The invention relates to an oil control valve for a cam phaser of an internal combustion engine where the spool is positioned by an external actuator.
Hydraulic valves for cam phasers for internal combustion engines are well known in the art. The hydraulic valve includes a piston that is axially movable in a housing of the hydraulic valve and that controls a hydraulic loading of the cam phaser. Hydraulic valves come in many different configurations. The housing is configured hollow cylindrical. The piston is also configured hollow cylindrical. Controlling the cam phaser is done hydraulically by positioning the flowable piston and opening and closing connections configured in the housing accordingly.
The publication documents DE 10 2013 104 573 A1 and DE 10 2013 104 575 A1 disclose a hydraulic valve which includes a supply connection at a housing end so that direct flowing of the piston received in the housing and thus straight loading of the piston with a hydraulic fluid that is fed through the supply connection can be provided. The piston has a complex outer geometry so that pressure forces are balanced to minimize pressure effect on the piston position.
The publication documents US 2014/0311333 A1 and US 2014/0311594 A1 disclose a hydraulic valve which includes check valves that are configured at a circumference of the piston. This either requires a complex housing configuration for receiving and securing the check valves or the housing is configured in plural components and requires a high level of assembly complexity. The piston is configured from multiple components and the individual components are joined concentrically which requires complex assembly since axial misalignments have to be avoided when the components are pressed together.
Another hydraulic valve which includes so called center position locking can be derived from the publication document EP 2 966 272 A2. The piston has a complex external geometry since additional locking connections are arranged in the housing of the hydraulic valve.
Another hydraulic valve which includes a particular piston for a hydraulic valve for a cam phaser may be found in Patent Application US 2017/0260882 A1 filed on Nov. 26, 2016, which is incorporated herein in its entirety. This hydraulic valve also invented by the inventor of this application has many common features of the present invention.
An object of the invention is to provide a hydraulic valve for a cam phaser including a spool assembly including a spool that is axially movable in a central opening, and a first check valve and a second check valve which prevent an unintentional outflow of a hydraulic fluid flowing through the spool assembly from an inner cavity of the spool assembly in a first flow through an opening and a second flow though the opening of the spool assembly associated respectively with a first operating connection and a second operating connection. The spool assembly has a first position, a second position, and a third position. The hydraulic fluid can flow from the first operating connection to the second operating connection when the spool assembly is in the first position, the hydraulic fluid does not flow between the first operating connection and the second operating connection when the spool assembly is in the second position, and the hydraulic fluid can flow from the second operating connection to the first operating connection when the spool assembly is in the third position. The first operating connection and the second operating connection are opened and closed according to a position of the spool assembly. A supply connection may be arranged at an end of the hydraulic valve. The spool assembly may include a machined spool. The spool assembly may include other spool parts made of plastic such as stamped or deep drawn plastics. The other parts made of plastic may be a supply tube and flow disk. The spool may be positioned by external actuation. A pressured hydraulic fluid may enter an end of the hydraulic valve where resultant pressure force is balanced by a differential area of the spool. The first check valve and the second check valve may enable cam torque recirculation of hydraulic fluid. The hydraulic valve may be an oil control valve or an internal combustion engine oil control valve. The spool assembly may have a first additional position and a second additional position where the first additional position is located between the first position and the second position and where the second additional position is located between the second position and the third position. The hydraulic fluid flows from the first operating connection to the second operating connection when the spool assembly is in the first additional position, and the hydraulic fluid flows from the second operating connection to the first operating connection when the spool assembly is in the second additional position. A tank connection may also be included where the tank connection is open when the spool assembly is in the first position or third position, and where the tank connection is closed when the spool assembly is in the first additional position, second position, or second additional position.
Another object of the invention is to provide hydraulic valve for a cam phaser including a spool assembly including a spool that is axially movable in a central opening, and a first check valve and a second check valve which prevent an unintentional outflow of a hydraulic fluid flowing through the spool assembly from an inner cavity of the spool assembly in a first flow through an opening and a second flow though the opening of the spool assembly associated respectively with a first operating connection and a second operating connection. The spool assembly has a first position, a second position, a third position, a fourth position and a fifth position. The hydraulic fluid flows from the first operating connection to the second operating connection when the spool assembly is in the first position or the second position, the hydraulic fluid does not flow between the first operating connection and the second operating connection when the spool assembly is in the third position, and the hydraulic fluid flows from the second operating connection to the first operating connection when the spool assembly is in the fourth position or the fifth position. The first operating connection and the second operating connection are opened and closed according to a position of the spool assembly and a pressure across the first check valve and the second check valve. The hydraulic valve may also include a tank connection. The tank connection is open when the spool assembly is in the first position or fifth position, and the tank connection is closed when the spool assembly is in the second position, third position, or fourth position.
