In the petroleum industry, wells are drilled into the surface of the Earth to access and produce hydrocarbons. The process of building a well is often split into two parts: drilling and completion. Drilling a well may include using a drilling rig to drill a hole into the ground, trip in at least one string of casing, and cement the casing string in place. The casing string is used to define the structure of the well, provide support for the wellbore walls, and prevent unwanted fluid from being produced. The casing string is cemented in place to prevent formation fluids from exiting the formation and provide further structure for the well.
After a casing string has been placed in the well, the annulus located between the casing string and the wellbore wall must be cemented completely (i.e., to surface) or partially. This is done by pumping cement from the surface, through the inside of the casing string, and up the outside of the casing string (the annulus) to the required height. Oftentimes, the slurry of cement is followed by another type of fluid and/or a wiper plug to push the remainder of the cement out of the inside of the casing and into the annulus, leaving a small amount of cement inside of the casing string. The cement is left to harden before the next section of the well is drilled or the well is completed.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
The present invention presents, in one or more embodiments, apparatuses and methods for off-bottom cementing of a tubular in a well. In one embodiment, the apparatus includes a float shoe attached to a distal end of the tubular, a controllable port penetrating a wall of the float shoe, and a sleeve mounted at a position, below the controllable port, on an exterior surface of the float shoe. The sleeve is pushed into a wellbore in response to an activation signal to isolate an annulus. The controllable port has an open position that allows cement to be pumped from an inside of the tubular to the annulus to cement the tubular in place.
In another embodiment, the apparatus includes a float shoe attached to a distal end of the tubular, a controllable port penetrating a wall of the float shoe, and an expandable packer mounted at a position on an exterior surface of the float shoe, below the controllable port. The expandable packer expands when exposed to a chemical activation signal. The controllable port has an open position that allows cement to be pumped from an inside of the tubular to an annulus of the tubular to cement the tubular in place.
The method includes setting a tubular above a bottom of the well. The tubular having a float shoe attached to a distal end of the tubular and a controllable port penetrating a wall of the float shoe. The method further includes isolating a section of the annulus, opening the controllable port, and pumping cement through the controllable port into the section of the annulus to cement the annulus of the well.
Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.
Specific embodiments of the disclosed technology will now be described in detail with reference to the accompanying figures. Like elements in the various figures are denoted by like reference numerals for consistency. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not necessarily drawn to scale, and some of these elements may be arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not necessarily intended to convey any information regarding the actual shape of the particular elements and have been solely selected for ease of recognition in the drawing.
In the following detailed description of embodiments of the disclosure, numerous specific details are set forth in order to provide a more thorough understanding of the disclosure. However, it will be apparent to one of ordinary skill in the art that the disclosure may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
Throughout the application, ordinal numbers (e.g., first, second, third, etc.) may be used as an adjective for an element (i.e., any noun in the application). The use of ordinal numbers is not to imply or create any particular ordering of the elements nor to limit any element to being only a single element unless expressly disclosed, such as using the terms “before”, “after”, “single”, and other such terminology. Rather, the use of ordinal numbers is to distinguish between the elements. By way of an example, a first element is distinct from a second element, and the first element may encompass more than one element and succeed (or precede) the second element in an ordering of elements.
After a hole section has been drilled, a string of casing is run into a well to a planned target depth. This target depth is usually at the “bottom” of the hole section (i.e., anywhere from 3 - 10 feet off of the bottom-most portion of the drilled wellbore). However, there are multiple scenarios that prevent the casing from being run to the target depth. These scenarios include running into an obstacle while running in hole, drilling past the planned target depth, missing the planned target depth due to formation uncertainties, etc.
