The present invention relates to ventilation systems for roofs, and more specifically to off-peak air intake vents.
Off-peak (lower intake) ventilation is used to complement standard industry attic exhaust ventilation systems. Roof mounted, shingle-over attic ventilation devices are designed to ingest air into the attic space from the edge of the roof. Air is ingested into the intake vent and passes through the vent into the attic space via a horizontal slot cut into the roof deck. The interior space is then vented via a ridge vent at or near the peak of the roof or other ventilation system.
Improvements to these intake vents are desired.
An off-peak intake vent includes spaced top and bottom walls defining a cavity therebetween and a pair of lateral side walls. The bottom wall has a generally planar bottom surface having at least one vent opening formed therethrough for communicating with an opening in a roof deck. The top wall has a curved portion that converges with the bottom wall at an uphill edge of the intake vent. The intake vent also includes air intake louvers defined between the top and bottom walls.
In one embodiment of an off-peak intake vent, the intake vent has spaced top and bottom walls defining a cavity therebetween and a pair of lateral side walls. The bottom wall has a generally planar bottom surface having a vent defined therethrough for communicating with an opening in a roof deck. The intake vent includes air intake louvers defined between the top and bottom walls and an internal baffle system for baffling air flow between the intake louvers and the vent of the bottom wall. The internal baffle system includes first and second spaced baffles extending across the intake vent between the side walls, where the first baffle protrudes from a first wall of the spaced top and bottom walls in a first direction and a second baffle protrudes from a second of the spaced top and bottom walls in a second direction, whereby intake air is first directed in a first direction by the first baffle and then in a second direction by the second baffle.
In another embodiment of an off-peak intake vent, the intake vent has at least one internal baffle extending from the bottom wall and across the intake vent between the side walls. The bottom wall includes a planar internal surface defined between the air intake louvers and the internal baffle for draining water towards the louvers. At least one drainage channel extends between the louvers and the internal baffle that communicates with a corresponding drainage opening in the internal baffle for draining water from a side of the internal baffle opposite the intake louvers.
The above and other features of the present invention will be better understood from the following detailed description of the preferred embodiments of the invention that is provided in connection with the accompanying drawings.
The accompanying drawings illustrate preferred embodiments of the invention, as well as other information pertinent to the disclosure, in which:
This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
An off-peak or lower intake vent for use as part of a ventilation system for a structure is described herein in connection with
Various other features of the bottom section 100 are also shown in these drawings. In embodiments, the bottom section 100 includes various support ribs for providing stability to the assembled product, such as continuous intermediate curved support ribs 116 positioned 4.0″ on center adjacent the vents 110 and terminate just below the vents 110, lateral support ribs 118 perpendicular to the intermediate support ribs 116, and internal support ribs 128, which begin with the end plugs 112 and are also spaced 4.0″ on center. These internal support ribs 128 extend from (or proximate to) edge 12 to (or proximate to) louvers 104 and have lateral drainage gaps 122 (labeled in
As can be seen in
In embodiments, the bottom section 100 includes nail bosses 134 and 136 that form part of the nail holes 202 described above. In embodiments, nail bosses 136 are positioned near the intake louvers 104 for pre-fastening the intake vent 10 to the roof decking and are located 16″ on center and 24″ on center for nailing into framing rafters of the roof. Nail bosses 134 are positioned near the uphill edge 12 and also located 16″ on center and 24″ on center for nailing into the framing rafters on the roof. Nail bosses 134 can have angled top surfaces that support the top section 200 during pre-fastening of the intake vent.
The bottom section 100 may also include friction pin bosses 124 located along ribs 118 and spaced across the length of the bottom section 100. The friction pin bosses 124 are closed end friction bosses that accept fiction pins located at the top section 200 in order to secure the top section 200 to the bottom section 100 during assembly.
The bottom section 100 also includes rectangular filter capture bosses 138 at either end of the bottom section 100 proximate the side walls 102. These bosses are used to capture the ends of an internal filter 300 (
In embodiments, the bottom section 100 also includes a water dam wall 120. Water dam wall 120 is essentially a short rib protruding from the surface of the bottom section 100 that runs the length of the vent section 100 in front of the airflow exit slots 110. This dam 120 helps to prevent or deter any water that travels beyond the wind baffles from entering the attic space via the vents 110. Lateral drainage gaps 122 are also provided in support ribs 128 before the water dam wall 120 to allow water to drain laterally towards channels 130, such as in the event that sections of the vent in between internal support ribs 128 become blocked and do not allow for the drainage of bulk water directly toward the intake louvers 104.
