1. Field of the Invention
The present invention relates to the field of solar cell semiconductor devices, and to multifunction solar cells based on III-V semiconductor compounds including a metamorphic layer. More particularly, the invention relates to fabrication processes and devices also known as inverted metamorphic solar cells.
2. Description of the Related Art
Photovoltaic cells, also called solar cells, are one of the most important new energy sources that have become available in the past several years. Considerable effort has gone into solar cell development. As a result, solar cells are currently being used in a number of commercial and consumer-oriented applications. While significant progress has been made in this area, the requirement for solar cells to meet the needs of more sophisticated applications has not kept pace with demand. Applications such as satellites used in data communications have dramatically increased the demand for solar cells with improved power and energy conversion characteristics.
In satellite and other space related applications, the size, mass and cost of a satellite power system are dependent on the power and energy conversion efficiency of the solar cells used. Putting it another way, the size of the payload and the availability of on-board services are proportional to the amount of power provided. Thus, as the payloads become more sophisticated, solar cells, which act as the power conversion devices for the on-board power systems, become increasingly more important.
Solar cells are often fabricated in vertical, multifunction structures, and disposed in horizontal arrays, with the individual solar cells connected together in a series. The shape and structure of an array, as well as the number of cells it contains, are determined in part by the desired output voltage and current.
Inverted metamorphic solar cell structures such as described in M. W. Wanless et al., Lattice Mismatched Approaches for High Performance, III-V Photovoltaic Energy Converters (Conference Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Jan. 3-7, 2005, IEEE Press, 2005) present an important starting point for the development of future commercial high efficiency solar cells. The structures described in such prior art present a number of practical difficulties relating to the appropriate choice of materials and fabrication steps, in particular associated with the lattice mismatched layers between the “lower” subcell (the subcell with the lowest band gap) and the adjacent subcell.
A multi-junction solar cell of the type described by Wanlass, having an upper subcell, middle subcell and a lower subcell, includes a metamorphic buffer layer of InGaP between the last two subcells formed on the growth substrate. In the process of developing such a metamorphic buffer layer and the last subcell, it has been found that severe morphology issues occur in connection with the 2° off-cut GaAs substrate used by Wanlass at the usual growth temperature of 620° C., even though the metamorphic buffer layer appears to grow two dimensionally. At a higher growth temperature of 660° C., the morphology was not significantly improved. Moreover, although the Wanlass method yields operational triple junction solar cells, the fabrication processes associated with this method requires a large flow of phosphine in the MOCVD reactor, which is not necessarily desirable for many growth systems or high volume production.
Prior to the present invention, the materials and fabrication steps disclosed in the prior art have not been adequate to produce a commercially viable and energy efficient solar cell using commercially established fabrication processes for producing an inverted metamorphic multijunction cell structure.
Briefly, and in general terms the invention provides a method of forming a multifunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell, by providing a first substrate for the epitaxial growth of semiconductor material which is off-cut from the (001) plane by at least 6° towards the (111)A plane direction; forming a first solar subcell on the off-cut substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a grading interlayer over the second solar cell, the grading interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the grading interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell.
In another aspect, the invention also provides a method of manufacturing a solar cell by providing a first sequence of layers of semiconductor material forming a solar cell, on a substrate having an off-cut of at least 6°; mounting a surrogate substrate on top of the sequence of layers; and removing the first substrate.
In another aspect, the present invention provides a multifunction solar cell including a semiconductor substrate which is off-cut from a crystal plane by at least 6°; a first solar subcell formed on the substrate having a first band gap; a second solar subcell disposed over the first subcell and having a second band gap smaller than the first band gap; a grading interlayer disposed over the second solar subcells and having a third band gap greater than said second band gap; and a third solar subcell disposed over said grading interlayer that is lattice mismatched with respect to said middle subcell and having a fourth band gap smaller than said third band gap.
In another aspect, the present invention provides a photovoltaic solar cell comprising a top cell including base and emitter layers composed of InGaP semiconductor material, grown on a GaAs substrate having an off-cut from the (001) plane by at least 6° in the direction of the (111)A plane.
