Off-axis visualization systems

Information

  • Patent Grant
  • 9226648
  • Patent Number
    9,226,648
  • Date Filed
    Thursday, December 20, 2007
    16 years ago
  • Date Issued
    Tuesday, January 5, 2016
    8 years ago
Abstract
Off-axis visualization systems are described herein which facilitate the deployment, visualization, and retraction of an imaging element from a catheter. Such a system may include a deployment catheter and an attached imaging hood deployable into an expanded configuration as well as an imaging element, such as a CCD or CMOS imager, which may be deployed from a low profile configuration into a position which is off-axis relative to a longitudinal axis of the deployment catheter and/or imaging hood.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical devices used for visualizing and/or treating regions of tissue within a body. More particularly, the present invention relates to methods and apparatus for directly visualizing tissue regions via imaging systems which are off-axis relative to a longitudinal axis of a deployment catheter and/or treating the issue regions under visualization.


BACKGROUND OF THE INVENTION

Conventional devices for accessing and visualizing interior regions of a body lumen are known. For example, ultrasound devices have been used to produce images from within a body in vivo. Ultrasound has been used both with and without contrast agents, which typically enhance ultrasound-derived images.


Other conventional methods have utilized catheters or probes having position sensors deployed within the body lumen, such as the interior of a cardiac chamber. These types of positional sensors are typically used to determine the movement of a cardiac tissue surface or the electrical activity within the cardiac tissue. When a sufficient number of points have been sampled by the sensors, a “map” of the cardiac tissue may be generated.


Another conventional device utilizes an inflatable balloon which is typically introduced intravascularly in a deflated state and then inflated against the tissue region to be examined. Imaging is typically accomplished by an optical fiber or other apparatus such as electronic chips for viewing the tissue through the membrane(s) of the inflated balloon. Moreover, the balloon must generally be inflated for imaging. Other conventional balloons utilize a cavity or depression formed at a distal end of the inflated balloon. This cavity or depression is pressed against the tissue to be examined and is flushed with a clear fluid to provide a clear pathway through the blood.


However, such imaging balloons have many inherent disadvantages. For instance, such balloons generally require that the balloon be inflated to a relatively large size which may undesirably displace surrounding tissue and interfere with fine positioning of the imaging system against the tissue. Moreover, the working area created by such inflatable balloons are generally cramped and limited in size. Furthermore, inflated balloons may be susceptible to pressure changes in the surrounding fluid. For example, if the environment surrounding the inflated balloon undergoes pressure changes, e.g., during systolic and diastolic pressure cycles in a beating heart, the constant pressure change may affect the inflated balloon volume and its positioning to produce unsteady or undesirable conditions for optimal tissue imaging.


Accordingly, these types of imaging modalities are generally unable to provide desirable images useful for sufficient diagnosis and therapy of the endoluminal structure, due in part to factors such as dynamic forces generated by the natural movement of the heart. Moreover, anatomic structures within the body can occlude or obstruct the image acquisition process. Also, the presence and movement of opaque bodily fluids such as blood generally make in vivo imaging of tissue regions within the heart difficult.


Other external imaging modalities are also conventionally utilized. For example, computed tomography (CT) and magnetic resonance imaging (MRI) are typical modalities which are widely used to obtain images of body lumens such as the interior chambers of the heart. However, such imaging modalities fail to provide real-time imaging for intra-operative therapeutic procedures. Fluoroscopic imaging, for instance, is widely used to identify anatomic landmarks within the heart and other regions of the body. However, fluoroscopy fails to provide an accurate image of the tissue quality or surface and also fails to provide for instrumentation for performing tissue manipulation or other therapeutic procedures upon the visualized tissue regions. In addition, fluoroscopy provides a shadow of the intervening tissue onto a plate or sensor when it may be desirable to view the intraluminal surface of the tissue to diagnose pathologies or to perform some form of therapy on it.


Moreover, many of the conventional imaging systems lack the capability to provide therapeutic treatments or are difficult to manipulate in providing effective therapies. For instance, the treatment in a patient's heart for atrial fibrillation is generally made difficult by a number of factors, such as visualization of the target tissue, access to the target tissue, and instrument articulation and management, amongst others.


Conventional catheter techniques and devices, for example such as those described in U.S. Pat. Nos. 5,895,417; 5,941,845; and 6,129,724, used on the epicardial surface of the heart may be difficult in assuring a transmural lesion or complete blockage of electrical signals. In addition, current devices may have difficulty dealing with varying thickness of tissue through which a transmural lesion desired.


Conventional accompanying imaging devices, such as fluoroscopy, are unable to detect perpendicular electrode orientation, catheter movement during the cardiac cycle, and image catheter position throughout lesion formation. Without real-time visualization, it is difficult to reposition devices to another area that requires transmural lesion ablation. The absence of real-time visualization also poses the risk of incorrect placement and ablation of critical structures such as sinus node tissue which can lead to fatal consequences.


Thus, a tissue imaging system which is able to provide real-time in vivo access to and images of tissue regions within body lumens such as the heart through opaque media such as blood and which also provides instruments for therapeutic procedures are desirable.


SUMMARY OF THE INVENTION

The tissue-imaging apparatus described relates to variations of a device and/or method to provide real-time images in vivo of tissue regions within a body lumen such as a heart, which is filled with blood flowing dynamically therethrough. Such an apparatus may be utilized for many procedures, e.g., mitral valvuloplasty, left atrial appendage closure, arrhythmia ablation, transseptal access and patent foramen ovale closure among other procedures. Further details of such a visualization catheter and methods of use are shown and described in U.S. Pat. Pub. 2006/0184048 A1, which is incorporated herein by reference in its entirety.


A tissue imaging and manipulation apparatus that may be utilized for procedures within a body lumen, such as the heart, in which visualization of the surrounding tissue is made difficult, if not impossible, by medium contained within the lumen such as blood, is described below. Generally, such a tissue imaging and manipulation apparatus comprises an optional delivery catheter or sheath through which a deployment catheter and imaging hood may be advanced for placement against or adjacent to the tissue to be imaged.


The deployment catheter may define a fluid delivery lumen therethrough as well as an imaging lumen within which an optical imaging fiber or electronic imaging assembly may be disposed for imaging tissue. When deployed, the imaging hood may be expanded into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field is defined by the imaging hood. The open area is the area within which the tissue region of interest may be imaged. The imaging hood may also define an atraumatic contact lip or edge for placement or abutment against the tissue region of interest. Moreover, the distal end of the deployment catheter or separate manipulatable catheters may be articulated through various controlling mechanisms such as push-pull wires manually or via computer control


In operation, after the imaging hood has been deployed, fluid may be pumped at a positive pressure through the fluid delivery lumen until the fluid fills the open area completely and displaces any blood from within the open area. The fluid may comprise any biocompatible fluid, e.g., saline, water, plasma, Fluorinert™, etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid. The fluid may be pumped continuously or intermittently to allow for image capture by an optional processor which may be in communication with the assembly.


The imaging hood may be deployed into an expanded shape and retracted within a catheter utilizing various mechanisms. Moreover, the imaging element, such as a CCD or CMOS imaging camera, may be positioned distally or proximally of the imaging hood when collapsed into its low-profile configuration. Such a configuration may reduce or eliminate friction during deployment and retraction as well as increase the available space within the catheter not only for the imaging unit but also for the hood.


Moreover, the imaging element may be introduced along or within the hood into an off-axis position relative to a longitudinal axis of the catheter and/or hood for providing direct visualization of the underlying tissue to be visually examined and/or treated. For example, one variation may utilize a flexible section located at a distal end of the catheter which may be configured from various flexible materials coupled or integrated with a relatively rigid section located proximally of flexible section. The imaging element may be positioned and/or attached to a lateral inner wall of the flexible section such that when the section is collapsed within the sheath, the imaging element may be placed in an in-line or axially positioned relative to the catheter and hood to provide for a low-profile delivery configuration.


Upon deployment of the hood from the constraints of the sheath, the hood and flexible section may be advanced distal to the sheath such that the hood is free to expand or to be expanded and the flexible section is also unconstrained to expand or to be expanded as well such that a portion of the flexible section extends laterally relative to the hood and the catheter to form an imager retaining channel or pocket. The retaining channel or pocket may extend laterally a sufficient distance, either self-expanding or pushed open via the imager being urged laterally into the space, such that the space distal to the catheter is unobstructed by the imager or retaining channel. Alternatively, if the flexible section is self-expanding when pushed out of the sheath such that it expands to its original lateral configuration when not constrained by the sheath, the section may urge imager into its off-axis position if attached to one another.


Because the imager is positioned laterally, the catheter and hood may accommodate a variety of sizes for different types of imagers. For instance, relatively larger, more economical, and/or relatively more powerful CCD or CMOS imagers may be utilized with the system as the hood may accommodate a range of sizes and configurations for the imaging system. With the imager positioned in its off-axis location relative to the hood and/or catheter, the user may obtain a better angle of visualization of the entire operating landscape, including both the movements of the tools and the target tissue surface during any number of therapeutic and/or diagnostic procedures. Moreover, the unobstructed opening of the catheter may allow for various instruments, such as RF ablation probes, graspers, needles, etc., to be deployed through the catheter and past the imager into the open area defined by the hood for treatment upon the underlying imaged tissue.


Various other configurations for positioning the imaging element off-axis may include us of instruments such as a dilator positioned proximal to the flexible segment. The dilator may be translatable through the deployment catheter and may also define one or more working lumens therethrough for the introduction of one or more instruments. With the imaging element attached laterally within the channel or pocket, the hood and flexible section may be advanced out of the sheath with the imaging element still in its low-profile axial position. The dilator may be pushed distally to expand the collapsed section to its expanded volume to form the channel or pocket, consequently pushing the imaging element laterally to the side where the imaging element may bulge out and stretch the channel or pocket.


Yet other variations may utilize an imager support member which is extendable through the deployment catheter and the collapsed imaging hood to position the imaging element distally of the hood. When the hood is deployed and expanded, the imaging element may be pulled proximally into the hood and into its off-axis position via the support member, which may include one or more curved or linked sections or which may be made from a shape memory alloy which reconfigures itself. In yet another variation, the imaging element may include a tapered or angled proximal surface which is forced to slide against an angled surface which is complementary to the imaging element surface. Proximal actuation of the imager may force the imaging element to slide into an off-axis position. In yet other variations, the imaging element may be urged into its off-axis position via an inflatable elongate balloon which pushes the imager along or within the hood.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows a side view of one variation of a tissue imaging apparatus during deployment from a sheath or delivery catheter.



FIG. 1B shows the deployed tissue imaging apparatus of FIG. 1A having an optionally expandable hood or sheath attached to an imaging and/or diagnostic catheter.



FIG. 1C shows an end view of a deployed imaging apparatus.



FIGS. 1D to 1F show the apparatus of FIGS. 1A to 1C with an additional lumen, e.g., for passage of a guidewire therethrough.



FIGS. 2A and 2B show one example of a deployed tissue imager positioned against or adjacent to the tissue to be imaged and a flow of fluid, such as saline, displacing blood from within the expandable hood.



FIG. 3A shows an articulatable imaging assembly which may be manipulated via push-pull wires or by computer control.



FIGS. 3B and 3C show steerable instruments, respectively, where an articulatable delivery catheter may be steered within the imaging hood or a distal portion of the deployment catheter itself may be steered.



FIGS. 4A to 4C show side and cross-sectional end views, respectively, of another variation having an off-axis imaging capability.



FIGS. 4D and 4E show examples of various visualization imagers which may be utilized within or along the imaging hood.



FIG. 5 shows an illustrative view of an example of a tissue imager advanced intravascularly within a heart for imaging tissue regions within an atrial chamber.



FIGS. 6A to 6C illustrate deployment catheters having one or more optional inflatable balloons or anchors for stabilizing the device during a procedure.



FIGS. 7A and 7B illustrate a variation of an anchoring mechanism such as a helical tissue piercing device for temporarily stabilizing the imaging hood relative to a tissue surface.



FIG. 7C shows another variation for anchoring the imaging hood having one or more tubular support members integrated with the imaging hood; each support members may define a lumen therethrough for advancing a helical tissue anchor within.



FIG. 8A shows an illustrative example of one variation of how a tissue imager may be utilized with an imaging device.



FIG. 8B shows a further illustration of a hand-held variation of the fluid delivery and tissue manipulation system.



FIGS. 9A to 9C illustrate an example of capturing several images of the tissue at multiple regions.



FIGS. 10A and 10B show charts illustrating how fluid pressure within the imaging hood may be coordinated with the surrounding blood pressure; the fluid pressure in the imaging hood may be coordinated with the blood pressure or it may be regulated based upon pressure feedback from the blood.



FIGS. 11A to 11C show side, perspective, and end views, respectively, of one variation of the tissue visualization catheter having a collapsed flexible section proximal to or along the hood or barrier or membrane.



FIGS. 12A to 12C show side, perspective, and end views, respectively, of the catheter having the hood expanded and an imaging element positioned off-axis relative to a longitudinal axis of the catheter into the expanded flexible section which forms a retaining channel or pocket.



