The present invention relates generally to the field of maritime equipment and more particularly to a system for connecting a mother ship and an auxiliary craft.
Autonomous underwater vehicles (“AUVs”) are used in both naval and industrial applications. Due to their limited operating range, they require regular servicing to recharge batteries, refuel, etc. It is often desirable to perform this servicing at sea from a mother ship.
Recharging or refueling operations require the engagement of various connectors to couple various wires or hoses. Conducting these operations at sea requires that the mother ship and the auxiliary craft (e.g., AUV, etc.) be stabilized with respect to one another. These operations can be labor intensive and present certain risks, especially if performed in higher sea states.
Existing approaches for connecting an auxiliary craft to a mother ship for service, as disclosed in the following references, have various drawbacks.
US Application No. 20060191457 A1 discloses a marine payload handling craft and system for launching and recovering marine vehicles. The system includes a catamaran docking station, which includes an elevator. The system, which is attached to a larger vessel, receives the smaller vessel as it is driven onto the docking station.
U.S. Pat. No. 6,390,012 B1 discloses an apparatus and method for deploying and servicing an underwater vessel from a larger vessel. The apparatus utilizes a connector latching system that includes a maneuverable and remotely-operated underwater vessel to physically engage a receptor on the autonomous underwater vessel.
U.S. Pat. No. 6,698,376 B2 discloses a device for launching and recovering an underwater vehicle that utilizes a submerged docking station. The docking station includes lower and upper chassis that are connected by flexible cables so that distance between the two chassis can be adjusted. The chassis form a receiving cage to support and hold the underwater vehicle.
U.S. Pat. No. 3,536,023 A discloses a system for handling small submarines. The system utilizes an elevator system that is suspended from a surface ship for lifting the submarine. Counterweights are located below the surface of the water to restrain the motion of the elevator and a hoisting arrangement drives the elevator.
The prior art devices are relatively complex and require significant manual intervention. This results in relatively high costs and potential reliability problems. Simply put, the prior art does not provide an effective servicing solution.
The present invention provides an offboard connection system for the temporary connection of an auxiliary craft and a mother ship that avoids some of the disadvantages of the prior art.
In the illustrative embodiment, the system comprises a loop of cable suspended from the mother ship, a cable tensioner, a mother-ship coupler, a fixture mounted on the auxiliary craft, and an auxiliary-craft coupler.
In operation, the auxiliary craft is maneuvered so that the fixture engages the loop of cable. Once engaged, the cable tensioner tensions the cable, thereby tethering the auxiliary craft to the mother ship. The mother-ship coupler is arranged to freely slide along the cable. The auxiliary-craft coupler is rotatably attached to the fixture. In some embodiments, this rotatable attachment has at least two degrees of freedom to provide the compliance required for proper alignment between the two couplers. In some embodiments, a ball joint is used to provide multiple degrees of freedom.
By virtue of one or more physical adaptations of the auxiliary-craft coupler, the cable, when tensioned, forces the auxiliary-craft coupler into axial alignment with the mother-ship coupler. In addition to its tethering and axial-alignment functionality, the cable serves as a guide that directs the mother-ship coupler to the auxiliary-craft coupler for mating. In particular, after the couplers are axially aligned, the mother-ship coupler is released to slide downward along the cable, due to gravity, to eventually engage the auxiliary-craft coupler. In the illustrative embodiment, a helicoidal guide disposed on one of the couplers provides end-of-travel rotational alignment.
The mother-ship coupler and the auxiliary-craft coupler include individual mating connectors. When the couplers are mated, the connectors enable the transmission of signals (e.g., electrical, optical, etc.), power (e.g., electrical, etc.), and fluids (e.g., liquid fuel, water, gas, etc.) between the mother ship and the auxiliary craft.
In some embodiments, the system comprises:
Referring now to
Boom 124, which depends from mother ship 102, suspends cable 122 over the water in the form of a loop (when the system is in the quiescent state). The boom can be fixed or rotatable/extendable. A sufficient length of cable 122 is used so that the bottom of the loop is near to the water line. As discussed further below in conjunction with
Cable tensioner 120 is disposed on mother ship 102. As discussed later in conjunction with
Mother-ship coupler 118 is slideably engaged to cable 122. Coupler 118 receives any one or more of the following supplies from sources thereof on board mother ship 102:
Auxiliary-craft coupler 134 is rotatably coupled to fixture 132. Coupler 134 is structurally arranged and suitably dimensioned to mate to mother-ship coupler 118. Auxiliary-craft coupler 134 is in fluidic-, signal-, and/or power-transferring communication with auxiliary craft 130 via “conduit” 136. Like conduit 116, conduit 136 is actually one or more hose(s), electrical cable(s), optical cable(s) and the like as appropriate for transferring utilities and signals 114 from the coupler 134 to auxiliary craft 130.
