Embodiments disclosed herein relate generally to subsea well production. In particular, embodiments disclosed herein relate to direct vertical access drilling and production systems.
WO 2008/042943 A2 discloses a floating system positioned in a body of water having a water bottom, the system comprising a host member floating on a surface of the water; a flotation module floating under the surface of the water; a flexible hose connecting the host member to the flotation module; and an elongated underwater line structure, comprising a top portion connected to the flotation module; a bottom portion extending to the water bottom and adapted to connect to a flowline lying on the water bottom; and at least one of the top portion and the bottom portion comprising a catenary configuration. WO 2008/042943 A2 is herein incorporated by reference in its entirety.
WO 2008/036740 A2 discloses a system comprising a mobile offshore drilling unit, a first group of wells drilled by the mobile offshore drilling unit, a second group of wells drilled by the mobile offshore drilling unit, wherein the mobile offshore drilling unit comprises processing equipment adapted to process production from the first group of wells and the second group of wells. WO 2008/036740 A2 is herein incorporated by reference in its entirety.
U.S. Pat. No. 7,314,084 discloses a system comprising a pumping module coupled to an intermediate flow inlet (IFI) wherein said IFI is coupled to a base structure disposed on the flow line that routes production from one or more oil wells, allowing for the quick and easy installation or recovery of a subsea pumping module by cable from an inexpensive vessel. The disclosure also allows for the hydraulic isolation of the subsea pumping module by means of on-off valves on the IFI whereby the pumping module can be easily installed or removed without causing underwater oil spills. Sealing of the connection is of the metal-metal type. It is also possible to pass a pig through the present system for clearing the flow lines. U.S. Pat. No. 7,314,084 is herein incorporated by reference in its entirety.
U.S. Pat. No. 7,296,629 discloses a subsea production system that is adapted to be coupled to a subsea wellhead and includes a tubing hanger adapted to be positioned in the wellhead. The tubing hanger has a flow opening extending therethrough and has at least one eccentrically located opening extending through the tubing hanger. In some cases, the tubing hanger is adapted to be not precisely oriented with respect to a fixed reference point when positioned in the wellhead. The system also includes a production tree adapted to be operatively coupled to the tubing hanger, wherein the production tree is oriented relative to the tubing hanger. U.S. Pat. No. 7,296,629 is herein incorporated by reference in its entirety.
U.S. Pat. No. 7,240,736 discloses subsea wells that are drilled and completed with an offshore floating platform in a manner that allows simultaneous work on more than one well. A first well is drilled and casing. Then a tubing hanger is run through a drilling riser and landed in the wellhead housing. Then, with the same floating platform, the drilling riser is disconnected and moved to a second well. While performing operations on the second well, the operator lowers a production tree from the floating platform on a lift line, and connects it to the first wellhead housing. An ROV assisted subsea plug removal tool is used for plug removal and setting operations required through the production tree. U.S. Pat. No. 7,240,736 is herein incorporated by reference in its entirety.
U.S. Pat. No. 7,150,325 discloses a subsea pumping assembly locates on a seafloor for pumping well fluid from subsea wells to the level. The pumping assembly has a tubular outer housing that is at least partially embedded in the seafloor. A tubular primary housing locates in the outer housing and has a lower end with a receptacle. An annular space surrounds the primary housing within the outer housing for delivering fluid to a receptacle at the lower end of the primary housing. A capsule is lowered in and retrieved from the primary housing. The capsule sealingly engages the receptacle for receiving well fluid from the annular space. A submersible pump is located inside the capsule. The pump has an intake that receives well fluid and a discharge that discharges the well fluid exterior of this capsule. The capsule has a valve in its inlet that when closed prevents leakage of well fluid from the capsule. The capsule may be retrieved through open sea without a riser. U.S. Pat. No. 7,150,325 is herein incorporated by reference in its entirety.