FIG. 13 illustrates a perspective view of the hood placed against a tissue region of interest with the imager providing direct visualization of the underlying tissue while positioned in its off-axis configuration.



FIGS. 14A and 14B show another variation where the imaging element is positionable in its off-axis configuration via an instrument such as a dilator positioned proximal to the flexible segment.



FIGS. 14C and 14D show partial cross-sectional side views of the dilator positioned proximally of the imaging element.



FIGS. 14E to 14G show side, perspective, and detail perspective views, respectively, of the dilator pushed distally through the flexible segment to expand the work channel allowing tools to pass through and also pushing the imaging element off-axis relative to the catheter longitudinal axis.



FIG. 15 shows a side view of a visualization catheter where the dilator instrument may be preformed into a curved or arcuate shape such that the sheath and/or deployment catheter conforms into the curved or arcuate shape.



FIGS. 16A and 16B show side views of another variation having the flexible section proximal to the hood and defining a slit near or along a distal end of the work channel for expandably receiving the imaging element which protrudes distally from the sheath when in its low-profile configuration.



FIGS. 16C and 16D show perspective and detailed perspective views, respectively, of the visualization catheter where the slit and flexible portion may protrude distally of the sheath for deployment.



FIGS. 17A to 17C show side, perspective, and detailed perspective views, respectively, of the deployed hood and the imaging element pushed past the slit and positioned off-axis relative to the hood and catheter longitudinal axis.



FIGS. 18A and 18B show side views of another variation of the tissue visualization catheter with an imaging element positioned distal to the collapsed hood in the retracted configuration within the sheath and also upon hood deployment.



FIGS. 18C and 18D show side and perspective views of the imaging element urged into its off-axis configuration when pulled proximally through the hood and into the receiving channel or pocket.



FIGS. 19A and 19B show side views of another variation of the tissue visualization catheter with an imaging element positioned distal to the collapsed hood within a sheath via an imager support member comprised of a shape memory alloy and in a deployed configuration where the support member articulates into an off-axis configuration.



FIGS. 19C and 19D show partial cross-sectional side and perspective views, respectively, of the imaging element pulled proximally into the hood in its off-axis configuration.



FIG. 20 shows a perspective view of the visualization catheter placed against a tissue surface for affecting a therapeutic procedure under off-axis visualization.



FIGS. 21A and 21B show partial cross-sectional side views of the visualization catheter with the imaging element disposed distally of the collapsed hood and pulled proximally against a tapered interface within the deployed hood.



FIGS. 21C and 21D show side and perspective views, respectively, of the deployed hood and imaging element actuated into its off-axis configuration by the angled interface between the imaging element housing and distal end of the internal deployment catheter.



FIG. 22 shows a perspective view of the visualization catheter placed against a tissue surface with the off-axis camera providing an elevated off-axis image to better estimate tool movements during therapeutic procedures.



FIGS. 23A and 23B show partial cross-sectional side views of an imaging element attached to a hinged cantilever member and disposed distally of a collapsed hood and the deployed hood.



FIGS. 24A to 24C show side, detailed side, and perspective views, respectively, where the imaging element is positioned in an off-axis configuration by the hinged cantilever member actuated via a pullwire.



FIG. 25 shows a perspective view of the visualization catheter placed against a tissue surface with the off-axis imaging element providing an elevated off-axis image to better estimate tool movements during therapeutic procedures.



FIGS. 26A and 26B show partial cross-sectional side views of the visualization catheter with the imaging element disposed distally of the collapsed hood and being rotated into its off-axis configuration via its rotatable imager support member.



FIGS. 27A and 27B show side and perspective views, respectively, where the imaging element is positioned in an off-axis configuration by the rotated support member.



FIG. 28 shows a perspective view of the visualization catheter placed against a tissue surface with the imaging element providing an elevated off-axis image to better estimate tool movement during therapeutic procedures.



FIGS. 29A and 29B show partial cross-sectional side views of another variation of the visualization catheter where the imaging element may be attached to the hood via an elastic member such that retraction of the imaging element facilitates collapse of the hood and withdrawal of the imaging element facilitates deployment of the hood.



FIGS. 30A and 30B show partial cross-sectional side views of another variation of the tissue visualization catheter where the imaging element is translatably coupled or attached along a strut of the hood.



FIGS. 31A and 31B show a partial cross-sectional side view of another variation of the tissue visualization catheter where the imaging element may be attached upon a distal end of one or more inflatable balloons which may be inflated to position the imaging element along the hood.



FIGS. 32A and 32B show side views of another variation of an imaging hood having an expandable channel or pocket positioned along the hood for accommodating the imaging element.





DETAILED DESCRIPTION OF THE INVENTION

A tissue-imaging and manipulation apparatus described below is able to provide real-time images in vivo of tissue regions within a body lumen such as a heart, which is filled with blood flowing dynamically therethrough and is also able to provide intravascular tools and instruments for performing various procedures upon the imaged tissue regions. Such an apparatus may be utilized for many procedures, e.g., facilitating transseptal access to the left atrium, cannulating the coronary sinus, diagnosis of valve regurgitation/stenosis, valvuloplasty, atrial appendage closure, arrhythmogenic focus ablation, among other procedures. Further examples of tissue visualization catheters which may be utilized are shown and described in further detail in U.S. patent application Ser. No. 11/259,498 filed Oct. 25, 2005, which has been incorporated hereinabove by reference in its entirety.


One variation of a tissue access and imaging apparatus is shown in the detail perspective views of FIGS. 1A to 1C. As shown in FIG. 1A, tissue imaging and manipulation assembly 10 may be delivered intravascularly through the patient's body in a low-profile configuration via a delivery catheter or sheath 14. In the case of treating tissue, such as the mitral valve located at the outflow tract of the left atrium of the heart, it is generally desirable to enter or access the left atrium while minimizing trauma to the patient. To non-operatively effect such access, one conventional approach involves puncturing the intra-atrial septum from the right atrial chamber to the left atrial chamber in a procedure commonly called a transseptal procedure or septostomy. For procedures such as percutaneous valve repair and replacement, transseptal access to the left atrial chamber of the heart may allow for larger devices to be introduced into the venous system than can generally be introduced percutaneously into the arterial system.


When the imaging and manipulation assembly 10 is ready to be utilized for imaging tissue, imaging hood 12 may be advanced relative to catheter 14 and deployed from a distal opening of catheter 14, as shown by the arrow. Upon deployment, imaging hood 12 may be unconstrained to expand or open into a deployed imaging configuration, as shown in FIG. 1B. Imaging hood 12 may be fabricated from a variety of pliable or conformable biocompatible material including but not limited to, e.g., polymeric, plastic, or woven materials. One example of a woven material is Kevlar® (E. I. du Pont de Nemours, Wilmington, Del.), which is an aramid and which can be made into thin, e.g., less than 0.001 in., materials which maintain enough integrity for such applications described herein. Moreover, the imaging hood 12 may be fabricated from a translucent or opaque material and in a variety of different colors to optimize or attenuate any reflected lighting from surrounding fluids or structures, i.e., anatomical or mechanical structures or instruments. In either case, imaging hood 12 may be fabricated into a uniform structure or a scaffold-supported structure, in which case a scaffold made of a shape memory alloy, such as Nitinol, or a spring steel, or plastic, etc., may be fabricated and covered with the polymeric, plastic, or woven material. Hence, imaging hood 12 may comprise any of a wide variety of barriers or membrane structures, as may generally be used to localize displacement of blood or the like from a selected volume of a body lumen or heart chamber. In exemplary embodiments, a volume within an inner surface 13 of imaging hood 12 will be significantly less than a volume of the hood 12 between inner surface 13 and outer surface 11.


Imaging hood 12 may be attached at interface 24 to a deployment catheter 16 which may be translated independently of deployment catheter or sheath 14. Attachment of interface 24 may be accomplished through any number of conventional methods. Deployment catheter 16 may define a fluid delivery lumen 18 as well as an imaging lumen 20 within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, imaging hood 12 may expand into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field 26 is defined by imaging hood 12. The open area 26 is the area within which the tissue region of interest may be imaged. Imaging hood 12 may also define an atraumatic contact lip or edge 22 for placement or abutment against the tissue region of interest. Moreover, the diameter of imaging hood 12 at its maximum fully deployed diameter, e.g., at contact lip or edge 22, is typically greater relative to a diameter of the deployment catheter 16 (although a diameter of contact lip or edge 22 may be made to have a smaller or equal diameter of deployment catheter 16). For instance, the contact edge diameter may range anywhere from 1 to 5 times (or even greater, as practicable) a diameter of deployment catheter 16. FIG. 1C shows an end view of the imaging hood 12 in its deployed configuration. Also shown are the contact lip or edge 22 and fluid delivery lumen 18 and imaging lumen 20.


The imaging and manipulation assembly 10 may additionally define a guidewire lumen therethrough, e.g., a concentric or eccentric lumen, as shown in the side and end views, respectively, of FIGS. 1D to 1F. The deployment catheter 16 may define guidewire lumen 19 for facilitating the passage of the system over or along a guidewire 17, which may be advanced intravascularly within a body lumen. The deployment catheter 16 may then be advanced over the guidewire 17, as generally known in the art.


In operation, after imaging hood 12 has been deployed, as in FIG. 1B, and desirably positioned against the tissue region to be imaged along contact edge 22, the displacing fluid may be pumped at positive pressure through fluid delivery lumen 18 until the fluid fills open area 26 completely and displaces any fluid 28 from within open area 26. The displacing fluid flow may be laminarized to improve its clearing effect and to help prevent blood from re-entering the imaging hood 12. Alternatively, fluid flow may be started before the deployment takes place. The displacing fluid, also described herein as imaging fluid, may comprise any biocompatible fluid, e.g., saline, water, plasma, etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid. Alternatively or additionally, any number of therapeutic drugs may be suspended within the fluid or may comprise the fluid itself which is pumped into open area 26 and which is subsequently passed into and through the heart and the patient body.


As seen in the example of FIGS. 2A and 2B, deployment catheter 16 may be manipulated to position deployed imaging hood 12 against or near the underlying tissue region of interest to be imaged, in this example a portion of annulus A of mitral valve MV within the left atrial chamber. As the surrounding blood 30 flows around imaging hood 12 and within open area 26 defined within imaging hood 12, as seen in FIG. 2A, the underlying annulus A is obstructed by the opaque blood 30 and is difficult to view through the imaging lumen 20. The translucent fluid 28, such as saline, may then be pumped through fluid delivery lumen 18, intermittently or continuously, until the blood 30 is at least partially, and preferably completely, displaced from within open area 26 by fluid 28, as shown in FIG. 2B.


Although contact edge 22 need not directly contact the underlying tissue, it is at least preferably brought into close proximity to the tissue such that the flow of clear fluid 28 from open area 26 may be maintained to inhibit significant backflow of blood 30 back into open area 26. Contact edge 22 may also be made of a soft elastomeric material such as certain soft grades of silicone or polyurethane, as typically known, to help contact edge 22 conform to an uneven or rough underlying anatomical tissue surface. Once the blood 30 has been displaced from imaging hood 12, an image may then be viewed of the underlying tissue through the clear fluid 30. This image may then be recorded or available for real-time viewing for performing a therapeutic procedure. The positive flow of fluid 28 may be maintained continuously to provide for clear viewing of the underlying tissue. Alternatively, the fluid 28 may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow 28 may cease and blood 30 may be allowed to seep or flow back into imaging hood 12. This process may be repeated a number of times at the same tissue region or at multiple tissue regions.


In desirably positioning the assembly at various regions within the patient body, a number of articulation and manipulation controls may be utilized. For example, as shown in the articulatable imaging assembly 40 in FIG. 3A, one or more push-pull wires 42 may be routed through deployment catheter 16 for steering the distal end portion of the device in various directions 46 to desirably position the imaging hood 12 adjacent to a region of tissue to be visualized. Depending upon the positioning and the number of push-pull wires 42 utilized, deployment catheter 16 and imaging hood 12 may be articulated into any number of configurations 44. The push-pull wire or wires 42 may be articulated via their proximal ends from outside the patient body manually utilizing one or more controls. Alternatively, deployment catheter 16 may be articulated by computer control, as further described below.


Additionally or alternatively, an articulatable delivery catheter 48, which may be articulated via one or more push-pull wires and having an imaging lumen and one or more working lumens, may be delivered through the deployment catheter 16 and into imaging hood 12. With a distal portion of articulatable delivery catheter 48 within imaging hood 12, the clear displacing fluid may be pumped through delivery catheter 48 or deployment catheter 16 to clear the field within imaging hood 12. As shown in FIG. 3B, the articulatable delivery catheter 48 may be articulated within the imaging hood to obtain a better image of tissue adjacent to the imaging hood 12. Moreover, articulatable delivery catheter 48 may be articulated to direct an instrument or tool passed through the catheter 48, as described in detail below, to specific areas of tissue imaged through imaging hood 12 without having to reposition deployment catheter 16 and re-clear the imaging field within hood 12.


