The process of trading financial instruments may be viewed broadly as proceeding through a cycle as shown in
In an attempt to promptly deliver financial information to interested parties such as traders, a variety of electronic trading platforms have been developed for the purpose of ostensible “real time” delivery of streaming bid, offer, and trade information for financial instruments to traders.
Financial data applications require fast access to large volumes of financial market data, and latency is an ever present technical problem in need of ever evolving solutions in the field of processing financial market data. As depicted in
In accordance with various embodiments disclosed herein, the inventors further disclose various methods, apparatuses, and systems for offloading the processing of data packets that contain financial market data. In exemplary embodiments, various processing tasks are offloaded from an electronic trading platform to one or more processors upstream or downstream from the electronic trading platform. It should be understood that the term upstream in this context is meant to identify a directional flow with respect to data that is moving to an electronic trading platform, in which case an offload processor upstream from the electronic trading platform would process financial market data flowing toward the electronic trading platform. Similarly, in this context downstream is meant to identify a directional flow with respect to data that is moving away from an electronic trading platform, in which case an offload processor downstream from the electronic trading platform would process financial market data flowing out of the electronic trading platform.
In some embodiments, the offloaded processing can be moved into the data distribution network for financial market data. For example, one or more of the offloaded financial market data processing tasks described herein can be implemented in one or more network elements of the data distribution network, such as a switch within the data distribution network. Disclosed herein are exemplary embodiments where a number of market data consumption, normalization, aggregation, enrichment, and distribution functions can be embedded within the elements that comprise the market data feed network 214. Conceptually, these embodiments offload processing tasks typically performed by downstream processing elements 202 such as feed handlers and virtual order books. The inventors also disclose a number of market data distribution functions that can be embedded within the network elements that comprise the financial application data network 208. Conceptually, these embodiments effectively offload processing tasks typically performed by ticker plants, messaging middleware, and downstream applications. Offloading these tasks from traditional platform components and embedding them in network elements may obviate some platform components, improve the performance of some components, reduce the total amount of space and power required by the platform, achieve higher system throughput, and deliver lower latency market data to consuming applications.
These and other features and advantages of the present invention will be apparent to those having ordinary skill in the art upon review of the teachings in the following description and drawings.
A. Offload Processor:
Thus, in an exemplary embodiment, the inventors disclose that an offload processor can be configured to process incoming data packets, where each of at least a plurality of the incoming data packets contain a plurality of financial market data messages, and wherein the financial market data messages comprise a plurality of data fields describing financial market data for a plurality of financial instruments. Thus, the payload of each incoming data packet can comprise one or more financial market data messages. Such an offload processor can filter and repackage the financial market data into outgoing data packets where the financial market data that is grouped into outgoing data packets is grouped using a criterion different than the criterion upon which financial market data was grouped into the incoming data packets. This permits the offload processor to serve a valuable role in generating a new set of customized outgoing data packets from incoming data packets. In various exemplary embodiments of such an offload processor, the offload processor can alleviate the processing burden on the downstream electronic trading platform(s).
Examples of such an offload processor are shown in
Exemplary processing pipelines that can be employed by the offload processor to provide such sorting and repackaging functions are described below in connection with
The offload processor 300 can take any of a number of forms, including one or more general purpose processors (GPPs), reconfigurable logic devices (such as field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), graphics processing units (GPUs), and chip multiprocessors (CMPs), as well as combinations thereof.
As used herein, the term “general-purpose processor” (or GPP) refers to a hardware device having a fixed form and whose functionality is variable, wherein this variable functionality is defined by fetching instructions and executing those instructions, of which a conventional central processing unit (CPU) is a common example. Exemplary embodiments of GPPs include an Intel Xeon processor and an AMD Opteron processor. As used herein, the term “reconfigurable logic” refers to any logic technology whose form and function can be significantly altered (i.e., reconfigured) in the field post-manufacture. This is to be contrasted with a GPP, whose function can change post-manufacture, but whose form is fixed at manufacture. Furthermore, as used herein, the term “software” refers to data processing functionality that is deployed on a GPP or other processing devices, wherein software cannot be used to change or define the form of the device on which it is loaded, while the term “firmware”, as used herein, refers to data processing functionality that is deployed on reconfigurable logic or other processing devices, wherein firmware may be used to change or define the form of the device on which it is loaded.
Thus, in embodiments where the offload processor 300 comprises a reconfigurable logic device such as an FPGA, hardware logic will be present on the device that permits fine-grained parallelism with respect to the different operations that the offload processor performs, thereby providing the offload processor with the ability to operate at hardware processing speeds that are orders of magnitude faster than would be possible through software execution on a GPP. Moreover, by leveraging such fine-grained parallelism, processing tasks can be intelligently engineered into processing pipelines deployed as firmware in the hardware logic on the FPGA. With such a pipeline, downstream pipeline modules can perform a processing task on data that was previously processed by upstream pipelined modules while the upstream pipeline modules are simultaneously performing other processing tasks on new data, thereby providing tremendous throughput gains. Furthermore, other types of offload processors that provide parallelized processing capabilities can also contribute to improved latency and throughput.
Furthermore, in additional exemplary embodiments, the offload processor can perform other functions in addition to or instead of the repackaging operations illustrated by
As noted, when positioned upstream from an electronic trading platform, the offload processor can be employed in a network element resident in a data distribution network for financial market data. Examples of network elements include repeaters, switches, routers, and firewalls. A repeater embodiment, a single input port and single output port device, may be viewed as a “smart” link where data is processed as it flows through the network link. In a preferred embodiment, such a network element can be a network switch. As such, the inventors disclose various embodiments of a network switch that offloads various processing tasks from electronic trading platforms, including embodiments of an intelligent feed switch and embodiments of an intelligent distribution switch, as described below.
B. Intelligent Feed Switch:
A common practice in financial exchange and electronic trading platform architecture is to achieve greater scale by “striping the data” across multiple instances of the platform components responsible for data transmission, consumption, and processing. If the data is imagined to flow vertically through a depiction of the overall system, then this approach to scale is often termed “horizontal scaling”. This approach is accepted in the industry as the most viable approach from an overall platform perspective, as the escalating rate of market data messages (doubling every 6 to 11 months) is outpacing the technology improvements available to individual components in the platform.
In order to facilitate data striping, some feed sources (typically exchanges) divide a market data feed into multiple “lines” where a given line caries a proper subset of the market data published by the financial exchange. Typically, all of the market data updates associated with a given financial instrument is transmitted on a single line. The assignment of a given financial instrument to a line may be static or dynamic. Static assignments typically partition the set of instruments by using the starting characters in an instrument symbol and assigning an alphabet range to a given line. For example, consider a feed partitioned into four lines. Line 0 carries updates for financial instruments whose symbol begins with letters “A” through “F”; line 1 carries updates for symbols beginning with letters “G” through “M”; line 2 carries updates for symbols beginning with letters “N” through “S”; line 3 carries updates for symbols beginning with letters “T” through “Z”. Dynamic line assignments are typically performed as follows. A static mapping line transmits information to feed consumers communicating the number of data lines, the address(es) of the data lines, and the mapping of financial instruments to each data line.
Similarly, financial exchanges typically enforce striping across the ports provided for order entry. A financial exchange provides multiple communication ports to which market participants establish connections and enter orders to electronically buy and sell financial instruments. Exchanges define the subset of financial instruments for which orders are accepted on a given port. Typically, exchanges statically define the subset of financial instruments by using the starting character(s) in the instrument symbol. They assign an alphabet range to a given port. For example, consider an exchange that provides four ports to a given participant. Port 0 accepts orders for financial instruments whose symbol begins with letters “A” through “F”; port 1 accepts orders for symbols beginning with letters “G” through “M”; port 2 accepts orders for symbols beginning with letters “N” through “S”; port 3 accepts orders for symbols beginning with letters “T” through “Z”.
The striping of data by exchanges, across multiple market data feed lines as well as multiple order entry ports, dictates a horizontally scaled architecture for electronic trading platforms. Trading applications are typically responsible for trading a subset of the financial instruments. Each application consumes the market data updates associated with its subset of financial instruments and generate orders for those instruments. Implementing a horizontally scaled system is straightforward for a platform that receives data from and transmits orders to a single market. The design task is significantly complicated when the trading platform receives data from multiple exchanges, computes pan-market views of financial instruments, and transmits orders to multiple exchanges.
Each market data feed source implements its own striping strategy. Note that some market data feeds are not striped at all and employ a single line. The subsets of financial instruments associated with the lines on one market data feed may be different from the subsets of financial instruments associated with the lines on another market data feed. Therefore, the updates associated with financial instruments processed by a given component can be sourced from different sets of lines from each market data feed. These factors significantly complicate the market data processing and distribution components that are responsible for delivering normalized market data to downstream applications, especially when composite, pan-market views of financial instruments are required.
Disclosed herein are multiple variants of an Intelligent Feed Switch (IFS) that offloads numerous market data consumption, normalization, aggregation, enrichment, and distribution functions from downstream components such as feed handlers, virtual order books, or more generally, ticker plants. The specific functions performed by variants of the IFS are described in the sections below. As previously mentioned, utilizing an IFS in the market data feed network provides performance, efficiency, functionality, and scalability benefits to electronic trading platforms.
1. IFS Architecture:
The IFS can be implemented on a wide variety of platforms that provide the necessary processing and memory resources, switching resources, and multiple physical network ports. Just as network switches can be built at various scales, two ports up to thousands of ports, the IFS can be scaled to meet the needs of electronic trading platforms of varying scale. In the embodiment shown in
Note that other processing resources such as chip multi-processors (CMPs), graphics processing units (GPUs), and network processing units (NPUs) may be used in lieu of an FPGA. An example of a network switch platform that may suitable for use as an intelligent switch to process financial market data is the Arista Application Switch 7124FX from Arista Networks, Inc. of Santa Clara, Calif.
2. Platform Architecture with IFS:
As shown in
If the aforementioned requirements exceed the capacity of a single IFS, then a multi-element network can be constructed that includes the IFS. As shown in
Some latency-sensitive trading applications require minimal data normalization in order to drive their trading strategies. Some of these applications may be able to directly consume data from an IFS, as shown in
As shown in
3. Packet Mapping:
As shown in
This meta-information can be propagated to downstream offload engines in the IFS, along with the packet, as shown in
4. Redundant Feed Arbitration:
In order to allow a market data feed to be routed across multiple networks, the Internet Protocol (IP) is ubiquitously used as the network protocol for market data feed distribution. Feed sources typically employ one of two transport protocols: Transmission Control Protocol (TCP) or Unreliable Datagram Protocol (UDP). TCP provides a reliable point-to-point connection between the feed source and the feed consumer. Feed consumers initiate a connection with the feed source, and the feed source must transmit a copy of all market data updates to each feed consumer. Usage of TCP places a large data replication load on the feed source, therefore it is typically used for lower bandwidth feeds and/or feeds with a restricted set of consumers. UDP does not provide reliable transmission, but does include multicast capability. Multicast allows the sender to transmit a single copy of a datagram to multiple consumers. Multicast leverages network elements to perform the necessary datagram replication. An additional protocol allows multicast consumers to “join” a multicast “group” by specifying the multicast address assigned to the “group”. The sender sends a single datagram to the group address and intermediary network elements replicate the datagram as necessary in order to pass a copy of the datagram to the output ports associated with consumers that have joined the multicast group.
While providing for efficient data distribution, UDP multicast is not reliable. Datagrams can be lost in transit for a number of reasons: congestion within a network element causes the datagram to be dropped, a fault in a network link corrupts one or more datagrams transiting the link, etc. While there have been numerous reliable multicast protocols proposed from academia and industry, none have found widespread adoption. Most market data feed sources that utilize UDP multicast transmit redundant copies of the feed, an “A side” and a “B side”. Note that more than two copies are possible. For each “line” of the feed, there is a dedicated multicast group, an “A” multicast group and a “B” multicast group. Typically, the feed source ensures that each copy of the feed is transmitted by independent systems, and feed consumers ensure that each copy of the feed transits an independent network path. Feed consumers then perform arbitration to recover from data loss on one of the redundant copies of the feed.
Note that a packet may contain one or more market data update messages for one or more financial instruments. Typically, feed sources assign a monotonically increasing sequence number to each packet transmitted on a given “line”. This simplifies the task of detecting data loss on a given line. If the most recently received packet contains a sequence number of 5893, then the sequence number of the next packet should be 5894. When using redundant UDP multicast groups, feed sources typically transmit identical packets on the redundant multicast groups associated with a line. For example, packet sequence number 3839 on the A and B side of the feed contains the same market data update messages in the same order. This simplifies the arbitration process for feed consumers.
When line gaps occur there are a number of recovery and mitigation strategies that can be employed. The arbiter typically reports the missing sequence numbers to a separate component that manages gap mitigation and recovery. If the feed provides retransmission capabilities, then the arbiter may buffer packets on both sides until the missing packets are returned by the gap recovery component.
Some feeds sequence updates on a per-message basis or a per-message/per-instrument basis. In these cases, a packet sequence number may not be monotonically increasing or may not be present at all. Typically, arbitration is performed among one or more copies of a UDP multicast feed; however, arbitration can occur among copies of the feed delivered via different transmission protocols (UDP, TCP, etc.). In these scenarios, the content of packets on the redundant copies of the feed may not be identical. The transmitter of packets on the A side may packetize the sequence of market data update messages differently from the transmitter on the B side. This requires the IFS to parse packets prior to performing the arbitration function.
