The present invention relates to a motorcycle oil pump, and in particular, to an oil pump having intermeshing gears with an improved tooth design that provides improved flow over the prior art.
Internal combustion engines such as those for motorcycles typically have an oil pump that is a dry sump-type system with two sets of intermeshing external rotary gears. The gears are typically driven on a common drive shaft with one gear set supplying pressurized oil to the engine for lubrication, with the other gear set scavenging excess oil from the crankcase to the oil tank. Oftentimes, the oil pump does not provide sufficient oil for the engine, especially through certain RPM ranges. In other applications, performance modifications may be made to the engine that require increased oil flow to provide proper lubrication as the stock oil pump does not have sufficient capacity.
In order to accommodate increased oil flow, a simple solution is to provide a larger capacity oil pump. However, a larger capacity pump requires additional space that may not be available and prevents retrofitting to an existing engine. Therefore, it is desirable to utilize an oil pump having the same space requirements as a stock pump. It is also desirable to mount to the existing drive shaft to minimize the modifications required to mount to the engine. If an existing oil pump is used, one modification that provides increased flow is to widen the gear sets or increase the depth of the gears. However, clearance constraints may prohibit widening of the gears or may limit the depth of the gears. Another solution is to increase the angular velocity of the gears. This method of providing increased flow is undesirable as it may increase the wear of the current pump and require more maintenance. It also requires increasing the angular velocity of the drive shaft or adding a gear intermediate the drive shaft and the pump gears.
Another alternative is to change the gear profile. A typical stock oil pump gear includes fourteen teeth, as shown in
Another problem with existing oil pumps is that the ratio between oil supply volume and oil return volume is not optimized. Under some operating conditions, the engine may be overwhelmed by oil. The crankcase then becomes filled, resulting in oil carryover, wherein excessive oil is blown out of the crankcase breather.
It can be seen that a new pump is needed that provides improved flow over existing designs. Such an oil pump should provide increased oil flow without requiring additional space for the oil pump. Such a design should provide for retrofitting existing oil pumps with an improved gear tooth profile, resulting in increased oil pumping volume. Such a system should provide for optimization of the pump flow for the supply as well as the pump flow ratio between the supply and the return. The present invention addresses these as well as other problems related to oil pumps for internal combustion engines.
The present invention is directed to a dry sump type oil pump system that utilizes intermeshing spur gears having an improved tooth profile for improved pumping and volume.
A motorcycle engine oil pump includes a pump body and a cover. The pump body includes two sets of gears, intermeshing supply gears and intermeshing return gears. The gears are spur gears having nine teeth with an improved involute tooth profile. The profile of the gears and greater intermeshing provide improved flow over the prior art. The present invention provides for retrofitting to existing engines as the gears can be fitted in a body and cover having the same outer dimensions. The gear chambers are modified slightly to accommodate the different distance between the gear centers due to the greater tooth overlap from greater intermeshing. However, the driven supply gear and return gear are coaxial with the existing drive shaft to provide for retrofitting. In addition, the depth of the supply gears and return gears is increased over the prior art so that improved flow is achieved without greater angular velocity and without a greater diameter.
The oil pump also includes various passages for directing oil to the various components to be lubricated and for reclaiming oil from the oil tank and sump. The oil pump also includes a check valve and a pressure relief valve that are set to accommodate the increased flow over the prior art. With the optimized placement of various passages and levels, as pressure increases and the plunger of the relief valve and ball of the check valve are moved, oil is directed to different components at the various pressures, thereby providing lubrication to components as the need arises.
With the improved gear design, pump volume for the supply gears is increased by thirty eight percent over a comparable pump of the prior art while the return gears increase pump volume by sixty one percent as compared to the prior art. This is achieved without increasing gear angular velocity, gear diameter, or the width of the pump body and cover assembly and utilizing existing geometry that are compatible with existing engines.
These features of novelty and various other advantages that characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention.
In the drawings wherein like reference numerals and letters indicate corresponding structure throughout the several views:
Referring now to the drawings, and in particular to
Referring to
Referring now to
To accommodate mounting, orifices 96 receive hardware 94 for attaching the pump cover 26 to the pump body 24 as well as mounting the pump 22 to the engine. Connections to the lubricated components are made through fittings, generally designated 92 and attaching to various openings, as explained hereinafter.