Alternatively, rather than passing an articulatable delivery catheter 48 through the deployment catheter 16, a distal portion of the deployment catheter 16 itself may comprise a distal end 49 which is articulatable within imaging hood 12, as shown in FIG. 3C. Directed imaging, instrument delivery, etc., may be accomplished directly through one or more lumens within deployment catheter 16 to specific regions of the underlying tissue imaged within imaging hood 12.


Visualization within the imaging hood 12 may be accomplished through an imaging lumen 20 defined through deployment catheter 16, as described above. In such a configuration, visualization is available in a straight-line manner, i.e., images are generated from the field distally along a longitudinal axis defined by the deployment catheter 16. Alternatively or additionally, an articulatable imaging assembly having a pivotable support member 50 may be connected to, mounted to, or otherwise passed through deployment catheter 16 to provide for visualization off-axis relative to the longitudinal axis defined by deployment catheter 16, as shown in FIG. 4A. Support member 50 may have an imaging element 52, e.g., a CCD or CMOS imager or optical fiber, attached at its distal end with its proximal end connected to deployment catheter 16 via a pivoting connection 54.


If one or more optical fibers are utilized for imaging, the optical fibers 58 may be passed through deployment catheter 16, as shown in the cross-section of FIG. 4B, and routed through the support member 50. The use of optical fibers 58 may provide for increased diameter sizes of the one or several lumens 56 through deployment catheter 16 for the passage of diagnostic and/or therapeutic tools therethrough. Alternatively, electronic chips, such as a charge coupled device (CCD) or a CMOS imager, which are typically known, may be utilized in place of the optical fibers 58, in which case the electronic imager may be positioned in the distal portion of the deployment catheter 16 with electric wires being routed proximally through the deployment catheter 16. Alternatively, the electronic imagers may be wirelessly coupled to a receiver for the wireless transmission of images. Additional optical fibers or light emitting diodes (LEDs) can be used to provide lighting for the image or operative theater, as described below in further detail. Support member 50 may be pivoted via connection 54 such that the member 50 can be positioned in a low-profile configuration within channel or groove 60 defined in a distal portion of catheter 16, as shown in the cross-section of FIG. 4C. During intravascular delivery of deployment catheter 16 through the patient body, support member 50 can be positioned within channel or groove 60 with imaging hood 12 also in its low-profile configuration. During visualization, imaging hood 12 may be expanded into its deployed configuration and support member 50 may be deployed into its off-axis configuration for imaging the tissue adjacent to hood 12, as in FIG. 4A. Other configurations for support member 50 for off-axis visualization may be utilized, as desired.



FIG. 4D shows a partial cross-sectional view of an example where one or more optical fiber bundles 62 may be positioned within the catheter and within imaging hood 12 to provide direct in-line imaging of the open area within hood 12. FIG. 4E shows another example where an imaging element 64 (e.g., CCD or CMOS electronic imager) may be placed along an interior surface of imaging hood 12 to provide imaging of the open area such that the imaging element 64 is off-axis relative to a longitudinal axis of the hood 12. The off-axis position of element 64 may provide for direct visualization and uninhibited access by instruments from the catheter to the underlying tissue during treatment.



FIG. 5 shows an illustrative cross-sectional view of a heart H having tissue regions of interest being viewed via an imaging assembly 10. In this example, delivery catheter assembly 70 may be introduced percutaneously into the patient's vasculature and advanced through the superior vena cava SVC and into the right atrium RA. The delivery catheter or sheath 72 may be articulated through the atrial septum AS and into the left atrium LA for viewing or treating the tissue, e.g., the annulus A, surrounding the mitral valve MV. As shown, deployment catheter 16 and imaging hood 12 may be advanced out of delivery catheter 72 and brought into contact or in proximity to the tissue region of interest. In other examples, delivery catheter assembly 70 may be advanced through the inferior vena cava IVC, if so desired. Moreover, other regions of the heart H, e.g., the right ventricle RV or left ventricle LV, may also be accessed and imaged or treated by imaging assembly 10.


In accessing regions of the heart H or other parts of the body, the delivery catheter or sheath 14 may comprise a conventional intra-vascular catheter or an endoluminal delivery device. Alternatively, robotically-controlled delivery catheters may also be optionally utilized with the imaging assembly described herein, in which case a computer-controller 74 may be used to control the articulation and positioning of the delivery catheter 14. An example of a robotically-controlled delivery catheter which may be utilized is described in further detail in US Pat. Pub. 2002/0087169 A1 to Brock et al. entitled “Flexible Instrument”, which is incorporated herein by reference in its entirety. Other robotically-controlled delivery catheters manufactured by Hansen Medical, Inc. (Mountain View, Calif.) may also be utilized with the delivery catheter 14.


To facilitate stabilization of the deployment catheter 16 during a procedure, one or more inflatable balloons or anchors 76 may be positioned along the length of catheter 16, as shown in FIG. 6A. For example, when utilizing a transseptal approach across the atrial septum AS into the left atrium LA, the inflatable balloons 76 may be inflated from a low-profile into their expanded configuration to temporarily anchor or stabilize the catheter 16 position relative to the heart H. FIG. 6B shows a first balloon 78 inflated while FIG. 6C also shows a second balloon 80 inflated proximal to the first balloon 78. In such a configuration, the septal wall AS may be wedged or sandwiched between the balloons 78, 80 to temporarily stabilize the catheter 16 and imaging hood 12. A single balloon 78 or both balloons 78, 80 may be used. Other alternatives may utilize expandable mesh members, malecots, or any other temporary expandable structure. After a procedure has been accomplished, the balloon assembly 76 may be deflated or re-configured into a low-profile for removal of the deployment catheter 16.


To further stabilize a position of the imaging hood 12 relative to a tissue surface to be imaged, various anchoring mechanisms may be optionally employed for temporarily holding the imaging hood 12 against the tissue. Such anchoring mechanisms may be particularly useful for imaging tissue which is subject to movement, e.g., when imaging tissue within the chambers of a beating heart. A tool delivery catheter 82 having at least one instrument lumen and an optional visualization lumen may be delivered through deployment catheter 16 and into an expanded imaging hood 12. As the imaging hood 12 is brought into contact against a tissue surface T to be examined, anchoring mechanisms such as a helical tissue piercing device 84 may be passed through the tool delivery catheter 82, as shown in FIG. 7A, and into imaging hood 12.


The helical tissue engaging device 84 may be torqued from its proximal end outside the patient body to temporarily anchor itself into the underlying tissue surface T. Once embedded within the tissue T, the helical tissue engaging device 84 may be pulled proximally relative to deployment catheter 16 while the deployment catheter 16 and imaging hood 12 are pushed distally, as indicated by the arrows in FIG. 7B, to gently force the contact edge or lip 22 of imaging hood against the tissue T. The positioning of the tissue engaging device 84 may be locked temporarily relative to the deployment catheter 16 to ensure secure positioning of the imaging hood 12 during a diagnostic or therapeutic procedure within the imaging hood 12. After a procedure, tissue engaging device 84 may be disengaged from the tissue by torquing its proximal end in the opposite direction to remove the anchor form the tissue T and the deployment catheter 16 may be repositioned to another region of tissue where the anchoring process may be repeated or removed from the patient body. The tissue engaging device 84 may also be constructed from other known tissue engaging devices such as vacuum-assisted engagement or grasper-assisted engagement tools, among others.


Although a helical anchor 84 is shown, this is intended to be illustrative and other types of temporary anchors may be utilized, e.g., hooked or barbed anchors, graspers, etc. Moreover, the tool delivery catheter 82 may be omitted entirely and the anchoring device may be delivered directly through a lumen defined through the deployment catheter 16.


In another variation where the tool delivery catheter 82 may be omitted entirely to temporarily anchor imaging hood 12, FIG. 7C shows an imaging hood 12 having one or more tubular support members 86, e.g., four support members 86 as shown, integrated with the imaging hood 12. The tubular support members 86 may define lumens therethrough each having helical tissue engaging devices 88 positioned within. When an expanded imaging hood 12 is to be temporarily anchored to the tissue, the helical tissue engaging devices 88 may be urged distally to extend from imaging hood 12 and each may be torqued from its proximal end to engage the underlying tissue T. Each of the helical tissue engaging devices 88 may be advanced through the length of deployment catheter 16 or they may be positioned within tubular support members 86 during the delivery and deployment of imaging hood 12. Once the procedure within imaging hood 12 is finished, each of the tissue engaging devices 88 may be disengaged from the tissue and the imaging hood 12 may be repositioned to another region of tissue or removed from the patient body.


An illustrative example is shown in FIG. 8A of a tissue imaging assembly connected to a fluid delivery system 90 and to an optional processor 98 and image recorder and/or viewer 100. The fluid delivery system 90 may generally comprise a pump 92 and an optional valve 94 for controlling the flow rate of the fluid into the system. A fluid reservoir 96, fluidly connected to pump 92, may hold the fluid to be pumped through imaging hood 12. An optional central processing unit or processor 98 may be in electrical communication with fluid delivery system 90 for controlling flow parameters such as the flow rate and/or velocity of the pumped fluid. The processor 98 may also be in electrical communication with an image recorder and/or viewer 100 for directly viewing the images of tissue received from within imaging hood 12. Imager recorder and/or viewer 100 may also be used not only to record the image but also the location of the viewed tissue region, if so desired.


Optionally, processor 98 may also be utilized to coordinate the fluid flow and the image capture. For instance, processor 98 may be programmed to provide for fluid flow from reservoir 96 until the tissue area has been displaced of blood to obtain a clear image. Once the image has been determined to be sufficiently clear, either visually by a practitioner or by computer, an image of the tissue may be captured automatically by recorder 100 and pump 92 may be automatically stopped or slowed by processor 98 to cease the fluid flow into the patient. Other variations for fluid delivery and image capture are, of course, possible and the aforementioned configuration is intended only to be illustrative and not limiting.



FIG. 8B shows a further illustration of a hand-held variation of the fluid delivery and tissue manipulation system 110. In this variation, system 110 may have a housing or handle assembly 112 which can be held or manipulated by the physician from outside the patient body. The fluid reservoir 114, shown in this variation as a syringe, can be fluidly coupled to the handle assembly 112 and actuated via a pumping mechanism 116, e.g., lead screw. Fluid reservoir 114 may be a simple reservoir separated from the handle assembly 112 and fluidly coupled to handle assembly 112 via one or more tubes. The fluid flow rate and other mechanisms may be metered by the electronic controller 118.


Deployment of imaging hood 12 may be actuated by a hood deployment switch 120 located on the handle assembly 112 while dispensation of the fluid from reservoir 114 may be actuated by a fluid deployment switch 122, which can be electrically coupled to the controller 118. Controller 118 may also be electrically coupled to a wired or wireless antenna 124 optionally integrated with the handle assembly 112, as shown in the figure. The wireless antenna 124 can be used to wirelessly transmit images captured from the imaging hood 12 to a receiver, e.g., via Bluetooth® wireless technology (Bluetooth SIG, Inc., Bellevue, Wash.), RF, etc., for viewing on a monitor 128 or for recording for later viewing.


Articulation control of the deployment catheter 16, or a delivery catheter or sheath 14 through which the deployment catheter 16 may be delivered, may be accomplished by computer control, as described above, in which case an additional controller may be utilized with handle assembly 112. In the case of manual articulation, handle assembly 112 may incorporate one or more articulation controls 126 for manual manipulation of the position of deployment catheter 16. Handle assembly 112 may also define one or more instrument ports 130 through which a number of intravascular tools may be passed for tissue manipulation and treatment within imaging hood 12, as described further below. Furthermore, in certain procedures, fluid or debris may be sucked into imaging hood 12 for evacuation from the patient body by optionally fluidly coupling a suction pump 132 to handle assembly 112 or directly to deployment catheter 16.


As described above, fluid may be pumped continuously into imaging hood 12 to provide for clear viewing of the underlying tissue. Alternatively, fluid may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow may cease and the blood may be allowed to seep or flow back into imaging hood 12. FIGS. 9A to 9C illustrate an example of capturing several images of the tissue at multiple regions. Deployment catheter 16 may be desirably positioned and imaging hood 12 deployed and brought into position against a region of tissue to be imaged, in this example the tissue surrounding a mitral valve MV within the left atrium of a patient's heart. The imaging hood 12 may be optionally anchored to the tissue, as described above, and then cleared by pumping the imaging fluid into the hood 12. Once sufficiently clear, the tissue may be visualized and the image captured by control electronics 118. The first captured image 140 may be stored and/or transmitted wirelessly 124 to a monitor 128 for viewing by the physician, as shown in FIG. 9A.


The deployment catheter 16 may be then repositioned to an adjacent portion of mitral valve MV, as shown in FIG. 9B, where the process may be repeated to capture a second image 142 for viewing and/or recording. The deployment catheter 16 may again be repositioned to another region of tissue, as shown in FIG. 9C, where a third image 144 may be captured for viewing and/or recording. This procedure may be repeated as many times as necessary for capturing a comprehensive image of the tissue surrounding mitral valve MV, or any other tissue region. When the deployment catheter 16 and imaging hood 12 is repositioned from tissue region to tissue region, the pump may be stopped during positioning and blood or surrounding fluid may be allowed to enter within imaging hood 12 until the tissue is to be imaged, where the imaging hood 12 may be cleared, as above.