In embodiments, the top section 200 includes wind diverters 212 depending from the bottom surface of the top section 200. These wind diverters 212 align with the drainage channels 130 (as shown in
The top section 200 includes a second wind baffle 214 that depends from its bottom surface and extends across the length of the top section 200. Like primary wind baffle 126, in embodiments the wind baffle 126 undulates in two phases, both in height (i.e., distance from the underside of wall 220) and along its length (i.e., in its distance from edges 12, 14 (or other reference point)), such as in a sinusoidal path. The second wind baffle 214 undulates along its length in sync, i.e., in phase with the first wind baffle 126 such that it runs parallel with the first baffle 126. However, the second wind baffle 214 undulates out-of-phase, such as by 90°, with respect to its height or distance from its surface. The variation of the height of the sinusoidal internal baffles maintains the maximum net free ventilation area through the vent and diverts wind carried moisture to more protected areas. The second wind baffle 214 provides an additional line of defense against weather infiltration by deflecting air down and back towards the taller portion of the curved baffle 214 (i.e., the portions of baffle 214 that extend from the top section 200 to the surface 114 of the bottom section 100. The baffles 126 and 214 cooperate to force water and snow to drop out of the air flow and drain out of the intake vent 10, using one of the several drainage features discussed herein, thereby deterring snow or water from entering vents 110 and thus from entering the interior of the structure to which the vent 10 is secured.
The top section 200 also includes a plurality of spaced friction pins 210 for mating with the friction pin bosses of the lower section 100. These pins 210 protrude from the underside of the top section 200 and hold the top and bottom sections 200, 100 together when press fit.
A pair of rectangular blades 222 depend from the underside of the top section 200 proximate the side edges of the top section and are positioned to mate with filter capture bosses 138 and the side walls 102 of the bottom section 100. These blades 222 capture the ends of the internal filter (
In embodiments, a filter is captured between the top and bottom sections 200, 100 as described above. In preferred embodiments, the filter is approximately two inches wide and runs the length of the vent 10 between the first and second wind baffles 126, 214. This filter provides a third line of defense for weather infiltration and the second line of defense for insect infiltration. In embodiments, the filter is a glass non-woven filter or polymeric filter. One exemplary filter is a fiberglass mesh filter as shown in, for example, U.S. Pat. No. 6,482,084, the entirety of which is hereby incorporated by reference herein.
In the illustrated embodiment, the top section 200 also includes a plurality of capture support ribs 216. These short ribs protrude off of the underside of the top section 200 and capture the tops of the bottom section's internal support ribs 128. These ribs 216 help prevent the lateral movement and collapse of the internal support ribs when the vent 10 is subjected to compressive load on the top surface thereof.
As best shown in
In one embodiment, the top section 200 is produced such that the curved profile has a shorter radius (but same arc length) than when it is assembled with the bottom section 100. Once the friction pins 210 of the top section 200 are pressed into the mating bosses 124 of the bottom section 100, the uphill sides of the top and bottom sections are held together in tension. In other words, the top curvature increases once the pins are inserted so that the top section compresses on the bottom section. The assembly causes the uphill edge 12 of the top component 200 to rotate up and back approximately ¼″ once mated with the bottom component 100.
In some embodiments, the intake vents are manufactured in lengths of about 48″ with widths of about a foot or less, such as 11.5″ The thickness of the panel, i.e., the distance from the top surface to the bottom surface, measured at the flat, non-tapered portion 206 is preferably an inch or less, such as 0.8″. The curved portion of the top of the vent 10 as shown in the figures preferably makes up approximately 50-70%, and more preferably about 60%, of the overall width (defined between the uphill edge 12 and the downhill edge 14) of the vent 10.
The preferred materials for the vent can include, but are not limited to, thermoplastics such as polypropylene, polyethylene, etc. The preferred manufacturing process is, but need not be, plastic injection molding.