The invention will be better and more fully appreciated by reference to the following detailed description when considered in conjunction with the accompanying drawings, wherein:
Details of the present invention will now be described including exemplary aspects and embodiments thereof. Referring to the drawings and the following description, like reference numbers are used to identify like or functionally similar elements, and are intended to illustrate major features of exemplary embodiments in a highly simplified diagrammatic manner. Moreover, the drawings are not intended to depict every feature of the actual embodiment nor the relative dimensions of the depicted elements, and are not drawn to scale
The basic concept of fabricating an inverted metamorphic multijunction (IMM) solar cell is to grow the subcells of the solar cell on a substrate in a “reverse” sequence. That is, the high bandgap subcells (i.e. subcells with bandgaps in the range of 1.8 to 2.2 eV), which would normally be the “top” subcells facing the solar radiation, are grown epitaxially on a semiconductor growth substrate, such as for example GaAs or Ge, and such subcells are therefore lattice-matched to such substrate. One or more lower bandgap middle subcells (i.e. with bandgaps in the range of 1.2 to 1.6 eV and 0.8 to 1.2 eV) can then be grown on the high bandgap subcells.
At least one lower subcell is formed over the middle subcell such that the at least one lower subcell is substantially lattice-mismatched with respect to the growth substrate and such that the at least one lower subcell has a third lower bandgap (i.e. a bandgap in the range of 0.8 to 1.2 eV). A surrogate substrate or support structure is provided over the “bottom” or substantially lattice-mismatched lower subcell, and the growth semiconductor substrate is subsequently removed. (The growth substrate may then subsequently be re-used for the growth of a second and subsequent solar cells).
The lattice constants and electrical properties of the layers in the semiconductor structure are preferably controlled by specification of appropriate reactor growth temperatures and times, and by use of appropriate chemical composition and dopants. The use of a vapor deposition method, such as Organo Metallic Vapor Phase Epitaxy (OMVPE), Metal Organic Chemical Vapor Deposition (MOCVD), Molecular Beam Epitaxy (MBE), or other vapor deposition methods for the reverse growth may enable the layers in the monolithic semiconductor structure forming the cell to be grown with the required thickness, elemental composition, dopant concentration and grading and conductivity type.
Although the present invention ideally provides for an offcut in the [111]A direction, it may be that during production and fabrication of various wafer lots, the alignment or cutting process is not as precise or exacting as may be specified by the present invention, and the resulting plane P may pivot slightly in the direction of the adjacent (011) or (101) planes, as well as in the direction of the (111)A plane. Such deviations, whether inadvertent or for some other mechanical or structural reason, are contemplated to be within the scope of the present invention as well.
Thus, in the most general form, as used in the present disclosure the recitation “off-cut from the (001) crystal plane by at least 6° towards the (111)A plane” contemplates and includes the off-cut plane P pivoting towards any of the following planes:
(i) an adjacent (111)A plans by at least 6 degrees and at most 20 degrees;
(ii) an adjacent (011) plans by at most approximately one degree;
(iii) an adjacent (101) plans by at most approximately one degree; and
(iv) any plane lying in the continuum of planes between (i) and (ii), (i) and (iii), or (ii) and (iii) above.
On the substrate, (or over the nucleation layer, if there is one), a buffer layer 102 (preferably GaAs), and an etch stop layer 103 (preferably n+GaInP) are further deposited. A cap or contact layer 104 (preferably n++ GaAs) is then deposited on layer 103, and a window layer 105 (preferably AlInP) is deposited on the contact layer. The subcell A, consisting of an n+ emitter layer 106 and a p-type base layer 107, is then epitaxilly deposited on the window layer 15, and lattice matched to the substrate 101.
It should be noted that the multijunction solar cell structure could be formed by any suitable combination of group III to V elements listed in the periodic table subject to lattice constant and band gap requirements, wherein the group III includes boron (B), aluminum (Al), gallium (Ga), indium (In), and thallium (T). The group IV includes carbon (C), silicon (Si), germanium (Ge), and tin (Sn). The group V includes nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi).
In the preferred embodiment, the emitter layer 106 of subcell A is composed of n+ type InGa(Al)P and the base layer 107 is composed of p type InGa(Al)P. The Al term in parenthesis means that Al is an optional constituent, and in this instance, may be used in an amount ranging from 0% to 30%.