U.S. Pat. No. 7,093,661 discloses methods and arrangements for production of petroleum products from a subsea well. The methods comprise control of a downhole separator, supplying power fluid to a downhole turbine/pump hydraulic converter, performing pigging of a subsea manifold, providing gas lift and performing three phase downhole separation. Arrangement for performing the methods are also described. U.S. Pat. No. 7,093,661 is herein incorporated by reference in its entirety.
U.S. Pat. No. 6,968,902 discloses that subsea wells are drilled and completed with an offshore floating platform in a manner that allows simultaneous work on more than one well. A first well is drilled and cased. Then a tubing hanger is run through a drilling riser and landed in the wellhead housing. Then, with the same floating platform, the drilling riser is disconnected and moved to a second well. While performing operations on the second well, the operator lowers a production tree from the floating platform on a lift line, and connects it to the first wellhead housing. An ROV assisted subsea plug removal tool is used for plug removal and setting operations. Seabed separation is configured upstream of a production choke valve. U.S. Pat. No. 6,968,902 is herein incorporated by reference in its entirety.
Accordingly, there exists a need in the art for systems and methods to provide more efficient offshore drilling and production.
Accordingly, there exists a need in the art for reducing the number of risers needed to drill and produce oil from an offshore structure.
Accordingly, there exists a need in the art for providing lower cost offshore structures for drilling and producing oil.
These and other needs of the present disclosure will become apparent to those of skill in the art upon review of this specification, including its drawings and claims.
In one aspect, the present invention relates to a method of drilling and producing from an offshore structure, comprising drilling a first well from the offshore structure with a drilling riser; completing the first well with a first subsurface tree; connecting the first subsurface tree to a manifold; drilling a second well from the offshore structure with a drilling riser; completing the second well with a second subsurface tree; connecting the second subsurface tree to the manifold; and connecting a production riser to the manifold and the offshore structure.
In another aspect, the present invention relates to a method of producing from an offshore structure, comprising drilling a first well from a drill ship; completing the first well with a first subsurface tree; connecting the first subsurface tree to a manifold; drilling a second well from the drill ship; completing the second well with a second subsurface tree; connecting the second subsurface tree to the manifold; and connecting a production riser to the manifold and the offshore structure.
In another aspect, the present invention relates to a system for drilling and producing oil and/or gas, comprising an offshore structure located in a body of water; a first well comprising a first subsurface tree; a second well comprising a second subsurface tree; a manifold connected to the first well and the second well; and a production riser connected to the manifold and the offshore structure.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
Specific embodiments of the present invention will now be described in detail with reference to the accompanying figures. Like elements in the various figures may be denoted by like reference numerals for consistency.
In one aspect, embodiments disclosed herein relate to a wet-tree direct vertical access (DVA) production system. In another aspect, embodiments disclosed herein relate to a subsea boosting system and a method for providing artificial lift in transferring production fluids from a seafloor to a production platform.
Generally, conventional dry-tree DVA systems include low heave platforms that include a well deck where surface (dry) trees are mounted on top of risers. Crude oil from one or more subsea wells is connected in a manifold disposed on a production deck of the platform and conveyed to a processing facility to separate oil from entrained water and gas. Each well has a vertical riser that extends from the wellhead to a slot formed in the platform for transferring the crude oil. Thus, the number of wells that can be drilled and/or completed by a platform rig may be limited by the number of slots or the size of a well bay.
As discussed, this system assembly arrangement may be limited in the number of wells that can be drilled and completed by the number of available slots and the size of the moonpool in host 910.
In contrast, a wet-tree DVA systems may include subsea trees that are connected to wells arranged on the seafloor. Produced crude oil may be transferred along the seafloor via flow lines and collected in a manifold. Production risers convey the production fluid from the manifold or subsea trees to process equipment disposed on the production platform. Therefore, the number of risers in a wet-tree DVA system is dependent on the total throughput of the facility, and not by the number of wells.
