Drilling offshore oil and gas wells includes the use of offshore platforms for the exploitation of undersea petroleum and natural gas deposits. In deep water applications, floating platforms (such as spars, tension leg platforms, extended draft platforms, and semi-submersible platforms) are typically used. One type of offshore platform, a tension leg platform (“TLP”), is a vertically moored floating structure used for offshore oil and gas production. The TLP is permanently moored by groups of tethers, called a tension leg, that eliminate virtually all vertical motion of the TLP. Another type of platform is a spar, which typically consists of a large-diameter, single vertical cylinder extending into the water and supporting a deck. Spars are moored to the seabed like TLPs, but whereas a TLP has vertical tension tethers, a spar has more conventional mooring lines.
The offshore platforms typically support risers that extend from one or more wellheads or structures on the seabed to the platform on the sea surface. The risers connect the subsea well with the platform to protect the fluid integrity of the well and to provide a fluid conduit to and from the wellbore.
The risers that connect the surface wellhead to the subsea wellhead can be thousands of feet long and extremely heavy. To prevent the risers from buckling under their own weight or placing too much stress on the subsea wellhead, upward tension is applied, or the riser is lifted, to relieve a portion of the weight of the riser. Since offshore platforms are subject to motion due to wind, waves, and currents, the risers must be tensioned so as to permit the platform to move relative to the risers. Accordingly, the tensioning mechanism must exert a substantially continuous tension force to the riser within a well-defined range.
An example method of tensioning a riser includes using buoyancy devices to independently support a riser, which allows the platform to move up and down relative to the riser. This isolates the riser from the heave motion of the platform and eliminates any increased riser tension caused by the horizontal offset of the platform in response to the marine environment. This type of riser is referred to as a freestanding riser.
Hydro-pneumatic tensioner systems are another example of a riser tensioning mechanism used to support risers. A plurality of active hydraulic cylinders with pneumatic accumulators is connected between the platform and the riser to provide and maintain the necessary riser tension. Platform responses to environmental conditions that cause changes in riser length relative to the platform are compensated by the tensioning cylinders adjusting for the movement.
With some floating platforms, the pressure control equipment, such as the blow-out preventer, is dry because it is installed at the surface rather than subsea. However, jurisdiction regulations and other industry practices may require two barriers between the fluids in the wellbore and the sea, a so-called dual barrier requirement. With the production control equipment located at the surface, another system for accomplishing dual barrier protection is needed.
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
The following discussion is directed to various embodiments of the invention. The drawing figures are not necessarily to scale. Certain features of the embodiments may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. It is to be fully recognized that the different teachings of the embodiments discussed below may be employed separately or in any suitable combination to produce desired results. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
Certain terms are used throughout the following description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function. The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices, components, and connections. In addition, as used herein, the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the central axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis.
Referring now to
As shown in
A nested riser system requires both the external riser 30 and the internal riser 32 to be held in tension to prevent buckling. Complications may occur in high temperature, deep water environments because different thermal expansion is realized by the external riser 30 and the internal riser 32 due to different temperature exposures—higher temperature drilling fluid versus seawater. To accommodate different tensioning requirements, independent tension devices are provided to tension the external riser 30 and the internal riser 32 at least somewhat or completely independently.
In this embodiment, the external riser 30 is attached at its lower end to the subsea wellhead 19 (shown in
Also included on the external riser 30 is a tension device 44 in the form of at least one buoyancy system that provides tension on the external riser 30 independent of the platform 11. The external riser tension device 44 may be any suitable configuration for providing buoyancy such as air cans, balloons, or foam sections, or any combination of these configurations. The external riser tension device 44 may also be located at another location along the external riser 30 than shown in
In this embodiment, the internal riser 32 is nested within the external riser 30 and is attached at its lower end to the subsea wellhead 19 (
Other appropriate equipment for installation or removal of the external riser 30 and the internal riser 32, such as a riser running tool 50 and spider 52 may also be located on the platform 11.
The riser system 26 is installed by first running the internal riser 32 and locking its lower end in place. Then, the external riser 30 is installed surrounding the internal riser 32. In use, the internal riser 32 provides a return path to the platform 11 for the drilling fluid. Typically, the external riser 30 is filled with seawater unless drilling or other fluids enter the external riser 30.
In this embodiment, when installed, the internal riser 32 is free to move within the external riser 30 and is tensioned completely independently of the external riser 30. Alternatively, the internal riser 32 may be placed in tension and locked to the external riser 30 such that the external riser tension device 44 supports some of the needed tension for the internal riser 32. Also alternatively, the external riser 30 may be tensioned and then locked to the internal riser 32 such that the internal riser tension device 46 supports at least some of the needed tension for the external riser 30.
Although the present invention has been described with respect to specific details, it is not intended that such details should be regarded as limitations on the scope of the invention, except to the extent that they are included in the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
3999617 | Ilfrey et al. | Dec 1976 | A |
4059148 | Blomsma | Nov 1977 | A |
4099560 | Fischer et al. | Jul 1978 | A |
4185694 | Horton | Jan 1980 | A |
4819730 | Williford et al. | Apr 1989 | A |
5533574 | Gonzalez | Jul 1996 | A |
6273193 | Hermann et al. | Aug 2001 | B1 |
6913092 | Bourgoyne et al. | Jul 2005 | B2 |
7188677 | Moe | Mar 2007 | B2 |
7866399 | Kozicz et al. | Jan 2011 | B2 |
20040240947 | Wetch | Dec 2004 | A1 |
Entry |
---|
PCT International Search Report and Written Opinion dated Apr. 8, 2013 for related PCT Application No. PCT/US2012/070602 filed Dec. 19, 2012. |
Number | Date | Country | |
---|---|---|---|
20130153240 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61577436 | Dec 2011 | US |