As mentioned above, when the imaging hood 12 is cleared by pumping the imaging fluid within for clearing the blood or other bodily fluid, the fluid may be pumped continuously to maintain the imaging fluid within the hood 12 at a positive pressure or it may be pumped under computer control for slowing or stopping the fluid flow into the hood 12 upon detection of various parameters or until a clear image of the underlying tissue is obtained. The control electronics 118 may also be programmed to coordinate the fluid flow into the imaging hood 12 with various physical parameters to maintain a clear image within imaging hood 12.


One example is shown in FIG. 10A which shows a chart 150 illustrating how fluid pressure within the imaging hood 12 may be coordinated with the surrounding blood pressure. Chart 150 shows the cyclical blood pressure 156 alternating between diastolic pressure 152 and systolic pressure 154 over time T due to the beating motion of the patient heart. The fluid pressure of the imaging fluid, indicated by plot 160, within imaging hood 12 may be automatically timed to correspond to the blood pressure changes 160 such that an increased pressure is maintained within imaging hood 12 which is consistently above the blood pressure 156 by a slight increase ΔP, as illustrated by the pressure difference at the peak systolic pressure 158. This pressure difference, ΔP, may be maintained within imaging hood 12 over the pressure variance of the surrounding blood pressure to maintain a positive imaging fluid pressure within imaging hood 12 to maintain a clear view of the underlying tissue. One benefit of maintaining a constant ΔP is a constant flow and maintenance of a clear field.



FIG. 10B shows a chart 162 illustrating another variation for maintaining a clear view of the underlying tissue where one or more sensors within the imaging hood 12, as described in further detail below, may be configured to sense pressure changes within the imaging hood 12 and to correspondingly increase the imaging fluid pressure within imaging hood 12. This may result in a time delay, ΔT, as illustrated by the shifted fluid pressure 160 relative to the cycling blood pressure 156, although the time delays ΔT may be negligible in maintaining the clear image of the underlying tissue. Predictive software algorithms can also be used to substantially eliminate this time delay by predicting when the next pressure wave peak will arrive and by increasing the pressure ahead of the pressure wave's arrival by an amount of time equal to the aforementioned time delay to essentially cancel the time delay out.


The variations in fluid pressure within imaging hood 12 may be accomplished in part due to the nature of imaging hood 12. An inflatable balloon, which is conventionally utilized for imaging tissue, may be affected by the surrounding blood pressure changes. On the other hand, an imaging hood 12 retains a constant volume therewithin and is structurally unaffected by the surrounding blood pressure changes, thus allowing for pressure increases therewithin. The material that hood 12 is made from may also contribute to the manner in which the pressure is modulated within this hood 12. A stiffer hood material, such as high durometer polyurethane or Nylon, may facilitate the maintaining of an open hood when deployed. On the other hand, a relatively lower durometer or softer material, such as a low durometer PVC or polyurethane, may collapse from the surrounding fluid pressure and may not adequately maintain a deployed or expanded hood.


As mentioned above, an imaging element, e.g., a CCD or CMOS imager or optical fiber, may be connected to, mounted to, or otherwise passed through deployment catheter 16 to provide for visualization off-axis relative to the longitudinal axis 186 defined by deployment catheter 16. In yet other variations for providing off-axis visualization, an imaging element may be advanced through or along deployment catheter 16 such that the imaging element and hood 12 are arranged to be delivered in a low-profile configuration within sheath 14. Upon deployment of hood 12, the imaging element may be introduced along or within hood 12 into an off-axis position relative to the longitudinal axis of catheter 16 for providing direct visualization of the underlying tissue to be visually examined and/or treated.



FIGS. 11A and 11B illustrate partial cross-sectional side and perspective views, respectively, of one variation of an imaging system which may be positioned off-axis relative to the longitudinal axis 186 of deployment catheter 16. As shown in its low-profile configuration, hood 12 may be collapsed within lumen 176 of sheath 14 and attached to catheter 16, which in this variation may include a flexible section 170 located at a distal end of catheter 16 and which may be configured from various flexible materials coupled or integrated with a relatively rigid section 172 located proximally of flexible section 170. Alternatively, the flexible section 170 may be coupled or integrated to a proximal portion of hood 12. The flexible section 170 may be made from various elastomers or conformable polymers such as silicone, polyvinyl chloride (PVC), polyurethane (PU), polyethylene terephthalate (PET), flexible polymeric tubes reinforced with Nitinol, etc.


In either case, imaging element 174 (e.g., CCD, CMOS, optical fiber, etc.) may be positioned and/or attached to a lateral inner wall of flexible section 170 such that when section 170 is collapsed within sheath 14, as shown, imaging element 174 may be placed in an in-line or axial positioned relative to the catheter 16 and hood 12 to provide for a low-profile delivery configuration, as also shown in the end view of FIG. 11C.


Upon deployment of hood 12 from the constraints of sheath 14, hood 12 and flexible section 170 may be advanced distal to sheath 14 such that hood 12 is free to expand or to be expanded and flexible section 170 is also unconstrained to expand or to be expanded as well such that a portion of flexible section 170 extends laterally relative to hood 12 and catheter 16 to form an imager retaining channel or pocket 178, as shown in the side and perspective views of FIGS. 12A and 12B. Retaining channel or pocket 178 may extend laterally a sufficient distance, either self-expanding or pushed open via imager 174 being urged laterally into the space, such that the space distal to catheter 16 is unobstructed by imager 174 or retaining channel 178, as shown in the end view of FIG. 12C. Alternatively, if flexible section 170 is self-expanding when pushed out of the sheath 14 such that it expands to its original lateral configuration when not constrained by sheath 14, section 170 may urge imager 174 into its off-axis position if attached to one another.


Because imager 174 is positioned laterally, catheter 16 and hood 12 may accommodate a variety of sizes for different types of imagers 174. For instance, relatively larger, more economical, and/or relatively more powerful CCD or CMOS imagers may be utilized with the system as hood 12 may accommodate a range of sizes and configurations for the imaging system. With the imager 174 positioned in its off-axis location relative to the hood 12 and/or catheter 16, the user may obtain a better angle of visualization of the entire operating landscape, including both the movements of the tools and the target tissue surface during any number of therapeutic and/or diagnostic procedures. Moreover, the unobstructed opening of catheter 16 may allow for various instruments, such as RF ablation probes 182, graspers, needles, etc., to be deployed through catheter 16 and past imager 174 into the open area defined by hood 12 for treatment upon the underlying imaged tissue.



FIG. 13 illustrates a perspective view of hood 12 placed against a tissue region of interest T with the imager 174 providing direct visualization of the underlying tissue T while positioned in its off-axis configuration. As described above, the clearing fluid 28 may be pumped into the open area defined by hood 12 to purge the surrounding blood from hood 12 and to provide a clear transparent imaging field (as indicated by the field of view 184) within hood 12, as provided by imager 174. Ablation probe 182 is illustrated as having been advanced through a working lumen of catheter 16, past the off-axis imager 174, and into the interior of hood 12 to treat the underlying tissue T while under direct visualization.


Another variation for an off-axis visualization system is shown in the partial cross-sectional side views of FIGS. 14A and 14B, which illustrate an imaging element 174 which is positionable in its off-axis configuration via an instrument such as a dilator 190 positioned proximal to the flexible segment 170, as shown in the perspective views of FIGS. 14C and 14D. Dilator may be translatable through deployment catheter 16 and may also define one or more working lumens 192, 194, 196 therethrough for the introduction of one or more instruments. With imaging element 174 attached laterally within channel or pocket 178, hood 12 and flexible section 170 may be advanced out of sheath 14 with imaging element 174 still in its low-profile axial position.


As shown in FIGS. 14E to 14G, which show side, perspective, and detail perspective views, respectively, dilator 190 may be pushed distally to expand the collapsed section 170 to its expanded volume to form channel or pocket 178, consequently pushing imaging element 174 laterally to the side where imaging element 174 may bulge out and stretch channel or pocket 178. With the distal end of the work channel unobstructed, various instruments such as RF ablation probe 182, graspers, needles, etc. can be deployed forward into the open area enclosed by the expanded hood 12.


A variety of dilators may also be used with deployment catheter 16 and/or sheath 14. Dilators may define single or multiple lumens according to the needs of the user and the size of the instruments to be used with the tissue visualization catheter. Accordingly, different dilators can be conveniently and quickly swapped while hood 12 is still in the patient's body. In addition, dilators which are preformed to have a curved or arcuate shape may also be used such that catheter 16 and/or sheath 14 may conform into the curved or arcuate shape imparted by the dilator, as shown in FIG. 15. This can be especially useful for procedures such as transseptal puncture of the septal wall.


In yet another variation, FIGS. 16A and 16B show partial cross-sectional side views of hood 12 in its retracted configuration within sheath 14 and in its expanded configuration. In this variation, imaging element 174 may be positioned upon an imager support member 200 which may comprise a wire frame or support fabricated from any number of materials, e.g., Nitinol, stainless steel, titanium, etc. which extends through catheter 16. In its low-profile configuration, imaging element 174 may be positioned distally of the collapsed hood 12 by extending support member 200. Having imaging element 174 positioned distal to hood 12 when retracted in sheath 14 may allow for hood 12 and sheath 14 to accommodate various configurations and sizes of imaging element 174.


Once hood 12 has been expanded, support member 200 may be pulled proximally to bring imaging element 174 into hood 12 and into its off-axis position. To receive imaging element 174 within hood 12, the flexible section proximal to hood 12 may define a longitudinal slit 202 at least partially along the section, as shown in the perspective and detailed perspective views of FIGS. 16C and 16D. When imaging element 174 is pulled proximally into hood 12, imaging element 174 may slide in-between slit 202 consequently expanding the slit 202 to allow for imaging element 174 to bulge laterally into its off-axis position and form receiving channel or pocket 178, as shown in the side and perspective views of FIGS. 17A to 17C. Any number of instruments may then be advanced into and/or through hood 12 past the off-axis imaging element 174.


Another variation is illustrated in the side views of FIGS. 18A and 18B which show imaging element 174 attached to imager support member 210. In its low-profile configuration and its initial deployed configuration, imaging element 174 may be positioned distal to hood 12 while connected via support member 210 to allow for sheath 14 to accommodate relatively larger sized imaging elements. Support member 210 may pass proximally through side opening 212 defined along a side surface of catheter 16 adjacent to where receiving channel or pocket 178 is located. Thus, once hood 12 has been expanded, support member 210 may be pulled proximally through opening 212 to draw imaging element 174 proximally directly into receiving channel or pocket 178 such that imaging element 174 is positioned into its off-axis location, as shown in the side and perspective views of FIGS. 18C and 18D. With imaging element 174 and support member 210 withdrawn, any number of instruments such as ablation probe 182 may be advanced into hood 12 to treat the underlying tissue in an unobstructed field.



FIGS. 19A and 19B illustrate yet another variation where imaging element 174 may be positioned upon an imager support member 220 fabricated from a shape memory alloy, e.g., Nitinol, which is pre-shaped with an angled or off-axis segment 222 to position imaging element 174 into an off-axis position when freed from the constraints of sheath 14. FIG. 19A illustrates imaging element 174 positioned distally of the collapsed hood 12 with the support member 220 extended forward. Alignment of imaging element 174 in this manner allows for hood 12 to be collapsed completely and thus frees up additional space within the lumen of sheath 14. As hood 12 is expanded, angled or off-axis segment 222 may reconfigure into its relaxed shape where imaging element 174 is moved into its off-axis configuration, as indicated by the direction of movement 224 in FIG. 19B. Support member 220 may then be pulled proximally into hood 12 such that imaging element 174 is positioned along an inner surface of hood 12 in an off-axis configuration, as illustrated in the partial cross-sectional side and perspective views of FIGS. 19C and 19D. To withdraw imaging element 174, support member 220 may be advanced distally of hood 12, which may be collapsed proximally of imaging element 174 and both hood 12 and imaging element 174 may be pulled proximally into sheath 14, which may constrain angled or off-axis segment 222 back into its low-profile configuration.



FIG. 20 illustrates a perspective view of deployed hood 12 positioned upon a tissue region of interest T with imaging element 174 positioned into its off-axis configuration via support member 220.


Yet another variation is illustrated in the partial cross-sectional side views of FIGS. 21A and 21B which illustrate imaging element 174 which is attached to imager support member 234 and positioned distal to collapsed hood 12. The proximal surface of imaging element 174 may have an angled or tapered surface 230 which extends at a first angle relative to deployment catheter 16. The distal end of catheter 16 may also define a receiving surface 232 which is angled or tapered at an angle complementary to surface 230. With hood 12 in its expanded configuration, support member 234 may be pulled proximally such that tapered surface 230 of imaging element 174 is drawn into contact against receiving surface 232, as illustrated in FIG. 21B.