The pump 22 includes a check valve assembly 50 mounting through an opening 90 extending downward from the top of the valve body 24. Check valve assembly 50 includes a ball 52 biased by spring 54. Gasket 56 and plugs 58 retain the spring and ball. The operation of the check valve 50 and its relationship to oil flow is explained hereinafter.
A pressure relief valve 60 mounts into relief valve opening 88 extending downward from the top most portion of the pump body 24. A spring biases the plunger downward through the valve opening 88 and is retained by gasket 66 and plug 68. The operation of the pressure relief valve 60 and its relationship to oil flow is explained hereinafter.
Referring now to
It can be appreciated that the profile of the gears 200 provides for a greater degree of intermeshing for increased flow and pumping from greater volume in the space between the intermeshing gear teeth. However, with the greater degree of intermeshing, the rotational centers of the gears are moved closer to one another if the outer diameter of the gears is maintained. Therefore, the orifices 102 and 104 are moved closer together as compared to pumps in the prior art. In order to accommodate mounting to a drive shaft for retrofitting of a pump on the present invention to an existing motorcycle engine, the position of orifice 102 must not be moved in the pump body 24 to mount to the drive shaft 70. Therefore, the chamber 100 is modified and orifice 104 is moved closer to orifice 102. The chamber 100 is also slightly narrower than a comparable chamber of the prior art. Moreover, the depth of the supply gear chamber 100 is slightly deeper to accommodate the greater depth of the gears 32 and 34.
Likewise, the return gears 36 and 38, have a gear profile as shown in
Regarding oil flow, oil to the pump can enter from the oil tank through upper and lower openings 82 and 132, as well as a middle oil supply hole 84 in the cover 26, shown most clearly in
As shown in
Oil flow for the return side of the pump 22 includes a passage leading to the lower lobe for the return gear chamber 110 under suction from the crankcase. Oil is pumped through the return gear set 36 and 38 and is directed through a return passage 108 directing the oil back to the cover and passage 124. Oil is routed to either an upper oil return hole 80 or lower oil return hole 142 in the cover 26.
The external spur gear sets 32 and 34, and 36 and 38 of the present invention are driven off a common drive shaft 70 to accommodate the prior art geometry. The present invention uses an improved spur gear with an involute tooth profile to increase the oil pumping volume by 26% due to the improved profile of the gears. The depth of the gears is increased so that the volume of the supply side is increased by 38% over the prior art, while volume on the return side is increased by 61%. These increases are achieved without increasing the diameter of the gears and allows for utilizing an improved pump that can be retrofitted to existing engines. In addition, the angular velocity of the gears is not increased over the prior art so that there is no adverse effect from increased wear. The body of the pump is easily modified to accommodate the gears 32, 34, 36 and 38 without increasing the size of the pump body. Moreover, the present invention improves the return to supply ratio by changing the gear depth so that the engine is not overwhelmed with oil that would fill the crankcase resulting in excessive oil being blown out of the crankcase breather. It can be appreciated that the improved oil pumping gears of the present invention provide improved performance while allowing for retrofitting to existing engines without modifying the engine, pump mounting or attachment to the oil pump drive shaft.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
2833224 | Meyer et al. | May 1958 | A |
2931303 | Dlugos | Apr 1960 | A |
2965036 | Wood | Dec 1960 | A |
3817117 | Kita et al. | Jun 1974 | A |
4138204 | Bruguera | Feb 1979 | A |
4277230 | Muller | Jul 1981 | A |
4758130 | Waterworth | Jul 1988 | A |
5135371 | Arbogast et al. | Aug 1992 | A |
5244367 | Aslin | Sep 1993 | A |
5496163 | Griese et al. | Mar 1996 | A |
6227833 | Frøslev et al. | May 2001 | B1 |
6612822 | Buschur et al. | Sep 2003 | B2 |
Number | Date | Country |
---|---|---|
57052695 | Mar 1982 | JP |
357052695 | Mar 1982 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 10061968 | Feb 2002 | US |
Child | 11058754 | US |