The line identification code (LIC) provided in the meta-data associated with the packet allows the IFS to perform the appropriate line arbitration actions for a given packet. If the packet belongs to an unarbitrated TCP flow, then the packet may bypass the line arbitration and gap detection engine. If the line requires dictates arbitration at the message-level as opposed to the packet level, then the IFS first routes the packet to parsing and decoding engines. The line arbitration and gap detection function may be performed by multiple parallel engines. The LIC may also be used to the route the packet to the appropriate engine handling arbitration for the associated feed line. Furthermore, the LIC is used to identify the appropriate arbitration buffer into which the packet should be inserted.
The compare, select and drop logic in the arbiter performs the core arbitration function as previously described. A register is used to maintain the next expected sequence number. The logic compares the sequence number of the packet residing at the head of each packet buffer. If a matching sequence number is found, the packet is forwarded. If the sequence number is less than the expected sequence number, the packet is dropped. If the sequence number is greater than the expected sequence number, the other buffer or buffers are examined for the required packet. Note that this may require that multiple packets be read until a match is found, the buffer is empty, or a gap is detected. If a gap is detected the gap detection and reporting logic resets then starts the wait timer. If the expected packet sequence number does not arrive before the wait timer exceeds the value in the max hold time register, then a gap is reported to the gap mitigation and recovery engine with the missing packet sequence number range. Note that the gap detection and reporting logic may also report gap information to a control processor or to downstream monitoring applications via generated monitoring messages. If the gap mitigation and recovery engine is configured to request retransmissions, then the arbiter pauses until the gap mitigation and recovery engine passes the missing packet or packets to the arbiter or returns a retransmission timeout signal. The gap mitigation and recovery engine may be hosted on the same device as the arbiter, or it may be hosted on a control processor within the IFS.
5. Feed Pre-Normalization:
In addition to performing line arbitration and gap detection, mitigation, and recovery, the IFS can perform one or more “pre-normalization” functions in order to simplify the task of downstream consumers. Following line arbitration, the IFS preferably decomposes packets into discrete messages. As previously described, feed sources typically pack multiple update messages in a single packet. Note that each feed may employ a different packetization strategy, therefore, the pre-normalization engine in the IFS utilizes the packet parsing templates retrieved by the packet mapping engine. Packet parsing techniques amenable to implementation in hardware and parallel processors are known in the art as described in the above-referenced and incorporated U.S. Pat. No. 7,921,046. If the feed associated with the packet utilizes FAST compression, then the pre-normalization engine must utilize the FAST decoding template in order to decompress and parse the packet into individual messages, as described in the above-referenced and incorporated U.S. Pat. No. 7,921,046.
Once the packet is parsed into discrete messages, specific fields may be extracted from the messages in order to enable additional pre-normalization functions. Template-based parsing in offload engines is also addressed in the above-referenced and incorporated U.S. Pat. No. 7,921,046. Discrete messages and message fields are passed to downstream functions. Note that the message parsing engine may only extract specific fields required for downstream functions, as dictated by the templates included in the meta-data for the packet. For example, the parser may only extract the symbol field in order to enable symbol-based routing and repackaging. For some feeds, the symbol mapping function may require extraction of the order reference number in book update events. This can also be specified by the parsing template.
Note that the message parsing logic can be configured to preserve the original structure of the message. Extracted fields, such as symbols and order reference numbers, can be added to the meta-data that accompanies the packet as it propagates through the IFS. By preserving the message structure, downstream consumer applications need not be changed when an IFS is introduced in the market data network. For example, an existing feed handler for the NASDAQ TotalView feed need not change, as the format of the messages it processes still conforms to the feed specification. If the symbol-routing and repackaging function is applied, the existing feed handler will simply receive packets with messages associated with the symbol range for which it is responsible, but the message formats will conform to the exchange specification. This function is described in more detail below.
The pre-normalization logic can also be configured to offload normalization logic from downstream consumers. For example, the parsing logic can be configured to perform FAST decompression and FIX parsing. Per the parsing templates in the meta-data, the fields in each message can be configured to a prescribed native data type. For example, an ASCII-encoded price field can be converted into a signed 32-bit integer, an ASCII-encoded string can be mapped to a binary index value, etc. The type-converted fields can then be aligned on byte or word boundaries in order to facilitate efficient consumption by consumers. The pre-normalization logic can maintain a table of downstream consumers capable of receiving the pre-normalized version of the feed. For example, the IFS may transmit pre-normalized messages on ports 3 through 8, but transmit the raw messages on ports 9 through 12.
For some feeds, the IFS can be configured to append fields to the raw message, allowing consuming applications to be extended to leverage the additional fields to reap performance gains, without disrupting the function of existing consumers. For example, the IFS may append the MIC, DSIC, LIC, and binary symbol index to the message. Additional appended fields may include, but are not limited to, message-based sequence numbers and high-resolution IFS transmit timestamps.
As previously mentioned, the IFS can be configured to perform a symbol mapping function. The symbol mapping function assigns a binary symbol index to the financial instrument associated with the update event. This index provides a convenient way for downstream functions and consuming applications to perform processing on a per symbol basis. An efficient technique for mapping instrument symbols using parallel processing resources in offload engines is described in the above-referenced and incorporated U.S. Pat. No. 7,921,046. Note that some feeds provide updates on a per-order basis and some update events do not contain the instrument symbol, but only an order reference number. Feed consumers must map the order reference number to the associated symbol. An efficient technique for mapping order reference numbers to the mapped symbol index using parallel processing resources in offload engines is described in the above-referenced and incorporated WO Pub. WO 2010/077829. In order to perform the symbol mapping function, the computational resources in the IFS can include dedicated high-speed memory interfaces.
As part of the pre-normalization function, the IFS may also assign one or more high-precision timestamps. For example, a timestamp may be assigned when the IFS receives a packet, a timestamp may be assigned immediately prior to transmitting a packet, etc. The high-precision timestamp preferably provides nanosecond resolution. In order to provide synchronized timestamps with downstream consumers, the time source used to assign the timestamps should be disciplined with a high-precision time synchronization protocol. Example protocols include the Network Time Protocol (NTP) and the Precision Time Protocol (PTP). The protocol engine can be co-resident with the offload engines in the IFS, but is preferably implemented in a control processor that disciplines a timer in the offload engines. As part of the pre-normalization function, the IFS may also assign additional sequence numbers. For example, the IFS may assign a per-message, per-symbol sequence number. This would provide a monotonically increasing sequence number for each instrument. These additional timestamps and sequence numbers may be appended to raw message formats or included in the pre-normalized message format, as described above.
6. Symbol-Based Routing and Repackaging:
The symbol-based routing allows the IFS to deliver updates for a prescribed set of symbols to downstream components in the electronic trading platform. As shown in
Preferably, the packetization logic constructs maximally sized packets: the logic reads as many messages as possible from the queue until the maximum packet size is reached or the message queue is empty. Note that packetization strategy and destination parameters may be specified via packaging parameters stored in a table. The packetization logic simply performs a lookup using the queue number that it is currently servicing in order to retrieve the appropriate parameters. The interest list and packaging parameter tables are preferably managed by configuration, control, and table management logic hosted on a co-resident control processor.
Note that the messages in the newly constructed packets may have been transmitted by their concomitant feed sources in different packets or in the same packet with other messages that are now excluded. This is an example of the IFS constructing a customized “feed” for downstream consumers.
If downstream consumers are equipped with network interface devices that allow for custom protocol implementation, e.g. an FPGA connected directly to the physical network link, then additional optimizations may be implemented by the packetization logic. For example, the Ethernet MAC-level (and above) headers and CRC trailer may be stripped off any packet. By doing so, unnecessary overhead can be removed from packets, reducing packet sizes, reducing data transmission latency, and reducing the amount of processing required to consume the packets. As shown in
7. Depth Price Aggregation and Synthetic Quotes:
With sufficient processing and memory resources, additional data normalization functions may be performed by the IFS, and thus offloaded from platform components such as feed handlers, virtual order book engines, and ticker plants. One such function is price-normalization for order-based depth of market feeds. As described in the above-referenced and incorporated U.S. Pat. No. 7,921,046, WO Pub. WO 2010/077829, and U.S. patent application Ser. No. 13/316,332, a number of market data feeds operate at the granularity of individual orders to buy or sell a financial instrument. The majority of real-time updates represent new orders, modifications to existing orders, or deletions of existing orders. As described in these incorporated references, a significant number of market data applications choose to consume the order-based depth of market feeds simply due to the reduced data delivery latency relative to top-of-book or consolidated feeds. However, the applications typically do not require visibility into the individual orders, but rather choose to view pricing information as a limited-depth, price-aggregated book, or as a top-of-book quote. In the above-referenced and incorporated U.S. Pat. No. 7,921,046, WO Pub. WO 2010/077829, and U.S. patent application Ser. No. 13/316,332, a number of techniques are disclosed for efficiently performing price aggregation in parallel processing elements such as reconfigurable hardware devices. The same methods can be applied in the context of an intelligent feed switch to offload price aggregation from downstream consumers. For example, rather than consuming the NASDAQ Totalview feed in its raw order-referenced format, downstream consumers can consume price-aggregated updates reflecting new price points, changes to existing price points, and deletions of price points from the book. This can reduce the number of update events to downstream consumers.
Note that price aggregation may be performed on a per-symbol, per-market basis (e.g. NASDAQ market only), or on a per-symbol, pan-market basis (e.g. NASDAQ, NYSE, BATS, ARCA, Direct Edge) to facilitate virtual order book views.
A further reduction in the number of updates consumed by downstream consumers can be achieved by performing size filtering. Size filtering is defined as the suppression of an update if the result of the update is a change in aggregate volume (size) at a pre-existing price point, where the amount of the change relative to the most recent update transmitted to consumers is less than a configured threshold. Note that the threshold may be relative to the current volume, e.g. a change in size of 50%.
Again, if sufficient processing and memory resources are deployed within the IFS, a synthetic quote engine can be included. As described in the above-referenced and incorporated U.S. Pat. No. 7,921,046, WO Pub. WO 2010/077829, and U.S. patent application Ser. No. 13/316,332, price-aggregated entries can be sorted into a price book view for each symbol. The top N levels of the price-aggregated represent a top-of-book quote. Note that N is typically one (i.e. only the best bid and offer values), but N may be set to be a small value such as three (3) to enhance the quote with visibility into the next N−1 price levels in the book. The techniques described in these incorporated referenced can be used to efficiently sort price-aggregated updates into price books and generate top-of-book quotes when an entry in the top N levels changes using parallel processing resources.
8. Event Caching:
As previously described, the IFS is capable of only transmitting updates for symbols for which downstream consumers are interested using the symbol-based routing described above. If a consumer wishes to add a symbol to its set of interest, the consumer would need to wait until a subsequent quote event is transmitted by the feed source in order to receive the current pricing for the associated financial instrument. A simple form of a cache can be efficiently implemented in the IFS in order to allow downstream consumers to immediately receive current pricing data for a financial instrument if its symbol is dynamically added to its set of interest during a trading session. For feeds that provide top-of-book quote updates and last trade reports, the IFS can maintain a simply last event cache that stores the most recent quote and most recent trade event received on a per-symbol, per-market basis. Specifically, a table of events is maintained where an entry is located using the symbol index, MIC, and MSIC. When the set of interest changes for a given downstream consumer, the current quote and trade events in the event cache are transmitted to the consumer. This allows the consumer to receive the current bid, offer, and last traded price information for the instrument.
If sufficient processing resources exist in the IFS, a full last value cache (LVC) can be maintained as described in the above-referenced and incorporated U.S. Pat. No. 7,921,046.
9. Data Quality Monitoring:
The IFS can be also be configured to monitor a wide variety of data quality metrics on a per-symbol, per-market basis. A list of data quality metrics includes but is not limited to:
The data quality can be reflected in an enumerated value and included in messages transmitted to downstream consumers as an appended field, as previously described. These enumerated data quality states can be used by the IFS and/or downstream consumers to perform a variety data quality mitigation operations.
10. Data Source Failover:
An example of a data quality mitigation operation is to provide data source failover. As previously described, there may be multiple data sources for market data updates from a given market, hence the need for a data source identification code (DSIC). Rather specify a specific <symbol, market, data source> tuple when establishing interest in an instrument, downstream consumers may specify a <symbol, market> tuple where the “best” data source is selected by the IFS. A prioritized list of data sources for each market is specified in the control logic. When the data quality associated with the current preferred data source for a market transitions to “poor” quality state, the IFS automatically transitions to the next highest-priority data source for the market. The data quality states that constitute “poor” quality are configured in the control logic. When a data source transition occurs, the control logic alters the interest list entries associated with affected instruments and downstream consumers. Note that if a higher-priority data source transitions out of a “poor” quality state, the IFS automatically transitions back to the higher-priority data source. Preferably, the IFS is configured to apply hysteresis to the data source failover function to prevent thrashing between data sources. Note that data source failover may rely on the presence of other functions within the IFS such as synthetic quote generation if failover is to be supported between depth of market feeds and top-of-book quote feeds.
11. Monitoring, Configuration, and Control:
The monitoring, configuration, and control logic described is preferably hosted on a co-resident processor in the IFS. This logic may interface with applications in the electronic platform or remote operations applications. In one embodiment of the IFS, control messages are received from an egress port. This allows one or more applications in the electronic trading platform to specify symbol routing parameters, packet and message parsing templates, prioritized lists of data sources, gap reporting and mitigation parameters, etc.
