The present invention relates to an oil-pump rotor which draws in and discharges fluid through changes in the volumes of cells formed between an inner rotor and an outer rotor.
A conventional oil pump has an inner rotor formed with n external teeth where n is a natural number, an outer rotor formed with n+1 internal teeth that mesh with the external teeth, and a casing with an suction port which draws in fluid and a discharge port which discharges fluid. The outer rotor is rotated by rotating the inner rotor with the external teeth meshed with the internal teeth, which causes the volumes of a plurality of cells formed between the rotors to change to draw in or discharge the fluid.
The cells are individually separated by the virtue of the fact that external teeth of the inner rotor and internal teeth of the outer rotor contact at forward and rearward positions with respect to the rotating direction respectively, and of the fact that the both side surfaces are sealed by the casing, thereby forming individual fluid conveying chambers. And after the volume attains its minimum in the process of the engagement between the external teeth and the internal teeth, the volume of each cell increases to draw in fluid as it moves along the suction port, and after the volume attains its maximum, the volume decreases to discharge fluid as it moves along the discharge port.
Because of their small size and simple structure, the oil pumps having the above configuration are broadly used as pumps for lubricating oil, or for automatic transmissions, etc. in cars. When incorporated in a car, a crankshaft direct connect actuation is used as an actuating means for the oil pump, in which the inner rotor is directly linked with the engine crankshaft, and is driven by the rotation of the engine.
Incidentally, various types of oil pumps have been disclosed including the type which uses an inner rotor and an outer rotor in which the tooth profile is defined by a cycloid, (for example, see Patent Document 1), the type which uses an inner rotor in which the tooth profile is defined by an envelope for circular arcs that are centered on a trochoid (for example, see Patent Document 2), or the type which uses an inner rotor and an outer rotor in which the tooth profile is defined by two circular arcs in contact with each other, (for example, see Patent Document 3), and also an oil pump which uses an inner rotor and an outer rotor in which the tooth profile of each type described above is modified.
In recent years, the discharge capacity of the oil pump is on an increase due to a trend to make the driven valve system adjustable and due to an addition of the oil jet for piston cooling with increasing engine power. On the other hand, the miniaturization and reduction in the radius of the body of the oil pump are desired to reduce engine friction from the viewpoint of reducing the fuel cost. While it is common to reduce the number of teeth to increase the discharge amount of the oil pump, since the discharge amount per cell increases in an oil pump with a small number of teeth, the pulsation becomes more pronounced and there was the problem of noise due to vibration of pump housing etc.
While it is common to increase the number of teeth as a way to reduce pulsation and to suppress noise, if the number of teeth is increased with teeth having the tooth profile defined by a theoretical cycloid etc., the amount of discharge will decrease. And, in order to secure the required amount of discharge, either the outside radius of the rotor or the thickness needs to be increased, which results in problems such as increased size and weight or friction.
Patent Document 1: Japanese Patent Application Publication No. 2005-076563
Patent Document 2: Japanese Patent Application Publication No. H09-256963
Patent Document 3: Japanese Patent Application Publication No. S61-008484
The present invention was made to address the problems described above and its object is to provide an oil pump rotor in which the discharge rate is increased while reducing pulsation and noise level without increasing the rotor size.
To solve the problems mentioned above, an oil pump rotor comprises an inner rotor formed with n (n: a natural number) external teeth, and an outer rotor formed with n+1 internal teeth which are in meshing engagement with each of the external teeth. And the oil pump rotor is used with an oil pump that includes a casing having an suction port for drawing in fluid and a discharge port for discharging fluid, and conveys the fluid by drawing in and discharging the fluid due to changes in volumes of cells formed between surfaces of the internal teeth and surfaces of the external teeth during rotations of the rotors under meshing engagement therebetween. And the tooth profile of the external teeth of the inner rotor of the present invention is formed by a deformation in the circumferential direction and a deformation in the radial direction applied to a profile defined by a mathematical curve, with the deformation in the circumferential direction applied while maintaining the distance between the radius RA1 of an addendum circle A1 and the radius RA2 of the tooth groove circle A2.
This makes it possible to increase the discharge rate without increasing the rotor size, and to provide an oil pump rotor with reduced pulsation and noise level.
A mathematical curve in this context refers to a curve expressed by a mathematical function, examples of which include an envelope of circular arcs centered on a cycloid or a trochoid, and a circular-arc-shaped curve in which the addendum portion and the tooth groove portion are defined by two circular arcs that are in contact with each other.
