Cooling of engine lubricant can improve engine fuel efficiency and reduce degradation of the lubricant. Degraded lubricant can not only increase friction and thus reduce fuel economy, but it can also lead to increased engine wear and component degradation.
Oil coolers may be used to cool engine oil, but require increased packaging space. Moreover, various routing lines may be needed to fluidly couple the lubrication circuit to the oil cooler, increasing the difficulty of oil cooler installation and assembly. These factors can result in increased cost and overall engine size.
U.S. Pat. No. 5,690,062 discloses an oil cooler positioned in a valley between two cylinder banks in an engine. The Inventors have recognized several drawbacks with the oil cooler configuration in U.S. Pat. No. 5,690,062. Due to the flow configuration of the oil and coolant in the cooler, the heat transfer between coolant passage and the oil passages may be insufficient to cool the oil to a desired operating temperature during high load conditions. Specifically, the separation between the coolant channel and the oil channel may reduce the cooler effectiveness in removing heat from the oil. Furthermore, the relatively short length of the adjoining oil passages and coolant passages may be insufficient to provide a desired amount of cooling during engine operation, and may provide uneven cooling to the oil flowing through the oil gallery, thus leading to oil degradation.
In one approach, an assembly is provided to address at least some of the above issues. The assembly a cylinder block and a cooler coupled to the cylinder block positioned in a valley between two cylinder banks, the cooler including a lubricant passage having a first section configured to flow lubricant in an opposing direction to the flow of lubricant through a second section, the first and second sections each extending longitudinally from a first peripheral cylinder to a second peripheral cylinder in one of the cylinder banks 1. In this way, the oil cooler may provide increased cooling via the counter-flow routing of coolant and oil channels through the oil cooler, while enabling reduced packaging space and easier engine assembly. For example, in one embodiment the second section of the lubricant passage may be positioned directly above the first section of the lubricant passage, increasing the compactness of the oil cooler.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
Various embodiments are disclosed herein related to an oil cooler positioned in a valley of a cylinder block having a flow configuration conducive to removing heat with a decreased profile. In this way, a cooler with a compact profile can provide a desired amount of lubricant cooling to the engine. Furthermore, the cooler may be removably coupled to the cylinder block. As a result, maintenance and repair of the cooler may be simplified, thereby decreasing the cost of servicing the cooler when compared to coolers that may cast into the cylinder block. Moreover, the operation of the engine is improved when increased cooling is provided to the lubricant, including increasing fuel economy, for example.
Referring to
The cylinder head and assembly may each comprise at least one cylinder. Furthermore, engine 50 may include additional components configured to perform combustion in the at least one cylinder.
The assembly 102 may include a cylinder block 104 coupled to a structural frame 106. The structural frame may include a lubrication circuit 107 integrated therein. The lubrication circuit may include lubrication passages 108 (e.g., oil passages), oil filter 110, oil pump 112, and solenoid valve 113. The lubrication passages may be configured to provide lubrication to various engine components such as the crankshaft and crankshaft bearings. The oil filter may be coupled to a lubrication passage and configured to remove unwanted particulates from the lubrication passage. Moreover, the oil pump may also be coupled to a lubrication passage included in lubrication passages 108 and configured to increase the pressure in the lubrication circuit 107. It will be appreciated that additional integrated components may be included in structural frame 106. For example, the integrated components may include balance shafts, block heaters, actuators, and sensors.
In one example, an oil pan 114 may be coupled to structural frame 106. The oil pan may be included in the lubrication circuit. Oil pump 112 may also be coupled to structural frame 106 via bolts or other suitable fasteners. Oil pump 112 may be configured to circulate oil from oil pan 114 into lubrication passages 108. Various lubrication passages are shown in FIGS. 2 and 5-11 described in greater detail herein. Thus, the oil pump may include a pick-up disposed in the oil pan as discussed in greater detail herein with regard to
Engine 50 may further include a cooler 160 integrated into assembly 102. Cooler 160 may be configured to remove heat from lubrication circuit 107. In one embodiment, cooler 160 may be an oil cooler.
