To connect computing resources in a company or business, on-premise servers are an integral part of a network strategy. Typically, the on-premise servers function to share resources including, for example, hardware, software, and documents by making these resources centrally accessible to client computers connected to the on-premise server. Also, the on-premise servers typically function to increase security. To share resources, the on-premise servers may be driven by software such as email exchange servers to manage email distribution and document sharing applications. The document sharing applications may include, for example, integrated software applications that work on the server to provide document organization and sharing amongst client computers connected to the server. Although on-premise servers are an integral part of a network strategy, the servers require manpower to operate and do not insulate a company or business completely from risks of security breaches.
To remove some of the manpower costs and to reduce potential security breaches, services are available that transfer some of the functionality provided by the on-premise servers to an offsite location. For example, some businesses use offsite email filters to scan for potential security breaches to its on-premise network. Also, some businesses use web hosting services to host their websites or provide online systems for storing information such as documents. Whether a business uses offsite mail filters or web hosting services to access the email or documents, a user opens a web browser or a client application and accesses the email and documents via the World Wide Web adding an extra step and taking away potential valuable time to the employee. Also, to share information via the external websites, a new username and password may be necessary so that the external website may have a way to identify a user and give the user permission to view the information stored for the business on the site.
Additionally, some companies or businesses may outsource their entire server and network needs to a third party network provider. Typically, these network providers set up the business or company network, house the servers needed for the business or company network, and provide the manpower necessary to keep the network supported and running. Outsourcing the entire network may reduce the manpower and support necessary to maintain servers typically housed on-premise, but outsourcing the entire network may result in decreased speed and efficiency to the client accessing the shared resources via the servers.
According to some embodiments, a server adapted to provide functionality for a client may include an offsite centralized data center and a local client functionality component. The local client functionality component may be stored in the offsite centralized data center such that the offsite centralized data center remotely hosts the local client functionality component. The server may further include a client interface that receives local client information from a client. The local client information may be replicated by the client before being received by the client interface. The offsite centralized data may receive the local client information from the client interface.
According to additional embodiments, a method for providing server functionality includes receiving local client information at an offsite centralized data center. The local client information may be replicated by the client before being received at the offsite centralized data center. The method further includes hosting the local client information at the offsite centralized data center.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Offsite centralized data center 110 including local client functionality component 120 may function to remotely build functionality that may complement an on-premise application, such as an email program, for a client. For example, offsite centralized data center 110 may remotely host features such as virus protection, spam filtering and email archiving used by the on-premise application and viewed by the client. These remotely hosted features that may be stored in local client functionality component 120 may be managed by offsite centralized data center 110 rather than by the client. Remotely hosting these features at offsite centralized data center 110 may also reduce needless traffic to the client. For example, local client functionality component 120 may include valid user information. If email is filtered remotely by offsite centralized data center 110, when email gets sent to an invalid user (e.g. a user not stored in local client functionality component 120), offsite centralized data center 110 may block the email. Because this feature is done remotely, the email may be filtered at offsite centralized data center 110, and thus unnecessary traffic to the client may be avoided.
Additionally, offsite centralized data center 110 may remotely host features of instant messaging applications. For example, offsite centralized data center 110 may host features to add value to an on-premise instant messaging application such as virus protection for attachments sent via an instant message to a client.
Offsite centralized data center 110 may also remotely store groups, recipients, and/or domains for a client in, for example, local client functionality component 120. With this information stored in, for example, local client functionality component 120, offsite centralized data center 110 may enforce policies sent by clients regarding the stored information. For example, if a client may want to block emails from a particular domain, the client may send this policy to offsite centralized data center 110. Offsite centralized data center 110 may enforce the received policy remotely to the information it hosts for the client. Additionally, offsite centralized data center 110 may enforce archiving policies required by a client such as, for example, storing emails for a set amount of time or deleting emails within a set amount of time. Similarly, offsite centralized data center 110 may manage special configurations generated by a client for different teams within an organization, such as, safe sender lists and team lists. When managing team lists, offsite centralized data center 110 may prevent one team from accessing information such as, emails or data, of another team. Thus, offsite centralized data center 110 may serve as gateway that may remotely host a multitude of information without the need for the client to deploy multiple solutions to integrate hosting this information.
As shown in
For client 140 to access resources, such as information or features stored in local functionality component 120 of offsite centralized data center 110, a user may need one user name and password. One user name and password to access both may be an alternative to requiring a separate user name and password to access local information and a separate offsite centralized data center user name and password to access the shared resources.
Local client information 250 may be replicated by client replication component 260 using, for example, a logical replication scheme or a physical based replication scheme. The logical replication scheme may include client replication component 260 interacting with local client information 250 such that if local client information 250 includes email messages, the logical replication scheme may sort through the messages and replicate new messages to push to offsite centralized data center 210. Alternatively, the physical based replication scheme may include client replication component 260 interacting with local client information 250 such that if local client information 250 includes email messages, the physical based replication scheme replicates changes to messages to push to offsite centralized data center 210.
Offsite centralized data center 210 may provide archiving of replicated local client information 265. If replicated local client information 265 includes email messages, the email messages may be archived in offsite centralized data center 210 by redirecting the flow of the email. For example, email messages may be blind carbon copied to offsite centralized data center 210. Also, client 245 may grant permission to offsite centralized data center 210 to access email messages in its inbox by pushing the messages to offsite centralized data center 210. This similar technique can be used for other information such as calendars, contacts, and tasks. Thus, client 245 may push replicated local client information 265 to offsite centralized data center 210 by granting access to offsite centralized data center such that replicated local client information 265 may be archived.
