The present invention relates to an oil pump assembly for a motorcycle. More particularly, the invention relates to an oil pump assembly that includes two pumping units that are each directly driven by a cam shaft.
Motorcycles generally include a front wheel and a rear wheel that rotate about separate axles as the motorcycle moves. An engine combusts a fuel-air mixture to produce shaft power that is directed to the rear wheel to propel the motorcycle. Many of the moving parts of the engine require a lubricant, such as oil, that both lubricates the moving parts and provides some cooling for the parts. To provide the necessary oil, the motorcycle includes an oil pump that is driven by the engine. In most constructions, a gear, belt or chain interconnects the pumping element or elements and a cam shaft or a crankshaft to provide power to the pump.
The present invention provides an oil pump assembly for a motorcycle. The oil pump attaches to an engine that includes a crankcase, a crankshaft, and two cam shafts. The oil pump assembly includes a pump body that supports two gerotors for rotation. One of the gerotors draws oil from sumps within the crankcase and the cam chest and pumps the oil to an oil reservoir, while a second gerotor pumps the oil from the reservoir, through an oil filter, an oil cooler, and to the engine components that require lubrication. Each gerotor is directly driven by one of cam shafts.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The engine 25 includes two cylinders 35 that extend above a crankcase 40. Each cylinder 35 is angled slightly and includes a plurality of fins 45 that aid the cylinder 35 in cooling during engine operation. A cylinder head 50 is positioned on top of each cylinder 35 and cooperates with the cylinders 35 to define a combustion chamber 55. Pistons 60, disposed within each of the cylinders 35, reciprocate in response to combustion within the combustion chambers 55 to rotate a crankshaft 65. The crankshaft 65 connects to the rear wheel 20 via the transmission 30 and a drive linkage such as a chain, belt or shaft to allow the rear wheel 20 to rotate in response to combustion within the combustion chamber 55. In addition, most transmissions 30 include a neutral position that allows the engine 25 to operate without rotating the rear wheel 20.
The crankcase 40, illustrated in
A first cam shaft 95 and a second cam shaft (not shown) are supported for rotation substantially within the cam chamber 80 of the crankcase 40 and extend at least partially into the oil pump assembly 90 when the oil pump assembly is coupled to the crankcase 40. Each cam shaft 95 is coupled to the crankshaft 65 such that the cam shafts 95 rotate in response to rotation of the crankshaft 65 at a speed that is directly proportional to the speed of the crankshaft 65. In preferred constructions, a timing belt interconnects the crankshaft 65 and the cam shafts 95 to achieve the desired rotation. Each cam shaft 95 supports one or more cams that actuate one or more valves to admit a fuel-air mixture into the combustion chamber 55 of one of the cylinders 35 or to allow for the discharge of exhaust gases from the combustion chamber 55, as is known in the art.
Turning to
A scavenge gerotor 150 is disposed within the scavenge aperture 120 and includes a first inner rotor 155 and a first outer rotor 160. The first outer rotor 160 includes a cylindrical surface 165 that fits within the scavenge aperture 120 and allows the first outer rotor 160 to rotate with respect to the pump body 115. The first outer rotor 160 also includes an internal space 170 defined by a plurality of teeth-receiving apertures. The first inner rotor 155 includes a central aperture 171 that engages the first cam shaft 95 such that the first inner rotor 155 rotates with the first cam shaft 95. The first inner rotor 155 includes a plurality of teeth sized and shaped to fit within the teeth-receiving apertures of the outer rotor 160 such that the outer rotor 160 rotates in response to rotation of the inner rotor 155. The rotational axis AA of the first cam shaft 95 is offset slightly from the center of the scavenge aperture 120 such that as the first outer rotor 160 rotates around the inner rotor 155, gaps 175 open and close between the inner rotor 155 and the outer rotor 160, as is well known in the gerotor art.
The lube oil aperture 125 is substantially cylindrical, is shallower than the scavenge aperture 120, and defines a substantially planar bottom surface 180. An intake aperture 185 is formed in the planar bottom surface 180 and provides fluid communication between the oil reservoir 148 and the lube oil aperture 125. An outlet aperture 190 is formed in the planar bottom surface 180 and provides for fluid communication between the lube oil aperture 125 and an oil filter 195. The lube oil aperture 125 receives a lube oil gerotor 200 that is similar to the scavenge gerotor 150 in that it includes a second inner rotor 205 and a second outer rotor 210. The second outer rotor 210 fits within the lube oil aperture 125 but remains free to rotate with respect to the pump body 115. The second inner rotor 205 includes a central aperture that receives the second cam shaft such that the second inner rotor 205 rotates with the second cam shaft. Rotation of the second inner rotor 205 produces a corresponding rotation of the second outer rotor 210 such that gaps 215 between the inner and outer rotors 205, 210 open and close at predefined locations around the lube oil aperture 125.
