first, second, and third colors are arranged in an array, with the array having a plurality of rows and a plurality of columns, with rows of the array including subpixels arranged in a repeating pattern of subpixels of the first color, the second color, the third color, and the second color, and with alternating columns of the array including subpixels: (a) arranged in a repeating pattern of a subpixel of the first color and a subpixels of the third color, and (b) having only subpixels of the second color. Each subpixel in a column of the array is electrically connected to a same column line of the plurality of column lines, and each of the subpixels in a column is configured for receiving electronic scan signals from a scan line and from the column line connected to the subpixel, where the received signals control a light output from an emissive element of the subpixel. The display device includes one or more line drivers configured for providing the electronic scan signals, during a time period for rendering a frame on the display device, to subpixels in a first set of columns of subpixels first to subpixels of the first color and then to the subpixels of the third color and to subpixels in a second set of columns of subpixels first to subpixels of the third color and then to the subpixels of the first color.
Implementations can include one or more of the following features, alone or in any combination with each other.
For example, the one or more line drivers can include a first line driver configured to provide scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns, and a second line driver configured to provide scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns.
The display device can include a timing controller electrically coupled to the first and second line drivers, where the timing controller is configured for providing, during the time period for rendering a frame on the display device, a first start pulse signal to the first line driver, a second start pulse to the second line driver and a plurality of clock signals to both the first and second line drivers, and where the first line driver is configured for providing the scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided first start pulse signal and the plurality of clock signals, and where the second line driver is configured for providing scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided second start pulse signal and the plurality of clock signals.
The display device can include a timing controller electrically coupled to the first and second line drivers, where the timing controller is configured for providing, during a time period for rendering a frame on the display device, a common start pulse signal to the first line driver and to the second line driver, a plurality of first clock signals to the first line driver and a plurality of second clock signals to the second line driver, and where the first line driver is configured for providing the scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided common start pulse signal and the plurality of first clock signals, and where the second line driver is configured for providing scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided common start pulse signal and the plurality of second clock signals.
The display device can include a timing controller electrically coupled to the first and second line drivers, where the timing controller is configured for providing, during a time period for rendering a frame on the display device, a first start pulse signal to the first line driver, a plurality of first clock signals to the first line driver and a plurality of second clock signals to the second line driver, and where the first line driver is configured for providing the scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided first start pulse signal and the plurality of first clock signals and where the first line driver is configured for providing a second start pulse signal to the second line driver when first line driver has provided scan signals to all of the subpixels of the first color in the first set of columns and all of the subpixels of the third color in the second set of columns, and where the second line driver is configured for providing scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided second start pulse signal and the plurality of second clock signals.
The first line driver can be configured for providing scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns a sequential order, on each column, from a top of the display device to a bottom of the display device, and the second line driver can be configured for providing scan signals subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns a sequential order, on each column, from a bottom of the display device to a top of the display device.
The display device can include a timing controller electrically coupled to the first and second line drivers, where the timing controller is configured for providing, during a time period for rendering a frame on the display device, a first start pulse signal to the first line driver, a plurality of first clock signals to the first line driver and a plurality of second clock signals to the second line driver, and where the first line driver is configured for providing the scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided first start pulse signal and the plurality of first clock signals and wherein the first line driver is configured for providing a second start pulse signal to the second line driver when first line driver has provided scan signals to all of the subpixels of the first color in the first set of columns and to all of the subpixels of the third color in the second set of columns, and where the second line driver is configured for providing scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided second start pulse signal and the plurality of second clock signals.
The display device can include a timing controller electrically coupled to the first and second line drivers, where the timing controller is configured for providing, during a time period for rendering a frame on the display device, a first start pulse signal to the first line driver, a plurality of clock signals to both the first line driver to the second line driver, and where the first line driver is configured for providing the scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided first start pulse signal and the plurality of clock signals and where the first line driver is configured for providing a second start pulse signal to the second line driver when first line driver has provided scan signals to all of the subpixels of the first color in the first set of columns and to all off the subpixels of the third color in the second set of columns, and where the second line driver is configured for providing the scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided second start pulse signal and the plurality of clock signals.
The subpixels of the first, second, and third colors can include organic light emitting diodes and the first color can include red (R), the second color can include green (G), the third color can include blue (B), and the plurality of subpixels of the first, second, and third colors can be arranged in a Pentile RGBG array.