Referring to
For example, the depicted positioning of the oil filter and solenoid valve is one possible example. In other embodiments, the oil filter 110 and solenoid valve 113 may be positioned in alternate suitable locations. The lubrication passage 200 may be fluidly coupled to a lubrication passage 202 traversing the cylinder block 104. The lubrication passage 2002 may be in fluidic communication with the cooler 160. As previously discussed, the cooler 160 may be configured to remove heat from the lubricant (e.g., oil) in the lubrication circuit. In some embodiments, the cooler 160 may include water passage for transferring heat from the lubricant to the water.
Lubrication passage 204 shown traversing a portion of the cylinder block 104 may be fluidly coupled to an outlet of the cooler 160. In this way, lubricant may be flowed from the cooler 160 to the lubrication passage 204.
The lubrication passage 204 may be in fluidic communication with a supply oil gallery passage 206. A plurality of branch oil gallery passages 208 may be fluidly coupled to the supply oil gallery passage 206.
The branch oil gallery passages 208 may be configured to provide components of the crankshaft such as journals, bearing, etc., with lubricant. It will be appreciated that the outlets of the crankshaft lubrication branch passages may open into the crankcase. In this way, lubricant may be provided to the crankshaft and subsequently drained into the oil pan 114. Lubrication passages 210 respectively, may also be in fluidic communication with the supply oil gallery passage 206 and traverse a portion of the cylinder block 104. The lubrication passages 210 may be in fluidic communication with lubrication passages included in the cylinder head 100 shown in
The lubrication circuit 107 may further include a return lubrication passage 212 traversing the cylinder block 104. The return lubrication passage 212 may include an inlet fluidly coupled to a cylinder head lubrication passage included in the cylinder head 100 shown in
In some examples, an amount of oil or an oil pressure provided by oil pump 112 may be varied by a controller, such as controller 12 shown in
Referring to
The cylinder block 104 further includes a plurality of crankshaft supports 300 positioned at the bottom of the cylinder block 104 and configured to structurally support a crankshaft (not shown). In some examples, the cylinder block may include two crankshaft supports. The crankshaft supports 300 may each include a bearing cap 304. The bearing caps are configured to receive a crankshaft bearing. Thus, the crankshaft supports form openings that are configured to receive crankshaft bearing (not shown) configured to enable rotation of a crankshaft (not shown). It will be appreciated that the crankshaft may include various components such as counterweights, journals, crankpin journals, etc. The crankpin journals may each be coupled to a piston via a connecting rod. In this way, combustion in the cylinders may be used to rotate the crankshaft.
The bearing caps 304 may each include two structural frame attachment recesses 306. The structural frame attachment recesses may be configured to receive a fastener such as a bolt or other suitable attachment apparatus for coupling the structural frame 106 to the cylinder block 104, discussed in greater detail herein with regard to
As shown, crankshaft supports 300 are formed from a single continuous piece of material. For example, the crankshaft supports 300 are manufactured via a single casting. Further in the depicted example, the cylinder block 104 is a one-piece engine cylinder block constructed in a single casting. However, in other embodiments the cylinder block 104 may be constructed via another suitable technique. The crankshaft supports may be cracked or otherwise divided from the cylinder block 104 after casting so that a crankshaft (not shown) may be installed. After the crankshaft is properly positioned, the pieces of the crankshaft supports may be subsequently fastened to the cylinder block after being divided from the cylinder block. In this way, the structural integrity as well as the precision of the mated interface of the crankshaft supports may be increased when compared to other cylinder block designs which may couple separately constructed (e.g., cast) upper and lower pieces of the cylinder block to form the bearing cap. Moreover, NVH may also be reduced in the assembly when the crankshaft supports are constructed out of a single piece of material. Cylinder block 104 further includes an exterior front wall 310. Likewise, cylinder block 104 further includes an exterior rear wall 312.
