The present disclosure relates to radar systems and, more particularly, relates to a phased array comprising an orthogonal frequency division multiplexing (OFDM) modem and a frequency scanning antenna to provide high-resolution millimeter-wave imaging through low-cost and low-profile angle detection.
This section provides background information related to the present disclosure which is not necessarily prior art. This section further provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
Radio detection and ranging (radar) is used to sense angle, range and velocity of (moving) scatterers in the environment. Radar sensor capabilities of merit include maximum range and solid angle, as well as angular, range and velocity resolution. Range and velocity are typically detected through pulse delay ranging and the Doppler effect (pulse-Doppler), or through the frequency modulated continuous wave (FMCW) technique and range differentiation. Angle is detected by scanning the volume with a highly directive beam. Scanning is done mechanically, by rotating an antenna, or electronically, by steering the beam of an array. Angular resolution typically depends on the beamwidth of the antenna or the array, but techniques such as monopulse significantly increase the angular resolution of pulse-Doppler radars beyond real beamwidth. The range resolution is limited by the instantaneous signal bandwidth of the radar sensor in both pulse-Doppler and FMCW radars.
According to principles of the present teachings, a radar system comprising an orthogonal frequency division multiplexing (OFDM) modem and a frequency scanning antenna is provided. The OFDM modem produces an OFDM modulation. The frequency scanning antenna then radiates the OFDM modulated radio frequency (RF) energy. Directionality of the frequency scanning radar is dependent upon the sub-band carrier frequency of the OFDM modulation.
In some embodiments, the radar system further comprises a transmit/receive (T/R) module that up-converts and amplifies the OFDM modulation, and outputs the amplified signal to the frequency scanning antenna. In some embodiments, the T/R module amplifies and down-converts a received RF signal from the frequency scanning antenna and outputs the down-converted signal to the OFDM modem. A plurality of scanning angles can be measured simultaneously.
In some embodiments, the frequency scanning antenna comprises a slotted waveguide, which is traveling-wave fed. In some embodiments, the slotted waveguide comprises at least one of a helical and a serpentine (also called sinuous or meandered) waveguide feed. Slots of the slotted waveguide can be milled from a broad wall or the narrow wall of the slotted waveguide. Slots of the slotted waveguide can also be linearly aligned or offset. In some embodiments, slots of the slotted waveguide are tapered in width for uniform amplitude excitation of the slotted waveguide.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical or. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.
According to the principles of the present teachings, a radar system 10 is provided having an orthogonal frequency division multiplexing (OFDM) modem 12 and a frequency scanning antenna 14 operably coupled to OFDM modem 12, as illustrated in
In some embodiments as illustrated in
In some embodiments, the frequency scanning antenna comprises a slotted waveguide 18 as illustrated in
An embodiment may include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and a memory that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
According to the principles of the present disclosure, a 94 GHz pulse-Doppler embodiment of an OFDM frequency scanning radar is presented as illustrated in
Frequency scanning antennas, for which the direction of maximum radiation sensitivity scans with frequency, are essential components of a frequency scanning radar. Frequency scanners are passive phased array embodiments, requiring only one T/R module. They do not require phase shifters or additional power combining (dividing) networks.
The drawbacks of frequency scanning are the decreased instantaneous signal bandwidth (inversely related to the range resolution), compared with TTD beam formers and the hardware complexity required to take advantage of monopulse angle tracking techniques. Angle, Doppler and range resolution are coupled by a 3D angle-Doppler-range ambiguity function for a frequency scanner, whereas angle resolution is decoupled from Doppler and range resolution, which are coupled by a 2D Doppler-range ambiguity function for a monopulse-TTD beam former.
However, at 94 GHz there is ample fractional bandwidth to fit a pulse-Doppler radar waveform that provides sufficient range resolution. The availability of excess bandwidth allows the radar band to be divided into subbands (channels) using an OFDM modem. Each subband carries a pulse-Doppler radar waveform for slant range and Doppler frequency shift detection, and corresponds to a certain scanning angle. In addition, all scanning angles are measured simultaneously, providing the radar operator with an adequate refresh rate for the radar image. Note that the prior art of frequency scanning radars employ frequency swept local oscillators to vary the RF frequency and sequentially scan the beam.
OFDM divides the frequency spectrum into subbands small enough to allow for the channel transfer function to be assumed constant within a single subband. A subband radar waveform (echo) is I/Q (de)modulated using, for example, m-ary quadrature amplitude modulation (m-QAM). Fast fading effects, which induce high Doppler spread, disappear as they occur during the transmission of a single symbol. Fast fading induces a high Doppler spread. The coherence time is less than the symbol period. The channel variations are faster than baseband signal variations.