The plurality of rows of the display device can include more than 1300 rows, and the plurality of columns in the display device can include more than 700 columns.
In another general aspect, a method of driving a display panel is disclosed. The display panel includes: a plurality of subpixels of a first color; and a plurality of subpixels of a second color; a plurality of subpixels of a third color, with the plurality of subpixels of the first, second, and third colors being arranged in an array having a plurality of rows and a plurality of columns, with rows of the array including subpixels arranged in a repeating pattern subpixels of the first color, the second color, the third color, and the second color, and with alternating columns of the array including subpixels: (a) arranged in a repeating pattern of a subpixel of the first color and a subpixels of the third color, and (b) including only subpixels of the second color, a plurality of scan lines; and a plurality of column lines, with each subpixel in a column of the array being electrically connected to a same column line of the plurality of column lines. The method includes providing to each subpixel electronic signals from a scan line and from a column line, where the provided signals control a light output from an emissive element of the subpixel, and providing scan signals, from one or more line drivers, during a time period for rendering a frame on the display device, to subpixels in a first set of columns of subpixels first to subpixels of the first color and then to the subpixels of the third color and to subpixels in a second set of columns of subpixels first to subpixels of the third color and then to the subpixels of the first color.
Implementations can include one or more of the following features, alone or in any combination with each other.
For example, the method can further include providing scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns from a first line driver, and providing scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns from a second line driver.
The method can further include providing, from a timing controller electrically coupled to the first and second line drivers, during the time period for rendering a frame on the display device, a first start pulse signal to the first line driver, a second start pulse to the second line driver and a plurality of clock signals to both the first and second line drivers, and providing scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided first start pulse signal and the plurality of clock signals, and providing scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided second start pulse signal and the plurality of clock signals.
The method can further include providing, from a timing controller electrically coupled to the first and second line drivers, during the time period for rendering a frame on the display device, a common start pulse signal to the first line driver and to the second line driver, a plurality of first clock signals to the first line driver, and a plurality of second clock signals to the second line driver, and providing scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided common start pulse signal and the plurality of first clock signals, and providing scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided common start pulse signal and the plurality of second clock signals.
The method can further include providing, from a timing controller electrically coupled to the first and second line drivers, during the time period for rendering a frame on the display device, a first start pulse signal to the first line driver, a plurality of first clock signals to the first line driver, and a plurality of second clock signals to the second line driver, and providing, from the first line driver, scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided first start pulse signal and the plurality of first clock signals, and providing, from the first line driver, a second start pulse signal to the second line driver when first line driver has provided scan signals to all of the subpixels of the first color in the first set of columns and all of the subpixels of the third color in the second set of columns, and providing, from the second line driver, scan signals to subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided second start pulse signal and the plurality of second clock signals.
The method can further include providing, from the first line driver, scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns a sequential order, on each column, from a top of the display device to a bottom of the display device, and providing, from the second line driver, scan signals subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns a sequential order, on each column, from a bottom of the display device to a top of the display device.
The method can further include providing, from a timing controller electrically coupled to the first and second line drivers, during the time period for rendering a frame on the display device, a first start pulse signal to the first line driver, a plurality of first clock signals to the first line driver, and a plurality of second clock signals to the second line driver, and providing the scan signals to subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided first start pulse signal and the plurality of first clock signals, and providing a second start pulse signal from the first line driver to the second line driver when first line driver has provided scan signals to all of the subpixels of the first color in the first set of columns and to all of the subpixels of the third color in the second set of columns, and providing scan signals from the second line driver to the subpixels of the third color in the first set of columns and to the subpixels of the first color in the second set of columns in response to the provided second start pulse signal and the plurality of second clock signals.
The method can further include providing, from a timing controller electrically coupled to the first and second line drivers, during the time period for rendering a frame on the display device, a first start pulse signal to the first line driver and a plurality of clock signals to both the first line driver to the second line driver, and providing scan signals to the subpixels of the first color in the first set of columns and to subpixels of the third color in the second set of columns in response to the provided first start pulse signal and the plurality of clock signals, and providing a second start pulse signal from the first line driver to the second line driver when first line driver has provided scan signals to all of the subpixels of the first color in the first set of columns and to all of the subpixels of the third color in the second set of columns, and providing the scan signals to the subpixels of the third color in the first set of columns and to subpixels of the first color in the second set of columns in response to the provided second start pulse signal and the plurality of clock signals.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the disclosure, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The components in the drawings are not necessarily drawn to scale and may not be in scale relative to each other. Like reference numerals designate corresponding parts throughout the several views.