Referring now to
In the assembly arrangement shown in
Referring now to
After well 1102 is complete, drilling riser 1147 may be used to drill additional wells. In contrast to DVA system 900 shown in
Referring now to
Referring now to
Referring to
Referring now to
One of ordinary skill in the art will appreciate that the dimensions (e.g., diameter, length, and wall thickness) of caisson 412 may vary based on, for example, the diameter and length of outer housing assembly 322 (
Referring back to
ESP 330 may include a centrifugal type pump, a progressing cavity type pump, or any other pump known in the art. In one embodiment, the ESP 330 may include a centrifugal type pump having a plurality of stages, each stage having an impeller and a diffuser. ESP 330 includes an intake (not shown) disposed at a lower end proximate a lower end of caisson 312. Further, a seal section (not shown) may be secured to a lower end of ESP 330. The seal section may include a thrust bearing to accommodate downward thrust of ESP 330.
As shown, a strainer 335 may be disposed below ESP 330 to filter any large particles from entering ESP 330, thereby preventing possible plugs or damage to ESP 330. Outflow assembly 311 may then include a plurality of level gages 336 to measure the amount of production fluid in caisson 312. Thus, the amount of production fluid may be monitored so as to ensure optimal operating conditions for ESP 330. Additionally, a flow meter 338 may be disposed above ESP 330 to measure the flow rate of the production fluids being pumped upward. A check valve 344, disposed above ESP 330 may also be used to prevent production fluid from flowing in the reverse direction, i.e., downward, when ESP 330 is not in use. Further, as shown, an injection valve 345 may be disposed above ESP 330 to inject chemicals or additives into the production fluid. In one embodiment, injection valve 345 may inject methanol to prevent gas hydrate formation. A protective layer 339 may be disposed over outflow assembly 311 to protect the assembly, and in particular, the power output end of the motor shaft, to prevent well fluid from entering the assembly 311.
Referring now to
Referring now to both
As the production fluid flows through the annular degasser 316 and into inlet 362, entrained gases separated from the production fluid naturally travel upward (indicated at 341) through the body 360 of annular degasser 316 and into a gas annulus in a production riser (not shown) connected to connector 362. The remaining production fluid, or liquid, flows (indicated at 366) into outer housing assembly 322 and caisson 312.
Referring now only to
Referring to
Further, one or more power cables 778 may be disposed within production riser 718 to supply electric power to ESP 330 (
In embodiments disclosed herein, production riser 718 includes a top-tensioned riser. One of ordinary skill in the art will appreciate that any type of top-tensioned riser may be used without departing from the scope of embodiments disclosed herein. In one embodiment, top-tensioned riser may include active hydraulic tensioners (207 in
Referring now to
Surface assembly 820 may also include a plurality of flow lines for transferring the separated production fluids to storage vessels. Production liquids pumped up through production liquid annulus 874 in production riser 818 may be transferred via a liquid flow line 890 to a production liquid storage vessel 893. Production gases from gas annulus 872 in production riser 818 may be transferred via a gas flow line 891 to a gas storage tank 894. Recycled fluids or makeup oil may be pumped via pump 895 through a fluid flow line 892 into recycle annulus 876 of production riser 818 and down into caisson 312 (
Advantageously, embodiments disclosed herein may provide an artificial lift system that reduces well backpressure and ensures reservoir deliverability. Further, commingling of productions fluids in a subsea boosting system in accordance with embodiments disclosed herein may reduce the need for continuous hydrate inhibition of the production fluid. Furthermore, a wet-tree DVA system in accordance with embodiments disclosed herein may allow for fewer risers, and thereby provide a reduced well bay size and a more economical wet-tree DVA production system.
In one embodiment there is disclosed a method of drilling and producing from an offshore structure, comprising drilling a first well from the offshore structure with a drilling riser; completing the first well with a first subsurface tree; connecting the first subsurface tree to a manifold; drilling a second well from the offshore structure with a drilling riser; completing the second well with a second subsurface tree; connecting the second subsurface tree to the manifold; and connecting a production riser to the manifold and the offshore structure. In some embodiments, the method also includes connecting the manifold to a subsea pump. In some embodiments, the method also includes connecting the manifold to a subsea separator. In some embodiments, the method also includes flowing at least a portion of produced gases through a first opening in the production riser. In some embodiments, the method also includes flowing at least a portion of produced fluids through a second opening in the production riser. In some embodiments, the method also includes drilling with a surface blow out preventer. In some embodiments, the offshore structure is floating. In some embodiments, the offshore structure is selected from a tension leg platform, a semi submersible, and a spar.
