Claims
- 1. A screw rotor device for positive displacement of a working fluid, comprising:a housing having an inlet port at a first end and an outlet port at a second end and a pair of cylindrical bores extending therebetween; a male rotor having at least one phase-offset helical thread, wherein said male rotor is rotatably mounted about a first axis extending between said first end and said second end of said housing, wherein a cross-section of said phase-offset helical thread, in any plane perpendicular to said first axis, comprises a tooth and a toothless sector, said tooth being subtended by a first arc angle with respect to said axis and said sector having a second arc angle proportionally greater than said first arc angle by a phase-offset multiplier, said tooth having a profile comprising a minor diameter arc and a tooth segment radially extending to a major diameter arc in close tolerance with said housing, and wherein said phase-offset multiplier is at least two for any cross-section taken in any said perpendicular plane; and a female rotor having at least one helical groove, wherein said female rotor is rotatably mounted about a second axis and counter-rotates with respect to said male rotor and has a periphery in close tolerance with said housing, and wherein said helical groove intermeshes with said helical thread.
- 2. The screw rotor device according to claim 1, wherein said male rotor and said female rotor have a length approximately equal to a single pitch of said helical thread and said helical groove, respectively.
- 3. The screw rotor device according to claim 1, further comprising a valve in fluid communication with said outlet port, wherein said male rotor and said female rotor each confine the working fluid to a respective space within said housing that is in fluid communication with said outlet port.
- 4. The screw rotor device according to claim 1, wherein said male rotor further comprises at least one additional helical thread bounding said toothless sector and said female rotor further comprises at least one additional groove intermeshing with said additional helical thread, wherein said male rotor and female rotor have an identical number of helical threads and helical grooves, respectively.
- 5. The screw rotor device according to claim 4, wherein said phase-offset multiplier is identical for each cross-section taken in any said perpendicular plane.
- 6. The screw rotor device according to claim 4, wherein said phase-offset multiplier is at least three.
- 7. The screw rotor device according to claim 4, wherein said phase-offset multiplier is at least four.
- 8. The screw rotor device according to claim 4, wherein said phase-offset multiplier is at least five.
- 9. The screw rotor device according to claim 1, wherein said helical groove has a concave profile in a lengthwise cross-section of said female rotor according to a plane extending between said first axis and said second axis, said concave profile radially recessed from a major diameter to a minor diameter of said female rotor and defined between said major diameter and said minor diameter by a concave line and a straight line opposite from said concave line.
- 10. The screw rotor device according to claim 9, wherein said straight line extends diagonally away from said concave line.
- 11. The screw rotor device according to claim 10, wherein said helical thread has a convex profile in a lengthwise cross-section of said male rotor according to a plane extending between said first axis and said second axis, said convex profile radially extending from a minor diameter to a major diameter of said male rotor and defined between said minor diameter and said major diameter by a straight diagonal line substantially parallel to said straight line of said female rotor.
- 12. The screw rotor device according to claim 11, wherein said convex profile further comprises a line selected from the group consisting of a concave line and a convex line.
- 13. A screw rotor device for positive displacement of a working fluid, comprising:a housing having an inlet port at a first end and an outlet port at a second end and a pair of cylindrical bores extending therebetween; a male rotor having at least one phase-offset helical thread and having a length approximately equal to a single pitch of said helical thread, wherein said male rotor is rotatably mounted about a first axis extending between said first end and said second end of said housing, wherein a cross-section of said phase-offset helical thread, in any plane perpendicular to said first axis, comprises a tooth and a toothless sector, said tooth being subtended by a first arc angle with respect to said axis and said sector having a second arc angle proportionally greater than said first arc angle by a phase-offset multiplier, said tooth having a profile comprising a minor diameter arc and a tooth segment radially extending to a major diameter arc in close tolerance with said housing; and a female rotor having at least one helical groove and having a length approximately equal to a single pitch of said helical groove, wherein said female rotor is rotatably mounted about a second axis and counter-rotates with respect to said male rotor and has a periphery in close tolerance with said housing, and wherein said helical groove intermeshes with said helical thread.
- 14. The screw rotor device according to claim 13, wherein said male rotor and female rotor have an identical number of helical threads and helical grooves, respectively, and wherein said helical threads and helical grooves form a buttress thread shape in a lengthwise cross-section of said male rotor and said female rotor in a plane extending between said first axis and said second axis, wherein said buttress thread shape is comprised of parallel straight diagonal lines and a pair of opposing lines.
- 15. The screw rotor device according to claim 14, wherein said buttress thread shape is bounded by a first pair of straight lines corresponding with said minor diameter of said male rotor and said major diameter of said female rotor.
- 16. The screw rotor device according to claim 15, wherein said buttress thread shape is further comprised of a second pair of straight lines corresponding with said major diameter of said male rotor and said minor diameter of said female rotor and located between said parallel straight diagonal lines and said pair of opposing lines.
- 17. The screw rotor device according to claim 13, wherein said phase-offset multiplier is identical for each cross-section taken in any said perpendicular plane.
- 18. A screw rotor device for positive displacement of a working fluid, comprising:a housing having an inlet port at a first end and an outlet port at a second end and a pair of cylindrical bores extending therebetween; a male rotor having at least one phase-offset helical thread, wherein said male rotor is rotatably mounted about a first axis extending between said first end and said second end of said housing, wherein a cross-section of said phase-offset helical thread, in any plane perpendicular to said first axis, comprises a tooth and a toothless sector, said tooth being subtended by a first arc angle with respect to said axis and said sector having a second arc angle proportionally greater than said first arc angle by a phase-offset multiplier, said tooth having a profile comprising a minor diameter arc and a tooth segment radially extending to a major diameter arc in close tolerance with said housing, and wherein said helical thread forms a first buttress thread shape in a lengthwise cross-section of said male rotor in a plane extending between said first axis and said second axis, wherein said first buttress thread shape is comprised of a first line extending from said minor diameter to said major diameter and a straight line extending diagonally away from said first line; and a female rotor having at least one helical groove, wherein said female rotor is rotatably mounted about a second axis and counter-rotates with respect to said male rotor and has a periphery in close tolerance with said housing, and wherein said helical groove intermeshes with said helical thread and forms a second buttress thread shape in a lengthwise cross-section of said female rotor in a plane extending between said first axis and said second axis, wherein said second buttress thread shape corresponds with said first buttress thread shape and is comprised of a second line extending between a minor diameter and a major diameter of said female rotor and a straight diagonal line extending away from said second line, wherein said straight diagonal line is substantially parallel to said straight line of said male rotor.
- 19. The screw rotor device according to claim 18, wherein said male rotor and said female rotor have a length approximately equal to a single pitch of said helical thread and said helical groove, respectively.
- 20. The screw rotor device according to claim 18, wherein said first and second buttress thread shapes are bounded by a first pair of straight lines corresponding with said minor diameter of said male rotor and said major diameter of said female rotor, respectively, and wherein said first and second buttress thread shapes are further comprised of a second pair of straight lines corresponding with said major diameter of said male rotor and said minor diameter of said female rotor, respectively.
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related to co-pending U.S. application Ser. No. 10/283,422, filed on Oct. 29, 2002, and is a continuation-in-part of U.S. application Ser. No. 10/013,747, filed on Oct. 19, 2001 (U.S. Pat. No. 6,599,112).
US Referenced Citations (39)
Foreign Referenced Citations (1)
Number |
Date |
Country |
402298687 |
Dec 1990 |
JP |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
10/013747 |
Oct 2001 |
US |
Child |
10/283421 |
|
US |