Continuing with
Cylinder block 104 further includes a first cylinder head engaging surface 322 positioned at a top 323 of the cylinder block. Additionally in the depicted example, the cylinder block includes a second cylinder head engaging surface 324. However in other examples, the cylinder block may include a single cylinder head engaging surface. The first and second cylinder head engaging surface (322 and 324) may be configured to couple to cylinder head 100 shown in
Cylinder block 104 further includes two structural frame engaging surfaces (326 and 328) configured to attach to two corresponding cylinder block sidewall engaging surfaces (330 and 332) included in the structural frame 106 discussed in greater detail herein. The two structural frame engaging surfaces (326 and 328) are positioned on opposing sides of the cylinder block 204. In the perspective view of the assembly 102 shown in
Cylinder block 204 further includes a first exterior sidewall 333 and a second exterior sidewall 335. The first cylinder block exterior sidewall 333 extends from the first cylinder head engaging surface 322 to the first structural frame engaging surface 326 positioned between a centerline 339 of the plurality of crankshaft supports 300. Likewise, the second cylinder block exterior sidewall 335 extends from the second cylinder head engaging surface 324 to the second structural frame engaging surface 328 positioned between the centerline 339 of the plurality of crankshaft supports 300. As shown, the structural frame engaging surfaces (326 and 328) are substantially planar. However, in other examples, the structural frame engaging surface may have another geometric configuration. For example, the height of the structural frame engaging surfaces may vary.
Furthermore, the structural frame 106 includes a bottom surface 309 and two exterior sidewalls (i.e., a first structural frame exterior sidewall 336 and a second structural frame exterior sidewall 338. The first structural frame exterior sidewall 336 extends from the bottom surface 309 and includes the first cylinder block sidewall engaging surface 330. Likewise, the second structural frame exterior sidewall 338 extends from the bottom surface 309 and includes the second cylinder block sidewall engaging surface 332. Furthermore, the first and second structural frame exterior sidewalls (336 and 338) extend above a top of the crankshaft supports 300 when the assembly 102 is assembled. Additionally, the bottom surface 309 is below the crankshaft supports 300. However, in other examples other configurations are possible. For example, the first and second structural frame exterior sidewalls (336 and 338) may not extend above a top of the crankshaft supports. As depicted, the structural frame has a U shape. However, in other examples, other shapes are possible. The cylinder block sidewall engaging surfaces (330 and 332) are configured to attach to the structural frame engaging surfaces (326 and 328) on the cylinder block 104 and are positioned on opposite sides of the structural frame 106. In the depicted example, the cylinder block sidewall engaging surfaces (330 and 332) form top surfaces of the structural frame. However, in other examples, other configurations are possible. The cylinder block sidewall engaging surfaces (330 and 332) include a plurality of fastener openings 340 along their lengths. As shown, the cylinder block sidewall engaging surfaces (330 and 332) are substantially planar and congruent a lateral and longitudinal plane. However, in other examples, alternate geometric configurations and orientations are possible. For example, the vertical height of the sidewall engaging surfaces may vary.
The structural frame may further include a front cover engaging surfaces (382 and 384) extending along at least a portion of the structural frame exterior sidewalls (336 and 338). A first seal 370 may be positioned between the first cylinder block sidewall engaging surface 330 and the first structural frame engaging surface 326. Likewise, a second seal 372 may be positioned between the second cylinder block sidewall engaging surface 332 and the second structural frame engaging surface 328. The first and second seals (370 and 372) may be substantially air and liquid tight. Example seals include but are not limited to a gasket, an adhesive, etc.
The structural frame 106 includes an interior portion 342 adjacent to the crankshaft supports 300 when the assembly 102 is assembled. The interior portion 342 includes fastener openings 344 configured to receive suitable fasteners such as bolts. As discussed in greater detail herein, the fasteners may extend through the fastener openings 344 in the structural frame 106 as well as the attachment recesses 306 in the cylinder block 104.