Upon further tensioning of support member 234, imaging element 174 may be forced to slide proximally along the tapered interface and into its off-axis location, as indicated by the angled direction of travel 236 in the cross-sectional side view of FIG. 21C. By moving the imaging element 174 off-axis, the area in front of the working lumen 238 of deployment catheter 16 is cleared for any number of instruments, such as ablation probe 182, to be deployed through as illustrated in the perspective view of FIG. 21D. FIG. 22 illustrates the imaging element 174 angled into its off-axis position via the tapered or angled interface between tapered surface 230 of imaging element 174 and receiving surface 232 while visualizing the underlying tissue to be treated via ablation probe 182.



FIGS. 23A and 23B show yet another variation where imaging element 174 may be positioned distal to collapsed hood 12 while attached to a cantilevered support member 240. FIG. 23B shows how imaging element 174 may be withdrawn proximally into hood 12 from its distal position once hood 12 has been expanded. Once imaging element 174 has been sufficiently withdrawn, a pullwire 242 made from a material such as Nitinol, stainless steel, titanium, etc. and attached to imaging element 174 and passing through an opening or slot 248 defined through support member 240 may be tensioned through deployment catheter 16, as shown in the detailed perspective view of FIG. 24B. Cantilevered support member 240 may define a first notch or hinge 244, e.g., a living hinge, along a first side of member 240 and a second notch or hinge 246, e.g., also a living hinge, along a second side of member 240 along an opposite side to where first notch or groove 244 is defined and proximal to first notch or groove 244, as shown in FIG. 24A. Thus, when pullwire 242 is tensioned to pull imaging element 174 proximally, cantilevered support member 240 may be forced to reconfigure from its straightened configuration such that member 240 bends at notches 244, 246 into an angled configuration to reposition imaging element 174 into its off-axis position, as shown in the side and perspective views of FIGS. 24A and 24C. Upon relaxing pullwire 242, support member 240 may reconfigure back into its straightened low-profile shape.



FIG. 25 illustrates a perspective view of deployed hood 12 positioned upon a tissue region of interest T with imaging element 174 positioned into its off-axis configuration via cantilevered support member 240 with pullwire 242 under tension.


In yet another variation, FIGS. 26A and 26B illustrate partial cross-sectional side views of an imaging element 174 positioned distal to the collapsed hood 12 in a low-profile configuration shown in FIG. 26A where imaging element 174 is attached to imager support member 250 which is rotatable about its longitudinal axis. A distal portion of support member 250 may define a curved off-axis section 252 which aligns imaging element 174 eccentrically relative to catheter 16 such that when support member 250 is rotated, e.g., 180 degrees, imaging element 174 is rotated into an off-axis position, as indicated by the direction of rotation 254 illustrated in FIG. 26B. Off-axis section 252 of support member 250 may be angled along its length at two or more locations and it may be fabricated from any number of materials, such as Nitinol, stainless steel, titanium, etc.



FIGS. 27A and 27B show side and perspective views of imaging element 174 having been rotated into its off-axis position with support member 250 withdrawn proximally into hood 12 such that imaging element 174 is positioned along an inner surface of hood 12. With the space distal to deployment catheter 16 unobstructed by imaging element 174, any number of instruments may be advanced into hood 12, such as ablation probe 182, to be utilized upon the underlying tissue while visualized via imaging element 174.



FIG. 28 illustrates a perspective view of deployed hood 12 positioned upon a tissue region of interest T with imaging element 174 positioned into its off-axis configuration via angled support member 250 imaging the underlying tissue within the open area of hood 12 through a transparent fluid while also treating the tissue with ablation probe 182.


Another variation is illustrated in the partial cross-sectional side views of FIGS. 29A and 29B which show imaging element 174 coupled to the distal end of shaft 266, which may optionally also include an instrument 270 positioned upon its distal end, such as a helical tissue grasper, ablation probe, needle, or other instrument. Imaging element 174 may be coupled to the distal end of shaft 266 via linkage member 268 which is free to pivot relative to both imaging element 174 and shaft 266, e.g., via living hinges, pivots, etc. An elastic member 260 (e.g., silicone rubber, latex, polyurethane, or other common elastomers) may also couple imaging element 174 at attachment point 262 to the inner surface of hood 12 at attachment point 264. By pulling proximally on shaft 266 through catheter 16, as indicated by the direction of imager retraction 272, linkage member 268 may pull imaging element 174 proximally into a work channel of catheter 16. This may subsequently stretch elastic member 260 connecting imaging element 174 and hood 12 resulting in elastic member 260 pulling hood 12 into its low-profile collapsed configuration before or while hood 12 is retracted into sheath 14, as indicated by the direction of hood collapse 274. Hence imaging element 174 may be positioned proximal to and in line with hood 12, by positioning it within a working lumen rather than wrapped within the collapsed hood 12 when retracted into sheath 14.


To deploy hood 12, the process may be reversed where shaft 266 may be urged distally to push linkage member 268, which in turn may push imaging element 174 distally. As hood 12 is deployed, elastic member 260 may pull imaging element into its off-axis position along the inner surface of hood 12.



FIGS. 30A and 30B illustrate yet another variation in the partial cross-sectional side views where imaging element 174 is attached to linkage member 280, which is also slidingly connected to strut 282, which in turn is positioned along an inner surface of hood 12. When hood 12 is in its collapsed configuration, imaging element 174 may be positioned distal to hood 12 via linkage member 280, as shown in FIG. 30A. A magnet 284 (e.g., ferrous magnet or electromagnet) may be positioned along or at the distal end of sheath 14 such that magnet 284 is integrated with sheath 14 or placed along an outer or inner surface of sheath 14. The housing of imaging element 174 may be fabricated from a magnetically attractive and/or ferromagnetic material such that when hood 12 is deployed distally from sheath 14, the magnetic attraction between the housing of imaging element 174 and magnet 284 may magnetically pull imaging element 174. As hood 12 is deployed from sheath 14, imaging element 174 may slide or roll proximally along strut 282, which may be connected to one another via a translatable coupling 286, until imaging element 174 is slid to a proximal position along strut 282, as shown in FIG. 30B. In this proximal position, imaging element 174 may be positioned in its off-axis configuration relative to catheter 16 and hood 12.


When hood 12 is retracted into sheath 14, magnet 284 may magnetically attract imaging element 174 such that hood 12 is collapsed proximally of imaging element 174 and is positioned distally of the collapsed hood 12 when retained within sheath 14, thus freeing up additional space within sheath 14.



FIGS. 31A and 31B illustrate partial cross-sectional side views of another variation where hood 12 may define an elongate channel 292 within or along the length of hood 12. Once hood 12 has been deployed from sheath 14 into its expanded configuration, an elongate balloon 290 having imaging element 174 attached to its distal end may be inflated within channel 292 such that balloon 290 propagates distally and advances imaging element 174 into the hood 12, as shown in FIG. 31B. Balloon 290 may be fabricated from various elastomeric materials such as C-flex, ChronoPrene, silicone or polyurethene, etc. Moreover, channel 292 may be constructed by enclosing the balloon 290 between two layers of heat welded material, e.g., Mylar or PET sheets, such that the welded sheets form a cylindrical lumen through which balloon 290 may expand along the axis of channel 292 when inflated. The assembly of balloon 290, imaging element 174, and channel 292 may then be mounted on the inner wall of hood 12, e.g., by an adhesive.



FIGS. 32A and 32B show side views, respectively, of another variation of imaging hood 12 modified to have an expandable channel or pocket 300 positioned along hood 12. In this configuration, one or more hood support struts or members 304 may be positioned along hood 12 to provide structural support. When imaging element 174 and hood 12 are collapsed in their low-profile configuration, imaging element 174 may be positioned distal to hood 12 with control member 302, e.g., cables, wires, etc., connected to imaging element 174 and passing through channel or pocket 300. With imaging element 174 positioned distal to expanded hood 12, as shown in FIG. 32A, imaging element 174 may be pulled proximally via member 302 into channel or pocket 300 such that the imager 174 slides and squeezes itself into pocket 300, which itself may bulge out laterally to the side of hood 12, as shown in FIG. 32B. With the camera positioned laterally of hood 12 when deployed, a clear field of visualization is provided.


The applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other treatments and areas of the body. Modification of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.