In one embodiment there is disclosed a method of producing from an offshore structure, comprising drilling a first well from a drill ship; completing the first well with a first subsurface tree; connecting the first subsurface tree to a manifold; drilling a second well from the drill ship; completing the second well with a second subsurface tree; connecting the second subsurface tree to the manifold; and connecting a production riser to the manifold and the offshore structure. In some embodiments, the method also includes connecting the manifold to a subsea pump. In some embodiments, the method also includes connecting the manifold to a subsea separator. In some embodiments, the offshore structure is floating. In some embodiments, the offshore structure is selected from a tension leg platform, a semi submersible, and a spar.
In one embodiment there is disclosed a system for drilling and producing oil and/or gas, comprising an offshore structure located in a body of water; a first well comprising a first subsurface tree; a second well comprising a second subsurface tree; a manifold connected to the first well and the second well; and a production riser connected to the manifold and the offshore structure. In some embodiments, the system also includes a drilling riser connected to the offshore structure and a third well. In some embodiments, the system also includes a subsea pump connected to the manifold and the production riser. In some embodiments, the system also includes a subsea separator connected to the manifold.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
The present application claims priority from U.S. Provisional Patent Application 61/058,342 filed 3 Jun. 2008.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/045585 | 5/29/2009 | WO | 00 | 2/16/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/148943 | 12/10/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3658231 | Gilman | Apr 1972 | A |
4192383 | Kirkland et al. | Mar 1980 | A |
4527632 | Chaudot | Jul 1985 | A |
4705114 | Schroeder et al. | Nov 1987 | A |
4819730 | Williford et al. | Apr 1989 | A |
4967843 | Corteville et al. | Nov 1990 | A |
4972907 | Sellars, Jr. | Nov 1990 | A |
4982794 | Houot | Jan 1991 | A |
5195848 | Huete et al. | Mar 1993 | A |
6213215 | Breivik et al. | Apr 2001 | B1 |
6230810 | Rivas | May 2001 | B1 |
6336238 | Tarlton | Jan 2002 | B1 |
6336421 | Fitzgerald et al. | Jan 2002 | B1 |
6494271 | Wilson | Dec 2002 | B2 |
6497286 | Hopper | Dec 2002 | B1 |
6688392 | Shaw | Feb 2004 | B2 |
6725936 | Hopper | Apr 2004 | B2 |
6968902 | Fenton et al. | Nov 2005 | B2 |
7011152 | Soelvik | Mar 2006 | B2 |
7073593 | Hatton et al. | Jul 2006 | B2 |
7093661 | Olsen | Aug 2006 | B2 |
7150325 | Ireland et al. | Dec 2006 | B2 |
7240735 | Crozier | Jul 2007 | B2 |
7240736 | Fenton et al. | Jul 2007 | B2 |
7296629 | Bartlett | Nov 2007 | B2 |
7314084 | Rodrigues et al. | Jan 2008 | B2 |
7434624 | Wilson | Oct 2008 | B2 |
7628224 | D'Souza et al. | Dec 2009 | B2 |
7793724 | Daniel et al. | Sep 2010 | B2 |
7882896 | Wilson et al. | Feb 2011 | B2 |
7958938 | Crossley et al. | Jun 2011 | B2 |
20010013414 | Fitzgerald et al. | Aug 2001 | A1 |
20040238176 | Appleford et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
1184526 | Jun 1998 | CN |
101501385 | Aug 2009 | CN |
WO2008036740 | Mar 2008 | WO |
WO2008042943 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110132615 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61058342 | Jun 2008 | US |