And, as one of a preferred embodiment of the inner rotor, there is an inner rotor whose tooth profile is one in which the deformation in the circumferential direction is applied with a first deformation ratio γ1 when the portion outwardly of the circle C1 of radius RC1 which satisfies RA1>RC1>RA2 is deformed, and is applied with a second deformation ratio γ2 when the portion inwardly of the circle C1 is deformed, and in which the shape of the addendum is defined by a curve defined by Equations (1) to (4) when the portion outwardly of the circle D1 of radius RD1 which satisfies RA1>RD1≧RC1≧RD2>RA2 is deformed, and the shape of the tooth groove is defined by a curve defined by Equations (5) to (8) when the portion inwardly of the circle D2 of radius RD2 is deformed wherein
R
12=(X112+Y112)1/2, (1)
θ12=arccos(X11/R12), (2)
X
12={(R12−RD1)×β10+RD1}×cos θ12, (3)
Y
12={(R12−RD1)×β10+RD1}×sin θ12, (4)
where, (X11, Y11) are the coordinates of the shape of the addendum before the deformation in the radial direction, (X12, Y12) are the coordinates of the shape of the addendum after the deformation in the radial direction, R12 is the distance from the center of the inner rotor to the coordinates (X11, Y11), θ12 is the angle which the straight line which passes through the center of the inner rotor and the coordinates (X11, Y11) makes with the X-axis, and β10 is the correction coefficient for the deformation, and
R
22=(X212+Y212)1/2, (5)
θ22=arccos(X21/R22), (6)
X
22
={R
D2−(RD2−R22)×β20}×cos θ22, (7)
Y
22
={R
D2−(RD2−R22)×β20}×sin θ22, (8)
where, (X21, Y21) are the coordinates of the shape of the tooth groove before the deformation in the radial direction, (X22, Y22) are the coordinates of the shape of the tooth groove after the deformation in the radial direction, R22 is the distance from the center of the inner rotor to coordinates (X21, Y21), θ22 is the angle which the straight line which passes through the center of the inner rotor and the coordinates (X21, Y21) makes with the X-axis, and β20 is the correction coefficient for the deformation.
In addition, as another preferred embodiment of the inner rotor, there is an inner rotor in which the addendum portion, which is outwardly of a reference circle Cα that goes through an addendum side meshing point a of the inner rotor with the outer rotor, is deformed with a deformation ratio ε that satisfies 0<ε<1.
This allows further reduction in the pulsation in oil discharged from the oil pump by making uniform the clearance between the addendum of the inner rotor and the outer rotor.
Specifically, as one of preferred embodiments of an inner rotor and the outer rotor that meshes with the inner rotor where the inner rotor is formed by deforming a tooth profile defined by a cycloid in the circumferential direction and in the radial direction by taking a cycloid as the mathematical curve, there is one in which a profile of the external teeth of the inner rotor is formed by a deformation, in the circumferential direction and a deformation in the radial direction with a base circle of a cycloid being the circle C1, applied to a tooth profile defined by the cycloid with the base circle radius Ra, the exterior rolling circle radius Ra1, and the interior rolling circle radius Ra2, and
a profile of the internal teeth of the outer rotor that meshes with the inner rotor is formed by a deformation in the circumferential direction and a deformation in the radial direction applied to a tooth profile defined by a cycloid with the base circle radius Rb, the exterior rolling circle radius Rb1, and the internal rolling circle radius Rb2, with the deformation in the circumferential direction performed while maintaining the distance between the radius RB1 of an tooth groove circle B1 and the radius RB2 of an addendum circle B2,
wherein the deformation of the outer rotor in the circumferential direction is applied with a third deformation ratio δ3 when a portion outwardly of the base circle of radius Rb is deformed, and is applied with a fourth deformation ratio δ4 when a portion inwardly of the base circle of radius Rb is deformed, and,
in the deformation of the outer rotor in the radial direction, the shape of a tooth groove is defined by a curve defined by Equations (9) to (12) when the portion outwardly of the circle D3 of radius RD3 which satisfies RB1>RD3≧Rb≧RD4>RB2 is deformed, and the shape of an addendum is defined by a curve defined by Equations (13) to (16) when the portion inwardly of a circle D4 of radius RD4 is deformed.