When a string of casing cannot be run to the target depth (i.e., “bottom”), the casing string is considered to be “off bottom” (i.e., the casing string’s deepest point is greater than 10 ft away from the bottom-most portion of the drilled wellbore). In this scenario, the casing must still be cemented in place as normal. As such,
The conventional off bottom cementing system depicted in
The second casing string (106) is a tubular made of a material that can withstand downhole temperatures and pressures, such as steel. The second casing string (106) has an annulus (108) located between the outer surface of the second casing string (106) and the inner surface of the wellbore (100). The annulus (108) is also located between the outer surface of the second casing string (106) and the inner surface of the first casing string (104). The second casing string (106) has a distal end (110). The distal end (110) is the end of the second casing string (106) closest to the bottom (102).
The second casing string (106) further includes a float collar (112) and a float shoe (114). The float shoe (114) is attached to the distal end (110) of the second casing string (106). The float shoe (114) may have a rounded profile that helps the second casing string (106) be tripped into the wellbore (100). The float shoe (114) has a float valve (116) on the inside of the float shoe (114). The float valve (116) is an integral check valve that allows fluid to flow in one direction within the second casing string (106), the direction being from the surface to the distal end (110). The float valve (116) prevents reverse flow of fluid or U-tubing of fluid from entering the inside of the second casing string (106).
The float shoe (114) may also include profiles for cement plugs to seat in when performing a one or two plug cementing operation. The external portion of the float shoe (114) may be made of the same material as the second casing string (106) and the inside components may be made of cement or thermoplastic, because this material must be drilled out, if the well is to be deepened beyond the second casing string (106). The float collar (112) is located above the float shoe (114) along the distal end (110) of the second casing string (106). The float collar (112) may also have a float valve (116) to act as a redundancy. The float collar (112) may also have profiles for cement plugs to seat in, and the float collar (112) may be made of the same materials as the float shoe (114).
The space between the distal end (110) of the second casing string (106) and the bottom (102) of the wellbore (100) is called the open hole (118). The open hole (118) is at least 50 feet long when the second casing string (106) has been set off bottom (102), as shown in
Cementing an off bottom (102) string of casing requires a much larger volume of cement (120) than would be required if the second casing string (106) had been set at the bottom (102) of the wellbore (100). Further, the entirety of the open hole (118) will be filled with hardened cement (120) that must be drilled out before the well can be deepened and/or put on production. Therefore, systems and methods that allow a casing string, which has been set off bottom (102), to be cemented without having to completely fill up the open hole (118) are beneficial.
As such, embodiments disclosed herein present systems that may be put in place to allow a casing string to be cemented at any depth regardless of the bottom (102) of the wellbore (100). These systems help prevent the cement (120) from entering the open hole (118), beneath the casing string, and may act as a contingency when a casing string cannot be set at the bottom (102) of the wellbore (100).
The second casing string (106) has a controllable port (200) penetrating a wall of the float shoe (114). There may be more than one controllable port (200). The controllable port (200) may have a closed position and an open position. The closed position means that there is no fluid communication between the inside of the second casing string (106) and the annulus (108). The open position means that there is fluid communication between the inside of the second casing string (106) and the annulus (108).
The second casing string (106) also has a sleeve (202) mounted at a position, below the controllable port (200), on an exterior surface of the float shoe (114). The sleeve (202) is configured to move from a first position to a second position. The first position allows fluid communication between the annulus (108) and the open hole (118), the second position isolates the annulus (108) from the open hole (118). The second position occurs when the sleeve (202) is pushed into the wellbore (100) in response to an activation signal.
The sleeve (202) may be made of a metallic material. The sleeve (202) is formed in a rounded shape when in the second position. When the sleeve (202) is pushed into the wellbore (100), the sleeve (202) cuts through the rock and is able to be hung off from the rock. The sleeve (202) fills the space in the annulus (108) such that fluid is prevented from going from the annulus (108) to the open hole (118).
The second casing string (106) also has a ball seat (204) fixed within the float shoe (114) and located between the sleeve (202) and the controllable port (200), wherein the ball seat (204) is configured to receive a ball (206), and, upon reception of the ball (206), fluid is unable to pass through the ball seat (204). The ball seat (204) may be a float valve (116). The ball (206) may be sized to be able to fit through the float valve (116) on the float collar (112) yet not pass through/sit on the float valve (116)/ball seat (204) located in the float shoe (114).