In addition, a variety of statistics counters and informational registers are maintained by the offload engines that can be accessed by the control logic in the IFS such as per-line packet and message counters, packet and message rates, gap counters and missing sequence registers, packet size statistics, etc. These statistics are made available to the external world via common mechanisms in the art, including SNMP, HTML, etc.
12. Feed Generation:
The IFS can also be used by feed sources (exchanges and consolidated feed vendors) to offload many of the functions required in feed generation. These tasks are largely the inverse of those performed by feed consumers. Specifically, the IFS can be configured to encode updates using prescribed encoding templates and transmit the updates on specified multicast groups, output ports, etc. Other functions that are applicable to feed generation include high-resolution timestamping, rate monitoring, and data quality monitoring.
C. Intelligent Distribution Switch:
The same methods and apparatuses can be applied to the task of distributing data throughout the electronic trading platform. As shown in
The IDS architecture can be one of the previously described variants shown in
As shown in
Data source failover may also be performed by the IDS. Like the previously described data source failover function performed in the IFS, the IDS allows downstream consumers to specify a prioritized list of normalized data sources. When the preferred source becomes unavailable or the data quality transitions to an unacceptable state, the IDS switches to the next highest priority normalized data source.
The IDS may also perform customized computations a per-consumer basis. Example computations include constructing user-defined Virtual Order Books, computing basket computations, computing options prices (and implied volatilites) and generating user-defined Best Bid and Offer (BBO) quotes (see the above-referenced and incorporated U.S. Pat. Nos. 7,840,482 and 7,921,046, U.S. Pat. App. Pub. 2009/0182683, and WO Pub. WO 2010/077829 for examples of hardware-accelerated processing modules for such tasks). By performing these functions in an IDS at the “edge” of the distribution network allows the functions to be customized on a per consumer basis. Note that a ticker plant distributing data to hundreds of consumers may not have the processing capacity to perform hundreds of customized computations, one for each consumer. Examples of other customized per consumer computations include: liquidity target Net Asset Value (NAV) computations, future/spot price transformations, and currency conversions.
Additionally, the IDS may host one or more of the low latency data distribution functions described in the above-referenced and incorporated U.S. Pat. App. Ser. No. 61/570,670. In one embodiment, the IDS may perform all of the functions of an Edge Cache. In another embodiment, the IDS may perform all of the functions of a Connection Multiplexer. As such, the IDS includes at least one instance of a multi-class distribution engine (MDE) that includes some permutation of Critical Transmission Engine, Adaptive Transmission Engine, or Metered Transmission Engine.
Like the customized per consumer computations, the IDS may also perform per consumer protocol bridging. For example, the upstream connection from the IDS to a ticker plant may use a point-to-point Remote Direct Memory Access (RDMA) protocol. The IDS may be distributing data to a set of consumers via point-to-point connections using the Transmission Control Protocol (TCP) over Internet Protocol (IP), and distributing data to another set of consumers via a proprietary reliable multicast protocol over Unreliable Datagram Protocol (UDP).
1. Low Overhead Communication Protocols:
Note that if intelligent FPGA NICs are used in the consuming machines, then a direct FPGA-to-FPGA wire path exists between FPGA in the Switch and the FPGA in the NIC. This eliminates the need for Ethernet frame headers, IP headers, CRCs, inter-frame spacing and other overhead, and allows the FPGA in the switch to communicate directly with the FPGA in the NIC, without being constrained to specific communication protocols.
While the present invention has been described above in relation to exemplary embodiments, various modifications may be made thereto that still fall within the invention's scope, as would be recognized by those of ordinary skill in the art. Such modifications to the invention will be recognizable upon review of the teachings herein. As such, the full scope of the present invention is to be defined solely by the appended claims and their legal equivalents.
This patent application is a divisional of U.S. patent application Ser. No. 13/833,098, filed Mar. 15, 2013, and entitled “Offload Processing of Data Packets Containing Financial Market Data”, now U.S. Pat. No. 10,121,196, which claims priority to U.S. provisional patent application Ser. No. 61/616,181, filed Mar. 27, 2012, and entitled “Offload Processing of Data Packets Containing Financial Market Data”, the entire disclosures of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2046381 | Hicks et al. | Jul 1936 | A |
3082402 | Scantlin | Mar 1963 | A |
3296597 | Scantlin et al. | Jan 1967 | A |
3573747 | Adams et al. | Apr 1971 | A |
3581072 | Nymeyer | May 1971 | A |
3601808 | Vlack | Aug 1971 | A |
3611314 | Pritchard, Jr. et al. | Oct 1971 | A |
3729712 | Glassman | Apr 1973 | A |
3824375 | Gross et al. | Jul 1974 | A |
3848235 | Lewis et al. | Nov 1974 | A |
3906455 | Houston et al. | Sep 1975 | A |
4044334 | Bachman et al. | Aug 1977 | A |
4081607 | Vitols et al. | Mar 1978 | A |
4298898 | Cardot | Nov 1981 | A |
4300193 | Bradley et al. | Nov 1981 | A |
4314356 | Scarbrough | Feb 1982 | A |
4385393 | Chaure et al. | May 1983 | A |
4412287 | Braddock, III | Oct 1983 | A |
4464718 | Dixon et al. | Aug 1984 | A |
4550436 | Freeman et al. | Oct 1985 | A |
4674044 | Kalmus et al. | Jun 1987 | A |
4811214 | Nosenchuck et al. | Mar 1989 | A |
4823306 | Barbic et al. | Apr 1989 | A |
4868866 | Williams, Jr. | Sep 1989 | A |
4903201 | Wagner | Feb 1990 | A |
4941178 | Chuang | Jul 1990 | A |
5023910 | Thomson | Jun 1991 | A |
5038284 | Kramer | Aug 1991 | A |
5050075 | Herman et al. | Sep 1991 | A |
5063507 | Lindsey et al. | Nov 1991 | A |
5077665 | Silverman et al. | Dec 1991 | A |
5101353 | Lupien et al. | Mar 1992 | A |
5101424 | Clayton et al. | Mar 1992 | A |
5126936 | Champion et al. | Jun 1992 | A |
5140692 | Morita | Aug 1992 | A |
5161103 | Kosaka et al. | Nov 1992 | A |
5163131 | Row et al. | Nov 1992 | A |
5179626 | Thomson | Jan 1993 | A |
5226165 | Martin | Jul 1993 | A |
5243655 | Wang | Sep 1993 | A |
5249292 | Chiappa | Sep 1993 | A |
5255136 | Machado et al. | Oct 1993 | A |
5258908 | Hartheimer et al. | Nov 1993 | A |
5265065 | Turtle | Nov 1993 | A |
5267148 | Kosaka et al. | Nov 1993 | A |
5270922 | Higgins | Dec 1993 | A |
5297032 | Trojan et al. | Mar 1994 | A |
5313560 | Maruoka et al. | May 1994 | A |
5315634 | Tanaka et al. | May 1994 | A |
5319776 | Hile et al. | Jun 1994 | A |
5327521 | Savic et al. | Jul 1994 | A |
5339411 | Heaton, Jr. | Aug 1994 | A |
5347634 | Herrell et al. | Sep 1994 | A |
5371794 | Diffie et al. | Dec 1994 | A |
5375055 | Togher et al. | Dec 1994 | A |
5388259 | Fleischman et al. | Feb 1995 | A |
5396253 | Chia | Mar 1995 | A |
5404488 | Kerrigan et al. | Apr 1995 | A |
5418951 | Damashek | May 1995 | A |
5421028 | Swanson | May 1995 | A |
5432822 | Kaewell, Jr. | Jul 1995 | A |
5461712 | Chelstowski et al. | Oct 1995 | A |
5465353 | Hull et al. | Nov 1995 | A |
5481735 | Mortensen et al. | Jan 1996 | A |
5488725 | Turtle et al. | Jan 1996 | A |
5497317 | Hawkins et al. | Mar 1996 | A |
5497488 | Akizawa et al. | Mar 1996 | A |
5500793 | Deming, Jr. et al. | Mar 1996 | A |
5517642 | Bezek et al. | May 1996 | A |
5544352 | Egger | Aug 1996 | A |
5546578 | Takada et al. | Aug 1996 | A |
5596569 | Madonna et al. | Jan 1997 | A |
5619574 | Johnson et al. | Apr 1997 | A |
5651125 | Witt et al. | Jul 1997 | A |
5680634 | Estes | Oct 1997 | A |
5684980 | Casselman | Nov 1997 | A |
5701464 | Aucsmith | Dec 1997 | A |
5712942 | Jennings et al. | Jan 1998 | A |
5721898 | Beardsley et al. | Feb 1998 | A |
5740244 | Indeck et al. | Apr 1998 | A |
5740466 | Geldman et al. | Apr 1998 | A |
5774835 | Ozawa et al. | Jun 1998 | A |
5774839 | Shlomot | Jun 1998 | A |
5781772 | Wilkinson, III et al. | Jul 1998 | A |
5781921 | Nichols | Jul 1998 | A |
5802290 | Casselman | Sep 1998 | A |
5805832 | Brown et al. | Sep 1998 | A |
5809483 | Broka et al. | Sep 1998 | A |
5813000 | Furlani | Sep 1998 | A |
5819273 | Vora et al. | Oct 1998 | A |
5819290 | Fujita et al. | Oct 1998 | A |
5826075 | Bealkowski et al. | Oct 1998 | A |
5845266 | Lupien et al. | Dec 1998 | A |
5857176 | Ginsberg | Jan 1999 | A |
5864738 | Kessler et al. | Jan 1999 | A |
5870730 | Furuya et al. | Feb 1999 | A |
5873071 | Ferstenberg et al. | Feb 1999 | A |
5884286 | Daughtery, III | Mar 1999 | A |
5905974 | Fraser et al. | May 1999 | A |
5913211 | Nitta | Jun 1999 | A |
5930753 | Potamianos et al. | Jul 1999 | A |
5943421 | Grabon | Aug 1999 | A |
5943429 | Händel | Aug 1999 | A |
5950006 | Crater et al. | Sep 1999 | A |
5963923 | Garber | Oct 1999 | A |
5978801 | Yuasa | Nov 1999 | A |
5987432 | Zusman et al. | Nov 1999 | A |
5991881 | Conklin et al. | Nov 1999 | A |
5995963 | Nanba et al. | Nov 1999 | A |
6006264 | Colby et al. | Dec 1999 | A |
6016483 | Rickard et al. | Jan 2000 | A |
6023755 | Casselman | Feb 2000 | A |
6023760 | Karttunen | Feb 2000 | A |
6028939 | Yin | Feb 2000 | A |
6034538 | Abramovici | Mar 2000 | A |
6044407 | Jones et al. | Mar 2000 | A |
6058391 | Gardner | May 2000 | A |
6061662 | Makivic | May 2000 | A |
6064739 | Davis | May 2000 | A |
6067569 | Khaki et al. | May 2000 | A |
6070172 | Lowe | May 2000 | A |
6073160 | Grantham et al. | Jun 2000 | A |
6084584 | Nahi et al. | Jul 2000 | A |
6096091 | Hartmann | Aug 2000 | A |
6105067 | Batra | Aug 2000 | A |
6134551 | Aucsmith | Oct 2000 | A |
6138176 | McDonald et al. | Oct 2000 | A |
6147976 | Shand et al. | Nov 2000 | A |
6169969 | Cohen | Jan 2001 | B1 |
6173270 | Cristofich et al. | Jan 2001 | B1 |
6173276 | Kant et al. | Jan 2001 | B1 |
6178494 | Casselman | Jan 2001 | B1 |
6195024 | Fallon | Feb 2001 | B1 |
6226676 | Crump et al. | May 2001 | B1 |
6236980 | Reese | May 2001 | B1 |
6243753 | Machin et al. | Jun 2001 | B1 |
6247060 | Boucher et al. | Jun 2001 | B1 |
6263321 | Daughtery, III | Jul 2001 | B1 |
6272616 | Fernando et al. | Aug 2001 | B1 |
6278982 | Korhammer et al. | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6279140 | Slane | Aug 2001 | B1 |
6289440 | Casselman | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6304858 | Mosler et al. | Oct 2001 | B1 |