Claims
  • 1. A system for visualizing a tissue region of interest, comprising: a deployment catheter defining at least one lumen therethrough;a hood projecting distally from the deployment catheter and defining an open area therein, wherein the open area is in fluid communication with the at least one lumen;an imaging element for visualizing tissue adjacent to the open area; anda flexible section which forms a channel extending at least partially proximally from an exterior of the hood, the flexible section being separably expandable with respect to the hood such that the flexible section is capable of having both a collapsed profile and an expanded profile when the hood is in a fully expanded configuration for receiving the imaging element upon deployment of the hood, wherein the imaging element is moved from a first location which is axially in-line with a longitudinal axis of the catheter to a second location within the channel which is laterally off-axis relative to the longitudinal axis of the catheter.
  • 2. The system of claim 1 further comprising a sheath slidably disposed over the deployment catheter.
  • 3. The system of claim 1 further comprising an ablation probe passing through the deployment catheter.
  • 4. The system of claim 1 wherein the imaging element is attached to an inner surface of the channel such that the imaging element is pulled into its off-axis position via the channel.
  • 5. The system of claim 1 wherein the channel extends proximally from an outer surface of the hood.
  • 6. The system of claim 1 wherein the deployment catheter is steerable.
  • 7. The system of claim 1 wherein the hood is comprised of a compliant material.
  • 8. The system of claim 1 wherein the hood comprises a frame of superelastic or shape memory alloy.
  • 9. The system of claim 1 wherein the hood is conically shaped.
  • 10. The system of claim 1 wherein the hood comprises at least one support member.
  • 11. The system of claim 1 wherein the imaging element comprises at least one optical fiber, CCD imager, or CMOS imager.
  • 12. The system of claim 1 further comprising a pump for urging fluid into the hood.
  • 13. The system of claim 1 further comprising a fluid reservior fluidly coupled to the hood.
  • 14. The system of claim 13 wherein a fluid within the fluid reservoir comprises saline, plasma, water, or perfluorinated liquid.
  • 15. A system for visualizing a tissue region of interest, comprising: a deployment catheter defining at least one lumen therethrough;a membrane projecting distally from the deployment catheter and defining an open area therein, wherein the open area is in fluid communication with the at least one lumen;a flexible receiving channel extending proximally from an exterior of the membrane, the flexible receiving channel being separably expandable with respect to the membrane such that the flexible receiving channel is capable of having both a collapsed profile and an expanded profile when the membrane is in a fully expanded configuration; andan imaging element for visualizing tissue adjacent to the open area, the imaging element being positioned within the receiving channel, the imaging element being movable between a first location that is axially in-line with a longitudinal axis of the catheter and a second location within the channel that is laterally off-axis relative to the longitudinal axis of the catheter.
  • 16. The system of claim 15 wherein the channel extends proximally from an outer surface of the membrane.
  • 17. The system of claim 15 wherein the imaging element is attached to an inner surface of the channel such that the imaging element is pulled into the second location via off-axis movement of the channel.
  • 18. A system for visualizin a tissue region of interest, comprising: a deployment catheter defining at least one lumen therethrough;a membrane projecting distally from the deployment catheter and defining an open area therein, wherein the open area is in fluid communication with the at least one lumen;a pump for urging fluid into the membrane;a flexible portion that extends proximally from an exterior of the membrane, the flexible portion forming a receiving channel in open communication with the open area upon deployment of the membrane, the flexible portion being separably expandable with resect to the membrane such that the flexible portion is capable of having both a collapsed profile and an expanded profile when the membrane is in a fully expanded configuration; andan imaging element for visualizing tissue adjacent to the open area, the imaging element being movable between a first location that is axially in-line with a longitudinal axis of the catheter and a second location within the channel that is laterally off-axis relative to the longitudinal axis of the catheter and within the receiving channel.
  • 19. The system of claim 18 wherein the membrane is comprised of a compliant material.
  • 20. The system of claim 18 wherein the membrane is conically shaped.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Prov. Pat. Apps. 60/871,415 and 60/871,424 both filed Dec. 21, 2006, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (576)
Number Name Date Kind
623022 Johnson Apr 1899 A
2305462 Wolf Dec 1942 A
2453862 Peter Nov 1948 A
3559651 Moss Feb 1971 A
3831587 Boyd Aug 1974 A
3874388 King et al. Apr 1975 A
3903877 Terada Sep 1975 A
4175545 Termanini Nov 1979 A
4326529 Doss et al. Apr 1982 A
4445892 Hussein et al. May 1984 A
4470407 Hussein Sep 1984 A
4517976 Murakoshi et al. May 1985 A
4569335 Tsuno Feb 1986 A
4576146 Kawazoe et al. Mar 1986 A
4615333 Taguchi Oct 1986 A
4619247 Inoue et al. Oct 1986 A
4676258 Inokuchi et al. Jun 1987 A
4681093 Ono et al. Jul 1987 A
4709698 Johnston et al. Dec 1987 A
4710192 Liotta et al. Dec 1987 A
4727418 Kato et al. Feb 1988 A
4772260 Heyden Sep 1988 A
4784133 Mackin Nov 1988 A
4838246 Hahn et al. Jun 1989 A
4848323 Marijnissen et al. Jul 1989 A
4911148 Sosnowski et al. Mar 1990 A
4914521 Adair Apr 1990 A
4943290 Rexroth et al. Jul 1990 A
4950285 Wilk Aug 1990 A
4957484 Murtfeldt Sep 1990 A
4960411 Buchbinder Oct 1990 A
4961738 Mackin Oct 1990 A
4976710 Mackin Dec 1990 A
4991578 Cohen Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
4998972 Chin et al. Mar 1991 A
5047028 Qian Sep 1991 A
5057106 Kasevich et al. Oct 1991 A
5090959 Samson et al. Feb 1992 A
5123428 Schwarz Jun 1992 A
RE34002 Adair Jul 1992 E
5156141 Krebs et al. Oct 1992 A
5171259 Inoue Dec 1992 A
5281238 Chin et al. Jan 1994 A
5282827 Kensey et al. Feb 1994 A
5306234 Johnson Apr 1994 A
5313934 Wiita et al. May 1994 A
5313943 Houser et al. May 1994 A
5330496 Alferness Jul 1994 A
5334159 Turkel Aug 1994 A
5334193 Nardella Aug 1994 A
5336252 Cohen Aug 1994 A
5339800 Wiita et al. Aug 1994 A
5345927 Bonutti Sep 1994 A
5348554 Imran et al. Sep 1994 A
5353792 Lubbers et al. Oct 1994 A
5370647 Graber et al. Dec 1994 A
5373840 Knighton Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5385148 Lesh et al. Jan 1995 A
5391182 Chin Feb 1995 A
5403326 Harrison et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5421338 Crowley et al. Jun 1995 A
5431649 Mulier et al. Jul 1995 A
5453785 Lenhardt et al. Sep 1995 A
5462521 Brucker et al. Oct 1995 A
5471515 Fossum et al. Nov 1995 A
5498230 Adair Mar 1996 A
5505730 Edwards Apr 1996 A
5515853 Smith et al. May 1996 A
5527338 Purdy Jun 1996 A
5549603 Feiring Aug 1996 A
5558619 Kami et al. Sep 1996 A
5571088 Lennox et al. Nov 1996 A
5575756 Karasawa et al. Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5584872 LaFontaine et al. Dec 1996 A
5591119 Adair Jan 1997 A
5593405 Osypka Jan 1997 A
5593422 Muijs Van de Moer et al. Jan 1997 A
5593424 Northrup III Jan 1997 A
5643282 Kieturakis Jul 1997 A
5672153 Lax et al. Sep 1997 A
5676693 LaFontaine Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5695448 Kimura et al. Dec 1997 A
5697281 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5709224 Behl et al. Jan 1998 A
5713907 Hogendijk et al. Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5716321 Kerin et al. Feb 1998 A
5722403 McGee et al. Mar 1998 A
5725523 Mueller Mar 1998 A
5746747 McKeating May 1998 A
5749846 Edwards et al. May 1998 A
5749890 Shaknovich May 1998 A
5754313 Pelchy et al. May 1998 A
5766137 Omata Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5792045 Adair Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5823947 Yoon et al. Oct 1998 A
5827268 Laufer Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5842973 Bullard Dec 1998 A
5843118 Sepetka et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5860974 Abele Jan 1999 A
5860991 Klein et al. Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5873815 Kerin et al. Feb 1999 A
5879366 Shaw et al. Mar 1999 A
5895417 Pomeranz et al. Apr 1999 A
5897487 Ouchi Apr 1999 A
5897553 Mulier et al. Apr 1999 A
5902328 LaFontaine et al. May 1999 A
5904651 Swanson et al. May 1999 A
5908445 Whayne et al. Jun 1999 A
5916147 Boury Jun 1999 A
5925038 Panescu et al. Jul 1999 A
5928250 Koike et al. Jul 1999 A
5929901 Adair et al. Jul 1999 A
5941845 Tu et al. Aug 1999 A
5944690 Falwell et al. Aug 1999 A
5964755 Edwards Oct 1999 A
5968053 Revelas Oct 1999 A
5971983 Lesh Oct 1999 A
5985307 Hanson et al. Nov 1999 A
5986693 Adair et al. Nov 1999 A
5997571 Farr et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6012457 Lesh Jan 2000 A
6013024 Mitsuda et al. Jan 2000 A
6024740 Lesh et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6036685 Mueller Mar 2000 A
6043839 Adair et al. Mar 2000 A
6047218 Whayne et al. Apr 2000 A
6063077 Schaer May 2000 A
6063081 Mulier et al. May 2000 A
6068653 LaFontaine May 2000 A
6071279 Whayne et al. Jun 2000 A
6071302 Sinofsky et al. Jun 2000 A
6081740 Gombrich et al. Jun 2000 A
6086528 Adair Jul 2000 A
6086534 Kesten Jul 2000 A
6099498 Addis Aug 2000 A
6099514 Sharkey et al. Aug 2000 A
6102905 Baxter et al. Aug 2000 A
6112123 Kelleher et al. Aug 2000 A
6115626 Whayne et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6129724 Fleischman et al. Oct 2000 A
6139508 Simpson et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6156350 Constantz Dec 2000 A
6159203 Sinofsky Dec 2000 A
6161543 Cox et al. Dec 2000 A
6164283 Lesh Dec 2000 A
6167297 Benaron Dec 2000 A
6168591 Sinofsky Jan 2001 B1
6168594 LaFontaine et al. Jan 2001 B1
6174307 Daniel et al. Jan 2001 B1
6178346 Amundson et al. Jan 2001 B1
6190381 Olsen et al. Feb 2001 B1
6211904 Adair et al. Apr 2001 B1
6224553 Nevo May 2001 B1
6231561 Frazier et al. May 2001 B1
6234995 Peacock, III May 2001 B1
6235044 Root et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238393 Mulier et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6254598 Edwards et al. Jul 2001 B1
6258083 Daniel et al. Jul 2001 B1
6263224 West Jul 2001 B1
6270492 Sinofsky Aug 2001 B1
6275255 Adair et al. Aug 2001 B1
6280450 McGuckin, Jr. Aug 2001 B1
6290689 Delaney et al. Sep 2001 B1
6306081 Ishikawa et al. Oct 2001 B1
6310642 Adair et al. Oct 2001 B1
6311692 Vaska et al. Nov 2001 B1
6314962 Vaska et al. Nov 2001 B1
6314963 Vaska et al. Nov 2001 B1
6315777 Comben Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6322536 Rosengart et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6328727 Frazier et al. Dec 2001 B1
6358247 Altman et al. Mar 2002 B1
6358248 Mulier et al. Mar 2002 B1
6375654 McIntyre Apr 2002 B1
6379345 Constantz Apr 2002 B1
6383195 Richard May 2002 B1
6385476 Osadchy et al. May 2002 B1
6387043 Yoon May 2002 B1
6387071 Constantz May 2002 B1
6394096 Constantz May 2002 B1
6396873 Goldstein et al. May 2002 B1
6398780 Farley et al. Jun 2002 B1
6401719 Farley et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6416511 Lesh et al. Jul 2002 B1
6419669 Frazier et al. Jul 2002 B1
6423051 Kaplan et al. Jul 2002 B1
6423055 Farr et al. Jul 2002 B1
6423058 Edwards et al. Jul 2002 B1
6428536 Panescu et al. Aug 2002 B2
6436118 Kayan Aug 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440119 Nakada et al. Aug 2002 B1
6458151 Saltiel Oct 2002 B1
6461327 Addis et al. Oct 2002 B1
6464697 Edwards et al. Oct 2002 B1
6474340 Vaska et al. Nov 2002 B1
6475223 Werp et al. Nov 2002 B1
6478769 Parker Nov 2002 B1
6482162 Moore Nov 2002 B1
6484727 Vaska et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488671 Constantz et al. Dec 2002 B1
6494902 Hoey et al. Dec 2002 B2
6497705 Comben Dec 2002 B2