Subcell A will ultimately become the “top” subcell of the inverted metamorphic structure after completion of the process steps according to the present invention to be described hereinafter.
On top of the base layer 107 a back surface field (“BSF”) layer 108 is deposited and used to reduce recombination loss, preferably p+ AlGaInP.
The BSF layer 108 drives minority carriers from the region near the base/BSF interface surface to minimize the effect of recombination loss. In other words, a BSF layer 108 reduces recombination loss at the backside of the solar subcell A and thereby reduces the recombination in the base.
On top of the BSF layer 108 is deposited a sequence of heavily doped p-type and n-type layers 109 which forms a tunnel diode which is an ohmic circuit element to connect subcell A to subcell B. These layers are preferably composed of p++Al GaAs, and n++InGaP.
On top of the tunnel diode layers 109 a window layer 110 is deposited, preferably n+ InAlP. The window layer 110 used in the subcell B operates to reduce the interface recombination loss. It should be apparent to one skilled in the art, that additional layer(s) may be added or deleted in the cell structure without departing from the scope of the present invention.
On top of the window layer 110 the layers of subcell B are deposited: the n-type emitter layer 111 and the p-type base layer 112. These layers are preferably composed of InGaP and In0.015GaAs respectively (for a Ge substrate or growth template), or InGaP and GaAs respectively (for a GaAs substrate), although any other suitable materials consistent with lattice constant and bandgap requirements may be used as well. Thus, subcell B may be composed of a GaAs, GaInP, GaInAs, GaAsSb, or GaInAsN emitter region and a GaAs, GaInAs, GaAsSb, or GaInAsN base region. The doping profile of layers 111 and 112 according to the present invention will be discussed in conjunction with
On top of the cell B is deposited a BSF layer 113 which performs the same function as the BSF layer 109. A p++/n++ tunnel diode 114 is deposited over the BSF layer 113 similar to the layers 109, again forming an ohmic circuit element to connect subcell B to subcell C. These layers 114 are preferably compound of p++ Al GaAs and n++ GaAs.
A barrier layer 115, preferably composed of n-type InGa(Al)P, is deposited over the tunnel diode 114, to a thickness of about 1.0 micron. Such barrier layer is intended to prevent threading dislocations from propagating, either opposite to the direction of growth into the middle and top subcells B and C, or in the direction of growth into the bottom subcell A, and is more particularly described in copending U.S. patent application Ser. No. 11/860,183, filed Sep. 24, 2007.
A metamorphic layer (or graded interlayer) 116 is deposited over the barrier layer 115. Layer 116 is preferably a compositionally step-graded series of InGaAlAs layers, preferably with monotonically changing lattice constant, so as to achieve a gradual transition in lattice constant in the semiconductor structure from subcell B to subcell C while minimizing threading dislocations formation. The bandgap of layer 116 is constant throughout its thickness preferably approximately 1.5 eV or otherwise consistent with a value greater than the bandgap of the middle subcell B. The preferred embodiment of the graded interlayer may also be expressed as being composed of (InxGa1-x)yAl1-yAs, with x and y selected such that the band gap of the interlayer remains constant at approximately 1.50 eV.
In an alternative embodiment where the solar cell has only two subcells, and the “middle” cell B is the uppermost or top subcell in the final solar cell, wherein the “top” subcell B would typically have a bandgap of 1.8 to 1.9 eV, then the band gap of the interlayer would remain constant at 1.9 eV.
In the inverted metamorphic structure described in the Wanless et al. paper cited above, the metamorphic layer consists of nine compositionally graded InGaP steps, with each step layer having a thickness of 0.25 micron. As a result, each layer of Wanless et al. has a different bandgap. In the preferred embodiment of the present invention, the layer 116 is composed of a plurality of layers of InGaAlAs, with monotonically changing lattice constant, each layer having the same bandgap, approximately 1.5 eV.
The advantage of utilizing a constant bandgap material such as InGaAlAs is that arsenide-based semiconductor material is much easier to process in standard commercial MOCVD reactors, while the small amount of aluminum assures radiation transparency of the metamorphic layers.