When the first predetermined pressure is reached, the sleeve (202) may move to the second position as shown in
The dissolvable ring (300) is made of a material that dissolves when exposed to a chemical activation signal. The chemical activation signal may be the presence of a chemical (302). The chemical (302) may be any chemical known in the art that may cause a material dissolve.
The chemical (302) is free to be pumped to the float shoe (114) due to the float valve (116) allowing fluid to pass from the inside of the second casing string (106) to the open hole (118). The chemical (302) dissolves the dissolvable ring (300) to put the controllable port (200) in the open position. The chemical (302) also activates the float shoe (114) to block the float shoes’ (114) float valve (116) such that no more fluid may pass through the float valve (116). The controllable port (200) being in the open position creates a hydraulic flow path between the inside of the second casing string (106) and the annulus (108).
The activation signal that places the sleeve (202) in the second position may be the dissolvable ring (300) being dissolved. The springs (400) of the sleeve (202) respond to the activation signal (i.e., the dissolvable ring (300) being dissolved) to push the sleeve (202) into the wellbore (100). The sleeve (202) is shown in the second position and the controllable port (200) is shown in the open position in
The ball seat (204) is fixed within the float shoe (114) and located below the expandable packer (500) and the controllable port (200). The ball seat (204) is configured to receive a ball (206), and, upon reception of the ball (206), fluid is unable to pass through the ball seat.
As the pressure builds on top of the ball (206), a second predetermined pressure is reached. This second predetermined pressure shears shear pins (not pictured) located in the controllable port (200). The shearing of the shear pins places the controllable port (200) in the open position and a hydraulic flow path is created between the inside of the second casing string (106) and the annulus (108). Circulation of fluid may be established to confirm that the controllable port (200) is opened.
Circulation of the chemical (302) may be established to confirm that the controllable port (200) is opened.
At this point, cement (120) may be pumped into the second casing string (106), out of the open controllable port (200) and into the annulus (108). A plug (not pictured) may follow the cement (120) slurry to wipe the cement (120) out of the inside of the second casing string (106). The plug may latch in the float collar (112) or the float shoe (114) to cover the open controllable port (200).
Initially, a tubular is set above a bottom (102) of a well (S800). The well may include a first casing string (104) set to a particular depth and a wellbore (100) drilled past the first casing string (104). The tubular may be a second casing string (106) that is set to a depth off bottom (102) of the wellbore (100). The second casing string (106) includes a float shoe (114) that is attached to a distal end (110) of the second casing string (106). A controllable port (200) having an open position and a closed position penetrates the wall of the float shoe (114). A ball seat (204) may be fixed within the float shoe (114) and may be located beneath the controllable port (200). The float shoe (114) may have a float valve (116) An annulus (108) is located around the outside of the second casing string (106).
A ball (206) may be pumped into the ball seat (204) to prevent fluid from passing through the ball seat (204). Fluid may be pumped on the ball (206) while the ball (206) is in the ball seat (204). This causes pressure to build up within the second casing string (106). A section of the annulus (108) is isolated (S802). The section of the annulus (108) may be isolated by pushing a sleeve into a wellbore (100) in response to an activation signal. The sleeve (202) may be located beneath the ball seat (204) along the distal end (110) of the second casing string (106). The activation signal may include a first predetermined pressure being reached by pumping fluid on the ball (206) in the ball seat (204). The activation signal may also be a dissolvable ring (300) being dissolved by a chemical (302). When the dissolvable ring (300) is dissolved, springs (400) release the sleeve (202) and push the sleeve (202) into the wellbore (100).
The section of the annulus (108) may be isolated by exposing an expandable packer (500) to a chemical (302) activation signal. The expandable packer (500) may be located between the ball seat (204) and the controllable port (200) or between the float valve (116) and the controllable port (200). The expandable packer (500) has hydraulic access to the inside of the second casing string (106), but also expands in a lateral direction away from the second casing string (106) into the annulus (108) to isolate a section of the annulus (108) from the open hole (118) section beneath the second casing string (106).