6500174 Maguire et al. Dec 2002 B1
6502576 Lesh Jan 2003 B1
6514249 Maguire et al. Feb 2003 B1
6517533 Swaminathan Feb 2003 B1
6527979 Constantz et al. Mar 2003 B2
6532380 Close et al. Mar 2003 B1
6533767 Johansson et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6540733 Constantz et al. Apr 2003 B2
6540744 Hassett et al. Apr 2003 B2
6544195 Wilson et al. Apr 2003 B2
6547780 Sinofsky Apr 2003 B1
6558375 Sinofsky et al. May 2003 B1
6558382 Jahns et al. May 2003 B2
6562020 Constantz et al. May 2003 B1
6572609 Farr et al. Jun 2003 B1
6579285 Sinofsky Jun 2003 B2
6585732 Mulier et al. Jul 2003 B2
6587709 Solf et al. Jul 2003 B2
6593884 Gilboa et al. Jul 2003 B1
6605055 Sinofsky et al. Aug 2003 B1
6613062 Leckrone et al. Sep 2003 B1
6622732 Constantz Sep 2003 B2
6626855 Weng et al. Sep 2003 B1
6626899 Houser et al. Sep 2003 B2
6626900 Sinofsky et al. Sep 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6645202 Pless et al. Nov 2003 B1
6650923 Lesh et al. Nov 2003 B1
6658279 Swanson et al. Dec 2003 B2
6659940 Adler Dec 2003 B2
6673090 Root et al. Jan 2004 B2
6676656 Sinofsky Jan 2004 B2
6679836 Couvillon, Jr. Jan 2004 B2
6682526 Jones et al. Jan 2004 B1
6689128 Sliwa, Jr. et al. Feb 2004 B2
6692430 Adler Feb 2004 B2
6701581 Senovich et al. Mar 2004 B2
6701931 Sliwa, Jr. et al. Mar 2004 B2
6702780 Gilboa et al. Mar 2004 B1
6704043 Goldstein et al. Mar 2004 B2
6706039 Mulier et al. Mar 2004 B2
6712798 Constantz Mar 2004 B2
6719747 Constantz et al. Apr 2004 B2
6719755 Sliwa, Jr. et al. Apr 2004 B2
6730063 Delaney et al. May 2004 B2
6736810 Hoey et al. May 2004 B2
6751492 Ben-Haim Jun 2004 B2
6755790 Stewart et al. Jun 2004 B2
6755811 Constantz Jun 2004 B1
6764487 Mulier et al. Jul 2004 B2
6771996 Bowe et al. Aug 2004 B2
6773402 Govari et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6805128 Pless et al. Oct 2004 B1
6805129 Pless et al. Oct 2004 B1
6811562 Pless Nov 2004 B1
6833814 Gilboa et al. Dec 2004 B2
6840923 Lapcevic Jan 2005 B1
6840936 Sliwa, Jr. et al. Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
6858026 Sliwa, Jr. et al. Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6866651 Constantz Mar 2005 B2
6887237 McGaffigan May 2005 B2
6892091 Ben-Haim et al. May 2005 B1
6896690 Lambrecht et al. May 2005 B1
6899672 Chin et al. May 2005 B2
6915154 Docherty et al. Jul 2005 B1
6916284 Moriyama Jul 2005 B2
6916286 Kazakevich Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6929010 Vaska et al. Aug 2005 B2
6932809 Sinofsky Aug 2005 B2
6939348 Malecki et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6949095 Vaska et al. Sep 2005 B2
6953457 Farr et al. Oct 2005 B2
6955173 Lesh Oct 2005 B2
6958069 Shipp et al. Oct 2005 B2
6962589 Mulier et al. Nov 2005 B2
6971394 Sliwa, Jr. et al. Dec 2005 B2
6974464 Quijano et al. Dec 2005 B2
6979290 Mourlas et al. Dec 2005 B2
6982740 Adair et al. Jan 2006 B2
6984232 Vanney et al. Jan 2006 B2
6994094 Schwartz Feb 2006 B2
7019610 Creighton, IV et al. Mar 2006 B2
7025746 Tal Apr 2006 B2
7030904 Adair et al. Apr 2006 B2
7041098 Farley et al. May 2006 B2
7042487 Nakashima May 2006 B2
7044135 Lesh May 2006 B2
7052493 Vaska et al. May 2006 B2
7090683 Brock et al. Aug 2006 B2
7118566 Jahns Oct 2006 B2
7156845 Mulier et al. Jan 2007 B2
7163534 Brucker et al. Jan 2007 B2
7166537 Jacobsen et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7186214 Ness Mar 2007 B2
7207984 Farr et al. Apr 2007 B2
7217268 Eggers et al. May 2007 B2
7242832 Carlin et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7261711 Mulier et al. Aug 2007 B2
7263397 Hauck et al. Aug 2007 B2
7276061 Schaer et al. Oct 2007 B2
7309328 Kaplan et al. Dec 2007 B2
7323001 Clubb et al. Jan 2008 B2
7416552 Paul et al. Aug 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7527625 Knight et al. May 2009 B2
7534204 Starksen et al. May 2009 B2
7569052 Phan et al. Aug 2009 B2
7736347 Kaplan et al. Jun 2010 B2
7758499 Adler Jul 2010 B2
7860555 Saadat Dec 2010 B2
7860556 Saadat Dec 2010 B2
7918787 Saadat Apr 2011 B2
7930016 Saadat Apr 2011 B1
8050746 Saadat et al. Nov 2011 B2
8078266 Saadat et al. Dec 2011 B2
8131350 Saadat et al. Mar 2012 B2
8137333 Saadat et al. Mar 2012 B2
8221310 Saadat et al. Jul 2012 B2
8235985 Saadat et al. Aug 2012 B2
8333012 Rothe et al. Dec 2012 B2
8417321 Saadat et al. Apr 2013 B2
8419613 Saadat et al. Apr 2013 B2
8657805 Peh et al. Feb 2014 B2
8758229 Saadat et al. Jun 2014 B2
8814845 Saadat et al. Aug 2014 B2
8934962 Saadat et al. Jan 2015 B2
9055906 Saadat et al. Jun 2015 B2
20010005789 Root et al. Jun 2001 A1
20010020126 Swanson et al. Sep 2001 A1
20010031912 Adler Oct 2001 A1
20010039416 Moorman et al. Nov 2001 A1
20010047136 Domanik et al. Nov 2001 A1
20010047184 Connors Nov 2001 A1
20010052930 Adair et al. Dec 2001 A1
20020004644 Koblish Jan 2002 A1
20020026145 Bagaoisan et al. Feb 2002 A1
20020054852 Cate May 2002 A1
20020065455 Ben-Haim et al. May 2002 A1
20020068853 Adler et al. Jun 2002 A1
20020077642 Patel et al. Jun 2002 A1
20020080248 Adair et al. Jun 2002 A1
20020087166 Brock et al. Jul 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020091304 Takeshi et al. Jul 2002 A1
20020138088 Nash et al. Sep 2002 A1
20020161377 Rabkin et al. Oct 2002 A1
20020165598 Wahr et al. Nov 2002 A1
20020169377 Khairkhahan et al. Nov 2002 A1
20030009085 Arai et al. Jan 2003 A1
20030018358 Saadat Jan 2003 A1
20030035156 Cooper Feb 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030120142 Dubuc et al. Jun 2003 A1
20030130572 Phan et al. Jul 2003 A1
20030144657 Bowe et al. Jul 2003 A1
20030171741 Ziebol et al. Sep 2003 A1
20030181939 Bonutti Sep 2003 A1
20030208222 Zadno-Azizi Nov 2003 A1
20030212394 Pearson et al. Nov 2003 A1
20030216720 Sinofsky et al. Nov 2003 A1
20030220574 Markus et al. Nov 2003 A1
20030222325 Jacobsen et al. Dec 2003 A1
20040006333 Arnold et al. Jan 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040054335 Lesh et al. Mar 2004 A1
20040054389 Osypka Mar 2004 A1
20040082833 Adler Apr 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040098031 Van Der Burg et al. May 2004 A1
20040117032 Roth Jun 2004 A1
20040133113 Krishnan Jul 2004 A1
20040138707 Greenhalgh Jul 2004 A1
20040147806 Adler Jul 2004 A1
20040147911 Sinofsky Jul 2004 A1
20040147912 Sinofsky Jul 2004 A1
20040147913 Sinofsky Jul 2004 A1
20040158143 Flaherty et al. Aug 2004 A1
20040158289 Girouard et al. Aug 2004 A1
20040167503 Sinofsky Aug 2004 A1
20040181237 Forde et al. Sep 2004 A1
20040199052 Banik et al. Oct 2004 A1
20040210239 Nash et al. Oct 2004 A1
20040215180 Starkebaum et al. Oct 2004 A1
20040215183 Hoey et al. Oct 2004 A1
20040220471 Schwartz Nov 2004 A1
20040230131 Kassab et al. Nov 2004 A1
20040248837 Raz et al. Dec 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040254523 Fitzgerald et al. Dec 2004 A1
20040260182 Zuluaga et al. Dec 2004 A1
20050014995 Amundson et al. Jan 2005 A1
20050015048 Chiu et al. Jan 2005 A1
20050020914 Amundson et al. Jan 2005 A1
20050027163 Chin et al. Feb 2005 A1
20050038419 Arnold et al. Feb 2005 A9
20050059862 Phan Mar 2005 A1
20050059954 Constantz Mar 2005 A1
20050059965 Eberl et al. Mar 2005 A1
20050059984 Chanduszko et al. Mar 2005 A1
20050065504 Melsky et al. Mar 2005 A1
20050090818 Pike, Jr. et al. Apr 2005 A1
20050096502 Khalili May 2005 A1
20050096643 Brucker et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050107736 Landman et al. May 2005 A1
20050119523 Starksen et al. Jun 2005 A1
20050124969 Fitzgerald et al. Jun 2005 A1
20050131401 Malecki et al. Jun 2005 A1
20050154252 Sharkey et al. Jul 2005 A1
20050158899 Jacobsen et al. Jul 2005 A1
20050159702 Sekiguchi et al. Jul 2005 A1
20050165279 Adler et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050197530 Wallace et al. Sep 2005 A1
20050197623 Leeflang et al. Sep 2005 A1
20050215895 Popp et al. Sep 2005 A1
20050222557 Baxter et al. Oct 2005 A1
20050222558 Baxter et al. Oct 2005 A1
20050228452 Mourlas et al. Oct 2005 A1
20050234436 Baxter et al. Oct 2005 A1
20050234437 Baxter et al. Oct 2005 A1
20050267328 Blumzvig et al. Dec 2005 A1
20050267452 Farr et al. Dec 2005 A1
20060009715 Khairkhahan et al. Jan 2006 A1
20060009737 Whiting et al. Jan 2006 A1
20060015096 Hauck et al. Jan 2006 A1
20060022234 Adair et al. Feb 2006 A1
20060025651 Adler et al. Feb 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060030844 Knight et al. Feb 2006 A1
20060069303 Couvillon et al. Mar 2006 A1
20060074398 Whiting et al. Apr 2006 A1
20060084839 Mourlas et al. Apr 2006 A1
20060084945 Moll et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060111614 Saadat et al. May 2006 A1
20060122587 Sharareh Jun 2006 A1
20060146172 Jacobsen et al. Jul 2006 A1
20060149331 Mann et al. Jul 2006 A1
20060155242 Constantz Jul 2006 A1
20060161133 Laird et al. Jul 2006 A1
20060167439 Kalser et al. Jul 2006 A1
20060183992 Kawashima Aug 2006 A1
20060184048 Saadat Aug 2006 A1
20060217755 Eversull et al. Sep 2006 A1
20060224167 Weisenburgh et al. Oct 2006 A1
20060253113 Arnold et al. Nov 2006 A1
20060258909 Saadat et al. Nov 2006 A1
20060271032 Chin et al. Nov 2006 A1
20070005019 Okishige Jan 2007 A1
20070015964 Eversull et al. Jan 2007 A1
20070016130 Leeflang et al. Jan 2007 A1
20070043338 Moll et al. Feb 2007 A1
20070043413 Eversull et al. Feb 2007 A1
20070049923 Jahns Mar 2007 A1
20070055142 Webler Mar 2007 A1
20070078451 Arnold et al. Apr 2007 A1
20070083187 Eversull et al. Apr 2007 A1
20070083217 Eversull et al. Apr 2007 A1
20070093808 Mulier et al. Apr 2007 A1
20070100241 Adler May 2007 A1
20070100324 Tempel et al. May 2007 A1
20070106146 Claudio et al. May 2007 A1
20070106214 Gray et al. May 2007 A1
20070106287 O'Sullivan May 2007 A1
20070135826 Zaver et al. Jun 2007 A1
20070167801 Webler et al. Jul 2007 A1
20070167828 Saadat Jul 2007 A1
20070265609 Thapliyal et al. Nov 2007 A1
20070265610 Thapliyal et al. Nov 2007 A1
20070270686 Ritter et al. Nov 2007 A1
20070282371 Lee et al. Dec 2007 A1
20070287886 Saadat Dec 2007 A1
20070293724 Saadat et al. Dec 2007 A1
20080009747 Saadat et al. Jan 2008 A1
20080009859 Auth et al. Jan 2008 A1
20080015445 Saadat et al. Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080015569 Saadat et al. Jan 2008 A1
20080027464 Moll et al. Jan 2008 A1
20080033241 Peh et al. Feb 2008 A1
20080033290 Saadat et al. Feb 2008 A1
20080057106 Erickson et al. Mar 2008 A1
20080058590 Saadat et al. Mar 2008 A1
20080058650 Saadat et al. Mar 2008 A1
20080058836 Moll et al. Mar 2008 A1
20080097476 Peh et al. Apr 2008 A1
20080183081 Lys et al. Jul 2008 A1
20080188759 Saadat et al. Aug 2008 A1
20080214889 Saadat et al. Sep 2008 A1
20080228032 Starksen et al. Sep 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080281293 Peh et al. Nov 2008 A1
20080287790 Li Nov 2008 A1
20080287805 Li Nov 2008 A1
20090030276 Saadat et al. Jan 2009 A1
20090030412 Willis et al. Jan 2009 A1
20090048480 Klenk et al. Feb 2009 A1
20090054803 Saadat et al. Feb 2009 A1
20090062790 Malchano et al. Mar 2009 A1
20090076489 Welches et al. Mar 2009 A1
20090076498 Saadat et al. Mar 2009 A1
20090082623 Rothe et al. Mar 2009 A1
20090125022 Saadat et al. May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090187074 Saadat et al. Jul 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090221871 Peh et al. Sep 2009 A1
20090227999 Willis et al. Sep 2009 A1
20090264727 Markowitz et al. Oct 2009 A1
20090267773 Markowitz et al. Oct 2009 A1
20090275799 Saadat et al. Nov 2009 A1
20090275842 Saadat et al. Nov 2009 A1
20090299363 Saadat et al. Dec 2009 A1
20090326572 Peh et al. Dec 2009 A1
20100004506 Saadat et al. Jan 2010 A1
20100004633 Rothe et al. Jan 2010 A1
20100004661 Verin et al. Jan 2010 A1
20100010311 Miller et al. Jan 2010 A1
20100094081 Rothe et al. Apr 2010 A1
20100130836 Malchano et al. May 2010 A1
20100292558 Saadat et al. Nov 2010 A1
20110060227 Saadat Mar 2011 A1
20110060298 Saadat Mar 2011 A1
20110144576 Rothe et al. Jun 2011 A1
20120016221 Saadat et al. Jan 2012 A1
20120059366 Drews et al. Mar 2012 A1
20120150046 Watson et al. Jun 2012 A1
20130023731 Saadat et al. Jan 2013 A1
20130131448 Saadat et al. May 2013 A1
20140114129 Peh et al. Apr 2014 A1
20140350412 Saadat et al. Nov 2014 A1
20150094577 Saadat et al. Apr 2015 A1
20150190036 Saadat Jul 2015 A1
Foreign Referenced Citations (49)
Number Date Country
10028155 Dec 2000 DE
0283661 Sep 1988 EP
0842673 May 1998 EP
0301288 Feb 1999 EP
59093413 May 1984 JP
59-181315 Oct 1984 JP
01-221133 Sep 1989 JP
