The present disclosure pertains to the technical field of a compressor, and in particular to a compressor and an oil line structure thereof.
The suction and exhaust structure of the relevant rotary vane compressor is mainly arranged on a lateral surface of the cylinder. However, due to a serious wear of the slider head and the inner wall of the cylinder, it causes a great mechanical power consumption of the compressor, so that there is a poor overall energy efficiency, even leading to the problems concerning the reliability such as abnormal wear when it is severe.
Korean Patent Application No. KR1020100076562 discloses a rolling bearing solution: the structures of a rolling body and a cone (similar to a roller) are added in the inner wall of the cylinder, to ensure that the sliding of the slider head relative to the inner wall of the cone is converted into the rolling motion of the cone and the rolling body, thereby reducing the mechanical power consumption of the compressor and improving the energy efficiency of the compressor.
However, the disclosed structure does not lubricate the rolling bearing. During the operation of the compressor, the heat generated by the friction of the rolling body is not discharged in time, which is to result in that the temperature rise at the site leads to the problems concerning the reliability of the rolling bearing during long-term operation. At the same time, an excessive temperature results in a severe heating of the wall (the heating of the refrigerant during the compression deviates more from the adiabatic compression, so that the power consumption is increased) during the compression, thereby leading to a poorer compression function. Further, since there is no lubricant oil to lubricate the rolling body of the rolling bearing during the operation, it is to produce a dry friction metal contact to lead to adhesive wear or the like, and further lead to the abnormality of the entire compressor.
Since the relevant rotary vane compressor does not lubricate the rolling bearing, during the operation of the compressor, the heat generated by the friction of the rolling body is not discharged in time, which is likely to result in that the temperature rise at the site leads to the problems concerning the reliability of the rolling bearing during long-term operation, and there is a poorer compression function. Therefore, after study, the present disclosure designs a compressor and an oil line structure thereof.
Therefore, the technical problem to be solved by the present disclosure is to overcome the defect as present in the relevant compressor that the heat generated by friction of the rolling body is not discharged in time, thereby providing a compressor and an oil line structure thereof.
The present disclosure provides an oil line structure of a compressor, which includes:
a spindle, an upper flange and a rolling bearing, wherein an interior of the rolling bearing encloses a cylinder cavity for performing compression, and the rolling bearing includes a rolling body;
wherein the spindle is internally provided with a spindle oil hole, and the upper flange is provided with an upper oil groove which is in communication with the spindle oil hole to guide an oil into the rolling body so as to lubricate the same.
In some embodiments, wherein the upper oil groove includes:
a straight oil groove in communication with the spindle oil hole;
a bearing roller oil inlet hole in communication with the rolling body;
a bearing lubrication oil inlet passage with one end in communication with the straight oil groove and the other end in communication with the bearing roller inlet hole.
In some embodiments, wherein the straight oil groove is provided on a radially inner side of the upper flange and extends along an axial direction of the upper flange; the bearing lubrication oil inlet passage extends along a radial direction of the upper flange, and the bearing roller oil inlet hole extends along the axial direction of the upper flange.
In some embodiments, wherein in a cross section of the upper flange, the straight oil groove is an annular oil groove or an arc-shaped oil groove.
In some embodiments, wherein two or more bearing lubrication oil inlet passages are arranged along a circumference of the upper flange;
each of the bearing lubrication oil inlet passages is in communication with respective one of the bearing roller oil inlet holes respectively, and two or more of the bearing lubrication oil inlet passages are in communication with one of the straight oil grooves, or each of the bearing lubrication oil inlet passages is in communication with respective one of the straight oil grooves respectively.
In some embodiments, further including an upper oil reservoir disposed on the upper flange, wherein the upper oil reservoir communicates with the bearing roller oil inlet hole and the bearing lubrication oil inlet passage.
In some embodiments, wherein the upper oil reservoir is located above an axial direction of the bearing roller oil inlet hole and extends in a circumferential direction of the upper flange.
In some embodiments, wherein a gasket is provided between the upper flange and the rolling bearing, and along an axial direction of the spindle, the gasket is provided with a plurality of oil guiding holes, the plurality of oil guiding holes are arranged along a circumferential direction of the spindle, and communicate the bearing roller oil inlet hole with the rolling body.
In some embodiments, wherein at least two of the plurality of oil guiding holes have different diameters, and the oil guiding hole closing to the exhaust hole of the rolling bearing has a larger diameter than the oil guiding hole closing to the intake hole of the rolling bearing.