In addition, single-chip CMOS (complementary metal-oxide semiconductor) radios for multiband OFDM (MB-OFDM) can be used as 10 GHz modems. These CMOS radios may be cost-effective half-duplex ultra-wideband modems, and may be based on a 4G OFDM standard, such as WiMAX (IEEE 802.16e). The most recent IEEE 802.16e standard, IEEE 802.16e-2005, is incorporated herein by reference in its entirety.
A plurality of scan bands as illustrated in
A monopulse feed may be implemented to increase the angular resolution in the frequency-scan plane. An example of a monopulse feed is illustrated in
Six equations relate the design specifications of a frequency scanning radar based on a uniformly excited phased array.
The half-power beamwidth β in degrees is β=65λ/N d, in which N is the number of array elements and d/λ0 is the element spacing, which may be relative to the free-space wavelength at 94 GHz. For N=32 and d/λ=0.72, β is 2.1°. Adjacent subband lobing allows a seven times angular resolution improvement of the ground maps beyond real beam angular resolution to 0.3° in the cross-track.
The relation between range resolution (r=cτ/2, where τ=1/BW and BW is the subband instantaneous signal bandwidth) and angular resolution (half-power beamwidth β) is given as
For further discussion, see E. Brookner, Practical Phased Array Antenna Systems, Artech House, 1991, the disclosure of which is incorporated herein by reference in its entirety.
The maximum subband instantaneous signal bandwidth BW is calculated for the impedance bandwidth of the helical feed being β=2.1°, f=94 GHz, and Δf=4 GHz (4.25% of 94 GHz). θm is the maximum scanning angle, which may be equal to 20°. The maximum subband instantaneous signal bandwidth BW used in the frequency scanning radar may be approximately 96.6 MHz, corresponding to a range resolution of 1.55 m.
The directivity of the cross-track (azimuth) of a linear array is:
The directivity in the along-track (elevation), De, is assumed to be 10 dBi. The 2-D directivity is related to the product of Da and De. Assuming an array efficiency of 100%, the 2-D gain equals the 2-D directivity. De may be improved by connecting the helical feed to a continuous transverse stub (CTS) array.
The radar range equation for a chirp-free radar waveform with a pulse-width bandwidth product equal to 1 (It is assumed that no pulse compression is used—i.e. the time bandwidth product is equal to 1, τ×BW=1) is given by
in which EIRP=GtPt=23.8 MW, assuming an overall 2-D array gain Gr=Gt=29.7 dBi and a peak transmit power Pt=25 kW. The target RCS, σ, is assumed to be 10 dBsm and the SNR is set to 20 dB. kB is the Boltzmann constant. At room temperature, the range equation yields a maximum range detection up to 4.15 km.
The mean radiated power, Pm, which is regulated, is
A pulse repetition frequency (PRF) of 10 kHz may yield Pm=2.58 W per subband. Frequency scanning may be defined as follows:
is the wavelength of the TE10 mode.
A 94 GHz helical slotted waveguide for OFDM frequency scanning radar has been designed. Waveguides are low loss when compared with printed circuit embodiments, resulting in high antenna gain and good receiver NF. Waveguides may allow the highest available transmit power (>25 kW) through usage of VEDs, such as klystrons and traveling-wave tube (TWT) amplifiers. Waveguides may also have high receiver input IP3. Waveguides may offer high EIRP or power-aperture product and high dynamic range, which results in increased range detection. Waveguides are wideband—i.e., the helical slotted waveguide and the T/R module are WR-10 flanged and no mode conversions are necessary. WR-10 waveguide components, such as circulators, limiters, LNA's, mixers and power amplifiers (TWT) are commercially available, and may therefore be relatively affordable. Waveguides also offer very broad environmental tolerances and shock and corrosion resistance without specialized packaging. Several trade-offs are made in the design of a slotted waveguide. For further discussion, see R. C. Johnson, Antenna Engineering Handbook, 3rd Ed. McGraw-Hill, 1993, and Y. T. Lo and S. W. Lee, The Antenna Handbook—Volume 2: Antenna Theory, Nostrand Reinhold, 1993, the disclosures of which are incorporated herein by reference in their entirety.