In communication with client replication component 260 may be server replication component 270. Server replication component 270 may provide feedback to client replication component 260 regarding synchronization of replicated local client information 265. For example, server replication component 270 may provide feedback to client replication component 260 on whether offsite centralized data center 210 received replicated local client information 265.
As discussed above and shown by the flow of information in
At 310, a client server may replicate local client information. The local client information may be replicated using a logical replication scheme, for example, an entire email message may be replicated. Alternatively, the local client information may be replicated using a physical based replication scheme, for example, changes to an email message may be replicated.
At 320, an offsite centralized data center may receive the replicated local client information. The offsite centralized data center may directly receive the replicated local client information. Alternatively, the server may include a client interface in communication with the offsite centralized such that the client interface receives the replicated local client information from the client and the offsite centralized data center receives the replicated local client information from the client interface.
At 330, the offsite centralized data center may host the replicated local client information. In one embodiment, the offsite centralized data center may archive the hosted replicated local client information for a client. Additionally, a client may access the replicated local client information hosted by the offsite centralized data center. The replicated local client information accessed may appear local to the client. For example, the client may believe the accessed replicated local client information resides on a local drive rather than at the offsite centralized data center.
To broker information from offsite centralized data center 410 to additional clients, a second client 450 may also be in communication with network 430. Second client 450 may establish a second relationship with offsite centralized data center 410. The second relationship may include, for example, common industry, common business practices, and/or common security authorization. The second relationship may be authenticated, for example, by specific usernames and passwords. Alternatively, the second relationship may be authenticated, for example, by security certificates such as public and private key codes that may be managed by offsite centralized data center 410.
Offsite centralized data center 410 may compare the first relationship established by first client 440 with the second relationship established by second client 450. Offsite centralized data center 410 may broker or share resources or information located at offsite centralized data center 410 if the first relationship established by first client 440 with offsite centralized data center 410 corresponds to the second relationship established by second client 450 with offsite centralized data center 410. By allowing first client 440 to share information with second client 450 via offsite centralized data center 410, a common security thread may be implemented at offsite centralized data center 410 that may better secure the resource or information shared. Additionally, by allowing information to be shared at offsite centralized data center 410, first client 440 may reduce a security breach by second client 450 to information first client 440 may not want to share with second client 450. For example, if first client 440 pushes the information it wants to share to offsite centralized data center 410, second client 450 may access the pushed information at offsite centralized data center 410 instead of additional information that may be locally stored by first client 440.
Additionally, if the first relationship established by first client 440 corresponds to the second relationship established by second client 450, offsite centralized data center 410 may also generate a template to handle the information hosted at offsite centralized data center 410 based on the corresponding relationship. For example, first client 440 may establish a first relationship with offsite centralized data center 410 as a law firm. Similarly, second client 450 may establish a second relationship with offsite centralized data center 410 as a law firm. Because the first relationship and second relationship match, offsite centralized data center 410 may generate a template based on this commonality. The template may be used to handle information hosted to first client 440 and second client 450 in a similar fashion. For example, the common template may archive email pushed to offsite centralized data center 410 in a similar fashion based on legal document discovery laws that may govern both first client 440 and second client 450.
Similarly, at 510, the offsite centralized data center may establish a second relationship with a second client. The second relationship may include, for example, common industry, common business practices, and common security authorization. The second relationship may be authenticated, for example, by specific usernames and passwords. Alternatively, the second relationship may be authenticated, for example, by security certificates, such as public and private key codes. It may be recognized by one skilled in the art, that the second client may establish the relationship with the offsite centralized data center as well.
At 520, the data center may decide whether the first relationship established by the first client at 500 corresponds with the second relationship established by the second client in step 510. For example, first and second client may be common industries or common security authorizations. If the first relationship and second relationship do not correspond, for example, the security certificates do not match, brokering ends.
If the first relationship and second relationship correspond at 520, then at 530 the offsite centralized data center shares local client information remotely between the first client and second client. The replicated local client information may include, for example, emails, domain names, passwords, email addresses, email messages, calendars, contacts, and documents. Sharing the information at 530, may include, for example making the information accessible to both the first and second clients for a meeting. Sharing at 530 may also include sharing network strategies, for example, sharing policies regarding email disposal.
The example embodiments are operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the example embodiments include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, embedded systems, distributed computing environments that include any of the above systems or devices, and the like.
The example embodiments may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The example embodiments also may be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network or other data transmission medium. In a distributed computing environment, program modules and other data may be located in both local and remote computer storage media including memory storage devices.
With reference to
Computer 610 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 660 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CDROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by computer 610. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
System memory 630 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 631 and random access memory (RAM) 632. A basic input/output system 633 (BIOS), containing the basic routines that help to transfer information between elements within computer 610, such as during start-up, is typically stored in ROM 631. RAM 632 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 620. By way of example, and not limitation,
Computer 610 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
Computer 610 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 680. Remote computer 680 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 610, although only a memory storage device 681 has been illustrated in
When used in a LAN networking environment, computer 610 is connected to LAN 671 through a network interface or adapter 670. When used in a WAN networking environment, computer 610 typically includes a modem 672 or other means for establishing communications over WAN 673, such as the Internet. Modem 672, which may be internal or external, may be connected to system bus 621 via user input interface 660, or other appropriate mechanism. In a networked environment, program modules depicted relative to computer 610, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
Computing environment 600 typically includes at least some form of computer readable media. Computer readable media can be any available media that can be accessed by computing environment 600. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by computing environment 600. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.