In some embodiments, further includes a lower flange, the lower flange is provided with a lower oil groove in communication with the rolling body, the lower oil groove is configured to guide the oil out of the lower flange or guide the oil out of the rolling bearing.
In some embodiments, wherein the lower oil groove is located below an axial direction of the rolling body, and the lower oil groove radially extends to a circumferential end surface of the lower flange, so as to guide the oil out of the circumferential end surface.
In some embodiments, wherein two or more the lower oil grooves are arranged at different circumferential positions of the lower flange.
In some embodiments, further includes a lower oil reservoir provided in the lower flange, wherein the lower oil reservoir is in communication with the lower oil groove.
In some embodiments, wherein the lower oil reservoir is an annular structure circumferentially surrounding the spindle.
In some embodiments, wherein the rolling bearing includes a bearing cone and a bearing cup, the bearing cup is provided with a bearing cup oil groove, and the lower oil groove communicates the rolling body with the bearing cup oil groove to charge the oil from the bearing cup through the bearing cup oil groove.
In some embodiments, wherein the bearing cup oil groove includes an axial oil hole extending along the axial direction of the bearing cup and at least one radial oil hole extending along the radial direction of the bearing cup, the axial oil hole communicates with the lower oil groove, and the radial oil hole communicates with the axial oil hole, such that the oil is discharged from a circumferential surface of the bearing cup through the radial oil hole.
In some embodiments, wherein the lower oil groove extends along a radial direction of the lower flange;
and/or, there are a plurality of the radial oil holes arranged in parallel, and extending along a radial direction of the bearing cup.
In some embodiments, wherein the spindle oil hole includes a spindle radial oil hole provided inside the spindle and along a radial direction of the spindle.
The present disclosure provides a compressor, including the oil line structure of a compressor.
In some embodiments, wherein the compressor is a rotary vane compressor.
The present disclosure provides an air-conditioner, including the oil line structure of a compressor.
The compressor and the oil line structure thereof provided by the present disclosure at least have the following advantageous effects:
1. In some embodiments of the compressor and the oil passage structure thereof according to the present disclosure, the upper flange is provided with an upper oil groove in communication with the spindle oil hole for guiding the oil into the rolling body to lubricate the same. The upper oil groove is configured to effectively guide the oil in the spindle oil hole of the compressor into a site of the rolling body of the rolling bearing through the upper flange, and lubricate and cool the same. In this way, the heat generated by friction of the rolling body is discharged in time, so as to prevent a temperature rise in the bearing and reduce the wear, thereby improving the energy efficiency value of the compressor and ensuring normal operation of the compressor.
2. In some embodiments of the compressor and the oil line structure thereof according to the present disclosure, by the upper oil groove provided in the upper flange, the oil is guided from top to bottom into the rolling body of the rolling bearing by gravity, thereby achieving sufficient lubricating oil providing to the rolling bearing and normal operation of the compressor.
3. In some embodiments of the compressor and the oil line structure thereof according to the present disclosure, by means of the upper oil reservoir provided at the upper flange, the oil in the bearing lubrication oil inlet passage is guided into the upper oil reservoir for storage before guiding into the bearing lubrication oil inlet passage, thereby achieving the oil storage effect during an excessively large amount of oil, and releasing the lubricating oil through the oil reservoir during an excessively small amount of oil, to achieve a favorable lubricating and cooling effect of the rolling bearing and improve the performance of the compressor. By the lower oil groove provided in the lower flange, it is possible to store the oil, and at the same time, it is also possible to discharge the lubricating oil into the housing of the compressor through the lower oil groove to realize the recovery and recycling of the oil.
The reference signs in the drawings are presented as follows:
1. spindle; 10. spindle oil hole; 11. spindle center portion; 12. spindle escape; 13. spindle radial oil hole; 2. upper flange; 20. upper oil groove; 20a. straight oil groove; 20b. bearing lubrication oil inlet passage; 20c. bearing roller oil inlet hole; 21. upper oil reservoir; 3. rolling bearing (cylinder); 31. bearing cone; 32. bearing cup; 321. bearing cup oil groove; 321a. axial oil hole; 321b. radial oil hole; 33. rolling body; 4. lower flange; 41. lower oil groove; 42. lower oil reservoir; 5. vane; 6. lower cover plate; 7. gear oil pump; 8. gasket; 81. oil guiding hole.
As shown in
a spindle 1, an upper flange 2 and a rolling bearing 3, wherein an interior of the rolling bearing 3 (cylinder) encloses a cylinder cavity for performing compression, and the rolling bearing 3 includes a rolling body 33;
wherein, the spindle 1 is internally provided with a spindle oil hole 10, and the upper flange 2 is provided with an upper oil groove 20, the upper oil groove 20 is in communication with the spindle oil hole 10 for guiding an oil into the rolling body 33 so as to lubricate the same.