In addition, the outer rotor satisfies the relationships, that are expressed by Equations (17) to (21), with the inner rotor wherein
R
32=(X312+Y312)1/2, (9)
θ32=arccos(X31/R32), (10)
X
32={(R32−RD3)×β30+RD3}×cos θ32, (11)
Y
32={(R32−RD3)×β30+RD3}×sin θ32, (12)
where (X31, Y31) are the coordinates of the shape of the tooth groove before the deformation in the radial direction, (X32, Y32) are the coordinates of the shape of the tooth groove after the deformation in the radial direction, R32 is the distance from the center of the outer rotor to the coordinates (X31, Y31), θ32 is the angle which a straight line which passes through the center of the outer rotor and the coordinates (X31, Y31) makes with the X-axis, and β30 is a correction coefficient for the deformation, wherein
R
42=(X412+Y412)1/2, (13)
θ42=arccos(X41/R42), (14)
X
42
={R
D4−(RD4−R42)×β40}×cos θ42, (15)
Y42={RD4−(RD4−R42)×β40}×sin θ42, (16)
where, (X41, Y41) are the coordinates of the shape of an addendum before the deformation in the radial direction, (X42, Y42) are the coordinates of the shape of an addendum after the deformation in the radial direction, R42 is the distance from the center of the outer rotor to the coordinates (X41, Y41), θ42 is the angle which the straight line which passes through the center of the outer rotor and the coordinates (X41, Y41) makes with the X-axis, and β40 is a correction coefficient for the deformation,
and,
R
a
=n×(Ra1×γ1+Ra2×γ2), (17)
R
b=(n+1)×(Rb1×δ3+Rb2×δ4), (18)
R
b
=R
a
+R
a1
+R
a2
+H1, (19)
R
b2
=R
a2
+H2, (20)
e
10
=R
a1
+R
a2
+H3, (21)
where e10 is a distance or eccentricity between the center of the inner rotor and the center of the outer rotor, and H1, H2, and H3 are correction values for the outer rotor to rotate with clearance.
While the external tooth profile of the inner rotor is formed in each of the above-mentioned configurations by a deformation in the circumferential direction and a deformation in the radial direction applied to the tooth profile defined by a mathematical curve, the external tooth profile of the inner rotor may be formed by a compressing deformation in the circumferential direction, omitting a deformation in the radial direction.
More specifically, an oil pump rotor may be one that comprises an inner rotor formed with n (n: a natural number) external teeth, and an outer rotor formed with n+1 internal teeth. And the oil pump rotor is used with an oil pump that includes a casing having a suction port for drawing in fluid and a discharge port for discharging fluid, and conveys the fluid by drawing in and discharging the fluid due to changes in volumes of cells formed between surfaces of the internal teeth and surfaces of the external teeth during rotations of the rotors under meshing engagement therebetween. And the tooth profile of the external teeth of the inner rotor is formed by a compressing deformation in the circumferential direction applied to a profile defined by a mathematical curve while maintaining the distance between the radius RA1 of an addendum circle A1 and the radius RA2 of the tooth groove circle A2.
This makes it possible to increase the discharge rate while maintaining the rotor radius, and to provide an oil pump rotor with reduced pulsation and noise level.
In addition, as one of the preferred embodiments of an outer rotor that meshes with an inner rotor formed by applying a deformation in the circumferential direction and a deformation in the radial direction to a tooth profile defined by a mathematical curve, or by applying a compressing deformation in the circumferential direction to the profile, there is an outer rotor that meshes with the inner rotor and that has a tooth profile formed by:
with an envelope formed by making the inner rotor revolve along a circumference of a circle F centered on a position that is a set distance e away from the center of the inner rotor and having a radius equal to the set distance at an angular velocity ω, while rotating the inner rotor about itself in a direction opposite to a direction of the revolution at an angular velocity ω/n which is 1/n times the angular velocity ω of the revolution with a revolution angle being defined such that an angle of the center of the inner rotor as seen from the center of the circle F is taken to be 0 revolution angle at a start of the revolution,
deforming, in a radially outward direction, at least a neighborhood of an intersecting portion between the envelope and an axis in a direction of 0 revolution angle;
deforming, in a radially outward direction, a neighborhood of an intersecting portion between the envelope and an axis in a direction of the revolution angle π/(n+1);
extracting, as a partial envelope, a portion contained in a region defined by revolution angles greater than or equal to 0 and less than or equal to π/(n+1) in the envelope;
rotating the partial envelope in a direction of revolution with respect to the center of the circle by a minute angle α;
cutting off a portion that falls out of the region;
connecting a gap formed between the partial envelope and the axis in the direction of 0 revolution angle to form a corrected partial envelope; duplicating the corrected partial envelope to have a line symmetry with respect to the axis in the direction of 0 revolution angle to form a partial tooth profile; and
duplicating the partial tooth profile at each rotation angle of 2π/(n+1) with respect to the center of the circle F.