As can be seen, the scavenge gerotor 150 is substantially thicker than the lube oil gerotor 200. The increased thickness provides additional pumping capacity for the scavenge gerotor 150 that may be needed to draw lubricant upward from the sumps. In other constructions, the scavenge gerotor 150 and the lube oil gerotor 200 may be of similar thickness.
In some constructions, a separator plate 220 (shown in
With continued reference to
The pressure sensor 110 attaches to the pump body 115 and includes a pressure-sensing element that is in fluid communication with the lubricant within the pump body 115 as will be discussed with regard to
With reference to
The lube oil gerotor 200 is oriented such that the second inner rotor 205 and the second outer rotor 210 begin separating in the area over the intake aperture 185. As the rotors 205, 210 separate, a partial vacuum is created, which draws fluid from the oil reservoir 148, through an external oil line 246 or other flow path, and through a second internal flow path 250. The fluid rotates around the lube oil aperture 125 with the second rotors 205, 210 until the lubricant is adjacent the outlet aperture 190. As the space between the second inner rotor 205 and second outer rotor 210 approaches the outlet aperture 190, the second inner rotor 205 and the second outer rotor 210 move closer to one another, thus reducing the volume between them. As the volume is reduced, the fluid is forced through the outlet aperture 190 and into a third internal flow path 255.
The third internal flow path 255 is at least partially formed in the crankcase 40 and leads to the oil filter 195. The oil filter 195 removes small particles and substances that may be harmful to the engine components. From the filter 195, the oil flows into an oil cooler 260 that includes a heat exchanger that cools the oil. The cooled oil is better suited to cool and lubricate the moving components of the engine 25. From the oil cooler 260, the oil reenters the pump body 115 via a first body inlet 265, and flows through a series of lubrication channels 270 that direct the oil to the locations were lubrication and cooling is desired. For example, the oil can be directed to bearings that support the crankshaft 65 and/or bearings that support the cam shafts 95 to provide the desired lubrication and cooling. The directly driven gerotors 150, 200 provide sufficient flow capacity and pressure output to allow pressurized lubrication at these bearings. After lubricating the desired components, the oil collects in one of the crankcase sump and the cam case sump for collection and reuse by the scavenge gerotor 150.
A bypass aperture 275, formed as part of the pump body 115, leads to a bypass flow path 276 between the third internal flow path 255 (lube oil gerotor outlet) and the second internal flow path 250 (lube oil gerotor intake), The bypass valve 105 is positioned such that the plunger 225 is biased to close the bypass aperture 275. However, when the force generated by the high-pressure lubricant in the third internal flow path 255 overcomes the force produced by the compression spring, the plunger 225 begins moving away from the bypass aperture 275. With the plunger 225 moving away from the bypass aperture 275, lubricant from the third internal flow path 255 is bypassed to the second internal flow path 250.
Generally, the discharge pressure of the scavenge gerotor 150 and the lube oil gerotor 200 is a function of engine speed with higher engine speeds producing higher discharge pressures. At high engine speeds, excess high-pressure lubricant is bypassed from the outlet of the lube oil gerotor 200 to the intake aperture 185 adjacent the lube oil gerotor 200, thereby holding the delivered flow constant at high speeds. The increased flow and pressure at the intake aperture 185 increases the cavitation speed of the lube oil gerotor 200 and therefore, could increase the volumetric efficiency of the gerotor 200 at these higher speeds.
As illustrated in
The arrangement of the oil pump assembly 90 illustrated herein allows for the use of a bypass valve 105 that allows for supercharging of the lube oil gerotor inlet. In addition, the directly driven gerotors 150, 200 have increased reliability over other mechanically driven oil pump arrangements and provide additional capacity that allows for direct pressurized lubrication of the bearings, rather than the more common splashed lubrication. Furthermore, the positioning of the apertures that lead into and out of the pump body 115 are such that straight fittings can be employed at all locations.
The oil pump assembly 90 illustrated herein includes several inlets and outlets that provide for connection between components external to the pump (e.g., oil cooler 260, oil filter 195, etc.). The arrangement of the pump assembly 90 is such that straight fittings 280 can be employed at all inlets and outlets, thereby eliminating the need for any angled fittings. The fittings 280 may include pipe fittings, compression fittings, hose fittings, and the like.
Thus, the invention provides, among other things, a new and useful oil pump assembly 90 for a motorcycle 10. More particularly, the invention provides a new and useful oil pump 90 that includes two gerotors 150, 200, each directly driven by one of the cam shafts 95. Various features and advantages of the invention are set forth in the following claims.
This application claims priority to co-pending U.S. Provisional Patent Application Ser. No. 60/696,384 filed on Jul. 1, 2005 and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60696384 | Jul 2005 | US |