A magnified portion 210 of the active area 207 is shown. The magnified portion 210 illustrates the row/column configuration of subpixels, including a plurality of subpixels 212. In some implementations, the active area 207 can include more than 700 columns and more than 1300 rows. For example, the device can include at least 750 columns and at least 1334 rows. For example, the device can include at least 1080 columns and at least 1920 rows. The light emission of each subpixel 212 can be controlled by signals provided on a scan signal line 214 (i.e., a horizontal control line) and on a column data line 216 (i.e., a vertical control line) that are electrically connected to the subpixel, and the provided signals can determine an amount of driving current provided to the emissive element of the subpixel. Horizontal and vertical may refer to the orientation of a line when the computing device display panel 200 is in the orientation in which it is intended to be used. The horizontal signals lines 214 and/or rows of pixels can be numbered sequentially from a top portion 206 of an active area 207 of the display panel 200 to a bottom portion 208 of the active area 207 of the display panel 200. The top portion 206 of the active area 207 refers to the top portion of the active area 207 when the display panel 200 is in the orientation in which it is to be viewed by a user. In some implementations, and as illustrated in
The scan signal lines 214 of the display pixel array 110 are controlled by line drivers 240. The column data lines are controlled by column line drivers 220. A timing controller (TC) 230 can control signals to the line drivers 240 and to the column line drivers 220 to ensure proper timing of signals to individual subpixels to achieve a desired light emission from the subpixels.
During each image frame that is displayed on the display panel 200, the horizontal scan signal lines 214 can sequentially and/or successively provide signals to the rows of pixels. In one implementation, the first and/or topmost row of pixels can receive signals at or near a beginning of the frame, and the last and/or the lower-most and/or bottommost row of pixels can receive signals at or near an end of the frame. Signals provided to a subpixel by the scan line drivers 240 over a scan line 214 can be used to initialize and reset a subpixel for receiving new data signals when a new frame is provided to the display panel and to turn driving current to the pixel on or off.
Column data lines 216 can provide signals for controlling the subpixel of each column of subpixels (e.g., by writing a data voltage for driving the pixel to the subpixel circuit associated with the subpixel). For clarity, two column data lines are shown in magnified portion 210, but many more exist in the display panel 200. The column data lines 216 can provide signals to columns of pixels in the active area 207 of the display panel 200. The horizontal scan signal lines 214 and the column data lines 216 can combine to provide signals to individual subpixels on the display panel 200, causing the individual subpixels to emit a specific amount and color of light seen by a user.
The timing controller 230 of the display panel 200 can communicate with an external processor 235 (e.g., a GPU or a processor that is part of a system-on-a-chip (SoC)) that can provide signals to the timing controller 230 for driving pixels in the active area 207 of the panel. The timing controller 230 can receive control signals from the external processor 235 that includes, for example, a central processing unit (CPU).
Sending electrical signals to the subpixels to control the emission of light from the subpixels involves controlling the timing of the voltage levels on the scan and column lines. As mentioned previously, higher frame rates and/or longer displays (i.e., higher AR displays) can lead to high switching frequencies of the signals on the scan and column lines. In addition, the increased column line parasitic capacitance due to the high aspect ratio, can lead to an undesirably high dynamic power consumption in driving of the display panel driving. Accordingly, when a column line connects to many pixels and/or when the display is operated at a high frame rate, it may be desirable to reduce/minimize the number of voltage level changes that are required, in practice, to program a new image data to pixels displaying the new images on the screen.