The upper flange is provided with an upper oil groove in communication with the spindle oil hole for guiding the oil into the rolling body to lubricate the same. The upper oil groove is configured to effectively guide the oil in the spindle oil hole of the compressor into a site of the rolling body of the rolling bearing through the upper flange, and lubricate and cool the same. In this way, the heat generated by friction of the rolling body is discharged in time, so as to prevent a temperature rise in the bearing and reduce the wear, thereby improving the energy efficiency value of the compressor and ensuring normal operation of the compressor.
And the oil is guided from top to bottom into the rolling body of the rolling bearing by gravity, thereby achieving sufficient lubricating oil providing to the rolling bearing and normal operation of the compressor.
As shown in
a straight oil groove 20a in communication with the spindle oil hole 10;
a bearing roller oil inlet hole 20c in communication with the rolling body 33;
a bearing lubrication oil inlet passage 20b with one end in communication with the straight oil groove 20a and the other end in communication with the bearing roller inlet hole 20c.
This is a specific structural form of the upper oil reservoir provided in the upper flange in some embodiments of the present disclosure. By means of the straight oil groove, the lubricating oil is guided from the spindle oil hole into the straight oil groove 20a, further guided by the bearing lubrication oil inlet passage 20b, and finally guided into the bearing roller oil inlet hole 20c, and then guided to a position of the rolling body of the rolling bearing, so as to complete the function and effect of lubricating the rolling body of the bearing.
Since the oil is sucked in a steady stream during operation of the compressor, when the small oil storage space is full, the lubricating oil is guided into the straight oil groove of the upper flange, through the bearing lubrication oil inlet passage 20b, and then to the bearing roller oil inlet hole 20c, specifically as shown in
In some embodiments, the straight oil groove 20a is provided radially inward of the upper flange 2 and extends along an axial direction of the upper flange 2. The bearing lubrication oil inlet passage 20b extends along a radial direction of the upper flange 2, and the bearing roller oil inlet hole 20c extends along an axial direction of the upper flange 2.
This is a further structural form of the straight oil groove 20a, the bearing lubrication oil inlet passage 20b and the bearing roller oil inlet hole 20c according to some embodiments of the present disclosure, which completes the function of conveying and guiding the lubricating oil from the spindle oil hole to the rolling body of the rolling bearing. Especially, the bearing roller oil inlet hole 20c extends along an axial direction of the upper flange, so that the lubricating oil is guided to the rolling body from top to bottom in a vertical direction, thereby effectively utilizing the gravitational effect to reduce the flowing power used to pump the oil and improving the conveying efficiency of the lubricating oil.
As shown in
In some embodiments, there are two or more bearing lubrication oil inlet passages 20b, which are distributed along a circumference of the upper flange 2;
Each of the bearing lubrication oil inlet passages 20b connects to one of the bearing roller oil inlet holes 20c, and two or more of the bearing lubrication oil inlet passages 20b communicate with one of the straight oil grooves 20a, or each of the bearing lubrication oil inlet passages 20b connects to one of the straight oil grooves 20a.
This is a form of the bearing lubrication oil inlet passages 20b according to some embodiments of the present disclosure, by two or more of the bearing lubrication oil inlet passages 20b provided, so that it is adapted to radially guide and convey the oil along different circumferential directions of the upper flange, thereby raising a flow rate of the conveyed oil to increase an amount of the conveyed oil, improving the lubricating and cooling effect of the rolling body of the bearing, and improving the operational reliability and stability of the compressor, and allowing the compressor to operate at a higher frequency and a higher rotational speed.
The present embodiment is a further improvement made on the basis of the embodiment 1. As shown in
By means of the upper oil reservoir provided at the above-described position, the oil in the bearing lubrication oil inlet passage is guided into the upper oil reservoir for storage before guiding into the bearing lubrication oil inlet passage, thereby achieving the oil storage effect during an excessively large amount of oil, and releasing the lubricating oil through the oil reservoir during an excessively small amount of oil, to achieve a favorable lubricating and cooling effect of the rolling bearing and improve the performance of the compressor.