Referring now to
As described in further detail in conjunction with FIGS. 2 and 5-7, by virtue of the structure of auxiliary-craft coupler 134, when cable 122 goes taut, coupler 134 is rotated into axial alignment with mother-ship coupler 118. Thus, in the state of system 100 depicted in
In
Engaged couplers 118 and 134, in conjunction with conduits 116 and 136, form a continuous path for the flow of utilities and signals 114 from mother ship 102 to auxiliary craft 130. In the illustrative embodiment, transmission is typically uni-directional from mother ship 102 to auxiliary ship 130. In some other embodiments, transmission is bi-directional. Bi-directional communication is typically for signals (e.g., electrical, optical, etc.); however, as desired, bi-directional transmission of electrical power and fluids can be established, as well.
Those skilled in the art will appreciate that, in addition to being axially aligned, couplers 118 and 134 must be rotationally aligned (to the extent that features, such as fluidic, electrical, and/or optical connectors are included in the coupler and are radially-offset from the rotational or central axis of the couplers). Alignment features for rotationally-aligning couplers 118 and 134 are disclosed later in this specification.
Regarding tethering function 202, the mother ship and auxiliary craft must be kept in the vicinity of one another to join couplers 118 and 134. The tethering function is accomplished by cable 122 and fixture 132. Cable tensioner 120 also plays a role in tethering since a taut cable will keep the mother ship and auxiliary craft tethered better than a slack cable.
Couplers 118 and 134 must be axially aligned to engage one another. Drawing cable 122 taut accomplishes the axial alignment in conjunction with a structural feature of auxiliary-craft coupler 134. Both tethering 202 and axial alignment 204 are therefore accomplished, at least in part, by cable tensioner 120 and cable 122.
Mother-ship coupler 118 freely slides along cable 122 when released. Likewise, coupler 118 is free to rotate about its central axis, along which taut cable 122 aligns. As a consequence, without more, the rotational orientation of coupler 118 is indeterminate. But in order for couplers 118 and 134 to properly seat or mate, due to the presence of connectors within the couplers, the rotational orientation of the two couplers must match. In the illustrative embodiment, rotational-alignment functionality 206 is provided by certain features of couplers 118 and 134, as described in conjunction with
This specification now proceeds with further details of the structure and operation of offboard connection system 100.
First end 352 of cable 122 is coupled to constant tension winch 340. The cable passes over pulleys 342 and 344, which are mounted on boom 124. Second end 356 of cable 122 is attached to boom 124 near outboard end 348 thereof. The portion of cable 122 between pulley 344 and second end 356 hangs freely (when untensioned) forming a (catenary) loop.
Mother-ship coupler 118 is slideably engaged to cable 122 through bore 319. Leash 350 is attached to coupler 118. In the quiescent state of system 100, leash 350 supports coupler 118 against gravity near the “top” of the loop of cable, proximal to boom 124. In the illustrative embodiment, leash 350 is wrapped around a post or other fixture on mother ship 102. To mate the two couplers, leash 350 is untethered from the post, which permits mother-ship coupler 118 to drop into mating engagement with auxiliary-craft coupler 134. In some other embodiments, leash 350 is coupled to a pulley system (not shown) that operates in conjunction with constant tension winch 340. The pulley system automatically releases leash 350 when cable 122 is tensioned.
Tethering Functionality 202.
To begin the tethering process, auxiliary craft 130 maneuvers forward toward the loop of cable 122. Eventually, the loop passes under second member 360. When this occurs, cable 122 is pulled taut via constant tension winch 340.
In some embodiments, member 360 is angled downward such that the angle formed between it and first vertically-disposed member 358 is less than ninety degrees. In such embodiments, member 360 is angled downward by up to about 20 degrees. This decreases the likelihood that cable 122 will disengage from the “hook” until it is intentionally released.
Axial Alignment Functionality 204.