The controllable port (200) is opened (S804). The controllable port (200) may be opened by applying a second predetermined pressure on the ball (206) to shear shear pins. Once the shear pins are sheared, the controllable port (200) may open to the annulus (108), thus creating hydraulic communication between the inside of the second casing string (106) and the annulus (108). The second predetermined pressure is higher than the first predetermined pressure such that the section of the annulus (108) is isolated prior to the controllable port (200) opening.
The controllable port may also have a dissolvable ring (300). The dissolvable ring (300) is designed to dissolve in the presence of a chemical (302) such as the chemical (302) activation signal that activates the expandable packer (500). When the dissolvable ring (300) dissolves, the controllable port (200) is opened. In other embodiments, the controllable port (200) may include springs (400). The springs (400) may be compressed by the expandable packer (500) keeping the controllable port (200) in the closed position. Upon expansion of the expandable packer (500), the springs (400) may open the controllable port (200). When the chemical (302) is pumped into the second casing string (106) the chemical (302) may be free to reach the float shoe (114) due to fluid being able to pass through the float shoe’s (114) float valve (116). When the chemical (302) reaches the float shoe (114), the float shoe (114) may activate to block the float shoe’s (114) float valve (116), thus preventing fluid from passing from the inside of the second casing string (106) to the open hole (102).
After the annulus (108) is isolated from the open hole (118) be either the sleeve (202) or the expandable packer (500) and the controllable port (200) is opened, cement (120) is pumped through the controllable port (200) into the section of the annulus (108) to cement the annulus (108) of the well (S806). A plug may follow the cement (120) slurry to wipe the cement (120) out of the inside of the second casing string (106). The plug may latch in the float collar (112) or the float shoe (114) to cover the open controllable port (200). The cement (120) may be left to set and harden, thus cementing the second casing string (106) (i.e., the tubular) in place.
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. § 112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
Number | Name | Date | Kind |
---|---|---|---|
3131767 | Chancellor et al. | May 1964 | A |
3527299 | Lewis | Sep 1970 | A |
3948322 | Baker | Apr 1976 | A |
4296808 | Baker et al. | Oct 1981 | A |
4469174 | Freeman | Sep 1984 | A |
4655286 | Wood | Apr 1987 | A |
5544705 | Jones et al. | Aug 1996 | A |
5732775 | Hudson et al. | Mar 1998 | A |
6668923 | Vincent et al. | Dec 2003 | B2 |
6739391 | McMahan | May 2004 | B2 |
6868906 | Vail, III et al. | Mar 2005 | B1 |
10443342 | Eidem et al. | Oct 2019 | B2 |
11203911 | Rogers et al. | Dec 2021 | B1 |
20080251253 | Lumbye | Oct 2008 | A1 |
20100314134 | Nutley et al. | Dec 2010 | A1 |
20120048551 | Allison et al. | Mar 2012 | A1 |
20120175134 | Robisson et al. | Jul 2012 | A1 |
20170130536 | Stam et al. | May 2017 | A1 |
20180163502 | Eidem et al. | Jun 2018 | A1 |
20190078408 | Fripp | Mar 2019 | A1 |
20200063524 | Giroux | Feb 2020 | A1 |
20210025259 | Al-Mousa et al. | Jan 2021 | A1 |
20210032958 | Saraya et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
105822252 | Sep 2018 | CN |
2469017 | Jun 2012 | EP |
2022193024 | Sep 2022 | WO |
Entry |
---|
Rogers et al.; “Off-Bottom Cementing Process Used Successfully With Conventional Liner-Hanger Systems With Newly Designed Selective-Release-Plug Assemblies”, AADE 2009NTCE11-01; American Association of Drilling Engineers; Nov. 1, 2009 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20230046556 A1 | Feb 2023 | US |