In some embodiments, the upper oil reservoir 21 is located above an axial direction of the bearing roller oil inlet hole 20c and extends in a circumferential direction of the upper flange 2. It is adapted to change the direction of the oil that is about to enter the bearing roller oil inlet hole 20c to enter the upper oil reservoir to complete the oil storage effect. The upper oil reservoir is a straight section groove, as shown in
As shown in
Before the gasket is added, the lubricating oil directly enters the rolling body 33 of the bearing cavity through the bearing roller oil inlet hole 20c of the upper flange. In principle, the oil is supplied from one point to the entire bearing cavity, so that there is a relatively fixed position for oil supply. Although the cone is rotary, there is a great temperature difference in the oil for an interior of the entire bearing cavity. After the gasket is added, the oil suppling within a range of 360° to the entire bearing cavity is realized, and different hole diameters are set as needed to achieve lubrication of the rolling body. After there is a gasket, it is adapted to make the lubrication and cooling of the rolling body more adequate. In addition, the gasket is adapted to improve a wear condition of the cone of the rolling bearing and an end surface of the upper flange.
In some embodiments, at least two of the plurality of oil guiding holes 81 have different diameters, and the oil guiding holes 81 closing to the exhaust hole of the rolling bearing 3 has a larger diameter than the oil guiding holes 81 closing to the intake hole of the rolling bearing 3.
The gasket is mainly provided with oil guiding holes 81 of different diameters. The size of the oil guiding holes is set according to the needs of lubrication. In the vicinity on an exhaust side (exhaust hole), the rolling body withstands a maximum pressure under the effect of a differential pressure of the cone, and needs much more lubricating oil, so that the oil holes here have to be designed in a larger diameter. However, the oil guiding holes immediately opposite to the bearing roller oil inlet hole 20c of the upper flange are not subjected to a great force since they are located on a suction side of the compressor, there is less amount of oil required here, so that the oil holes have to be designed in a smaller diameter.
It optionally includes oil guiding holes having three diameters: φc<φb<φa.
The present embodiment is a further improvement made on the basis of the embodiments 1-3. In some embodiments, there further includes a lower flange 4, the lower flange 4 is also provided with a lower oil groove 41 communicating with the rolling body 33. The lower oil groove 41 is configured to guide the oil out of the lower flange 4, or out of the rolling bearing 3. The oil is conveyed and deflected by means of the lower oil groove provided in the lower flange, and the lubricating oil is discharged into the housing of the compressor to realize the recovery and recycling.
Then, after the lubricating oil passes through the rolling body, it flows to the lower flange dues to the effect of own gravity and oil pressure, and concentratively flows to the lower oil groove of the lower flange (as shown in
Such solution of a lubricating oil line of the rolling bearing, which communicates the spindle, the upper flange, the rolling bearing and the lower flange, is not only adapted to make the lubricating oil to be recycled in use in the sump of the housing, but also to ensure that the rolling body of the rolling bearing to be adequately lubricated. At the same time, it also adapted to take away the heat generated by friction in this process in time. Such oil line means achieves the effect of adequately lubricating the rolling bearing, thereby reducing the wear of the pump body during the operation of the compressor and enhancing the reliability of the operation thereof.
In some embodiments, the lower oil groove 41 is located below an axial direction of the rolling body 33, and the lower oil groove 41 radially extends to a circumferential end surface of the lower flange 4, such that the oil is guided out of the circumferential end surface. In this way, the oil is directly guided to the circumferential end surface of the lower flange through the lower oil groove, so as to complete the purpose and function of discharging the oil out of the pump body of the compressor and into the sump at the bottom of the housing of the compressor.
In some embodiments, there are two or more lower oil grooves 41, which are distributed at different circumferential positions of the lower flange 4. This is an optionally form of the lower oil groove, such that it is adapted to increase a discharge amount of the lubricating oil by two or more lower oil grooves, thereby accelerating the circulation speed of the lubricating oil, and improving the cooling and lubricating rate of the bearing.
As shown in
In some embodiments, the lower oil reservoir 42 is an annular structure circumferentially surrounding the spindle 1. This is an optionally shape of the lower oil reservoir according to some embodiments of the present disclosure, which enhances the oil storage ability to a greater extent.
Referring to
By providing the bearing cup oil groove in the bearing cup, it is adapted to guide the oil flowing from the lower oil groove of the lower flange to an exterior of the bearing cup, thereby achieving the function of discharging the lubricating oil. This is an alternative with respect to the solution of discharging the oil in the lower flange.
As shown in
As shown in
The oil outlet position is optionally raised from the oil outlet hole in the end surface of the lower flange to the lateral hole of the rolling bearing, to replace the lower oil groove of the lower flange. The specific oil line is as shown in
In some embodiments, the bearing cup oil groove 321 includes an axial oil hole 321a extending along the axial direction of the bearing cup 32 and at least one radial oil hole 321b extending along the radial direction of the bearing cup 32. The axial oil hole 321a communicates with the lower oil groove 41, and the radial oil hole 321b communicates with the axial oil hole 321a, such that the oil is discharged from a circumferential surface of the bearing cup 32 through the radial oil hole 321b.
