This invention generally relates to injectors and fuel nozzles for high temperature applications, and more particularly, to fuel injectors and nozzles for gas turbine engines.
In gas turbine engines, fuel injectors are typically used to inject fuel in a spray or atomized form into a combustion chamber of the engine. The atomized air/fuel mixture is then combusted to create the energy required to sustain engine operations. Prefilming air-blast fuel injector nozzles for issuing atomized fuel into the combustor of a gas turbine engine are well known in the art. In this type of nozzle, fuel is spread out into a thin continuous sheet and then subjected to the atomizing action of high-speed air. More particularly, atomizing air flows through concentric air swirl passages that generate two separate swirling airflows at the nozzle exit. At the same time, fuel flows through a plurality of circumferentially disposed ports which are oriented in an axial, radial, tangential or a combination of these directions and then onto a prefilming surface where it spreads out into a thin sheet before exiting the edge of the prefilming surface and interacting with the adjacent air streams.
Conventional fuel nozzles generally include a plurality of small slots or openings through which fuel flows. As a result of the small size of these openings, such nozzles are difficult to manufacture and therefore costly. In addition, these small openings are prone to blockages or plugging as a result of coking of the fuel passing there through.
According to one embodiment of the invention, a nozzle is provided including a fuel swirler having an outer wall, an interior wall, and a fuel flow path configured to receive a fuel flow. The fuel flow path extends from adjacent and inlet end to a discharge end and is arranged between the outer wall and the interior wall. The fuel flow path includes a first inlet portion and a volute. The first inlet portion is generally offset from a center of the fuel swirler.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
A fuel injector 200 configured for use in the gas turbine engine 10 is shown in more detail in
Referring now to
The fuel swirler 250 of the nozzle 204 has a generally cylindrical body 256 including a radial outer wall 258 and a radial inner wall 260 bounded at an upstream end 252 by an axial wall 262. In one embodiment, the portion of the radial inner wall 260 adjacent a downstream end 254 of the fuel swirler 250 is angled radially inwardly. A central axial bore 264 extends through the radial inner wall 260 such that the bore 264 and an adjacent interior surface 266 define an air flow passage for air provided from the compressor section 30 of the engine 10. A volute 270 configured to receive a flow of fuel is formed between the radial outer wall 258 and the radial inner wall 260, adjacent the axial wall 262. At least one inlet 272 (see
The prefilming member 300 also includes an axial wall 304 and a radial wall 306 having a bore 308 extending through a downstream end 310 thereof. The axial wall 304 is oriented generally parallel to axial wall 262 and the radial wall 306 has a contour generally complementary to the radial inner wall 260 of the fuel swirler 250. For example, the downstream end 310 of the radial wall 306 may be angled generally inwardly at an angle similar to or different from the angle of the radial inner wall 260. The prefilming member 300 may be coupled to or integrally formed with a portion of the fuel swirler 250, such as the radial outer wall 258 for example. When the prefilming member 300 is connected to the radial outer wall 258 of the fuel swirler, the axial wall 304 is separated from the axial wall 262 by a distance and the radial wall 306 is separated from the radial inner wall 260 by a distance. As a result, the fuel flow path formed by the volute 270 is bounded axially by axial walls 262, 304 and is bounded radially by radial inner wall 260 and radial wall 258.
The nozzle 204 of
Referring now to
The width of the volute 270, between the radial outer wall 258 and the radial interior wall 260, gradually decreases in the radial direction of the fuel flow to maintain the high velocity of the fuel and to evenly distribute the fuel at the downstream end 254 of the fuel swirler 250. In one embodiment, the width of the volute 270 decreases linearly as a function of the circumferential angle relative to the inlet portion 272. As the fuel flows through the volute 270, the fuel flows not only radially around the circumference of the radial inner wall 260, but also axially towards the downstream end 254 of the fuel swirler 250. As a result, the fuel flow bounded by the radial inner wall 260 of the fuel swirler 250 and the radial wall 306 of the prefilming member 300 forms a thin sheet of fuel on the inner surface 399 (see
A fuel injector 200 including nozzle 204 more uniformly distributes the fuel and improves the filming characteristics of the fuel. In addition, the overall length and weight of the nozzle 204 is significantly reduced. The simplified design reduces the manufacturing complexity, and therefore the cost of the nozzle 204, while improving the overall reliability.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application claims the benefit of U.S. provisional patent application Ser. No. 61/927,659 filed Jan. 15, 2014, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5067655 | Farago | Nov 1991 | A |
5274993 | Keller | Jan 1994 | A |
5307634 | Hu | May 1994 | A |
5699667 | Joos | Dec 1997 | A |
6622488 | Mansour et al. | Sep 2003 | B2 |
7174717 | Prociw | Feb 2007 | B2 |
7926282 | Chew et al. | Apr 2011 | B2 |
8096135 | Caples | Jan 2012 | B2 |
20090249789 | Zuo | Oct 2009 | A1 |
20120228405 | Buelow et al. | Sep 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150198095 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61927659 | Jan 2014 | US |