In some examples, cylinder block 104 and structural frame 106 may be constructed out of different materials. Specifically in one example, cylinder block 104 may be constructed out of a material having a greater strength to volume ratio than structural frame 106. However, in other examples, the cylinder block and structural frame may be constructed out of substantially identical materials. Example materials that may be used to construct the cylinder block include a gray iron, compacted graphite iron, ductile iron, aluminum, magnesium, and/or plastic. Example materials used to construct the structural frame include gray iron, compacted graphite iron, ductile iron, aluminum, magnesium, and/or plastic. In one particular example, the cylinder block may be constructed out of a compacted graphite iron and the structural frame may be constructed out of aluminum. In this way, increased structural integrity may be provided to locations in the assembly that experience greater stress, such as the combustion chambers and surrounding areas. Moreover, the volumetric size of the assembly may be reduced when the aforementioned combination of materials is utilized in the assembly as opposed to a cylinder block constructed only out of aluminum. Still further, the structural frame may be constructed out of a material having a greater strength to weight ratio than the material used to construct the cylinder block, thereby enabling weight reduction of the assembly 102.
The assembly 102 further includes oil pan 114 positioned vertically below the structural frame 106 and cylinder block 104. When assembled, oil pump 112 may be coupled to an oil pan engaging surface located on a bottom side of the structural frame. Moreover, the oil pump includes pick-up 350 positioned in the oil pan when the assembly is assembled and an outlet port 352 configured to deliver oil to a lubrication passage 200, shown in
The structural frame 106 further includes a sensor mounting boss 380 for receiving a sensor, such as an oil pressure sensor. As shown, the sensor mounting boss 380 is positioned on the first structural frame exterior sidewall 336. However, the sensor mounting boss may be positioned in another suitable location such as on the second structural frame exterior sidewall 338 in other examples.
Fasteners 400 extend through fastener openings (334 and 340) in both of the structural frame engaging surfaces (326 and 328) and the cylinder block sidewall engaging surfaces (330 and 332). In this way, the engaging surfaces may be secured to one another. Although
As previously discussed, the solenoid valve 113 is fluidly coupled to the lubrication passage 2000. The solenoid valve may be configured to decrease the pressure in the lubrication passage 2000 when the pressure in the passage exceeds a threshold value. However, in other embodiment the solenoid valve may have an alternate functionality. The inlet 510 shown in
Further in the depicted embodiment the structural frame lubrication passage is adjacent to an end of the structural frame that attaches to a transmission bell housing. However, in other embodiments the structural frame lubrication passage 200 may be spaced away from the end of the structural frame that attaches to the transmission bell housing.
It will be appreciated that when the lubrication passage is integrated into the structural frame 106, external lubrication lines may not be needed to route lubricant from the pump. As a result, the compactness of the engine may be increased. Furthermore, the likelihood of rupturing a lubrication line during installation may be reduced and in some cases substantially eliminated when lubrication passages are internally routed through the structural frame.
The cylinder block lubrication passage 202 may further include an outlet 704. The outlet may be fluidly coupled to an inlet 706 of the cooler 160. As shown, the cooler 160 is positioned the valley 320 between the first and second cylinder banks (316 and 318), shown in
In this way, lubricant may be routed internally through the assembly 102. As a result the compactness of the assembly may be increased. When lubricant is internally routed through the assembly the number of external lubrication lines in the assembly may be reduced and in some cases eliminated. As a result, the assembly of the assembly 102 may be simplified, thereby reducing manufacturing costs. Furthermore, when fewer or no external lubrication lines are utilized the likelihood or rupturing a lubrication line during assembly is reduced and in some cases substantially eliminated.
The inlet 706 of cooler 160 is fluidly coupled to an inlet lubricant passage 708, as previously discussed. Moreover, the inlet lubricant passage 708 is also positioned adjacent to the peripheral cylinder 321, shown in
The lubricant passage 1300 extends in a longitudinal direction that is substantially parallel to the centerline 339 of the crankshaft, shown in
Furthermore, the direction of lubricant flow in the first section 1302 may substantially oppose the direction of lubricant flow in the second section 1304. Arrows 1306 depict the general flow of lubricant in the first section 1302 and arrows 1308 depict the general flow of lubricant in the second section 1304. However, it will be appreciated that the flow pattern in the first and second sections (1302 and 1304) has additional complexity that is not depicted. It will be appreciated that the first and second sections (1302 and 1304) are fluidly coupled in series. It will be appreciated that this counterflow arrangement of the lubricant passage 1300 in the cooler 160 increases the amount of heat that may be removed from the lubricant in the cooler.