This is a specific structural form of the bearing cup oil groove provided in the bearing cup according to some embodiments of the present disclosure, such that the oil in the lower oil groove is axially sucked through the axial oil hole, and guided into the radial oil hole, and is discharged from the outer circumferential surface of the bearing cup, thereby achieving the function and purpose of discharging the lubricating oil.
In some embodiments, the lower oil groove 41 extends along a radial direction of the lower flange 4;
And/or, there are a plurality of said radial oil holes 321b, which are arranged in parallel, and extending along a radial direction of the bearing cup 32.
This is an optionally extending direction of the lower oil groove in the oil line structure according to some embodiments of the present disclosure, as well as a plurality provided manners of the radial oil grooves, such that it is adapted to radially guide the oil in the lower flange, and radially discharge the oil in the bearing cup.
In some embodiments, the spindle oil hole 10 includes a spindle radial oil hole 13 provided in the radially outside and along a radial direction. By means of the spindle radial oil hole, the oil in the spindle oil hole is guided along a radial direction into the upper oil groove 20, thereby achieving the function of guiding and outputting the lubricating oil.
In some embodiments of the present disclosure provides a structure for lubricating a rolling bearing of a compressor. According to the characteristics of pumping the oil in the compressor, different oil holes and upper oil grooves are provided in the upper flange, the lower flange and the rolling bearing, such that the rolling bearing communicates the oil lines of the upper and lower flanges, to achieve the effect of adequately lubricating the rolling bearing, thereby reducing the wear of the pump body during operation of the compressor, and enhancing the operational reliability thereof. In addition, such lubrication manner has the advantages of simple structure and convenient machining. It ensures the degree of lubricating the bearing of the pump body of the compressor, thereby effectively solving the problems of wear and heat of the rolling bearing, and improving the reliability and energy efficiency of the compressor.
Different holes and grooves are provided inside the upper flange to communicate with the oil outlet hole in the spindle of the pump body and an upper gap area in the rolling body of the rolling bearing, and communicate with the lower gap area in the rolling body at a groove provided in the lower flange, such that the four partial oil lines are in communication (since the rolling body between the bearing cup and the bearing cone has a height less than that of the bearing, there is a gap between the rolling body and the upper and lower end surfaces, wherein the gap between the rolling body and the upper end surface of the bearing is an upper gap area of the rolling body, and the gap between the rolling body and the lower end surface of the bearing is a lower gap area of the rolling body). Accordingly, it is adapted to ensure that there is lubricating oil flowing through the rolling body portion of the rolling bearing, which not only lubricates the rolling bearing, but also takes away the heat generated by rolling friction in time, and reduces the power consumption during operation of the compressor, thereby improving the energy efficiency of the compressor itself.
Some embodiments of the present disclosure provide a compressor including the aforementioned oil line structure of the compressor. The upper flange is provided with an upper oil reservoir in communication with the spindle oil hole, so as to guide the oil into the rolling body to lubricate the same, thereby enabling to effectively guide the oil in the spindle oil hole of the compressor into a site of the rolling body of the rolling bearing through the upper flange, and lubricate and cool the same. In this way, the heat generated by friction of the rolling body is discharged in time, so as to prevent a temperature rise in the bearing and reduce the wear, thereby improving the energy efficiency value of the compressor and ensuring normal operation of the compressor.
It is adapted to guide the oil from top to bottom into the rolling body of the rolling bearing by gravity, thereby ensuring sufficiently lubricating oil in the rolling bearing and ensuring normal operation of the compressor.
In some embodiments, the compressor is a rotary vane compressor. This is an optionally structural form of the compressor according to the present disclosure.
The foregoing descriptions are only the preferred embodiments of the present disclosure, but do not serve to limit the present disclosure. Any amendment, equivalent replacement, improvement, and the like made within the spirit and principles of the present disclosure should all be contained within the protection scope of the present disclosure. The foregoing descriptions are only preferred embodiments of the present disclosure. It should be noted that those skilled in the art may also make several improvements and modifications without departing from the technical principles of the present disclosure, which modifications and refinements are also considered to be the protection scope of the present application.
Number | Date | Country | Kind |
---|---|---|---|
201710907160.8 | Sep 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/118247 | 12/25/2017 | WO | 00 |