As previously indicated, after the loop of cable 122 and the “hook” (e.g., members 360/358, etc.) engage, cable 122 is pulled taut via constant tension winch 340. As cable 122 is tensioned, it moves “upward,” entering wedge-shaped aperture 564. With continued tensioning, cable 122 moves radially inward with respect to coupler 134 (as indicated by the arrow in
Rotation of linkage 362 about member 360 is further depicted in
In some embodiments, one or more additional degrees of freedom of motion are provided to system 100 for the purpose of accommodating wave motion, etc. For example, in
As previously noted, a key purpose of system 100 is to enable utilities and signals to be transferred from mother ship 102 to auxiliary craft 130. This requires that the requisite utilities and signals be conducted through couplers 118 and 134 once they are engaged. To that end, connectors are disposed within mother-ship coupler 118 and auxiliary-craft coupler 134.
Referring now to
Rotational Alignment Functionality 206 and Connector Mating.
Once leash 350 is released, mother-ship coupler 118 is free to fall, under the influence of gravity, towards auxiliary-craft coupler 134. But couplers 118 and 134 must be rotationally aligned with one another to properly mate. As previously indicated, rotational alignment can be achieved by trial and error, such as via repeated drops of mother-ship coupling 118. In preferred embodiments, however, system 100 includes rotational-alignment features.
In the illustrative embodiment depicted in
Projecting guide 982, which is mounted on upper surface 980 of the auxiliary-craft coupler, is generally conical or frusto-conical in configuration. Projecting guide 982 includes generally wedge-shaped aperture 565, best seen in
Receiver 972 is accessed via lower surface 970 of mother-ship coupler 118. The receiver is dimensioned and arranged to receive projecting guide 982. The projecting guide and receiver depicted in
The key and channel depicted in
In the embodiment that is depicted in
Projecting guide 982 includes internally-disposed guideway 1084. A first end of the guideway is proximal to the apex of projecting guide 982 and a first edge of aperture 565. The second end of the guideway is disposed “below” the first end of guideway (further from the apex of projecting guide 982) and adjacent to a second edge of aperture 565. Guideway 1084 thus has a spiral configuration within projecting guide 982.
As mother-ship coupler 118 approaches auxiliary-craft coupler 134, key 1074 will ultimately pass into projecting guide 982 and will likely engage guideway 1084. Once engaged, key 1074 will slide along guideway 1084 down into projecting guide 982 as mother-ship coupler 118 continues to descend, urged by gravity. As key 1074 follows the guideway, mother-ship coupler 118 is forced to rotate about its central axis (i.e., coincident with cable 122). Eventually, key 1074 reaches aperture 565 and “falls” off of guideway 1084. In the less-likely event that key 1074 aligns with aperture 565 when the key passes into projecting guide 982, mother-ship coupler 118 will simply continue to drop, without rotation, until base 1073 of receiver 972 abuts the apex of projecting guide 982.
Key 1074 is sited on key support 1078 so that when the key enters aperture 565, mother-ship coupler 118 will be approximately rotationally aligned with auxiliary-craft coupler 134. It will be appreciated that aperture 565 must be wide enough to permit cable 122 to “enter” projecting guide 982 so that it can align with the central axis of auxiliary-craft coupler 134. As a consequence, the rotational alignment arrangement provided by receiver 972, key support 1078, key 1074, projecting guide 982, and guideway 1084 is not precise. Hence the moniker “coarse-alignment feature.” In particular, the rotational alignment can be in error by a maximum amount that is approximately equal to one-half of the width δ of aperture 565.
System 100 can be implemented with only the coarse alignment features. In such embodiments, if coupler mating fails due to rotational misalignment, tether 350 (see
Alternatively, to account for any rotational misalignment resulting from the width of aperture 565, fine-alignment features are provided in some embodiments. In the illustrative embodiment, the fine-alignment features comprise tapered boss 986 on auxiliary-craft coupler 134 and tapered counterbore 976 on mother-ship coupler 118. These features are depicted, for example, in
Referring again to
It was previously disclosed that the coarse-alignment feature comprising receiver 972, key support 1078, key 1074, projecting guide 982, and guideway 1084 results in a possible misalignment of about δ/2, which is one-half the width of aperture 565 of projecting guide 982. An example of such rotational misalignment is depicted in
DD/2=δ/2+DAN/2 [1]
Therefore, the diameter of tapered counterbore 976 must be at least:
DD=δ+DAN [2]
As perhaps most easily visualized with reference to
Referring now to
C>H [3]
In the illustrative embodiment, projecting guide 982 is disposed on auxiliary-craft coupler 134 and receiver 972 is disposed in mother-ship coupler 102. In conjunction with the present disclosure, those skilled in the art will know how to create embodiments of the invention in which the projecting guide is disposed on the mother-ship coupler and the receiver is disposed on the auxiliary-craft coupler, etc.