6309424 | Fallon | Oct 2001 | B1 |
6317728 | Kane | Nov 2001 | B1 |
6317795 | Malkin et al. | Nov 2001 | B1 |
6321258 | Stollfus et al. | Nov 2001 | B1 |
6336150 | Ellis et al. | Jan 2002 | B1 |
6339819 | Huppenthal et al. | Jan 2002 | B1 |
6370592 | Kumpf | Apr 2002 | B1 |
6370645 | Lee et al. | Apr 2002 | B1 |
6377942 | Hinsley et al. | Apr 2002 | B1 |
6388584 | Dorward et al. | May 2002 | B1 |
6397259 | Lincke et al. | May 2002 | B1 |
6397335 | Franczek et al. | May 2002 | B1 |
6412000 | Riddle et al. | Jun 2002 | B1 |
6415269 | Dinwoodie | Jul 2002 | B1 |
6418419 | Nieboer et al. | Jul 2002 | B1 |
6430272 | Maruyama et al. | Aug 2002 | B1 |
6456982 | Pilipovic | Sep 2002 | B1 |
6463474 | Fuh et al. | Oct 2002 | B1 |
6484209 | Momirov | Nov 2002 | B1 |
6499107 | Gleichauf et al. | Dec 2002 | B1 |
6535868 | Galeazzi et al. | Mar 2003 | B1 |
6546375 | Pang et al. | Apr 2003 | B1 |
6578147 | Shanklin et al. | Jun 2003 | B1 |
6581098 | Kumpf | Jun 2003 | B1 |
6591302 | Boucher et al. | Jul 2003 | B2 |
6594643 | Freeny, Jr. | Jul 2003 | B1 |
6597812 | Fallon et al. | Jul 2003 | B1 |
6601094 | Mentze et al. | Jul 2003 | B1 |
6601104 | Fallon | Jul 2003 | B1 |
6604158 | Fallon | Aug 2003 | B1 |
6624761 | Fallon | Sep 2003 | B2 |
6625150 | Yu | Sep 2003 | B1 |
6691301 | Bowen | Feb 2004 | B2 |
6704816 | Burke | Mar 2004 | B1 |
6710702 | Averbuch et al. | Mar 2004 | B1 |
6711558 | Indeck et al. | Mar 2004 | B1 |
6765918 | Dixon et al. | Jul 2004 | B1 |
6766304 | Kemp, II et al. | Jul 2004 | B2 |
6772132 | Kemp, II et al. | Aug 2004 | B1 |
6772136 | Kant et al. | Aug 2004 | B2 |
6772345 | Shetty | Aug 2004 | B1 |
6778968 | Gulati | Aug 2004 | B1 |
6785677 | Fritchman | Aug 2004 | B1 |
6804667 | Martin | Oct 2004 | B1 |
6807156 | Veres et al. | Oct 2004 | B1 |
6820129 | Courey, Jr. | Nov 2004 | B1 |
6839686 | Galant | Jan 2005 | B1 |
6847645 | Potter et al. | Jan 2005 | B1 |
6850906 | Chadha et al. | Feb 2005 | B1 |
6870837 | Ho et al. | Mar 2005 | B2 |
6877044 | Lo et al. | Apr 2005 | B2 |
6886103 | Brustoloni et al. | Apr 2005 | B1 |
6901461 | Bennett | May 2005 | B2 |
6931408 | Adams et al. | Aug 2005 | B2 |
6931545 | Ta et al. | Aug 2005 | B1 |
6944168 | Paatela et al. | Sep 2005 | B2 |
6978223 | Milliken | Dec 2005 | B2 |
6981054 | Krishna | Dec 2005 | B1 |
7003488 | Dunne et al. | Feb 2006 | B2 |
7024384 | Daughtery, III | Apr 2006 | B2 |
7046848 | Olcott | May 2006 | B1 |
7058735 | Spencer | Jun 2006 | B2 |
7065475 | Brundobler | Jun 2006 | B1 |
7065482 | Shorey et al. | Jun 2006 | B2 |
7089206 | Martin | Aug 2006 | B2 |
7089326 | Boucher et al. | Aug 2006 | B2 |
7093023 | Lockwood et al. | Aug 2006 | B2 |
7099838 | Gastineau et al. | Aug 2006 | B1 |
7101188 | Summers et al. | Sep 2006 | B1 |
7103569 | Groveman et al. | Sep 2006 | B1 |
7117280 | Vasudevan | Oct 2006 | B2 |
7124106 | Stallaert et al. | Oct 2006 | B1 |
7127424 | Kemp, II et al. | Oct 2006 | B2 |
7130913 | Fallon | Oct 2006 | B2 |
7139743 | Indeck et al. | Nov 2006 | B2 |
7149715 | Browne et al. | Dec 2006 | B2 |
7161506 | Fallon | Jan 2007 | B2 |
7167980 | Chiu | Jan 2007 | B2 |
7177833 | Marynowski et al. | Feb 2007 | B1 |
7181437 | Indeck et al. | Feb 2007 | B2 |
7181608 | Fallon et al. | Feb 2007 | B2 |
7191233 | Miller | Mar 2007 | B2 |
7212998 | Muller et al. | May 2007 | B1 |
7219125 | Day | May 2007 | B1 |
7222114 | Chan et al. | May 2007 | B1 |
7224185 | Campbell et al. | May 2007 | B2 |
7225188 | Gai et al. | May 2007 | B1 |
7228289 | Brumfield et al. | Jun 2007 | B2 |
7249118 | Sandler et al. | Jul 2007 | B2 |
7251629 | Marynowski et al. | Jul 2007 | B1 |
7257842 | Barton et al. | Aug 2007 | B2 |
7277887 | Burrows et al. | Oct 2007 | B1 |
7287037 | An et al. | Oct 2007 | B2 |
7305383 | Kubesh et al. | Dec 2007 | B1 |
7305391 | Wyschogrod et al. | Dec 2007 | B2 |
7321937 | Fallon | Jan 2008 | B2 |
7356498 | Kaminsky et al. | Apr 2008 | B2 |
7363277 | Dutta et al. | Apr 2008 | B1 |
7372875 | Hadzic et al. | May 2008 | B2 |
7376755 | Pandya | May 2008 | B2 |
7378992 | Fallon | May 2008 | B2 |
7386046 | Fallon et al. | Jun 2008 | B2 |
7406444 | Eng et al. | Jul 2008 | B2 |
7415723 | Pandya | Aug 2008 | B2 |
7417568 | Fallon et al. | Aug 2008 | B2 |
7420931 | Nanda et al. | Sep 2008 | B2 |
7447788 | Ahmed et al. | Nov 2008 | B2 |
7454418 | Wang | Nov 2008 | B1 |
7457834 | Jung et al. | Nov 2008 | B2 |
7461064 | Fontoura et al. | Dec 2008 | B2 |
7478431 | Nachenberg | Jan 2009 | B1 |
7480253 | Allan | Jan 2009 | B1 |
7487264 | Pandya | Feb 2009 | B2 |
7487327 | Chang et al. | Feb 2009 | B1 |
7496108 | Biran et al. | Feb 2009 | B2 |
7536462 | Pandya | May 2009 | B2 |
7539845 | Wentzlaff | May 2009 | B1 |
7558753 | Neubert et al. | Jul 2009 | B2 |
7558925 | Bouchard et al. | Jul 2009 | B2 |
7565525 | Vorbach et al. | Jul 2009 | B2 |
7580719 | Karmarkar | Aug 2009 | B2 |
7587476 | Sato | Sep 2009 | B2 |
7603303 | Kraus et al. | Oct 2009 | B1 |
7606267 | Ho et al. | Oct 2009 | B2 |
7606968 | Branscome et al. | Oct 2009 | B2 |
7617291 | Fan et al. | Nov 2009 | B2 |
7627693 | Pandya | Dec 2009 | B2 |
7631107 | Pandya | Dec 2009 | B2 |
7636703 | Taylor | Dec 2009 | B2 |
7660761 | Zhou et al. | Feb 2010 | B2 |
7668849 | Narancic et al. | Feb 2010 | B1 |
7685121 | Brown et al. | Mar 2010 | B2 |
7685254 | Pandya | Mar 2010 | B2 |
7701945 | Roesch et al. | Apr 2010 | B2 |
7714747 | Fallon | May 2010 | B2 |
7715436 | Eiriksson et al. | May 2010 | B1 |
7760733 | Eiriksson et al. | Jul 2010 | B1 |
7761459 | Zhang et al. | Jul 2010 | B1 |
7788293 | Pasztor et al. | Aug 2010 | B2 |
7827190 | Pandya | Nov 2010 | B2 |
7831606 | Pandya | Nov 2010 | B2 |
7831607 | Pandya | Nov 2010 | B2 |
7831720 | Noureddine et al. | Nov 2010 | B1 |
7840482 | Singla et al. | Nov 2010 | B2 |
7856545 | Casselman | Dec 2010 | B2 |
7856546 | Casselman et al. | Dec 2010 | B2 |
7869442 | Kamboh et al. | Jan 2011 | B1 |
7870217 | Pandya | Jan 2011 | B2 |
7890692 | Pandya | Feb 2011 | B2 |
7899976 | Pandya | Mar 2011 | B2 |
7899977 | Pandya | Mar 2011 | B2 |
7899978 | Pandya | Mar 2011 | B2 |
7908213 | Monroe et al. | Mar 2011 | B2 |
7908259 | Branscome et al. | Mar 2011 | B2 |
7912808 | Pandya | Mar 2011 | B2 |
7917299 | Buhler et al. | Mar 2011 | B2 |
7921046 | Parsons et al. | Apr 2011 | B2 |
7944920 | Pandya | May 2011 | B2 |
7945528 | Cytron et al. | May 2011 | B2 |
7949650 | Indeck et al. | May 2011 | B2 |
7953743 | Indeck et al. | May 2011 | B2 |
7954114 | Chamberlain et al. | May 2011 | B2 |
7991667 | Kraus et al. | Aug 2011 | B2 |
7996348 | Pandya | Aug 2011 | B2 |
8005966 | Pandya | Aug 2011 | B2 |
8015099 | Reid | Sep 2011 | B2 |
8024253 | Peterffy et al. | Sep 2011 | B2 |
8027893 | Burrows et al. | Sep 2011 | B1 |
8032440 | Hait | Oct 2011 | B1 |
8046283 | Bums et al. | Oct 2011 | B2 |
8051022 | Pandya | Nov 2011 | B2 |
8055601 | Pandya | Nov 2011 | B2 |
8069102 | Indeck et al. | Nov 2011 | B2 |
8073763 | Merrin et al. | Dec 2011 | B1 |
8095508 | Chamberlain et al. | Jan 2012 | B2 |
8131697 | Indeck et al. | Mar 2012 | B2 |
8140416 | Borkovec et al. | Mar 2012 | B2 |
8156101 | Indeck et al. | Apr 2012 | B2 |
8181239 | Pandya | May 2012 | B2 |
8200599 | Pandya | Jun 2012 | B2 |
8224800 | Branscome et al. | Jul 2012 | B2 |
8229918 | Branscome et al. | Jul 2012 | B2 |
8234267 | Branscome et al. | Jul 2012 | B2 |
8244718 | Chamdani et al. | Aug 2012 | B2 |
8260764 | Gruber | Sep 2012 | B1 |
8281026 | Lankford et al. | Oct 2012 | B2 |
8326819 | Indeck et al. | Dec 2012 | B2 |
8374986 | Indeck et al. | Feb 2013 | B2 |
8407122 | Parsons et al. | Mar 2013 | B2 |
8458081 | Parsons et al. | Jun 2013 | B2 |
8478680 | Parsons et al. | Jul 2013 | B2 |
8515682 | Buhler et al. | Aug 2013 | B2 |
8549024 | Indeck et al. | Oct 2013 | B2 |
8595104 | Parsons et al. | Nov 2013 | B2 |
8600856 | Parsons et al. | Dec 2013 | B2 |
8601086 | Pandya | Dec 2013 | B2 |
8620881 | Chamberlain et al. | Dec 2013 | B2 |
8626624 | Parsons et al. | Jan 2014 | B2 |
8655764 | Parsons et al. | Feb 2014 | B2 |
8660925 | Borkovec et al. | Feb 2014 | B2 |
8737606 | Taylor et al. | May 2014 | B2 |
8751452 | Chamberlain et al. | Jun 2014 | B2 |
8762249 | Taylor et al. | Jun 2014 | B2 |
8768805 | Taylor et al. | Jul 2014 | B2 |
8768888 | Chamberlain et al. | Jul 2014 | B2 |
8843408 | Singla et al. | Sep 2014 | B2 |
8879727 | Taylor et al. | Nov 2014 | B2 |
8880501 | Indeck et al. | Nov 2014 | B2 |
9020928 | Indeck et al. | Apr 2015 | B2 |
9047243 | Taylor et al. | Jun 2015 | B2 |
9176775 | Chamberlain et al. | Nov 2015 | B2 |
9961006 | Sutardja et al. | May 2018 | B1 |
10037568 | Taylor et al. | Jul 2018 | B2 |
10121196 | Parsons et al. | Nov 2018 | B2 |
10191974 | Indeck et al. | Jan 2019 | B2 |
10229453 | Taylor et al. | Mar 2019 | B2 |
10572824 | Chamberlain et al. | Feb 2020 | B2 |
10650452 | Parsons et al. | May 2020 | B2 |
20010003193 | Woodring et al. | Jun 2001 | A1 |
20010004354 | Jolitz | Jun 2001 | A1 |
20010013048 | Imbert de Tremiolles et al. | Aug 2001 | A1 |
20010025315 | Jolitz | Sep 2001 | A1 |
20010042040 | Keith | Nov 2001 | A1 |
20010044770 | Keith | Nov 2001 | A1 |
20010047473 | Fallon | Nov 2001 | A1 |
20010052038 | Fallon et al. | Dec 2001 | A1 |
20010056547 | Dixon | Dec 2001 | A1 |
20020004820 | Baldwin et al. | Jan 2002 | A1 |
20020010825 | Wilson | Jan 2002 | A1 |
20020019812 | Board et al. | Feb 2002 | A1 |
20020023010 | Rittmaster et al. | Feb 2002 | A1 |
20020031125 | Sato | Mar 2002 | A1 |
20020038276 | Buhannic et al. | Mar 2002 | A1 |
20020049841 | Johnson et al. | Apr 2002 | A1 |
20020054604 | Kadambi et al. | May 2002 | A1 |
20020069370 | MacK | Jun 2002 | A1 |
20020069375 | Bowen | Jun 2002 | A1 |
20020072893 | Wilson | Jun 2002 | A1 |
20020080871 | Fallon et al. | Jun 2002 | A1 |
20020082967 | Kaminsky et al. | Jun 2002 | A1 |
20020091826 | Comeau et al. | Jul 2002 | A1 |
20020095512 | Rana et al. | Jul 2002 | A1 |
20020095519 | Philbrick et al. | Jul 2002 | A1 |
20020100029 | Bowen | Jul 2002 | A1 |
20020101425 | Hamid | Aug 2002 | A1 |
20020105911 | Pruthi et al. | Aug 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020138376 | Hinkle | Sep 2002 | A1 |
20020143521 | Call | Oct 2002 | A1 |
20020150248 | Kovacevic | Oct 2002 | A1 |
20020156998 | Casselman | Oct 2002 | A1 |
20020162025 | Sutton et al. | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169873 | Zodnik | Nov 2002 | A1 |
20020180742 | Hamid | Dec 2002 | A1 |
20020198813 | Patterson, Jr. | Dec 2002 | A1 |
20020199173 | Bowen | Dec 2002 | A1 |
20030009411 | Ram et al. | Jan 2003 | A1 |
20030009693 | Brock et al. | Jan 2003 | A1 |
20030014521 | Elson et al. | Jan 2003 | A1 |
20030014662 | Gupta et al. | Jan 2003 | A1 |
20030018630 | Lndeck et al. | Jan 2003 | A1 |
20030023653 | Dunlop et al. | Jan 2003 | A1 |
20030023876 | Bardsley et al. | Jan 2003 | A1 |
20030028408 | RuDusky | Feb 2003 | A1 |