Trade-offs regarding slotted waveguide feeding: Standing-wave fed may imply that the slots are equispaced, at a distance that may not be equal to λg/2. Traveling-wave fed may mean that the waveguide is terminated into a matched load. While standing-wave feeding allows for higher efficiency, its resonant impedance bandwidth drastically reduces the ability to scan with frequency and limits the maximum scanning angle. Helical waveguide feeds, as illustrated in
Trade-offs regarding slot radiator configuration: a choice may be made between broad wall slots and narrow wall slots, as illustrated in
Trade-offs regarding material selection: The slotted waveguide is made out of Type 304 stainless steel (also called 18-8 or A2), which is a Chromium-Nickel austenitic alloy. One advantage of Type 304 stainless steel may be that it allows for 0.5 mm thick waveguide walls and hence dense element spacing (d/λ=0.72) with grating lobes entering the visible region when scanning beyond 20° from the boresight above 96 GHz. However, while it yields a wide-angle compact array (7.3 cm) and is easier to bend than a 1 mm thick MIL-DTL-85/3BL copper or coined silver, it also attenuates the TE10 mode more (17 dB/m) than copper (2.6 dB/m), yielding lower gain. Galvanization of the slotted waveguide is an option, though it may be expensive.
Measurement results: The slotted waveguide has an impedance bandwidth of 35 GHz (75-110 GHz), as illustrated in
With particular reference to
A 94 GHz transmit/receive module 16 with 2 GHz bandwidth can be assembled based on commercial off-the-shelf WR-10 waveguide components for short-range indoor concept validation. The design can be optimized for peak transmit power (17.4 dBm) and spurious-free dynamic range at the receiver side (59.16 dB). The receiver has a gain of 8.3 dB, a noise figure (NF) of 6.24 dB, and an input IP3 of −10.65 dBm.
The circulators may have an insertion loss of 1.6 dB and an isolation of 35 dB, and may comprise Quinstar QJY-95023W circulators. The LNA 208 may have a 20 dB gain with a noise figure (NF) of 4.5 dB and P1 dB of −10 dBm at 94 GHz, and may comprise a Quinstar QLN-95024520-00 LNA. The mixer 210 may be a balanced mixer with a conversion loss of 8.5 dB and an IP3 of 3 dBm, and may comprise a Millitech MXP-10-RSSSL balanced mixer.
The PA 204 may have 26 dB of gain over the 91 to 94 GHz frequency range and a P1 dB of 19 dBm, and may comprise a Millitech AMP-10-02190 PA. The transmit/receive module 16 may have at least 4 GHz of bandwidth to accommodate frequency scanning up to ±20° from the boresight. To achieve additional range, a 25 kW pulsed klystron may be used.
The OFDM radar waveform may be implemented using an MB-OFDM chipset evaluation board of one of the WiMedia Alliance members. MB-OFDM utilizes 7.5 GHz of unlicensed spectrum from 3.1 to 10.6 GHz allocated by the Federal Communications Commission (FCC) for UWB communication.
The present disclosure can be used in space-borne, automotive, naval, ground-based and airborne applications, as illustrated in
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/974,144, filed on Sep. 21, 2007. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3419870 | Wong | Dec 1968 | A |
3545841 | Re et al. | Dec 1970 | A |
4742355 | Wolfson et al. | May 1988 | A |
4841308 | Terakawa et al. | Jun 1989 | A |
4868574 | Raab | Sep 1989 | A |
4996532 | Kirimoto et al. | Feb 1991 | A |
6029116 | Wright et al. | Feb 2000 | A |
6972727 | West et al. | Dec 2005 | B1 |
7019682 | Louberg et al. | Mar 2006 | B1 |
7130200 | Liu | Oct 2006 | B1 |
7130361 | Enderlein et al. | Oct 2006 | B1 |
20040081073 | Walton et al. | Apr 2004 | A1 |
20040183620 | Scorer | Sep 2004 | A1 |
20050062640 | Edwards et al. | Mar 2005 | A1 |
20050110678 | Doi | May 2005 | A1 |
20050201268 | Aoki et al. | Sep 2005 | A1 |
20050259568 | Yeh et al. | Nov 2005 | A1 |
20060055587 | Mitsumoto | Mar 2006 | A1 |
20070274203 | Kimura et al. | Nov 2007 | A1 |
20070285314 | Mortazawi et al. | Dec 2007 | A1 |
20070285322 | Nyshadham et al. | Dec 2007 | A1 |
20090122840 | Quagliaro | May 2009 | A1 |
Number | Date | Country |
---|---|---|
2893203 | May 2007 | FR |
Number | Date | Country | |
---|---|---|---|
20090079620 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60974144 | Sep 2007 | US |