03-284265 Dec 1991 JP
05-103746 Apr 1993 JP
H06507809 Sep 1994 JP
09-051897 Feb 1997 JP
11-299725 Nov 1999 JP
2001504363 Apr 2001 JP
2001-258822 Sep 2001 JP
WO 9221292 Dec 1992 WO
WO 9407413 Apr 1994 WO
WO 9503843 Feb 1995 WO
WO-9740880 Nov 1997 WO
WO 9818388 May 1998 WO
WO-0024310 May 2000 WO
WO-01049356 Jul 2001 WO
WO-0172368 Oct 2001 WO
WO-0230310 Apr 2002 WO
WO 03039350 May 2003 WO
WO-03037416 May 2003 WO
WO 03053491 Jul 2003 WO
WO-03073942 Sep 2003 WO
WO 03101287 Dec 2003 WO
WO 2004043272 May 2004 WO
WO 2004080508 Sep 2004 WO
WO 2005070330 Aug 2005 WO
WO 2005077435 Aug 2005 WO
WO 2005081202 Sep 2005 WO
WO 2006017517 Feb 2006 WO
WO 2006024015 Mar 2006 WO
WO 2006083794 Aug 2006 WO
WO 2006091597 Aug 2006 WO
WO 2006126979 Nov 2006 WO
WO 2007067323 Jun 2007 WO
WO 2007079268 Jul 2007 WO
WO 2007133845 Nov 2007 WO
WO 2007134258 Nov 2007 WO
WO 2008015625 Feb 2008 WO
WO 2008021994 Feb 2008 WO
WO 2008021997 Feb 2008 WO
WO 2008021998 Feb 2008 WO
WO 2008024261 Feb 2008 WO
WO 2008079828 Jul 2008 WO
WO 2009112262 Sep 2009 WO
Non-Patent Literature Citations (93)
Entry
European Patent Application No. 07812146.4 filed Jun. 14, 2007 in the name of Voyage Medical, Inc., European Search Report mailed Nov. 18, 2010.
European Patent Application No. 07799466.3 filed Jul. 10, 2007 in the name of Voyage Medical, Inc., European Search Report mailed Nov. 18, 2010.
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Peh et al., non-final Office Action mailed Dec. 16, 2010.
U.S. Appl. No. 12/026,455, filed Feb. 5, 2008 in the name of Saadat et al., non-final Office Action mailed Dec. 27, 2010.
U.S. Appl. No. 11/259,498, filed Oct. 25, 2005 in the name of Saadat, Notice of Allowance mailed Nov. 15, 2010.
U.S. Appl. No. 11/560,742, filed Nov. 16, 2006 in the name of Saadat, Notice of Allowance mailed Nov. 15, 2010.
U.S. Appl. No. 11/560,732, filed Nov. 16, 2006 in the name of Saadat, Notice of Allowance mailed Feb. 3, 2011.
U.S. Appl. No. 12/464,800, filed May 12, 2009 in the name of Peh et al., non-final Office Action mailed Nov. 24, 2010.
U.S. Appl. No. 11/848,429, filed Aug. 31, 2007 in the name of Peh et al., non-final Office Action mailed Nov. 24, 2010.
Avitall, A Catheter System to Ablate Atrial Fibrillation in a Sterile Pericarditis Dog Model, Pace, vol. 17, p. 774, 1994.
Avitall, Right-Sided Driven Atrial Fibrillation in a Sterile Pericarditis Dog Model, Pace, vol. 17, p. 774, 1994.
Avitall, Vagally Mediated Atrial Fibrillation in a Dog Model can be Ablated by Placing Linear Radiofrequency Lesions at the Junction of the Right Atrial Appendage and the Superior Vena Cava, Pace, vol. 18, p. 857, 1995.
Baker, Nonpharmacologic Approaches to the Treatment of Atrial Fibrillation and Atrial Flutter, J. Cardiovasc. Electrophysiol., vol. 6, pp. 972-978, 1995.
Bhakta, Principles of Electroanatomic Mapping, Indian Pacing & Electrophysiol J., vol. 8, No. 1, pp. 32-50, 2008.
Bidoggia, Transseptal Left Heart Catheterization: Usefulness of the Intracavitary Electrocardiogram in the Localization of the Fossa Ovalis, Cathet Cardiovasc Diagn., vol. 24, No. 3, pp. 221-225, 1991.
Bredikis, Surgery of Tachyarrhythmia: Intracardiac Closed Heart Cryoablation, Pace, vol. 13, pp. 1980-1984, 1990.
Cox, Cardiac Surgery for Arrhythmias, J. Cardiovasc. Electrophysiol., vol. 15, pp. 250-262, 2004.
Cox, Five-Year Experience With the Maze Procedure for Atrial Fibrillation, Ann. Thorac. Surg., vol. 56, pp. 814-824, 1993.
Cox, Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation, J. Thorac. Cardiovasc. Surg., vol. 110, pp. 473-484, 1995.
Cox, The Status of Surgery for Cardiac Arrhythmias, Circulation, vol. 71, pp. 413-417, 1985.
Cox, The Surgical Treatment of Atrial Fibrillation, J. Thorac Cardiovasc. Surg., vol. 101, pp. 584-592, 1991.
Elvan, Replication of the “Maze” Procedure by Radiofrequency Catheter Ablation Reduces the Ability to Induce Atrial Fibrillation, Pace, vol. 17, p. 774, 1994.
Elvan, Radiofrequency Catheter Ablation (RFCA) of the Atria Effectively Abolishes Pacing Induced Chronic Atrial Fibrillation, Pace, vol. 18, p. 856, 1995.
Elvan, Radiofrequency Catheter Ablation of the Atria Reduces Inducibility and Duration of Atrial Fibrillation in Dogs, Circulation, vol. 91, pp. 2235-2244, 1995.
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., extended European Search Report mailed Jul. 1, 2009.
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., office action mailed Oct. 23, 2009.
Fieguth, Inhibition of Atrial Fibrillation by Pulmonary Vein Isolation and Auricular Resection—Experimental Study in a Sheep Model, European J. Cardiothorac. Surg., vol. 11, pp. 714-721, 1997.
Hoey, Intramural Ablation Using Radiofrequency Energy Via Screw-Tip Catheter and Saline Electrode, Pace, vol. 18, p. 487, 1995.
Huang, Increase in the Lesion Size and Decrease in the Impedance Rise with a Saline Infusion Electrode Catheter for Radiofrequency, Circulation, vol. 80, No. 4, pp. 11-324, 1989.
Moser, Angioscopic Visualization of Pulmonary Emboli, Chest, vol. 77, No. 2, pp. 198-201, 1980.
Nakamura, Percutaneous Intracardiac Surgery With Cardioscopic Guidance, SPIE, vol. 1652, pp. 214-216, 1992.
Pappone, Circumferential Radiofrequency Ablation of Pulmonary Vein Ostia, Circulation, vol. 102, pp. 2619-2628, 2000.
Sethi, Transseptal Catheterization for the Electrophysiologist: Modification with a “View”, J. Interv. Card. Electrophysiol., vol. 5, pp. 97-99, 2001, Kluwer Academic Publishers, Netherlands.
Thiagalingam, Cooled Needle Catheter Ablation Creates Deeper and Wider Lesions than Irrigated Tip Catheter Ablation, J. Cardiovasc. Electrophysiol., vol. 16, pp. 1-8, 2005.
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., Non-final Office Action mailed Jan. 14, 2010.
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Saadat et al., Non-final Office Action mailed Jun. 8, 2009.
Willkampf, Radiofrequency Ablation with a Cooled Porous Electrode Catheter, JACC, vol. 11, No. 2, p. 17A, 1988.
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Office Action mailed Nov. 12, 2010.
U.S. Appl. No. 12/947,198, filed Nov. 16, 2010 in the name of Saadat, non-final Office Action mailed Feb. 18, 2011.
U.S. Appl. No. 12/947,246, filed Nov. 16, 2006 in the name of Saadat, Notice of Allowance mailed Feb. 18, 2011.
U.S. Appl. No. 11/687,597, filed Mar. 16, 2007 in the name of Saadat, Notice of Allowance mailed Feb. 24, 2011.
U.S. Appl. No. 11/560,732, filed Mar. 16, 2007 in the name of Saadat, Notice of Allowance mailed Feb. 24, 2011.
U.S. Appl. No. 11/848,207, filed Aug. 30, 2007 in the name of Saadat et al., non-final Office Action mailed Feb. 25, 2011.
Japanese Patent Application No. 2007-554156 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Office Action mailed Feb. 15, 2011.
European Patent Application No. 07758716.0 filed Mar. 16, 2007 in the name of Voyage Medical, Inc., Supplemental European Search Report mailed Feb. 28, 2011.
U.S. Appl. No. 11/848,202, filed Aug. 30, 2007 in the name of Saadat et al., non-final Office Action mailed Mar. 11, 2011.
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., Examinatin Communication mailed May 18, 2010.
European Patent Application No. 07841754.0 filed Aug. 31, 2007 in the name of Saadat et al., Supplemental European Search Report mailed Jun. 30, 2010.
European Patent Application No. 08746822.9 filed Apr. 24, 2008 in the name of Rothe et al., European Search Report mailed Mar. 29, 2010.
European Patent Application No. 08746822.9 filed Apr. 24, 2008 in the name of Rothe et al., Office Action mailed Jul. 13, 2010.
U.S. Appl. No. 11/259,498, filed Oct. 25, 2005 in the name of Saadat et al., Non final Office Action mailed Feb. 25, 2010.
U.S. Appl. No. 11/560,742, filed Nov. 16, 2006 in the name of Saadat, Non-final Office Action mailed Jun. 10, 2010.
U.S. Appl. No. 11/687,597, filed Mar. 16, 2007 in the name of Saadat et al., Non-final Office Action mailed Jul 21, 2010.
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Peh et al., Final Office Action mailed Mar. 1, 2010.
U.S. Appl. No. 61/286,283, filed Dec. 14, 2009 in the name of Rothe et al.
U.S. Appl. No. 61/297,462, filed Jan. 22, 2010 in the name of Rothe et al.
Uchida, Developmental History of Cardioscopes, Coronary Angioscopy, pp. 187-197, 2001, Futura Publishing Co., Armonk, NY.
U.S. Appl. No. 11/775,771, filed Jul. 10, 2007 in the name of Saadat et al., Non-final Office Action mailed Aug. 27, 2010.
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., final Office Action mailed Sep. 16, 2010.
U.S. Appl. No. 11/763,399, filed Jun. 14, 2007 in the name of Saadat et al., non-final Office Action mailed Apr. 11, 2011.
U.S. Appl. No. 12/499,011, filed Jul. 7, 2009 in the name of Rothe et al., non-final Office Action mailed Apr. 12, 2011.
U.S. Appl. No. 12/367,019, filed Feb. 6, 2009 in the name of Miller et al., non-final Office Action mailed Apr. 22, 2011.
U.S. Appl. No. 11/959,158, filed Dec. 18, 2007 in the name of Saadat et al., non-final Office Action mailed Apr. 25, 2011.
U.S. Appl. No. 11/848,532, filed Aug. 31, 2007 in the name of Saadat et al., non-final Office Action mailed Apr. 26, 2011.
U.S. Appl. No. 11/828,281, filed Jul. 25, 2007 in the name of Peh et al., non-final Office Action mailed Apr. 27, 2011.
U.S. Appl. No. 11/961,950, filed Dec. 20, 2007 in the name of Saadat et al., non-final Office Action mailed May 9, 2011.
U.S. Appl. No. 11/962,029, filed Dec. 20, 2007 in the name of Saadat et al., non-final Office Action mailed May 9, 2011.
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., non-final Office Action mailed May 11, 2011.
Japanese Patent Application No. 2009-500630 filed Mar. 16, 2007 in the name of Voyage Medical, Inc., Office Action mailed Apr. 27, 2011.
U.S. Appl. No. 11/775,771, filed Jul. 10, 2007 in the name of Saadat et al., final Office Action mailed May 12, 2011.
U.S. Appl. No. 11/877,386, filed Oct. 23, 2007 in the name of Saadat et al., non-final Office Action mailed May 20, 2011.
U.S. Appl. No. 11/775,819, filed Jul. 10, 2007 in the name of Saadat et al., non-final Office Action mailed May 20, 2011.
U.S. Appl. No. 11/775,837, filed Jul. 10, 2007 in the name of Saadat et al., non-final Office Action mailed May 23, 2011.
U.S. Appl. No. 12/117,655 filed May 8, 2008 in the name of Peh et al., final Office Action mailed Jun. 2, 2011.
U.S. Appl. No. 12/323,281, filed Nov. 25, 2008 in the name of Saadat et al., non-final Office Action mailed Jun. 7, 2011.
Japanese Patent Application No. 2007-554156 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Notice of Allowance mailed Jun. 13, 2011.
Extended European search report for Application No. EP20070758716 mailed on Feb. 28, 2011, 8 Pages.
Extended European search report for Application No. EP20070799466 mailed on Nov. 18, 2010, 9 pages.
Final Office Action mailed on Oct. 5, 2010 for U.S. Appl. No. 11/810,850, filed Jun. 7, 2007.
International Search Report and Written Opinion for Application No. PCT/US2007/073184, mailed on Aug. 12, 2012, 7 pages.
International Search Report for Application No. PCT/US2006/003288, mailed on Aug. 9, 2007, 1 page.
International Search Report for Application No. PCT/US2007/064195, mailed on Dec. 7, 2007, 1 page.
International Search Report for Application No. PCT/US2007/071226, mailed on Sep. 4, 2008, 1 page.
International Search Report for Application No. PCT/US2007/077429, mailed on Apr. 7, 2008, 1 page.
Non-Final Office Action mailed Aug. 8, 2011 for U.S. Appl. No. 12/464,800, filed May 12, 2009.
Non-Final Office Action mailed Jun. 8, 2009 for U.S. Appl. No. 12/117,655, filed May 8, 2008.
Non-Final Office Action mailed May 9, 2011 for U.S. Appl. No. 11/961,995, filed Dec. 20, 2007.
Non-Final Office Action mailed Mar. 16, 2010 for U.S. Appl. No. 11/810,850, filed Jun. 7, 2007.
Non-Final Office Action mailed Feb. 18, 2011 for U.S. Appl. No. 12/947,246, filed Nov. 16, 2006.
Written Opinion for Application No. PCT/US2006/003288, mailed on Aug, 9, 2007, 6 pages.
Written Opinion for Application No. PCT/US2007/064195, mailed on Dec. 7, 2007, 5 pages.
Written Opinion for Application No. PCT/US2007/071226, mailed on Sep. 4, 2008, 4 page.
Written Opinion for Application No. PCT/US2007/077429, mailed on Apr. 7, 2008, 5 pages.
Related Publications (1)
Number Date Country
20090299363 A1 Dec 2009 US
Provisional Applications (2)
Number Date Country
60871415 Dec 2006 US
60871424 Dec 2006 US