After receiving fuel, etc., via system 100, auxiliary craft 130 can disengage from mother ship 102 to continue its mission. To disengage mother-ship coupling 118 and auxiliary-craft coupling 134, tension is applied to tether 350. The tension pulls these two couplings apart. Coupling 118 is then returned to its stowed position on cable 122 proximal to boom 124 (see,
To free auxiliary craft 130, cable tensioner 120 (e.g., winch 340, etc.) releases the tension on cable 122. This operation can be performed either before or after couplings 118 and 134 are de-mated. Once cable 122 is slack, fixture 132 can be disengaged from the cable by appropriately maneuvering auxiliary craft 130.
In the illustrative embodiment, operation 1302 involves forming a loop with a cable, such as cable 122, wherein the lowest point of the loop is situated near the water (see, e.g.,
In operation 1304, an auxiliary craft, such as auxiliary craft 130, is maneuvered to snag the cable, such as via a fixture (see, e.g.,
Regarding operation 1306, a coupler associated with the auxiliary craft is dimensioned and arranged so that when cable is tensioned, the cable will be urged toward the central axis of that coupler. This will cause that coupler to axially align with a coupler that is associated with the mother ship, which is engaged to the cable through a centrally-disposed bore. The phrase “coupler associated with the mother ship” is used in the appended claims to mean a coupling, etc., that is deployed from the mother ship and receives wires, conduits, etc., that are capable of conducting utilities or signals (as previously defined) from the mother ship to the coupling. The coupler associated with the mother ship is “mother-ship coupler 118,” referenced earlier. The phrase “coupler associated with the auxiliary craft” is used in the appended claims to mean a coupling, etc., that is attached (directly or indirectly) to the auxiliary craft and is capable of receiving the utilities and signals from the coupler associated with the mother ship. The coupler associated with the auxiliary craft is further able to deliver into the auxiliary craft the utilities and signals that it receives. This routing is effected through suitable conduits, wire, hose, etc., running from that connector to the auxiliary craft, as previously disclosed.
After the cable is made taut, the two couplers are mated by sliding the coupler that is associated with the mother ship along the cable. In the illustrative embodiment, operation 1308 is accomplished by simply releasing the coupler that is associated with the mother ship. Once released, that coupler will slide, under the influence of gravity, toward the coupler associated with the auxiliary craft. In some embodiments, operation 1308 further comprises repeated drops to mate the couplers. In some other embodiments, the couplers “automatically” mate without any manual intervention due to the presence of rotational-alignment features.
It is to be understood that the above-described embodiments are merely illustrative of the present invention and that many variations of the above-described embodiments can be devised by those skilled in the art without departing from the scope of the invention. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3199553 | Garrett et al. | Aug 1965 | A |
3536023 | Bascom et al. | Oct 1970 | A |
3987741 | Tryon | Oct 1976 | A |
3993011 | Garland | Nov 1976 | A |
4686927 | Hawkes et al. | Aug 1987 | A |
5995882 | Patterson et al. | Nov 1999 | A |
6148759 | Taylor, Jr. | Nov 2000 | A |
6223675 | Watt et al. | May 2001 | B1 |
6257162 | Watt et al. | Jul 2001 | B1 |
6260504 | Moles et al. | Jul 2001 | B1 |
6269763 | Woodland | Aug 2001 | B1 |
6273744 | Murdock et al. | Aug 2001 | B1 |
6390012 | Watt et al. | May 2002 | B1 |
6588359 | Powers | Jul 2003 | B1 |
6681711 | King | Jan 2004 | B2 |
6691636 | King | Feb 2004 | B2 |
6698376 | Delahousse et al. | Mar 2004 | B2 |
6926049 | Enig et al. | Aug 2005 | B1 |
7000560 | Wingett et al. | Feb 2006 | B2 |
7028627 | Bouchaud et al. | Apr 2006 | B2 |
7156036 | Seiple | Jan 2007 | B2 |
7179145 | Driscoll et al. | Feb 2007 | B2 |
7857261 | Tchoryk et al. | Dec 2010 | B2 |
20010020435 | Ghignone | Sep 2001 | A1 |
20060191457 | Murphy | Aug 2006 | A1 |
20070051292 | Kilbourn et al. | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20110067619 A1 | Mar 2011 | US |