The lubricant passage 1300 may further include a third section 1310. Arrows 1312 depict the general flow direction of lubricant through the third section 1310. The general flow of the lubricant through the third section 1310 may be in the opposite direction of the second section 1304 and in the same direction of the first section 1302. When the lubricant passage 1300 is configured the amount of heat removed from the lubricant via the cooler 160 is increased. The third section 1310 is positioned near the periphery (e.g., the top) of the cooler 160. The third section 1310 includes an outlet 1314 fluidly coupled to the supply oil gallery passage 206. The supply oil gallery passage 206 may be fluidly coupled to a plurality of branch oil gallery passages 208 configured to flow lubricant to a crankshaft assembly (e.g., camshaft, journal bearings, lobes, etc.) In this way, lubrication is provided to the crankshaft assembly. As shown the branch oil gallery passages 208 extend vertically through the cylinder block 104. However, in other examples other orientations are possible. The third section 1310 is positioned vertically above the second section 1304 which is positioned vertically above the first section 1302. However, other arrangements are possible in other embodiments. It will be appreciated that the first, second, and third sections (1302, 1304, and 1310) of the lubricant passage 1300 are fluidly coupled in a series configuration.
The lubricant passage 1300 further includes an outlet 1315. The outlet 1315 is fluidly coupled to the supply oil gallery passage 206. Thus, the outlet 1315 is configured to flow lubricant into the supply oil gallery passage 206 which is positioned downstream of the outlet 1315 and the lubricant passage 1300. As previously discussed the supply oil gallery passage 206 is fluidly coupled to a plurality of branch passages 208 arranged downstream of the oil gallery passage 206. The branch passages 208 are configured to flow oil to a crankshaft assembly.
The coolant passage 710 includes a first section 1320 positioned below the lubricant passage 1300. The coolant passage 710 includes a second section 1322 adjacent to a longitudinal side 1324 of the lubricant passage 1300. Arrows 1326 depict the general flow of coolant through the coolant passage 710. However, it will be appreciated that the flow pattern of the coolant has additional complexity that is not depicted.
Thus, the coolant passage 710 flow coolant around the peripheral walls (1404 and 1406) of the lubricant passage 1300 and a lower wall 1408 of lubricant passage 1300. Therefore, a portion of the coolant passage 710 is positioned below the lubricant passage 1300. In this way, the coolant passage 710 at least partially surrounds the lubricant passage 1300. In particular, the coolant passage 710 surrounds 3 sides of lubricant passage 1300.
Furthermore, the boundary of the coolant passage 710 may be defined by an outer surface 1410 of the cylinder block 104. However in other embodiments other configurations are possible. For instance, an outer wall of the cooler 160 may define the boundary of the coolant passage 710. The supply oil gallery passage 206 is also shown in
At 1502 the method includes flowing lubricant from a lubricant passage traversing a cylinder block to a lubricant passage in a cooler positioned in a valley between two cylinder banks in the cylinder block. Next at 1504 the method includes flowing lubricant in a first direction in the lubricant passages in the cooler and a second opposing direction in the lubricant passage, the lubricant passage extending from a first peripheral cylinder to a second peripheral cylinder in one of the cylinder banks
Next at 1506 the method includes flowing lubricant from the lubricant passage in the cooler to a supply oil gallery passage. At 1508 the method includes flowing lubricant from the supply oil gallery passage to a plurality of branch oil gallery passage.
It will be appreciated that the configurations and/or approaches described herein illustrate example embodiments, and that these specific examples are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
This concludes the description. The reading of it by those skilled in the art would bring to mind many alterations and modifications without departing from the spirit and the scope of the description. For example, single cylinder, I2, I3, I4, I5, V6, V8, V10, V12 and V16 engines operating in natural gas, gasoline, diesel, or alternative fuel configurations could use the present description to advantage.
The present application is a continuation of U.S. patent application Ser. No. 13/342,659, entitled “OIL COOLER,” filed on Jan. 3, 2012, the entire contents of which are hereby incorporated by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 13342659 | Jan 2012 | US |
Child | 14531847 | US |