Columns of the Pentile RGBG array 300 alternate between having all green subpixels 302 and having alternating red subpixels 304 and blue subpixels 306. For example, the left most column shown in
In the Pentile RGBG array 300, a pixel 308 of the display can be considered to include a combination of a red subpixel 304 and a green subpixel 302 or a combination of a blue subpixel 306 and a green subpixel 302. Thus, pixels in the Pentile RGBG array 300 can provide a spectrum of colors. With tight packing of the pixels in modern high-resolution displays, a user generally cannot perceive individual pixels 308, and the overall effect of the array 300 perceived by the user is that any color can be emitted from any location on the display. Furthermore, with the Pentile RGBG array arrangement of subpixels, subpixels of certain colors (e.g., red and blue) can be decreased in number, compared to a conventional RGB stripe arrangement of subpixels (RGBRGB subpixels for two pixels), such that a display panel using Pentile RGBG array of subpixels uses one-third fewer subpixels than a conventional RGB stripe display with the same resolution. Thus, higher-resolution, brighter devices are possible with the Pentile RGBG array arrangement of subpixels.
The states of the scan lines 310, 312, 314 and the signals S1, S2, S3 and S4 supplied on the column lines indicate that a voltage is switched between high and low states on individual scan lines 310, 312, 314 corresponding to rows 1, 2, and 3, for fixed periods of time. When the voltage on a scan line for a row is “ON,” which is the case when the scan line voltage level is low for p-channel transistor switches in the pixel circuit, this allows the subpixel circuits in the row to be updated with a new data voltage, by signals S1, S2, S3 and S4 supplied on the column lines for the subpixels in the ON row. When the signal on the scan line for the row is “OFF,” which is the case when the scan line voltage level is high for p-channel transistor switches in the pixel circuit, the subpixels in the row are disconnected from the column data lines, and cannot be updated.
Because the display of an image on a display panel often requires neighboring pixels to have similar colors and brightness, conventional techniques of driving the subpixels of a panel generally lead to relatively high changes of voltage levels applied to a column data line to render the image. Consider, for example, the rendering of an image that is red over the entire area of the display, such that voltage control signals sent to red subpixels (VR) are at their maxima (e.g., VR=255, where VR can have an integer value from 0 to 255), while voltage control signals sent to blue and green subpixels (VB and VG, respectively) are at their minima (e.g., VB=0, and VG=0 where VB and VG can have an integer values from 0 to 255).
The states of the scan lines 410, 412, 414 and the signals S1 and S2 supplied on the column lines indicate that a voltage applied to column line 416 switches between a maximum value and a minimum value when pixels of alternating rows of the array are address, so that red subpixels are turned on and blue subpixels are turned off and that a voltage applied to column line 418 remains at a constant minimum value, so that green subpixels are turned off. The rapid switching of the voltage on column line 416, which alternately address red and blue subpixels, can lead to high parasitic capacitance losses as the subpixels are addressed.
The rows of subpixels shown in
Rather than addressing each row of pixels sequentially from top to bottom, which leads to relatively high parasitic capacitance losses, as described, for example, with respect to
When the rows of pixels are addressed in this sequence, for subpixels in a column connected to a common column line, all the subpixels of a common color (e.g., red) are addressed before the subpixels of a different color (e.g., blue) are addressed, which can reduce power losses due to parasitic capacitance, because, in general, there are will be relatively few voltage level changes on the column line when switching between providing signals to subpixels of different colors. That is, because signals are provided to all the circuits that control the light output OLEDs of one color first, before signals are provided to the circuits that control OLEDs of another color, there can be fewer changes in voltage level on a column line when an image is rendered on the display panel 200.
As seen from the state of signal S1, voltages are first applied to the column line to control the emission from red subpixels R11, R13, R15, R17, and then voltages are applied to the column line to control the emission from blue subpixels B12, B14, B16, B18, so that a transition from a voltage that controls a red pixel to a voltage that controls a blue pixel on the column line is made only once per frame. This may reduce the power loss due to parasitic capacitance when rendering images on the display panel with this scan sequence in which odd rows are scanned first and then even rows are scanned, or in which even rows are scanned first and then odd rows are scanned.
When the first start pulse signal (SP_common or SP) during a frame period is received by the odd and even line drivers 702, 704, then SCAN signals provided by the odd line driver to the display panel can be activated by clock signals CLK1_O and CLK2_O that are sent by the timing controller 706 to the odd line driver 702. When the second start pulse signal (SP_common or SP) during a frame period is received by the odd and even line drivers 702, 704, then SCAN signals provided by the even line driver to the display panel can be activated by clock signals CLK1_E and CLK2_E that are sent by the timing controller 706 to the even line driver 704. By providing the CLK1_O and CLK2_O signals in the first half of the frame period to activate SCAN signals to all the odd rows of the display panel and providing the CLK1_E and CLK2_E signals in the second half of the frame period after SCAN signals have been provided to all rows addressed by the odd line driver, the SCAN signals generated by the odd line driver 702 can be provided sequentially to odd scan lines of the display panel and then the SCAN signals generated by the even line driver 704 can be provided sequentially to even scan lines of the display panel until all lines of the display panel have been addressed.