20030028690 | Appleby-Alis et al. | Feb 2003 | A1 |
20030028864 | Bowen | Feb 2003 | A1 |
20030033234 | RuDusky | Feb 2003 | A1 |
20030033240 | Balson et al. | Feb 2003 | A1 |
20030033450 | Appleby-Alis | Feb 2003 | A1 |
20030033514 | Appleby-Allis et al. | Feb 2003 | A1 |
20030033588 | Alexander | Feb 2003 | A1 |
20030033594 | Bowen | Feb 2003 | A1 |
20030035547 | Newton | Feb 2003 | A1 |
20030037037 | Adams et al. | Feb 2003 | A1 |
20030037321 | Bowen | Feb 2003 | A1 |
20030041129 | Applcby-Allis | Feb 2003 | A1 |
20030043805 | Graham | Mar 2003 | A1 |
20030046668 | Bowen | Mar 2003 | A1 |
20030051043 | Wyschogrod et al. | Mar 2003 | A1 |
20030055658 | RuDusky | Mar 2003 | A1 |
20030055769 | RuDusky | Mar 2003 | A1 |
20030055770 | RuDusky | Mar 2003 | A1 |
20030055771 | RuDusky | Mar 2003 | A1 |
20030055777 | Ginsberg | Mar 2003 | A1 |
20030061409 | RuDusky | Mar 2003 | A1 |
20030065607 | Satchwell | Apr 2003 | A1 |
20030065943 | Geis et al. | Apr 2003 | A1 |
20030074177 | Bowen | Apr 2003 | A1 |
20030074582 | Patel et al. | Apr 2003 | A1 |
20030078865 | Lee | Apr 2003 | A1 |
20030079060 | Dunlop | Apr 2003 | A1 |
20030086300 | Noyes et al. | May 2003 | A1 |
20030093343 | Huttenlocher et al. | May 2003 | A1 |
20030093347 | Gray | May 2003 | A1 |
20030097481 | Richter | May 2003 | A1 |
20030099254 | Richter | May 2003 | A1 |
20030105620 | Bowen | Jun 2003 | A1 |
20030105721 | Ginter et al. | Jun 2003 | A1 |
20030110229 | Kulig et al. | Jun 2003 | A1 |
20030115485 | Milliken | Jun 2003 | A1 |
20030117971 | Aubury | Jun 2003 | A1 |
20030120460 | Aubury | Jun 2003 | A1 |
20030121010 | Aubury | Jun 2003 | A1 |
20030126065 | Eng et al. | Jul 2003 | A1 |
20030140337 | Aubury | Jul 2003 | A1 |
20030154284 | Bernardin et al. | Aug 2003 | A1 |
20030154368 | Stevens et al. | Aug 2003 | A1 |
20030163715 | Wong | Aug 2003 | A1 |
20030172017 | Feingold et al. | Sep 2003 | A1 |
20030177253 | Schuehler et al. | Sep 2003 | A1 |
20030184593 | Dunlop | Oct 2003 | A1 |
20030187662 | Wilson | Oct 2003 | A1 |
20030191876 | Fallon | Oct 2003 | A1 |
20030208430 | Gershon | Nov 2003 | A1 |
20030221013 | Lockwood et al. | Nov 2003 | A1 |
20030233302 | Weber et al. | Dec 2003 | A1 |
20040000928 | Cheng et al. | Jan 2004 | A1 |
20040010612 | Pandya | Jan 2004 | A1 |
20040015502 | Alexander et al. | Jan 2004 | A1 |
20040015633 | Smith | Jan 2004 | A1 |
20040019703 | Burton | Jan 2004 | A1 |
20040028047 | Hou et al. | Feb 2004 | A1 |
20040034587 | Amberson et al. | Feb 2004 | A1 |
20040049596 | Schuehler et al. | Mar 2004 | A1 |
20040054924 | Chuah et al. | Mar 2004 | A1 |
20040059666 | Waelbroeck et al. | Mar 2004 | A1 |
20040062245 | Sharp et al. | Apr 2004 | A1 |
20040064737 | Milliken et al. | Apr 2004 | A1 |
20040073703 | Boucher et al. | Apr 2004 | A1 |
20040105458 | Ishizuka | Jun 2004 | A1 |
20040111632 | Halperin | Jun 2004 | A1 |
20040162826 | Wyschogrod et al. | Aug 2004 | A1 |
20040170070 | Rapp et al. | Sep 2004 | A1 |
20040177340 | Hsu et al. | Sep 2004 | A1 |
20040186804 | Chakraborty et al. | Sep 2004 | A1 |
20040186814 | Chalermkraivuth et al. | Sep 2004 | A1 |
20040199448 | Chalermkraivuth et al. | Oct 2004 | A1 |
20040199452 | Johnston et al. | Oct 2004 | A1 |
20040205149 | Dillon et al. | Oct 2004 | A1 |
20050005145 | Teixeira | Jan 2005 | A1 |
20050027634 | Gershon | Feb 2005 | A1 |
20050033672 | Lasry et al. | Feb 2005 | A1 |
20050044344 | Stevens | Feb 2005 | A1 |
20050074033 | Chauveau | Apr 2005 | A1 |
20050080649 | Alvarez et al. | Apr 2005 | A1 |
20050086520 | Dharmapurikar et al. | Apr 2005 | A1 |
20050091142 | Renton et al. | Apr 2005 | A1 |
20050097027 | Kavanaugh | May 2005 | A1 |
20050108518 | Pandya | May 2005 | A1 |
20050111363 | Snelgrove et al. | May 2005 | A1 |
20050131790 | Benzschawel et al. | Jun 2005 | A1 |
20050135608 | Zheng | Jun 2005 | A1 |
20050187844 | Chalermkraivuth et al. | Aug 2005 | A1 |
20050187845 | Eklund et al. | Aug 2005 | A1 |
20050187846 | Subbu et al. | Aug 2005 | A1 |
20050187847 | Bonissone et al. | Aug 2005 | A1 |
20050187848 | Bonissone et al. | Aug 2005 | A1 |
20050187849 | Bollapragada et al. | Aug 2005 | A1 |
20050190787 | Kuik et al. | Sep 2005 | A1 |
20050195832 | Dharmapurikar et al. | Sep 2005 | A1 |
20050197938 | Davie et al. | Sep 2005 | A1 |
20050197939 | Davie et al. | Sep 2005 | A1 |
20050197948 | Davie et al. | Sep 2005 | A1 |
20050216384 | Partlow et al. | Sep 2005 | A1 |
20050228735 | Duquette | Oct 2005 | A1 |
20050229254 | Singh et al. | Oct 2005 | A1 |
20050240510 | Schweickert et al. | Oct 2005 | A1 |
20050243824 | Abbazia et al. | Nov 2005 | A1 |
20050267836 | Crosthwaite et al. | Dec 2005 | A1 |
20050283423 | Moser et al. | Dec 2005 | A1 |
20050283743 | Mulholland et al. | Dec 2005 | A1 |
20060020536 | Renton et al. | Jan 2006 | A1 |
20060020715 | Jungck | Jan 2006 | A1 |
20060026090 | Balabon | Feb 2006 | A1 |
20060031154 | Noviello et al. | Feb 2006 | A1 |
20060031156 | Noviello et al. | Feb 2006 | A1 |
20060039287 | Hasegawa et al. | Feb 2006 | A1 |
20060047636 | Mohania et al. | Mar 2006 | A1 |
20060053295 | Madhusudan et al. | Mar 2006 | A1 |
20060059064 | Glinberg et al. | Mar 2006 | A1 |
20060059065 | Glinberg et al. | Mar 2006 | A1 |
20060059066 | Glinberg et al. | Mar 2006 | A1 |
20060059067 | Glinberg et al. | Mar 2006 | A1 |
20060059068 | Glinberg et al. | Mar 2006 | A1 |
20060059069 | Glinberg et al. | Mar 2006 | A1 |
20060059083 | Friesen et al. | Mar 2006 | A1 |
20060109798 | Yamada | May 2006 | A1 |
20060123425 | Ramarao et al. | Jun 2006 | A1 |
20060129745 | Thiel et al. | Jun 2006 | A1 |
20060143099 | Partlow et al. | Jun 2006 | A1 |
20060146991 | Thompson et al. | Jul 2006 | A1 |
20060215691 | Kobayashi et al. | Sep 2006 | A1 |
20060242123 | Williams, Jr. | Oct 2006 | A1 |
20060259407 | Rosenthal et al. | Nov 2006 | A1 |
20060259417 | Marynowski et al. | Nov 2006 | A1 |
20060269148 | Farber et al. | Nov 2006 | A1 |
20060282281 | Egetoft | Dec 2006 | A1 |
20060282369 | White | Dec 2006 | A1 |
20060294059 | Chamberlain et al. | Dec 2006 | A1 |
20070011183 | Langseth et al. | Jan 2007 | A1 |
20070011317 | Brandyburg et al. | Jan 2007 | A1 |
20070011687 | Ilik et al. | Jan 2007 | A1 |
20070025351 | Cohen | Feb 2007 | A1 |
20070061231 | Kim-E | Mar 2007 | A1 |
20070061241 | Jovanovic et al. | Mar 2007 | A1 |
20070061594 | Ginter et al. | Mar 2007 | A1 |
20070067108 | Buhler et al. | Mar 2007 | A1 |
20070067481 | Sharma et al. | Mar 2007 | A1 |
20070078837 | Indeck et al. | Apr 2007 | A1 |
20070094199 | Deshpande et al. | Apr 2007 | A1 |
20070112837 | Houh et al. | May 2007 | A1 |
20070115986 | Shankara | May 2007 | A1 |
20070118457 | Peterffy et al. | May 2007 | A1 |
20070118500 | Indeck et al. | May 2007 | A1 |
20070130140 | Cytron et al. | Jun 2007 | A1 |
20070156574 | Marynowski et al. | Jul 2007 | A1 |
20070174841 | Chamberlain et al. | Jul 2007 | A1 |
20070179935 | Lee et al. | Aug 2007 | A1 |
20070198523 | Hayim | Aug 2007 | A1 |
20070209068 | Ansari et al. | Sep 2007 | A1 |
20070237327 | Taylor et al. | Oct 2007 | A1 |
20070244859 | Trippe et al. | Oct 2007 | A1 |
20070260602 | Taylor | Nov 2007 | A1 |
20070260814 | Branscome et al. | Nov 2007 | A1 |
20070277036 | Chamberlain et al. | Nov 2007 | A1 |
20070294157 | Singla et al. | Dec 2007 | A1 |
20070294162 | Borkovec | Dec 2007 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080082502 | Gupta | Apr 2008 | A1 |
20080084573 | Horowitz et al. | Apr 2008 | A1 |
20080086274 | Chamberlain et al. | Apr 2008 | A1 |
20080097893 | Walsky et al. | Apr 2008 | A1 |
20080104542 | Cohen et al. | May 2008 | A1 |
20080109413 | Indeck et al. | May 2008 | A1 |
20080114724 | Indeck et al. | May 2008 | A1 |
20080114725 | Indeck et al. | May 2008 | A1 |
20080114760 | Indeck et al. | May 2008 | A1 |
20080126320 | Indeck et al. | May 2008 | A1 |
20080133453 | Indeck et al. | Jun 2008 | A1 |
20080133519 | Indeck et al. | Jun 2008 | A1 |
20080162378 | Levine et al. | Jul 2008 | A1 |
20080175239 | Sistanizadeh et al. | Jul 2008 | A1 |
20080183688 | Chamdani et al. | Jul 2008 | A1 |
20080189251 | Branscome et al. | Aug 2008 | A1 |
20080189252 | Branscome et al. | Aug 2008 | A1 |
20080243675 | Parsons et al. | Oct 2008 | A1 |
20080253395 | Pandya | Oct 2008 | A1 |
20080275805 | Hecht | Nov 2008 | A1 |
20090037514 | Lankford et al. | Feb 2009 | A1 |
20090182683 | Taylor et al. | Jul 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090287628 | Indeck et al. | Nov 2009 | A1 |
20100005036 | Kraus et al. | Jan 2010 | A1 |
20100027545 | Gomes et al. | Feb 2010 | A1 |
20100082895 | Branscome et al. | Apr 2010 | A1 |
20100106976 | Aciicmez et al. | Apr 2010 | A1 |
20100174770 | Pandya | Jul 2010 | A1 |
20100198920 | Wong et al. | Aug 2010 | A1 |
20100306479 | Ezzat | Dec 2010 | A1 |
20110029471 | Chakradhar et al. | Feb 2011 | A1 |
20110040701 | Singla et al. | Feb 2011 | A1 |
20110040776 | Najm et al. | Feb 2011 | A1 |
20110066832 | Casselman et al. | Mar 2011 | A1 |
20110125960 | Casselman | May 2011 | A1 |
20110145130 | Glodjo et al. | Jun 2011 | A1 |
20110167083 | Branscome et al. | Jul 2011 | A1 |
20110178911 | Parsons et al. | Jul 2011 | A1 |
20110178912 | Parsons et al. | Jul 2011 | A1 |
20110178917 | Parsons et al. | Jul 2011 | A1 |
20110178918 | Parsons et al. | Jul 2011 | A1 |
20110178919 | Parsons et al. | Jul 2011 | A1 |
20110178957 | Parsons et al. | Jul 2011 | A1 |
20110179050 | Parsons et al. | Jul 2011 | A1 |
20110184844 | Parsons et al. | Jul 2011 | A1 |
20110199243 | Fallon et al. | Aug 2011 | A1 |
20110218987 | Branscome et al. | Sep 2011 | A1 |
20110231446 | Buhler et al. | Sep 2011 | A1 |
20110246353 | Kraus et al. | Oct 2011 | A1 |
20110252008 | Chamberlain et al. | Oct 2011 | A1 |
20110289230 | Ueno | Nov 2011 | A1 |
20110295967 | Wang et al. | Dec 2011 | A1 |
20120065956 | Irturk et al. | Mar 2012 | A1 |
20120089496 | Taylor et al. | Apr 2012 | A1 |
20120089497 | Taylor et al. | Apr 2012 | A1 |
20120095893 | Taylor et al. | Apr 2012 | A1 |
20120109849 | Chamberlain et al. | May 2012 | A1 |
20120110316 | Chamberlain et al. | May 2012 | A1 |
20120116998 | Indeck et al. | May 2012 | A1 |
20120117610 | Pandya | May 2012 | A1 |
20120130922 | Indeck et al. | May 2012 | A1 |
20120179590 | Borkovec et al. | Jul 2012 | A1 |
20120215801 | Indeck et al. | Aug 2012 | A1 |
20120246052 | Taylor et al. | Sep 2012 | A1 |
20130007000 | Indeck et al. | Jan 2013 | A1 |
20130018835 | Pandya | Jan 2013 | A1 |
20130086096 | Indeck et al. | Apr 2013 | A1 |
20130151458 | Indeck et al. | Jun 2013 | A1 |
20130159449 | Taylor et al. | Jun 2013 | A1 |
20130202287 | Joffe | Aug 2013 | A1 |
20130262287 | Parsons et al. | Oct 2013 | A1 |
20130290163 | Parsons et al. | Oct 2013 | A1 |
20140025656 | Indeck et al. | Jan 2014 | A1 |
20140040109 | Parsons et al. | Feb 2014 | A1 |
20140067830 | Buhler et al. | Mar 2014 | A1 |