Although the preferred embodiment of the present invention utilizes a plurality of layers of InGaAlAs for the metamorphic layer 116 for reasons of manufacturability and radiation transparency, other embodiments of the present invention may utilize different material systems to achieve a change in lattice constant from subcell B to subcell C. Thus, the system of Wanlass using compositionally graded InGaP is a second embodiment of the present invention. Other embodiments of the present invention may utilize continuously graded, as opposed to step graded, materials. More generally, the graded interlayer may be composed of any of the As, P, N, Sb based III-V compound semiconductors subject to the constraints of having the in-plane lattice parameter greater or equal to that of the second solar cell and less than or equal to that of the third solar cell, and having a bandgap energy greater than that of the second solar cell.
In another embodiment of the present invention, an optional second barrier layer 117 may be deposited over the InGaAlAs metamorphic layer 116. The second barrier layer 117 will typically have a different composition than that of barrier layer 115, and performs essentially the same function of preventing threading dislocations from propagating. In the preferred embodiment, barrier layer 117 is n+ type GaInP.
A window layer 118 preferably composed of n+ type GaInP is then deposited over the barrier layer 117 (or directly over layer 116, in the absence of a second barrier layer). This window layer operates to reduce the recombination loss in subcell “C”. It should be apparent to one skilled in the art that additional layers may be added or deleted in the cell structure without departing from the scope of the present invention.
On top of the window layer 118, the layers of cell C are deposited: the n−emitter layer 119, and the p-type base layer 120. These layers are preferably composed of n type InGaAs and p type InGaAs respectively, or n type InGaP and p type InGaAs for a heterojunction subcell, although another suitable materials consistent with lattice constant and bandgap requirements may be used as well. The doping profile of layers 119 and 120 will be discussed in connection with
A BSF layer 121, preferably composed of GaInP, is then deposited on top of the cell C, the BSF layer performing the same function as the BSF layers 108 and 113.
Finally a p++ contact layer 122 composed of GaInAs is deposited on the BSF layer 121.
It should be apparent to one skilled in the art, that additional layer(s) may be added or deleted in the cell structure without departing from the scope of the present invention.
In each cell there are grid lines 501 (more particularly shown in cross-section in
Although any off-cut angle between 6° and 20° is contemplated by the present invention, the provision of a 15° off-cut substrate 101 results in the metamorphic layer 116 exhibiting significantly better morphology than the metamorphic layers of previously known inverted metamorphic solar cells. An off-cut angle of the substrate 101 of 15° presents a higher density of growth nucleation sites (terraces), which encourages two-dimensional step flow growth under the growth conditions contemplated in the present invention. The higher off-cut surface orientation also causes the growth surfaces to be intersected more frequently by the (100) plane. These intersections, known as growth steps, act as nucleation points for growth islands. The higher density of nucleation points reduces the average atomic mobility required for atoms to reach a growth island, and encourages the growth islands to coalesce prior to the next layer growth, giving rise to two-dimensional growth. Layer-by-layer growth results in the best surface morphology.
It will be apparent that the choice of exactly a 15° off-cut is a function of cell structure and growth conditions in the solar cells fabricated. Indeed, an off-cut of 6° does provide an improved morphology compared with known multifunction solar cells. It is expected, moreover, that, for a predetermined set of growth conditions (growth temperature, growth rate, and the III to V ratio), there will be a different preferred off-cut surface orientation angle which optimises the surface morphology of the solar cell.
Although other off-cut orientations have some advantages over prior art multijunction solar cells, for all growth conditions investigated, the surface morphology is best in terms of fewer point defects and cross-hatch amplitude for a substrate having a 15° off-cut. Moreover, in addition to its impact on surface morphology, a 15° off-cut substrate has demonstrated other advantages, namely:
(i) it permits lower growth temperatures, significantly reducing the thermal budget of the lattice-matched subcells;
(ii) it increases the band gap of the InGaP subcell, by further disordering the group III sublattice; and
(iii) it reduces the Al content in the In GaAlP required to achieve a higher band gap value.
It will be understood that each of the elements described above, or two or more together, also may find a useful application in other types of constructions differing from the types of constructions described above.
Although the preferred embodiment of the present invention utilizes a vertical stack of three subcells, the present invention can apply to stacks with fewer or greater number of subcells, i.e. two junction cells, four junction cells, five junction cells, etc. In the case of four or more junction cells, the use of more than one metamorphic grading interlayer may also be utilized.