This facilitates forming an outer rotor that meshes smoothly with an inner rotor that is formed by applying a deformation in the circumferential direction and a deformation in the radial direction to a tooth profile defined by the mathematical curve, or by applying a compressing deformation in the circumferential direction to the profile.
And the deformed tooth profile U can be obtained by making the deformation in the circumferential direction with a predetermined deformation ratio, maintaining the distance (RA1−RA2) between the radius RA1 of the addendum circle A1, and the radius RA2 of the tooth groove circle A2. In
The equation for the conversion to obtain the tooth profile U, which is obtained from the tooth profile U′ by deforming it in the circumferential direction, can be simply expressed as follows by using the deformation ratio γ1 or γ2. Specifically, since the coordinates (X10, Y10) of the shape of the addendum U′1 in
And, if the number of teeth (the number of the external teeth) of the inner rotor before and after the deformation in the circumferential direction is n′ and n, respectively (n′ and n are natural numbers), the equation n′×(θ′1+θ′2)=n×(θ1+θ2) holds.
Thus, the deformation in the circumferential direction, that maintains the distance between the radius RA1 of the addendum circle A1 and the radius RA2 of the tooth groove circle A2, is a deformation performed to the tooth profile included in the fan-shaped region with its peak at the center O of the rotor, where the distance is maintained and where the deformation is made in correspondence to a change of the peak angle. And, when the deformation ratio γ, which is the ratio of the peak angle before and after the deformation, is such that γ>1, it is an enlarging deformation, and when γ<1, it is a compressing deformation.
R
12=(X112+Y112)1/2 (1)
θ12=arccos(X11/R12) (2)
X
12={(R12−RD1)×β10+RD1}×cos θ12 (3)
Y
12={(R12−RD1)×β10+RD1}×sin θ12 (4)
Here, (X11, Y11) are the coordinates of the shape of the addendum before the deformation in the radial direction, (X12, Y12) are the coordinates of the shape of the addendum after the deformation in the radial direction, R12 is the distance from the center of the inner rotor to the coordinates (X11, Y11), θ12 is the angle which the straight line which passes through the center of the inner rotor and the coordinates (X11, Y11) makes with the X-axis, and β10 is the correction coefficient for the deformation.
R
22=(X212+Y212)1/2 (5)
θ22=arccos(X21/R22) (6)
X
22
={R
D2−(RD2−R22)×β20}×cos θ22 (7)
Y
22
={R
D2−(RD2−R22)×β20}×sin θ22 (8)
Here, (X21, Y21) are the coordinates of the shape of the tooth groove before the deformation in the radial direction, (X22, Y22) are the coordinates of the shape of the tooth groove after the deformation in the radial direction, R22 is the distance from the center of the inner rotor to coordinates (X21, Y21), θ22 is the angle which the straight line which passes through the center of the inner rotor and the coordinates (X21, Y21) makes with the X-axis, and β20 is the correction coefficient for deformation.
Thus, the tooth profile Uin (the shape of the addendum U1in and the shape of the tooth groove U2in) of the inner rotor in accordance with the present invention can be obtained by applying the above-mentioned deformation in the circumferential direction, and the deformation in the radial direction to the tooth profile U′ defined by a mathematical curve.
While not only values greater than 1 but values smaller than 1 may be used for the correction coefficients β10 and β20 for deformations especially in the radial direction as shown in
And with respect to the changes in the circumferential direction,
And, while a deformation in the radial direction is performed after performing a deformation in the circumferential direction in
The tooth profiles of the inner rotor and the outer rotor when using a cycloid as the mathematical curve are described next with reference to
The oil pump shown in
The shape of the addendum U′1C and the shape of the tooth groove U′2C of the tooth profile U′C defined by the cycloid curve are shown in
In addition, the coordinates of the known cycloid with the base circle radius Ra, the exterior rolling circle radius Ra1, and the interior rolling circle radius Ra2 can be expressed by the following equations (figures are omitted).