20140089163 | Parsons et al. | Mar 2014 | A1 |
20140164215 | Parsons et al. | Jun 2014 | A1 |
20140180903 | Parsons et al. | Jun 2014 | A1 |
20140180904 | Parsons et al. | Jun 2014 | A1 |
20140180905 | Parsons et al. | Jun 2014 | A1 |
20140181133 | Parsons et al. | Jun 2014 | A1 |
20140310148 | Taylor et al. | Oct 2014 | A1 |
20140310717 | Chamberlain et al. | Oct 2014 | A1 |
20160070583 | Chamberlain et al. | Mar 2016 | A1 |
20170124255 | Buhler et al. | May 2017 | A1 |
20180276271 | Parsons et al. | Sep 2018 | A1 |
20180330444 | Taylor et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
0573991 | Dec 1993 | EP |
0880088 | Nov 1996 | EP |
0851358 | Jul 1998 | EP |
0887723 | Dec 1998 | EP |
0911738 | Apr 1999 | EP |
09145544 | Jun 1997 | JP |
09-269901 | Oct 1997 | JP |
11-259559 | Sep 1999 | JP |
11282912 | Oct 1999 | JP |
11316765 | Nov 1999 | JP |
2000286715 | Oct 2000 | JP |
2001268071 | Sep 2001 | JP |
2001283000 | Oct 2001 | JP |
2002101089 | Apr 2002 | JP |
2002269343 | Sep 2002 | JP |
2002352070 | Dec 2002 | JP |
2003-036360 | Feb 2003 | JP |
2003256660 | Sep 2003 | JP |
2006059203 | Mar 2006 | JP |
2006293852 | Oct 2006 | JP |
4180644 | Nov 2008 | JP |
199010910 | Sep 1990 | WO |
199409443 | Apr 1994 | WO |
199737735 | Oct 1997 | WO |
2000041136 | Jul 2000 | WO |
2001022425 | Mar 2001 | WO |
0135216 | May 2001 | WO |
200172106 | Oct 2001 | WO |
2001080082 | Oct 2001 | WO |
2001080558 | Oct 2001 | WO |
0190890 | Nov 2001 | WO |
2002061525 | Aug 2002 | WO |
2003100650 | Apr 2003 | WO |
2003036845 | May 2003 | WO |
2003100662 | Dec 2003 | WO |
2003104943 | Dec 2003 | WO |
2004017604 | Feb 2004 | WO |
2004042560 | May 2004 | WO |
2004042561 | May 2004 | WO |
2004042562 | May 2004 | WO |
2004042574 | May 2004 | WO |
2005017708 | Feb 2005 | WO |
2005026925 | Mar 2005 | WO |
2005048134 | May 2005 | WO |
2005081855 | Sep 2005 | WO |
2005114339 | Dec 2005 | WO |
2006023948 | Mar 2006 | WO |
2006060571 | Jun 2006 | WO |
2006096324 | Sep 2006 | WO |
2007064685 | Jun 2007 | WO |
2007074903 | Jul 2007 | WO |
2007079095 | Jul 2007 | WO |
2007087507 | Aug 2007 | WO |
2007127336 | Nov 2007 | WO |
2008022036 | Feb 2008 | WO |
2008073824 | Jun 2008 | WO |
2009089467 | Jul 2009 | WO |
2009140363 | Nov 2009 | WO |
2010077829 | Jul 2010 | WO |
2013090363 | Jun 2013 | WO |
2013148693 | Oct 2013 | WO |
Entry |
---|
Roberts, “Internet Still Growing Dramatically Says Internet Founder”, Press Release, Caspian Networks, Inc.—Virtual Pressroom. |
Roesch, “Snort—Lightweight Intrusion Detection for Networks”, Proceedings of LISA '99: 13th Systems Administration Conference; Nov. 7-12, 1999; pp. 229-238; USENIX Association, Seattle, WA USA. |
Roy, “A bounded search algorithm for segmented channel routing for FPGA's and associated channel architecture Issues”, IEEE, Nov. 11, 1993, pp. 1695-1705, vol. 12. |
Russ et al., Non-Intrusive Built-In Self-Test for FPGA and MCM Applications, Aug. 8-10, 1995, IEEE, 480-485. |
Sachin Tandon, “A Programmable Architecture for Real-Time Derivative Trading”, Master's Thesis, University of Edinburgh, 2003. |
Schmerken, “With Hyperfeed Litigation Pending, Exegy Launches Low-Latency Ticker Plant”, in Wall Street & Technology Blog, Mar. 20, 2007, pp. 1-2. |
Schmit, “Incremental Reconfiguration for Pipelined Applications”, FPGAs for Custom Computing Machines, Proceedings, The 5th Annual IEEE Symposium, Dept. of ECE, Carnegie Mellon University, Apr. 16-18, 1997, pp. 47-55, Pittsburgh, PA. |
Schuehler et al., “Architecture for a Hardware Based, TCP/IP Content Scanning System”, IEEE Micro, 24(1):62-69, Jan.-Feb. 2004, USA. |
Schuehler et al., “TCP-Splitter: A TCP/IP Flow Monitor in Reconfigurable Hardware”, Hot Interconnects 10 (Hotl-10), Stanford, CA, Aug. 21-23, 2002, pp. 127-131. |
Seki et al., “High Speed Computation of Shogi With FPGA”, Proceedings of 58th Convention Architecture, Software Science, Engineering, Mar. 9, 1999, pp. 1-133-1-134. |
Shah, “Understanding Network Processors”, Version 1.0, University of California-Berkeley, Sep. 4, 2001. |
Shalunov et al., “Bulk TCP Use and Performance on Internet 2”, ACM SIGCOMM Internet Measurement Workshop, 2001. |
Shasha et al., “Database Tuning”, 2003, pp. 280-284, Morgan Kaufmann Publishers. |
Shirazi et al., “Quantitative Analysis of FPGA-based Database Searching”, Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, May 2001, pp. 85-96, vol. 28, No. 1/2, Kluwer Academic Publishers, Dordrecht, NL. |
Sidhu et al., “Fast Regular Expression Matching Using FPGAs”, IEEE Symposium on Field Programmable Custom Computing Machines (FCCM 2001), Apr. 2001. |
Sidhu et al., “String Matching on Multicontext FPGAs Using Self-Reconfiguration”, FPGA '99: Proceedings of the 1999 ACM/SIGDA 7th International Symposium on Field Programmable Gate Arrays, Feb. 1999, pp. 217-226. |
Singh et al., “The EarlyBird System for Real-Time Detection on Unknown Worms”, Technical report CS2003-0761, Aug. 2003. |
Skiena et al., “Programming Challenges: The Programming Contest Training Manual”, 2003, pp. 30-31, Springer. |
Sourdis and Pnevmatikatos, “Fast, Large-Scale String Match for a 10Gbps FPGA-based Network Intrusion Detection System”, 13th International Conference on Field Programmable Logic and Applications, 2003. |
Steinbach et al., “A Comparison of Document Clustering Techniques”, KDD Workshop on Text Mining, 2000. |
Tan et al., “A High Throughput String Matching Architecture for Intrusion Detection and Prevention”, ISCA 2005: 32nd Annual International Symposium on Computer Architecture, pp. 112-122, 2005. |
Taylor et al., “Dynamic Hardware Plugins (DHP): Exploiting Reconfigurable Hardware for High-Performance Programmable Routers”, Computer Networks, 38(3): 295-310 (16), Feb. 21, 2002, and online at http://www.cc.gatech.edu/classes/AY2007/cs8803hpc_fall/papers/phplugins.pdf. |
Taylor et al., “Generalized RAD Module Interface Specification of the Field Programmable Port Extender (FPX) Version 2”, Washington University, Department of Computer Science, Technical Report, Jul. 5, 2001, pp. 1-10. |
Taylor et al., “Modular Design Techniques for the FPX”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Taylor et al., “Scalable Packet Classification using Distributed Crossproducting of Field Labels”, Proceedings of IEEE Infocom, Mar. 2005, pp. 1-12, vol. 20, No. 1. |
Taylor, “Models, Algorithms, and Architectures for Scalable Packet Classification”, doctoral thesis, Department of Computer Science and Engineering, Washington University, St. Louis, MO, Aug. 2004, pp. 1-201. |
Thomson Reuters, “Mellanox InfiniBand Accelerates the Exegy Ticker Plant at Major Exchanges”, Jul. 22, 2008, URL: http://www.reuters.com/article/pressRelease/idUS125385+22-Jul-2008+BW20080722. |
Uluski et al., “Characterizing Antivirus Workload Execution”, SIGARCH Comput. Archit. News, vol. 33, No. 1, pp. 90-98, Mar. 2005. |
Villasenor et al., “Configurable Computing Solutions for Automatic Target Recognition”, FPGAS for Custom Computing Machines, 1996, Proceedings, IEEE Symposium on Napa Valley, CA, Apr. 17-19, 1996, pp. 70-79, 1996 IEEE, Napa Valley, CA, Los Alamitos, CA, USA. |
Waldvogel et al., “Scalable High-Speed Prefix Matching”, ACM Transactions on Computer Systems, Nov. 2001, pp. 440-482, vol. 19, No. 4. |
Ward et al., “Dynamically Reconfigurable Computing: A Novel Computation Technology with Potential to Improve National Security Capabilities”, May 15, 2003, A White Paper Prepared by Star Bridge Systems, Inc. [retrieved Dec. 12, 2006]. Retrieved from the Internet: <URL: http://www.starbridgesystems.com/resources/whitepapers/Dynamically%20Reconfigurable%20Computing.pdf. |
Weaver et al., “Very Fast Containment of Scanning Worms”, Proc. USENIX Security Symposium 2004, San Diego, CA, Aug. 2004, located at http://www.icsi.berkely.edu/˜nweaver/containment/containment.pdf. |
Web-Pop (Professional Options Package) (www.pmpublishing.com). |
West et al., “An FPGA-Based Search Engine for Unstructured Database”, Proc. of 2nd Workshop on Application Specific Processors, Dec. 2003, San Diego, CA. |
Wooster et al., “HTTPDUMP Network HTTP Packet Snooper”, Apr. 25, 1996. |
Worboys, “GIS: A Computing Perspective”, 1995, pp. 245-247, 287, Taylor & Francis Ltd. |
Yamaguchi et al., “High Speed Homology Search with FPGAs”, Proceedings Pacific Symposium on Biocomputing, Jan. 3-7, 2002, pp. 271-282, vol. 7, Online, Lihue, Hawaii, USA. |
Yan et al., “Enhancing Collaborative Spam Detection with Bloom Filters”, 2006, IEEE, pp. 414-425. |
Yoshitani et al., “Performance Evaluation of Parallel Volume Rendering Machine Re Volver/C40”, Study Report of Information Processing Society, Mar. 5, 1999, pp. 79-84, vol. 99, No. 21. |
Ziv et al., “A Universal Algorithm for Sequential Data Compression”, IEEE Trans. Inform. Theory, IT-23(3): 337-343 (1997). |
Krishnamurthy et al., “Biosequence Similarity Search on the Mercury System”, Proceedings of the 15th IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP04), Sep. 2004, pp. 365-375. |
Kulig et al., “System and Method for Controlling Transmission of Data Packets Over an Information Network”, pending U.S. Patent Application. |
Lancaster et al., “Acceleration of Ungapped Extension in Mercury Blast”, Seventh (7th) Workshop on Media and Streaming Processors, Nov. 12, 2005, Thirty-Eighth (38th) International Symposium on Microarchitecture (MICRO-38), Barcelona, Spain. |
Li et al., “Large-Scale IP Traceback in High-Speed Internet: Practical Techniques and Theoretical Foundation”, Proceedings of the 2004 IEEE Symposium on Security and Privacy, 2004, pp. 1-15. |
Lin et al., “Real-Time Image Template Matching Based on Systolic Array Processor”, International Journal of Electronics; Dec. 1, 1992; pp. 1165-1176; vol. 73, No. 6; London, Great Britain. |
Lockwood et al., “Field Programmable Port Extender (FPX) for Distributed Routing and Queuing”, ACM International Symposium on Field Programmable Gate Arrays (FPGA 2000), Monterey, CA, Feb. 2000, pp. 137-144. |
Lockwood et al., “Hello, World: A Simple Application for the Field Programmable Port Extender (FPX)”, Washington University, Department of Computer Science, Technical Report WUCS-00-12, Jul. 11, 2000. |
Lockwood et al., “Parallel FPGA Programming over Backplane Chassis”, Washington University, Department of Computer Science, Technical Report WUCS-00-11, Jun. 12, 2000. |
Lockwood et al., “Reprogrammable Network Packet Processing on the Field Programmable Port Extender (FPX)”, ACM International Symposium on Field Programmable Gate Arrays (FPGA 2001), Monterey, CA, Feb. 2001, pp. 87-93. |
Lockwood, “An Open Platform for Development of Network Processing Modules in Reprogrammable Hardware”, IEC DesignCon 2001, Santa Clara, CA, Jan. 2001, Paper WB-19. |