In addition, although the present embodiment is configured with top and bottom electrical contacts, the subcells may alternatively be contacted by means of metal contacts to laterally conductive semiconductor layers between the subcells. Such arrangements may be used to form 3-terminal, 4-terminal, and in general, n-terminal devices. The subcells can be interconnected in circuits using these additional terminals such that most of the available photogenerated current density in each subcell can be used effectively, leading to high efficiency for the multijunction cell, notwithstanding that the photogenerated current densities are typically different in the various subcells.
As noted above, the present invention may utilize an arrangement of one or more, or all, homojunction cells or subcells, i.e. a cell or subcell in which the p-n junction is formed between a p-type semiconductor and an n-type semiconductor both of which have the same chemical composition and the same band gap, differing only in the dopant species and types, and one or more heterojunction cells or subcells. Subcell A, with p-type and n-type InGaP is one example of a homojunction subcell. Alternatively, as more particularly described in U.S. patent application Ser. No. 12/023,772 filed Jan. 31, 2008, the present invention may utilize one or more, or all, heterojunction cells or subcells, i.e., a cell or subcell in which the p-n junction is formed between a p-type semiconductor and an n-type semiconductor having different chemical compositions of the semiconductor material in the n-type and n-type regions, and/or different band gap energies in the p-type regions, in addition to utilizing different dopant species and type in the p-type and n-type regions that form the p-junction.
The composition of the window or BSF layers may utilize other semiconductor compounds, subject to lattice constant and band gap requirements, and may include AlInP, AlAs, AlP, AlGaInP, AlGaAsP, AlGaInAs, AlGaInPAs, GaInP, GaInAs, GaInPAs, AlGaAs, AlInAs, AlInPAs, GaAsSb, AlAsSb, GaAlAsSb, AlInSb, GaInSb, AlGaInSb, AIN, GaN, InN, GaInN, AlGaInN, GaInNAs, AlGaInNAs, ZnSSe, CdSSe, and similar materials, and still fall within the spirit of the present invention.
While the invention has been illustrated and described as embodied in a inverted metamorphic multijunction solar cell, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Thus, while the description of this invention has focused primarily on solar cells or photovoltaic devices persons skilled in the art know that other optoelectronic devices, such as, thermophotovoltaic (TPV) cells, photodetectors and light-emitting diodes (LEDS) are very similar in structure, physics, and materials to photovoltaic devices with some minor variations in doping and the life minority carrier lifetime. For example, photodetectors can be the same materials and structures as the photovoltaic devices described above, but perhaps more lightly-doped for sensitivity rather than power production. On the other hand LEDs can also be made with similar structures and materials, but perhaps more heavily-doped to shorten recombination time, thus radiative lifetime to produce light instead of power. Therefore, this invention also applies to photodetectors and LEDs with structures, compositions of matter, articles of manufacture, and improvements as described above for photovoltaic cells.
It will be understood that each of the elements described above, or two or more together, also may find a useful application in other types of constructions differing from the types of constructions differing from the types described above.
While the invention has been illustrated and described as embodied in a inverted metamorphic multifunction solar cell, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.
This application is related to co-pending U.S. patent application Ser. No. 12/023,772, filed Jan. 31, 2008. This application is related to co-pending U.S. patent application Ser. No. 11/956,069, filed Dec. 13, 2007. This application is also related to co-pending U.S. patent application Ser. Nos. 11/860,142 and 11/860,183 filed Sep. 24, 2007. This application is also related to co-pending U.S. patent application Ser. No. 11/836,402 filed Aug. 8, 2007. This application is also related to co-pending U.S. patent application Ser. No. 11/616,596 filed Dec. 27, 2006. This application is also related to co-pending U.S. patent application Ser. No. 11/614,332 filed Dec. 21, 2006. This application is also related to co-pending U.S. patent application Ser. No. 11/500,053 filed Aug. 7, 2006. This application is also related to co-pending U.S. patent application Ser. No. 11/445,793 filed Jun. 2, 2006.
This invention was made with government support under Contract No. FA9453-06-C-0345 awarded by the U.S. Air Force. The Government has certain rights in the invention.