The last SCAN signal output from the odd line driver 802 (e.g., the SCAN signal sent from the odd line driver to the last odd row of the display panel) can also function as a SP signal provided to the even line driver 804 to activate the provision of SCAN signals from the even line driver 804 to the display panel. Thus, only a single SP signal per frame period need be sent from the timing controller, and the SP signal can be sent to only one of the two line drivers 802, 804. Sending the SP signal to only one of the line drivers may permit the bezel around the active area of the display panel to be narrower than when SP signals are sent from the timing controller 806 to both of the line drivers 802, 804.
The last SCAN signal output from the odd line driver 902 (e.g., the SCAN signal sent from the odd line driver to the last odd row of the display panel) can also function as a SP signal provided to the even line driver 904 to activate the provision of SCAN signals from the even line driver 904 to the display panel. The scanning of odd rows of the display panel can proceed in one direction (e.g., from top to bottom) when the SP signal is provided to a circuit in the odd line driver that drives a topmost odd row, and the scanning of even rows of the display panel can proceed an direction opposite to the first direction (e.g., from bottom to top) when the last SCAN signal output from the odd line driver 902 is provided to a circuit in the even line driver 904 that drives a bottommost even row of the display panel.
The process 1100 includes providing to each subpixel electronic signals from a scan line and from a column line, wherein the provided signals control a light output from an emissive element of the subpixel (1102). The process further includes providing scan signals, from one or more line drivers, during a time period for rendering a frame on the display device, to subpixels in a first set of columns of subpixels first to subpixels of the first color and then to the subpixels of the third color and to subpixels in a second set of columns of subpixels first to subpixels of the third color and then to the subpixels of the first color (1104).
In the specification and/or figures, a number of embodiments have been disclosed. The present disclosure is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation. As used in this specification, spatial relative terms (e.g., in front of, behind, above, below, and so forth) are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, a “front surface” of a mobile computing device may be a surface facing a user, in which case the phrase “in front of” implies closer to the user.
While certain features of the described implementations have been illustrated as described herein, many modifications, substitutions, changes, and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the scope of the implementations. It should be understood that they have been presented by way of example only, not limitation, and various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations.
The implementations described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different implementations described.
In the above description, numerous details are set forth. It will be apparent, however, to one of ordinary skill in the art having the benefit of this disclosure, that implementations of the disclosure may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the description.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as “identifying,” “determining,” “calculating,” “detecting,” “transmitting,” “receiving,” “generating,” “storing,” “ranking,” “extracting,” “obtaining,” “assigning,” “partitioning,” “computing,” “filtering,” “changing,” or the like, refer to the actions and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (e.g., electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Implementations of the disclosure also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a non-transitory computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, flash memory, or any type of media suitable for storing electronic instructions.
The words “example” or “exemplary” are used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the words “example” or “exemplary” is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an implementation” or “one embodiment” or “an implementation” or “one implementation” throughout is not intended to mean the same embodiment or implementation unless described as such. Furthermore, the terms “first,” “second,” “third,” “fourth,” etc. as used herein are meant as labels to distinguish among different elements and may not necessarily have an ordinal meaning according to their numerical designation.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present disclosure is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the disclosure as described herein.
The above description sets forth numerous specific details such as examples of specific systems, components, methods and so forth, in order to provide a good understanding of several implementations of the present disclosure. It will be apparent to one skilled in the art, however, that at least some implementations of the present disclosure may be practiced without these specific details. In other instances, well-known components or methods are not described in detail or are presented in simple block diagram format in order to avoid unnecessarily obscuring the present disclosure. Thus, the specific details set forth above are merely examples. Particular implementations may vary from these example details and still be contemplated to be within the scope of the present disclosure.
It is to be understood that the above description is intended to be illustrative and not restrictive. Many other implementations will be apparent to those of skill in the art upon reading and understanding the above description. The scope of the disclosure should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/070530 | 5/11/2021 | WO |