Lockwood, “Building Networks with Reprogrammable Hardware”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Evolvable Internet Hardware Platforms”, NASA/DoD Workshop on Evolvable Hardware (EHW'01), Long Beach, CA, Jul. 12-14, 2001, pp. 271-279. |
Lockwood, “Hardware Laboratory Configuration”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Introduction”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Platform and Methodology for Teaching Design of Hardware Modules in Internet Routers and Firewalls”, IEEE Computer Society International Conference on Microelectronic Systems Education (MSE'2001), Las Vegas, NV, Jun. 17-18, 2001, pp. 56-57. |
Lockwood, “Protocol Processing on the FPX”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Simulation and Synthesis”, Field Programmable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002. |
Lockwood, “Simulation of the Hello World Application for the Field-Programmable Port Extender (FPX)”, Washington University, Applied Research Lab, Spring 2001 Gigabits Kits Workshop. |
Madhusudan, “Design of a System for Real-Time Worm Detection”, Hot Interconnects, pp. 77-83, Stanford, CA, Aug. 2004, found at http://www.hoti.org/hoti12/program/papers/2004/paper4.2.pdf. |
Madhusudan, “Design of a System for Real-Time Worm Detection”, Power Point Presentation in Support of Master's Thesis, Washington Univ., Dept of Computer Science and Engineering, St Louis, MO, Aug. 2004. |
Mao et al., “Cluster-based Online Monitoring System of Web Traffic”, Dept. of Computer Science and Technology, Tsinghua Univ., Bejing, 100084 P.R. China. |
Mosanya et al., “A FPGA-Based Hardware Implementation of Generalized Profile Search Using Online Arithmetic”, ACM/Sigda International Symposium on Field Programmable Gate An-ays (FPGA '99), Feb. 21-23, 1999, pp. 101-111, Monterey, CA, USA. |
Moscola et al., “FPGrep and FPSed: Regular Expression Search and Substitution for Packet Streaming in Field Programmable Hardware”, Dept. of Computer Science, Applied Research Lab, Washington University, Jan. 8, 2002, Unpublished, pp. 1-19, St. Louis, MO. |
Moscola et al., “FPSed: A Streaming Content Search-and-Replace Module for an Internet Firewall”, Proc. of Hot Interconnects, 11th Symposium on High Performance Interconnects, pp. 122-129, Aug. 20, 2003. |
Moscola, “FPGrep and FPSed: Packet Payload Processors for Managing the Flow of Digital Content on Local Area Networks and the Internet”, Master's Thesis, Sever Institute of Technology, Washington University, St. Louis, MO, Aug. 2003. |
Motwani et al., “Randomized Algorithms”, 1995, pp. 215-216, Cambridge University Press. |
Mueller, “Upgrading and Repairing PCs, 15th Anniversary Edition”, 2004, pp. 63-66, 188, Que. |
Navarro, “A Guided Tour to Approximate String Matching”, ACM Computing Surveys, vol. 33, No. 1, Mar. 2001, pp. 31-88. |
Necker et al., “TCP-Stream Reassembly and State Tracking in Hardware”, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA. |
Nunez et al., “The X-MatchLITE FPGA-Based Data Compressor”, Euromicro Conference 1999, Proceedings, Italy, Sep. 8-10, 1999, pp. 126-132, Los Alamitos, CA. |
Nwodoh et al., “A Processing System for Real-Time Holographic Video Computation”, Reconfigurable Technology: FPGAs for Computing and Application, Proceedings for the SPIE, Sep. 1999, Boston, pp. 129-140, vol. 3844. |
Office Action for EP Application 13767579.9 dated Sep. 6, 2016. |
Office Action for U.S. Appl. No. 14/195,550 dated Jun. 27, 2016. |
Office Action for U.S. Appl. No. 14/195,462 dated Aug. 10, 2017. |
Office Action for U.S. Appl. No. 14/195,462 dated Aug. 26, 2016. |
Office Action for U.S. Appl. No. 14/195,462 dated Feb. 12, 2016. |
Office Action for U.S. Appl. No. 14/195,462 dated Jan. 27, 2017. |
Office Action for U.S. Appl. No. 14/195,510 dated Mar. 10, 2017. |
Office Action for U.S. Appl. No. 14/195,510 dated Nov. 30, 2017. |
Office Action for U.S. Appl. No. 14/195,531 dated Feb. 24, 2017. |
Office Action for U.S. Appl. No. 14/195,531 dated May 18, 2016. |
Office Action for U.S. Appl. No. 14/195,531 dated Sep. 7, 2017. |
Office Action for U.S. Appl. No. 14/195,550 dated Feb. 10, 2017. |
Parsing—(Wikipedia definition) https://en.wikipedia.org/w/index.php?title=Parsing&oldid=475958964. |
Prakash et al., “OC-3072 Packet Classification Using BDDs and Pipelined SRAMs”, Department of Electrical and Computer Engineering, The University of Texas at Austin. |
Pramanik et al., “A Hardware Pattern Matching Algorithm on a Dataflow”; Computer Journal; Jul. 1, 1985; pp. 264-269; vol. 28, No. 3; Oxford University Press, Surrey, Great Britain. |
Ramakrishna et al., “A Performance Study of Hashing Functions for Hardware Applications”, Int. Conf. on Computing and Information, May 1994, pp. 1621-1636, vol. 1, No. 1. |
Ramakrishna et al., “Efficient Hardware Hashing Functions for High Performance Computers”, IEEE Transactions on Computers, Dec. 1997, vol. 46, No. 12. |
Ratha et al., “Convolution on Splash 2”, Proceedings of IEEE Symposium on FPGAS for Custom Computing Machines, Apr. 19, 1995, pp. 204-213, Los Alamitos, California. |
Prosecution History for U.S. Appl. No. 14/195,550, now U.S. Pat. No. 9,990,393, filed Mar. 3, 2014. |
Prosecution History for U.S. Appl. No. 13/833,098, filed Mar. 15, 2013, now U.S. Pat. No. 10,121,196, issued Nov. 6, 2018. |
“A Reconfigurable Computing Model for Biological Research Application of Smith-Waterman Analysis to Bacterial Genomes” A White Paper Prepared by Star Bridge Systems, Inc. [retrieved Dec. 12, 2006]. Retrieved from the Internet: <URL: http://www.starbridgesystems.com/resources/whitepapers/Smith%20 Waterman%20Whitepaper.pdf. |
“ACTIV Financial Announces Hardware Based Market Data Feed Processing Strategy”, For Release on Apr. 2, 2007, 2 pages. |
“ACTIV Financial Delivers Accelerated Market Data Feed”, Apr. 6, 2007, byline of Apr. 2, 2007, downloaded from http://hpcwire.com/hpc.1346816.html on Jun. 19, 2007, 3 pages. |
“DRC, Exegy Announce Joint Development Agreement”, Jun. 8, 2007, byline of Jun. 4, 2007; downloaded from http://www.hpcwire.com/hpc/1595644.html on Jun. 19, 2007, 3 pages. |
“Lucent Technologies Delivers “PayloadPlus” Network Processors for Programmable, MultiProtocol, OC-48c Processing”, Lucent Technologies Press Release, downloaded from http://www.lucent.com/press/1000/0010320.meb.html on Mar. 21, 2002. |
“Overview, Field Programmable Port Extender”, Jan. 2002 Gigabit Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002, pp. 1-4. |
“Payload Plus™ Agere System Interface”, Agere Systems Product Brief, Jun. 2001, downloaded from Internet, Jan. 2002, pp. 1-6. |
“RFC793: Transmission Control Protocol, Darpa Internet Program, Protocol Specification”, Sep. 1981. |
“Technology Overview”, Data Search Systems Incorporated, downloaded from the http://www.datasearchsystems.com/tech.htm on Apr. 19, 2004. |
“The Field-Programmable Port Extender (FPX)”, downloaded from http://www.arl.wustl.edu/arl/ in Mar. 2002. |
Aldwairi et al., “Configurable String Matching Hardware for Speeding up Intrusion Detection”, SIRARCH Comput. Archit. News, vol. 33, No. 1, pp. 99-107, Mar. 2005. |
Amanuma et al., “A FPGA Architecture for High Speed Computation”, Proceedings of 60th Convention Architecture, Software Science, Engineering, Mar. 14, 2000, pp. 1-163-1-164, Information Processing Society, Japan. |
Anerousis et al., “Using the AT&T Labs PacketScope for Internet Measurement, Design, and Performance Analysis”, Network and Distributed Systems Research Laboratory, AT&T Labs-Research, Florham, Park, NJ, Oct. 1997. |
Anonymous, “Method for Allocating Computer Disk Space to a File of Known Size”, IBM Technical Disclosure Bulletin, vol. 27, No. 10B, Mar. 1, 1985, New York. |
Apostolopoulos et al., “Design, Implementaion and Performance of a Content-Based Switch”, Proceedings IEEE Infocom 2000, The Conference on Computer Communications, 19th Annual Joint Conference of the IEEE Computer and Communications Societes, Tel Aviv, Israel, Mar. 26-30, 2000, pp. 1117-1126. |
Arnold et al., “The Splash 2 Processor and Applications”, Proceedings 1993 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD '93), Oct. 3, 1993, pp. 482-485, IEEE Computer Society, Cambridge, MA USA. |
Artan et al., “Multi-packet Signature Detection using Prefix Bloom Filters”, 2005, IEEE, pp. 1811-1816. |
Asami et al., “Improvement of DES Key Search on FPGA-Based Parallel Machine “Rash””, Proceedings of Information Processing Society, Aug. 15, 2000, pp. 50-57, vol. 41, No. SIG5 (HPS1), Japan. |
Baboescu et al., “Scalable Packet Classification,” SIGCOMM'01, Aug. 27-31, 2001, pp. 199-210, San Diego, California, USA; http://www.ecse.rpi.edu/homepages/shivkuma/teaching/sp2001/readings/baboescu-pkt-classification.pdf. |
Baer, “Computer Systems Architecture”, 1980, pp. 262-265; Computer Science Press, Potomac, Maryland. |
Baeza-Yates et al., “New and Faster Filters for Multiple Approximate String Matching”, Random Structures and Algorithms (RSA), Jan. 2002, pp. 23-49, vol. 20, No. 1. |
Baker et al., “High-throughput Linked-Pattern Matching for Intrusion Detection Systems”, ANCS 2005: Proceedings of the 2005 Symposium on Architecture for Networking and Communications Systems, pp. 193-202, ACM Press, 2005. |
Barone-Adesi et al., “Efficient Analytic Approximation of American Option Values”, Journal of Finance, vol. 42, No. 2 (Jun. 1987), pp. 301-320. |
Batory, “Modeling the Storage Architectures of Commercial Database Systems”, ACM Transactions on Database Systems, Dec. 1985, pp. 463-528, vol. 10, issue 4. |
Behrens et al., “BLASTN Redundancy Filter in Reprogrammable Hardware,” Final Project Submission, Fall 2003, Department of Computer Science and Engineering, Washington University. |
Berk, “JLex: A lexical analyzer generator for Java™ ”, downloaded from http://www.cs.princeton.edu/˜appel/modern/java/Jlex/ in Jan. 2002, pp. 1-18. |
Bianchi et al., “Improved Queueing Analysis of Shared Buffer Switching Networks”, ACM, Aug. 1993, pp. 482-490. |
Bloom, “Space/Time Trade-offs in Hash Coding With Allowable Errors”, Communications of the ACM, Jul. 1970, pp. 422-426, vol. 13, No. 7, Computer Usage Company, Newton Upper Falls, Massachusetts, USA. |
Braun et al., “Layered Protocol Wrappers for Internet Packet Processing in Reconfigurable Hardware”, Proceedings of Hot Interconnects 9 (Hotl-9) Stanford, CA, Aug. 22-24, 2001, pp. 93-98. |
Braun et al., “Protocol Wrappers for Layered Network Packet Processing in Reconfigurable Hardware”, IEEE Micro, Jan.-Feb. 2002, pp. 66-74. |
Brodie et al., “Dynamic Reconfigurable Computing”, in Proc. of 9th Military and Aerospace Programmable Logic Devices International Conference, Sep. 2006. |
Cavnar et al., “N-Gram-Based Text Categorization”, Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, pp. 161-175, 1994. |
Celko, “Joe Celko's Data & Databases: Concepts in Practice”, 1999, pp. 72-74, Morgan Kaufmann Publishers. |