X
10=(Ra+Ra1)×cos θ10−Ra1×cos [{(Ra+Ra1)/Ra1}×θ10] (31)
Y
10=(Ra+Ra1)×sin θ10−Ra1×sin [{(Ra+Ra1)/Ra1}×θ10] (32)
X
20=(Ra−Ra2)×cos θ20+Ra2×cos [{(Ra2−Ra)/Ra2}×θ20] (33)
Y
20=(Ra−Ra2)×sin θ20+Ra2×sin [{(Ra2−Ra)/Ra2}×θ20] (34)
R
a
=n×(Ra1+Ra2) (35)
Here, the X-axis is a straight line passing through the center O1 of the inner rotor 10, and the Y-axis is the straight line which intersects perpendicularly with the X-axis and passes through the center O1 of the inner rotor 10. In Equations (31) to (35), θ10 is the angle which the straight line that passes through the center of the exterior rolling circle and the center O1 of the inner rotor makes with the X-axis, θ20 is the angle which the straight line that passes through the center of the interior rolling circle and the center O1 of the inner rotor makes with the X-axis, (X10, Y10) are the coordinates of the cycloid formed by the exterior rolling circle, and (X20, Y20) are the coordinates of the cycloid formed by the interior rolling circle.
And the deformed tooth profile UC can be obtained by applying the deformation in the circumferential direction with a predetermined deformation ratio, maintaining the distance between the radius Ra+2Ra1 of the addendum circle A1 and the radius, Ra−2Ra2 of the tooth groove circle A2. In
The equation for the conversion to obtain the tooth profile UC from the tooth profile U′C can be simply expressed as follows by using the deformation ratio γ1 or γ2. For example, as for the shape of the addendum, the shape of the addendum U′1C before the deformation in the circumferential direction is the cycloid (X10, Y10) described above, and the coordinates (X11, Y11) of the shape of the addendum U1C after the deformation in the circumferential direction can be expressed by the following Equations (36) to (39).
R
11=(X102+Y102)1/2 (36)
θ11=arccos(X10/R11) (37)
X
11
=R
11×cos(θ11×γ1) (38)
Y
11
=R
11×sin(θ11×γ1) (39)
Here, R11 is the distance from the center O1 of the inner rotor to coordinates (X10, Y10), and θ11 is the angle which the straight line which passes through the center O1 of the inner rotor and the coordinates (X10, Y10) makes with the X-axis.
The coordinates (X21, Y21) of the shape of the tooth groove U2C after the deformation in the circumferential direction can be easily and similarly obtained by using the deformation ratio γ2 from the above-mentioned cycloid (X20, Y20) which is the shape of the tooth groove U′2C before the deformation in the circumferential direction. Accordingly, the derivation is omitted here.
Next, the deformation in the radial direction as shown in
R
12=(X112+Y112)1/2 (1)
θ12=arccos(X11/R12) (2)
X
12={(R12−RD1)×β10+RD1}×cos θ12 (3)
Y
12={(R12−RD1)×β10+RD1}×sin θ12 (4)
Here, (X11, Y11) are the coordinates of the shape of the addendum U1C before the deformation in the radial direction, (X12, Y12) are the coordinates of the shape of the addendum U1in after the deformation in the radial direction, R12 is the distance from the center O1 of the inner rotor to the coordinates (X11, Y11), θ12 is the angle which the straight line which passes through the center O1 of the inner rotor and the coordinates (X11, Y11) makes with the X-axis, and β10 is the correction coefficient for the deformation.
And, for the portion inwardly (tooth groove side) of the circle D2 of radius RD2 which satisfies Ra+2Ra1>RD1≧Ra≧RD2>Ra−2Ra2, the shape of the tooth groove after the deformation is defined by the curve given by the coordinates (X22, Y22) expressed by the following Equations (5) to (8) as shown in
R
22=(X212+Y212)1/2 (5)
θ22=arccos(X21/R22) (6)
X
22
={R
D2−(RD2−R22)×β20}×cos θ22 (7)
Y
22
={R
D2−(RD2−R22)×β20}×sin θ22 (8)
Here (X21, Y21) are the coordinates of the shape of the tooth groove U2C before the deformation in the radial direction, (X22, Y22) are the coordinates of shape of the tooth groove U2in, after the deformation in the radial direction, R22 is the distance from the center O1 of the inner rotor to the coordinates (X21, Y21), θ22 is the angle which the straight line which passes through the center O1 of the inner rotor and the coordinates (X21, Y21) makes with the X-axis, and β20 is the correction coefficient for the deformation.
That is, the shape of the addendum U1in is obtained from the shape of the addendum U1C by the deformation in the radial direction shown in
On the other hand,
The shape of the tooth groove U′3C and the shape of the addendum U′4C of the tooth profile U′C defined by the cycloid are shown in
In addition, the coordinates of the known cycloid with the base circle radius Rb, the exterior rolling circle radius Rb1, and the interior rolling circle radius Rb2 can be expressed by the following equations (figures are omitted).
