1. Field of the Invention
This invention relates to the field of internal combustion engines. More specifically, the invention comprises a flexible magnetic belt configured to attach to a can-type oil filter in order to attract and retain metallic particles circulating in the oil.
2. Description of the Related Art
Pressurized oil is fed into inlet manifold 24, from whence it flows through inlets 20 into can 12. The oil is then forced to flow through filter media 32 and into intake cylinder 34 through ports 38. From this point the oil flows up through outlet 26 and thereafter circulates through the engine.
All the features thus described are well known to those skilled in the art. Oil filters in present use contain a variety of internal features and the specific structure shown in
It is well known that mechanical forces within internal combustion engines create loose meal particles (“filings”) which circulate in the moving oil. These filings can damage the engine. As the metal particles are usually ferromagnetic (steel or iron), prior art devices have uses magnetism to capture them.
Typical prior art devices use a magnetic sleeve which is sized to fit closely around the external diameter of can 12. Unfortunately, oil filter cans come in a virtually endless variety of sizes. A specific magnetic sleeve must be provided so suit each size or range of sizes. It is therefore desirable to provide a method of magnetically capturing metal particles using a device which can be adapted for use in a wide range of oil filter sizes.
The present invention comprises a method for capturing small metal particles within an oil filter can. The method uses a flexible belt incorporating a number of pockets. Magnets are contained within the pockets, with one magnet per pocket being preferable. The pockets are sealed so that the belt and magnets operate as a unified whole.
The belt is wrapped around an oil filter and held in place via the attraction between the magnets and the metal oil filter can. No additional securing mechanism is needed. The belt may be wrapped around oil filters of various sizes with need for any alterations.
The present inventive method attaches a flexible magnet belt to an oil filter in order to entrap metal particles circulating in the oil.
The magnet belt can be made in a variety of different ways.
Outer layer 48 is then placed over inner layer 44 and plate magnets 46. It is desirable to retain the plate magnets in an even spacing. In order to do this each plate magnet is contained within a pocket in this embodiment.
The seams may be formed using any suitable technology, including: (1) stitching the inner and outer layers together; (2) using meltable materials for the inner and outer layers and melting the seams together; and (3) screen printing a suitable adhesive along the locations of the desired seams and pressing the two layers together so that the adhesive forms a bond. Other techniques will readily occur to those skilled in the art and the particular method used to create the seams and pockets is not critical to the present invention.
Once assembled, the magnet belt is touch and durable.
Returning to
Of course, if a small diameter filter is present, the magnet belt may wrap around more than one complete turn and actually overlap itself. In this case, one end of the belt will overlie the other. The magnets in the overlapping portion will then align with the magnets in the portion beneath. The flexibility of the material used for the inner and outer layers of the belt allows the magnet to move laterally so that this alignment occurs with no action by the user. The flexibility also allows the user to bunch the magnets closer together so that the spacing between magnets can be varied to suit different filter applications.
Those skilled in the art will know that an oil filter can is subjected to high temperatures (45 to 95 degrees Centigrade), vibration, dust, and other hazards. The materials for the belt should be selected with these hazards, in mind. High temperature, flexible plastic sheeting is suitable. A flexible, UV-resistant polyvinyl chloride is one example of a suitable material. Many other natural and synthetic materials could be substituted. Likewise, any adhesive used to bond the layers or thread used to stitch the seams must be suitable for the environment. Silicone-based adhesives are one good example.
Although the preceding description contains significant detail, it should not be construed as limiting the scope of the invention but rather as providing illustrations of the preferred embodiments of the invention. The inventive method could be realized in many different ways. As one example, inner layer 44 and/or outer layer 48 may be formed of multiple pieces rather than one piece of continuous material. For instance, outer layer 48 could be seven individual pieces—with one piece being present for each pocket. Thus, the examples provided are properly viewed as embodiments of the invention rather than a definition of the invention's scope.