Chamberlain et al., “Achieving Real Data Throughput for an FPGA Co-Processor on Commodity Server Platforms”, Proc. of 1st Workshop on Building Block Engine Architectures for Computers and Networks, Oct. 2004, Boston, MA. |
Chamberlain et al., “The Mercury System: Embedding Computation Into Disk Drives”, 7th High Performance Embedded Computing Workshop, Sep. 2003, Boston, MA. |
Chamberlain et al., “The Mercury System: Exploiting Truly Fast Hardware for Data Search”, Proc. of Workshop on Storage Network Architecture and Parallel I/Os, Sep. 2003, New Orleans, LA. |
Chaney et al., “Design of a Gigabit ATM Switch”, Washington University, St. Louis. |
Cho et al., “Deep Packet Filter with Dedicated Logic and Read Only Memories”, 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Apr. 2004. |
Choi et al., “Design of a Flexible Open Platform for High Performance Active Networks”, Allerton Conference, 1999, Champaign, IL. |
Cholleti, “Storage Allocation in Bounded Time”, MS Thesis, Dept. of Computer Science and Engineering, Washington Univeristy, St. Louis, MO (Dec. 2002). Available as Washington University Technical Report WUCSE-2003-2. |
Clark et al., “Scalable Pattern Matching for High Speed Networks”, Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2004; FCCM 2004, Apr. 20-23, 2004; pp. 249-257; IEEE Computer Society; Cambridge, MA USA. |
Cloutier et al., “VIP: An FPGA-Based Processor for Image Processing and Neural Networks”, Proceedings of Fifth International Conference on Microelectronics for Neural Networks, Feb. 12, 1996, pp. 330-336, Los Alamitos, California. |
Compton et al., “Configurable Computing: A Survey of Systems and Software”, Technical Report, Northwestern University, Dept. of ECE, 1999. |
Compton et al., “Reconfigurable Computing: A Survey of Systems and Software”, Technical Report, Northwestern University, Dept. of ECE, 1999, presented by Yi-Gang Tai. |
Compton et al., “Reconfigurable Computing: A Survey of Systems and Software”, University of Washington, ACM Computing Surveys, Jun. 2, 2002, pp. 171-210, vol. 34 No. 2, <http://www.idi.ntnu.no/emner/tdt22/2011/reconfig.pdf>. |
Cong et al., “An Optional Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs”, IEEE, 1992, pp. 48-53. |
Crosman, “Who Will Cure Your Data Latency?”, Storage & Servers, Jun. 20, 2007, URL: http://www.networkcomputing.com/article/printFullArticleSrc.jhtml?article ID=199905630. |
Cuppu and Jacob, “Organizational Design Trade-Offs at the DRAM, Memory Bus and Memory Controller Level: Initial Results,” Technical Report UMB-SCA-1999-2, Univ. of Maryland Systems & Computer Architecture Group, Nov. 1999, pp. 1-10. |
Currid, “TCP Offload to the Rescue”, Networks, Jun. 14, 2004, 16 pages, vol. 2, No. 3. |
Data Structure—(Wikipedia definition) https://en.wikipedia.org/wiki/Data_structure (4 pages). |
Denoyer et al., “HMM-based Passage Models for Document Classification and Ranking”, Proceedings of ECIR-01, 23rd European Colloquim Information Retrieval Research, Darmstatd, DE, pp. 126-135, 2001. |
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom Filters,” IEEE Micro, Jan.-Feb. 2004, vol. 24, Issue: 1, pp. 52-61. |
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom Filters,” Symposium on High Performance Interconnects (Hotl), Stanford, California, 2003, pp. 44-51. |
Dharmapurikar et al., “Design and Implementation of a String Matching System for Network Intrusion Detection using FPGA-based Bloom Filters”, Proc. of 12th Annual IEEE Symposium on Field Programmable Custom Computing Machines, 2004, pp. 1-10. |
Dharmapurikar et al., “Longest Prefix Matching Using Bloom Filters,” SIGCOMM, 2003, pp. 201-212. |
Dharmapurikar et al., “Robust TCP Stream Reassembly in the Presence of Adversaries”, Proc. of the 14th Conference on USENIX Security Symposium—vol. 14, 16 pages, Baltimore, MD, 2005; http://www.icir.org/vern/papers/TcpReassembly/TCPReassembly.pdf. |
Dharmapurikar, “Fast and Scalable Pattern Matching for Content Filtering”, ACM, ANCS 05, 2005, pp. 183-192. |
Ebeling et al., “RaPiD—Reconfigurable Pipelined Datapath”, University of Washington, Dept. of Computer Science and Engineering, Sep. 23, 1996, Seattle, WA. |
Exegy Inc., “Exegy and HyperFeed to Unveil Exelerate TP at SIA Conference”, Release Date: Jun. 20, 2006, downloaded from http://news.thomasnet.com/companystory/488004 on Jun. 19, 2007, 4 pages. |
Exegy Inc., “First Exegy Ticker Plant Deployed”, Release Date: Oct. 17, 2006, downloaded from http://news.thomasnet.com/companystory/496530 on Jun. 19, 2007, 5 pages. |
Extended European Search Report for EP Application 11847815.5 dated Apr. 4, 2014. |
Extended European Search Report for EP Application 13767579.9 dated Oct. 22, 2015. |
Feldman, “High Frequency Traders Get Boost From FPGA Acceleration”, Jun. 8, 2007, downloaded from http://www.hpcwire.com/hpc.1600113.html on Jun. 19, 2007, 4 pages. |
Feldmann, “BLT: Bi-Layer Tracing of HTTP and TCP/IP”, AT&T Labs-Research, Florham Park, NJ, USA. |
Franklin et al., “An Architecture for Fast Processing of Large Unstructured Data Sets.” Proc. of 22nd Int'l Conf. on computer Design, Oct. 2004, pp. 280-287. |
Franklin et al., “Assisting Network Intrusion Detection with Reconfigurable Hardware”, Symposium on Field-Programmable Custom Computing Machines (FCCM 2002), Apr. 2002, Napa, California. |
Fu et al., “The FPX KCPSM Module: An Embedded, Reconfigurable Active Processing Module for the Field Programmable Port Extender (FPX)”, Washington University, Department of Computer Science, Technical Report WUC-01-14, Jul. 2001. |
Gavrila et al., “Multi-feature Hierarchical Template Matching Using Distance Transforms”, IEEE, Aug. 16-20, 1998, vol. 1, pp. 439-444. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation With Field-Programmable Gate Arrays”, 2005, pp. 1-3, 7, 11-15, 39, 92-93, Springer. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays”, Springer, 2005, pp. 1-36. |
Gokhale et al., “Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays”, Springer, 2005, pp. 1-54, 92-96. |
Google Search Results Page for “field programmable gate array financial calculation stock market” over dates of Jan. 1, 1990-May 21, 2002, 1 page. |
Gunther et al., “Assessing Document Relevance with Run-Time Reconfigurable Machines”, IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 10-17, Proceedings, Napa Valley, CA. |
Gupta et al., “High-Speed Implementations of Rule-Based Systems,” ACM Transactions on Computer Systems, May 1989, pp. 119-146, vol. 7, Issue 2. |
Gupta et al., “Packet Classification on Multiple Fields”, Computer Systems Laboratory, Stanford University, Stanford, CA. |
Gupta et al., “PMM: A Parallel Architecture for Production Systems,” Proceedings of the IEEE, Apr. 1992, pp. 693-696, vol. 2. |
Gurtov, “Effect of Delays on TCP Performance”, Cellular Systems Development, Sonera Corporation, online at http://cs.helsinki.fi/u/gurtov/papers/pwc01.pdf. |
Gyang, “NCBI BLASTN Stage 1 in Reconfigurable Hardware,” Technical Report WUCSE-2005-30, Aug. 2004, Department of Computer Science and Engineering, Washington University, St. Louis, MO. |
Halaas et al., “A Recursive MISD Architecture for Pattern Matching”, IEEE Transactions on Very Large Scale Integration, vol. 12, No. 7, pp. 727-734, Jul. 2004. |
Harris, “Pete's Blog: Can FPGAs Overcome the FUD?”, Low-Latency.com, May 14, 2007, URL: http://www.a-teamgroup.com/article/pete-blog-can-fpgas-overcome-the-fud/. |
Hauck et al., “Software Technologies for Reconfigurable Systems”, Northwestern University, Dept. of ECE, Technical Report, 1996. |
Hayes, “Computer Architecture and Organization”, Second Edition, 1988, pp. 448-459, McGraw-Hill, Inc. |
Hezel et al., “FPGA-Based Template Matching Using Distance Transforms”, Proceedings of the 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, Apr. 22, 2002, pp. 89-97, IEEE Computer Society, USA. |
Hirsch, “Tech Predictions for 2008”, Reconfigurable Computing, Jan. 16, 2008, URL: http://fpgacomputing.blogspot.com/2008_01_01_archive.html. |
Hoinville, et al. “Spatial Noise Phenomena of Longitudinal Magnetic Recording Media”, IEEE Transactions on Magnetics, vol. 28, No. 6, Nov. 1992. |
Hollaar, “Hardware Systems for Text Information Retrieval”, Proceedings of the Sixth Annual International ACM Sigir Conference on Research and Development in Information Retrieval, Jun. 6-8, 1983, pp. 3-9, Baltimore, Maryland, USA. |
Howe, Data Analysis for Database Design Third Edition, 2001, 335 pages, Butterworth-Heinemann. |
Hutchings et al., “Assisting Network Intrusion Detection with Reconfigurable Hardware”, FCCM 2002: 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2002. |
Ibrahim et al., “Lecture Notes in Computer Science: Database and Expert Systems Applications”, 2000, p. 769, vol. 1873, Springer. |
International Preliminary Report on Patentability (Chapter I) for PCT/US2011/064269 dated Jun. 12, 2013. |
International Preliminary Report on Patentability (Chapter I) for PCT/US2013/033889 dated Oct. 9, 2014. |
International Search Report and Written Opinion for PCT/US2011/064269 dated Apr. 20, 2012. |
International Search Report and Written Opinion for PCT/US2012/069142 dated Feb. 22, 2013. |
International Search Report and Written Opinion for PCT/US2013/033889 dated Aug. 29, 2013. |
Jacobson et al., “RFC 1072: TCP Extensions for Long-Delay Paths”, Oct. 1988. |
Jacobson et al., “tcpdump—dump traffic on a network”, Jun. 30, 1997, online at www.cse.cuhk.edu.hk/˜cslui/CEG4430/tcpdump.ps.gz. |
Johnson et al., “Pattern Matching in Reconfigurable Logic for Packet Classification”, College of Computing, Georgia Institute of Technology, Atlanta, GA. |
Jones et al., “A Probabilistic Model of Information Retrieval: Development and Status”, Information Processing and Management, Aug. 1998, 76 pages. |
Keutzer et al., “A Survey of Programmable Platforms—Network Proc”, University of California-Berkeley, pp. 1-29. |
Koloniari et al., “Content-Based Routing of Path Queries in Peer-to-Peer Systems”, pp. 1-19, E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 29-47, 2004, copyright by Springer-Verlag, Germany. |
“Curriculum Vitae of Michael Brogioli, Ph.D” for Inter Partes Review Petition re U.S. Pat. No. 10,121,196; pp. 1-19; dated May 28, 2020. |
“Declaration of Michael Brogioli, PhD” for Inter Partes Review Petition re U.S. Pat. No. 10,121,196; pp. 1-112; dated May 28, 2020. |
“Petition for Inter Partes Review” re U.S. Pat. No. 10,121,196; pp. 1-89; dated May 28, 2020. |
“Decision Granting Institution of Inter Partes Review” for U.S. Pat. No. 10,121,196; IPR2020-01006, dated Dec. 4, 2020, pp. 1-22. |
Number | Date | Country | |
---|---|---|---|
20190073719 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
61616181 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13833098 | Mar 2013 | US |
Child | 16180377 | US |