X
30=(Rb+Rb1)cos θ30−Rb1×cos [{(Rb+Rb1)/Rb1}×θ30] (41)
Y
30=(Rb+Rb1)sin θ30−Rb1×sin [{(Rb+Rb1)/Rb1}×θ30] (42)
X
40=(Rb−Rb2)cos θ40+Rb2×cos [{(Rb2−Rb)/Rb2}×θ40] (43)
Y
40=(Rb−Rb2)sin θ40+Rb2×sin [{(Rb2−Rb)/Rb2}×θ40] (44)
R
b=(n+1)×(Rb1+Rb2) (45)
Here, the X-axis is a straight line passing through the center O2 of the outer rotor 20, and the Y-axis is the straight line which intersects perpendicularly with the X-axis and passes through the center O2 of the outer rotor 20. In Equations (41) to (45), θ30 is the angle which the straight line that passes through the center of the exterior rolling circle and the center O2 of the outer rotor 20 makes with the X-axis, θ40 is the angle which the straight line that passes through the center of the interior rolling circle and the center O2 of the outer rotor 20 makes with the X-axis, (X30, Y30) are the coordinates of the cycloid formed by the exterior rolling circle, and (X40, Y40) are the coordinates of the cycloid formed by the interior rolling circle.
And the deformed tooth profile UC can be obtained by applying the deformation in the circumferential direction with the predetermined deformation ratio, maintaining the distance between the radius Rb+2Rb1 of the tooth groove circle B1 and the radius Rb−2Rb2 of the addendum circle B2. In
The equation for the conversion to obtain the tooth profile UC from the tooth profile U′C can be simply expressed as follows by using the deformation ratio δ3 or δ4. For example, as for the shape of the tooth groove, the shape of the tooth groove U′3C before the deformation in the circumferential direction is the cycloid (X30, Y30) described above, and the coordinates (X31, Y31) of the shape of the tooth groove U3C after the deformation in the circumferential direction can be expressed by the following Equations (46) to (49).
R
31=(X302+Y302)1/2 (46)
θ31=arccos(X30/R31) (47)
X
31
=R
31×cos(θ31×δ3) (48)
Y
31
=R
31×sin(θ31×δ3) (49)
Here, R31 is the distance from the center O2 of the outer rotor to coordinates (X30, Y30), and θ31 is the angle which the straight line which passes through the center O2 of the outer rotor and the coordinates (X30, Y30) makes with the X-axis.
The coordinates (X41, Y41) of the shape of the addendum U4C after the deformation in the circumferential direction can be easily and similarly obtained by using the deformation ratio δ4 from the above-mentioned cycloid (X40, Y40) which is the shape of the addendum U′4C before the deformation in the circumferential direction. Accordingly, the derivation is omitted here.
Next, the deformation in the radial direction as shown in
R
32=(X312+Y312)1/2 (9)
θ32=arccos(X31/R32) (10)
X
32={(R32−RD3)×β30+RD3}×cos θ32 (11)
Y
32={(R32−RD3)×β30+RD3}×sin θ32 (12)
Here, (X31, Y31) are the coordinates of the shape of the tooth groove U3C before the deformation in the radial direction, (X32, Y32) are the coordinates of the shape of the tooth groove U3out after the deformation in the radial direction, R32 is the distance from the center O2 of the outer rotor to the coordinates (X31, Y31), θ32 is the angle which the straight line which passes through the center O2 of the outer rotor and the coordinates (X31, Y31) makes with the X-axis, and β30 is the correction coefficient for the deformation.
And, for the portion inwardly (tooth groove side) of the circle D4 of radius RD4 which satisfies Rb+2Rb1>RD3≧Rb≧RD4>Rb−2Rb2, the shape of the addendum after the deformation is defined by the curve given by the coordinates (X42, Y42) expressed by the following Equations (13) to (16) as shown in
R
42=(X412+Y412)1/2 (13)
θ42=arccos(X41/R42) (14)
X
42
={R
D4−(RD4−R42)×β40}×cos θ42 (15)
Y
42
={R
D4−(RD4−R42)×β40}×sin θ42 (16)
Here, (X41, Y41) are the coordinates of the shape of the addendum U4C before the deformation in the radial direction, (X42, Y42) are the coordinates of the shape of the addendum U4out after the deformation in the radial direction, R42 is the distance from the center O2 of the outer rotor to the coordinates (X41, Y41), θ42 is the angle which the straight line which passes through the center O2 of the outer rotor and the coordinates (X41, Y41) makes with the X-axis, and β40 is the correction coefficient for the deformation.