Other advantages, features and details of the invention can be derived from the subsequent description of advantageous embodiments and from the drawing figures. The features and feature combinations recited in the preceding description and the features and feature combinations recited and shown individually in the figure description and in the figures are not only usable in the respectively recited combination but also in other combinations or by themselves without departing from the spirit and scope of the invention. Identical or functionally equivalent elements are designated with identical reference numerals. For reasons of clarity it is possible that elements are not designated with reference numerals in all figures without losing their association, wherein:
9
The invention relates to an oil control valve for a cam phaser of an internal combustion engine where the spool is positioned by an external actuator. The pressure enters the end of the oil control valve where the resultant pressure force is balanced by the differential area of the spool. The spool contains two plate check valves enabling cam torque recirculation of oil from A to B or B to A depending upon the spool position. In middle position, the spool lands block A and B to hold the cam phaser position.
In the starting position according
In the middle or hold position according
In the end position according
In this starting position the second operating connection B is loaded with hydraulic fluid. This means the hydraulic fluid flows from the first supply connection P through an inner space and the first flow through opening which releases the second connection opening connected with the second operating connection B. Furthermore hydraulic fluid can flow from the first operating connection A at least partially through the first connection opening and by opening the right most check valve 32 the hydraulic fluid can flow into the inner space into the first flow through the opening. From there the hydraulic fluid flows through the second connection opening into the second operating connection B. The additional portion of the fluid flowing out of the first operating connection A flows through opening into a third connection opening associated with the tank connection T1.
The second position operates similar to the starting position except that the tank connection T1 is closed.
In this middle or hold position, the flows are stopped.
In this end or fifth position the first operating connection A is loaded with hydraulic fluid. This means the hydraulic fluid flows from the first supply connection P through an inner space and the second flow through opening which releases the second connection opening connected with the first operating connection A. Furthermore hydraulic fluid can flow from the second operating connection B at least partially through the second connection opening and by opening the left most check valve 32 the hydraulic fluid can flow into the inner space into the first flow through the opening. From there the hydraulic fluid flows through the first connection opening into the first operating connection A. The additional portion of the fluid flowing out of the second operating connection B flows through opening into a fourth connection opening associated with the tank connection T2 on the left. The additional portion of the hydraulic fluid flowing into the tank connection T2 on the left flows out of the second operating connection B.
The fourth position operates similar to the fifth position except that the tank connection T2 is closed.
The invention has a number of advantages including being low cost, having a good flow of recirculated oil, and ease of assembly. The spool assembly may be manufactured at low cost. More specifically, the spool 30 is machined while the other spool parts in the spool assembly may be made by more cost effective methods such as being stamped, or being deep drawn, or any other suitable cost effective methods, and the other spool parts in the spool assembly may be made of plastics or any other suitable inexpensive material or materials.
The good flow of recirculated oil occurs because the axial check valves 18, 32, 33 allow flow improvement over other valves such as band check valves. The invention is easier to assemble because of the concentricity of supply tube to the spool can be maintained by fixture tooling during stop welding.
Although several embodiments of the present invention and its advantages have been described in detail, it should be understood that changes, substitutions, transformations, modifications, variations, permutations and alterations may be made therein without departing from the teachings of the present invention, the spirit and the scope of the invention being set forth by the appended claims.
This application claims priority from, and incorporates by reference, U.S. provisional application Ser. No. 62/522,624 filed Sep. 19, 2017.
Number | Name | Date | Kind |
---|---|---|---|
20060027773 | Nordstrom | Feb 2006 | A1 |
20100251981 | McCloy | Oct 2010 | A1 |
20120227693 | Scheidig | Sep 2012 | A1 |
20140311333 | Hutzelmann et al. | Oct 2014 | A1 |
20140311594 | Hutzelmann et al. | Oct 2014 | A1 |
20160130989 | Fischer | May 2016 | A1 |
20170260882 | Brower et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
102010022896 | Dec 2011 | DE |
102013104573 | Nov 2014 | DE |
102013104575 | Nov 2014 | DE |
2966272 | Mar 2014 | EP |
2966272 | Jan 2016 | EP |
2012122454 | Aug 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20180363514 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62522624 | Jun 2017 | US |