The present invention relates to a one-piece gooseneck manufactured by Hot Isostatic Pressing (HIP).
The present invention focuses on manufacturing a one-piece product of gooseneck for use in industry related to the production of oil and gas in duplex or super duplex utilizing a HIP (hot isostatic pressing) process. HIP provides a near net shape product with superior and uniform material properties. In addition, the design utilizes an integrated pad-eye with a shackle interface that eliminates the need for a costly lifting adapter. Lifting adapters have load limitations related to up-bending of an end of a flexible pipeline. This limitation is removed when using a shackle interface. The gooseneck of the invention is engineered as one piece using flexible engineering and requires less time from a finished design phase to a finished product. Only minor machining is required to finish the gooseneck.
An oil and gas industry gooseneck is a U-shaped terminal fitting designed for carrying the weight and pressure of a several kilometers long pipeline, typically with one end attached to a FPSO (floating production storage and offloading) or other production platforms used in the oil and gas industry. The gooseneck is attached to the end of a flexible pipeline that is lifted and lowered to be connected to a hosting structure subsea. The term “gooseneck” is used in various technical fields, but the present invention defines an oil and gas industry gooseneck to limit the invention to goosenecks of the above type.
Traditional goosenecks are manufactured as traditional welded designs with a pipe section that requires numerous process steps and internal piping that carry the internal pressure, held in a lifting frame that carry external loads (in place and lifting). Longitudinal welds along pipes are not acceptable according to relevant industry standards, making welded structures more complicated. Welded designs thus require numerous manufacturing processes. Welded designs rely on a forged hub and an end fitting that requires machining, cladding, and then machining of the lifting element to a final shape before the lifting element is welded onto the pipe section. The piping requires induction bending, before being welded to the end fittings.
Oil and gas industry gooseneck assemblies are normally used as part of the termination of risers, i.e. the connection between a floating production, storage and offloading (FPSO) (topside) and to a pipeline end termination (PLET) (subsea).
Goosenecks are designed to lift and terminate the flexible pipe to a subsea host structure, e.g. to a PLET or a well jumper, e.g. between a valve-tree and a manifold. Both the valve-tree and the manifold include a hosting structures to allow connection of a gooseneck. A flexible pipeline assembly has a gooseneck at each end that is connected to the hosting structure at the valve tree and the manifold respectively.
In in relation to the present invention is super duplex intended to describe stainless steels, typically grade EN 1.4410 developed to meet specific demands of the oil& gas and the chemical industries. They offer the required corrosion resistance and strength. Super duplex stainless steels are difficult to process due to high contents of Cr, Ni, Mo, N and W. A duplex stainless steel may also be used.
Using the hot isostatic pressing- or “Hipping” process allows the gooseneck of the invention to be tailor-made without welding and the gooseneck will thus not include weaknesses or cracks due to welding. During hot isostatic pressing, fine metal powder is provided in a capsule/casting. The capsule is heated to an elevated temperature and isostatic gas pressure is applied. The resulting gooseneck is a solid and dense unit with no inclusions. Not only does this offer more design freedom than traditional assembly, forging or casting, it also reduces the risk of hydrogen induced stress cracking (HISC) due to the very fine microstructure of the finished gooseneck. Time-consuming welding and inspections in the forging-machining process is eliminated, lead times and costs can be reduced and up-or down scaling is simple.
The present invention thus results in simplified and flexible engineering, i.e. one finished piece, reduced delivery schedule, and a minimum of assembly.
The simplified gooseneck design reduces costs and makes alterations simple.
The present invention thus concerns an oil and gas industry gooseneck comprising a fluid duct portion with at least an arch shaped portion, a first connecting portion, a second connecting portion, a lifting pad eye with a shackle interface lifting pad eye extending along the arch shaped fluid duct portion. The gooseneck is one hot isostatic pressed element.
The gooseneck may be made of a Duplex or a Super-duplex material.
The lifting pad eye may extend along a convex part of the fluid duct portion.
The lifting pad eye may be plate shaped.
Furthermore, the present invention relates to an oil and gas industry flexible pipeline assembly with an oil and gas industry gooseneck as described above, and a flexible pipeline connected to the second connecting portion and onto a subsea host structure.
The oil and gas industry flexible pipeline assembly may further include a guiding structure with a clamp connector connected to the first connecting portion.
The guiding structure with a clamp connector may be adapted to be connected to a guiding structure with a female hub assembled to a subsea structure.
The invention also relates to use of hot isostatic pressing to manufacture an oil and gas industry gooseneck as described above.
Number | Date | Country | Kind |
---|---|---|---|
20201377 | Dec 2020 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/082579 | 11/23/2021 | WO |