In addition, this outer rotor 20 satisfies the relationships, that are expressed by Equations (17) to (21), with the above-described inner rotor 10.
R
a
=n×(Ra1×γ1+Ra2×γ2) (17)
R
b=(n+1)×(Rb1×δ3+Rb2×δ4) (18)
R
b
=R
a
+R
a1
+R
a2
+H1 (19)
R
b2
=R
a2
+H2 (20)
e
10
=R
a1
+R
a2
+H3 (21)
Here, e10 is the distance (eccentricity) between the center O1 of the inner rotor and the center O2 of the outer rotor, and H1, H2, and H3 are correction values for the outer rotor to rotate with clearance.
That is, the shape of the tooth groove U3out is obtained from the shape of the tooth groove U3C by the deformation in the radial direction shown in
Incidentally, the various conditions and changes mentioned in the descriptions for
Needless to say, the mathematical curve in the present invention is not restricted to a cycloid. As other examples, an envelope of circular arcs centered on a trochoid or a circular-arc-shaped curve in which the addendum portion and the tooth groove portion are defined by two circular arcs that are in contact with each other may be used as the mathematical curve.
And, the tooth profile in accordance with the present invention can be obtained by applying the deformation in the circumferential direction and the deformation in the radial direction, as described above with reference to
The tooth profile before applying the above-mentioned deformation in the circumferential direction and in the radial direction, i.e., the tooth profile defined by the mathematical curve is shown in
In
X
100=(RH+RI)×cos θ100−eK×cos θ101 (51)
Y
100=(RH+RI)×sin θ100−eK×sin θ101 (52)
θ101=(n+1)×θ100 (53)
R
H
=n×R
I (54)
X
101
=X
100
±R
J/{1+(dX100/dY100)2}1/2 (55)
Y
101
=Y
100
±R
J/{1+(dY100/dX100)2}1/2 (56)
Here, the X-axis is a straight line passing through the center O1 of the inner rotor, and the Y-axis is the straight line which intersects perpendicularly with the X-axis and passes through the center O1 of the inner rotor. In Equations (51) to (56), (X100, Y100) are the coordinates on the trochoid T, RH is the radius of the trochoid base circle, RI is the radius of the trochoid-forming rolling circle, ex is the distance between the center OT of the trochoid-forming rolling circle and the point of formation of the trochoid T, θ100 is the angle which the straight line that passes through the center of the trochoid-forming rolling circle OT and the center O1 of the inner rotor makes with the X-axis, θ101 is the angle which the straight line which passes through the center OT of the trochoid forming rolling circle and the point of formation of the trochoid T makes with the X-axis, (X101, Y101) are the coordinates on the envelope, RJ is the radius of circular arcs CE which form the envelope.
And, the circular-arc-shaped curve which defines the tooth profile U′Tout of the outer rotor before the deformation shown in
(X200−X210)2+(Y200−Y210)2=RJ2 (57)
X
210
2
+Y
210
2
=R
L
2 (58)
X
220
2
+Y
220
2
=R
B1
2 (59)
R
B1=(3×RA1−RA2)/2+g10 (60)
Here, the X-axis is a straight line passing through the center O2 of the outer rotor, and the Y-axis is the straight line which intersects perpendicularly with the X-axis and passes through the center O2 of the outer rotor. In Equations (57) to (60), (X200, Y200) are the coordinates of the circular arc which defines the addendum portion, (X210, Y210) are the coordinates of the center of the circle whose circular arc defines the addendum portion, (X220, Y220) are the coordinates of the circular arc of the tooth groove circle B1 which defines the tooth groove portion, RL is the distance between the center O2 of the outer rotor and the center of the circle whose circular arc defines the addendum portion, RB1 is the radius of the tooth groove circle B1 which defines the tooth groove portion, g10 is the correction value for the outer rotor to rotate with clearance.