As described herein a roof mounted, shingle-over attic ventilation device is designed to ingest air into the attic space from the edge of the roof. The vent 10 incorporates a curved top that allows for maximization of the net free ventilation area through the vent, minimization of product height, and convergence with the bottom plane to blend into the roof at the uphill edge of the vent. In embodiments, interior features of the intake vent include a series of support ribs, nail or fastener supports, wind and water baffling system, drainage system, and weather filter which may be bonded, mechanically fastened, or captured. Exterior features include an integrated drip edge, integrated end plugs (i.e., integrated side walls), and vent locating means. The construction of the intake vent is accomplished using either a hinged design (shown as intake vent 400 in
In the illustrated embodiments, the intake vent 10 includes at least four drainage means, including: (1) a primary drainage surface 114 located between the louvers 104 and first baffle 126 for draining water captured on the louver side of the first baffle 126; (2) the combination of gaps 132 in the first baffle and drainage channels 130 for draining water that gets past the first baffle 126; (3) lateral drainage gaps 122 for allowing water to drain laterally towards an adjacent channel 130 if backed up; and (4) spilling over the first baffle 126 if water levels rise, such as if a channel 130 is clogged. In the illustrated embodiments, the intake vent 10 also includes at least seven lines of defense against weather and/or insect infiltration, including: (1) the ribs of the louvers 104; (2) the wind blocks 112 for the channels 130 built into the louvers 104; (3) the first baffle 126; (4) the wind diverters 212 that protect the drainage openings 132 in the first baffle 126; (5) the filter captured in the intake vent (if used); (6) the second baffle 214; and (7) the water dam 120.
Because of pressure conditions that can result in the ingestion of airflow into the vent, as described above, air enters the vent in the louvers 104 shown in
Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly to include other variants and embodiments of the invention that may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3524400 | Magi | Aug 1970 | A |
D256047 | Wormington | Jul 1980 | S |
4212692 | Rasen et al. | Jul 1980 | A |
4214510 | Ward | Jul 1980 | A |
4252590 | Rasen et al. | Feb 1981 | A |
4315392 | Sylvest | Feb 1982 | A |
4393634 | McDermott et al. | Jul 1983 | A |
RE31599 | Rasen et al. | Jun 1984 | E |
4530193 | Ochs | Jul 1985 | A |
4689258 | Slosberg | Aug 1987 | A |
4805367 | Kleckner | Feb 1989 | A |
4810573 | Harriett | Mar 1989 | A |
4843953 | Sells | Jul 1989 | A |
4852517 | Smith | Aug 1989 | A |
4903445 | Mankowski | Feb 1990 | A |
4942699 | Spinelli | Jul 1990 | A |
4996812 | Venable | Mar 1991 | A |
5054377 | Mochel et al. | Oct 1991 | A |
5099627 | Coulton et al. | Mar 1992 | A |
5174076 | Schiedegger et al. | Dec 1992 | A |
5238450 | Rotter | Aug 1993 | A |
D342129 | Goetz, Jr. | Dec 1993 | S |
5439417 | Sells | Aug 1995 | A |
5458538 | MacLeod et al. | Oct 1995 | A |
5573844 | Donovan et al. | Nov 1996 | A |
5630752 | Gubash | May 1997 | A |
5797222 | Martin | Aug 1998 | A |
5832677 | Kurttila | Nov 1998 | A |
5946868 | Morris | Sep 1999 | A |
5947817 | Morris et al. | Sep 1999 | A |
6068551 | Oremland | May 2000 | A |
6086755 | Tepper | Jul 2000 | A |
6129628 | O'Hagin et al. | Oct 2000 | A |
6212833 | Henderson | Apr 2001 | B1 |
D442273 | Pestell | May 2001 | S |
6283852 | Igo | Sep 2001 | B1 |
6296912 | Zickell | Oct 2001 | B1 |
6371847 | Headrick | Apr 2002 | B2 |
6418692 | Freshwater et al. | Jul 2002 | B1 |
6447392 | Henderson | Sep 2002 | B1 |
6482084 | Hansen | Nov 2002 | B2 |
6487826 | McCorsley et al. | Dec 2002 | B1 |
6881144 | Hansen et al. | Apr 2005 | B2 |
7044852 | Horton | May 2006 | B2 |
D549316 | O'Hagin et al. | Aug 2007 | S |
D555237 | O'Hagin | Nov 2007 | S |
20010019941 | Headrick | Sep 2001 | A1 |
20020016150 | Hansen | Feb 2002 | A1 |
20020078651 | Freshwater et al. | Jun 2002 | A1 |
20020100232 | Robinson et al. | Aug 2002 | A1 |
20040088928 | Headrick, II et al. | May 2004 | A1 |
20050054284 | Ciepliski et al. | Mar 2005 | A1 |
20060079173 | Coulton et al. | Apr 2006 | A1 |
20070049190 | Singh | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
2083204 | Mar 1982 | GB |
2186898 | Aug 1987 | GB |
2335666 | Sep 1999 | GB |
2425319 | Oct 2006 | GB |
Number | Date | Country | |
---|---|---|---|
20090130969 A1 | May 2009 | US |