Next, the tooth profile (external tooth profile) of the inner rotor whose addendum portion and tooth groove portion are defined by the circular-arc-shaped curve formed of the two circular arcs in contact with each other and before the deformation is shown in
In
In
(X50−X60)2+(Y50−Y60)2=(r50+r60)2 (71)
X
60=(RA2+r60)×cos θ60 (72)
Y
60=(RA2+r60)×sin θ60 (73)
X
50
=R
A1
−r
50 (74)
Y50=0 (75)
θ60=π/n (76)
Here the X-axis is a straight line passing through the center O1 of the inner rotor, and the Y-axis is the straight line which intersects perpendicularly with the X-axis and passes through the center O1 of the inner rotor, (X50, Y50) are the coordinates of the center of the circular arc which defines the addendum portion, (X60, Y60) are the coordinates of the center of the circular arc which defines the tooth groove portion, r50 is the radius of the circular arc which defines the addendum portion, r60 is the radius of the circular arc which defines the tooth groove portion, θ60 is the angle which the straight line, that passes through the center of the circular arc that defines the addendum portion and the center O1 of the inner rotor, makes with the straight line that passes through the center of the circular arc that defines the tooth groove portion and the center O1 of the inner rotor.
And, the circular-arc-shaped curve which defines the tooth profile U′Sout of the outer rotor before the deformation shown in
(X70−X80)2+(Y70−Y80)2=(r70+r80)2 (77)
X
80=(RB2+r80)×cos θ80 (78)
Y
80=(RB2+r80)×sin θ80 (79)
X
70
=R
B1
−r
70 (80)
Y70=0 (81)
θ80=π/(n+1) (82)
Here the X-axis is a straight line passing through the center O2 of the outer rotor, and the Y-axis is the straight line which intersects perpendicularly with the X-axis and passes through the center O2 of the outer rotor, (X70, Y70) are the coordinates of the center of the circular arc which defines the tooth groove portion, (X80, Y80) are the coordinates of the center of the circular arc which defines the addendum portion, r70 is the radius of the circular arc which defines the tooth groove portion, r80 is the radius of the circular arc which defines the addendum portion, θ80 is the angle which the straight line, that passes through the center of the circular arc that defines the addendum portion and the center O2 of the outer rotor, makes with the straight line that passes through the center of the circular arc that defines the tooth groove portion and the center O2 of the outer rotor.
[Tooth Profile to which a Second Deformation in the Radial Direction is Applied]
It is also one of the preferred embodiments of the present invention to apply a further and second deformation in the radial direction to the tooth shape of the addendum portion of the inner rotor obtained in the embodiments described above. The second deformation in the radial direction is described below with reference to
While
In the second deformation in the radial direction, the addendum portion outwardly of the reference circle Cα in the tooth profile Uin after the first deformation is deformed with the deformation ratio ε with the circle Cα taken as the reference circle. Here, the deformation ratio ε is a constant which satisfies 0<ε<1, and the second deformation is always a deformation in a radially inward direction. The deformed tooth profile Uin2 shown with a heavy solid line in
R
400=(X3002+Y3002)1/2 (83)
θ400=arccos(X300/R400) (84)
X
400={(R400−Rα)×ε+Rα}×cos θ400 (85)
Y
400={(R400−Rα)×ε+Rα}×sin θ400 (86)
Here, (X300, Y300) are the coordinates of the shape of the addendum Uin after the first deformation in the radial direction, (X400, Y400) are the coordinates of the shape of the addendum Uin2 after the second deformation in the radial direction, R400 is the distance from the center O1 of the inner rotor to the coordinates (X300, Y300), and θ400 is the angle which the straight line which passes through the center O1 of the inner rotor and the coordinates (X300, Y300) makes with the X-axis.
In addition, while only the addendum portion of one tooth among the external teeth formed in the inner rotor is shown and other teeth are omitted in
According to this, for the tooth profile before the second deformation in the radial direction, the tip clearance varies like a trigonometric function with the rotation of the inner rotor so that the tip clearance attains its maximum when the rotation angle of the inner rotor is at 0 degree, and attains its minimum when it rotates through half a tooth. On the other hand, for the tooth profile after the second deformation, the tip clearance is constant regardless of the rotation angle of the inner rotor. Therefore, for the one to which the second deformation in the radial direction is applied, since the amount of oil leakage between the addendum portions of the inner rotor 10 and the outer rotor 20 is stabilized, it becomes possible to further suppress the pulsation of the oil discharged from the oil pump.
While the external tooth profile of the inner rotor is formed in each of the above-mentioned configurations by the deformation in the circumferential direction and in the radial direction applied to the tooth profile defined by a mathematical curve, the external tooth profile of the inner rotor may be formed by a compressing deformation in the circumferential direction, omitting the deformation in the radial direction. As mentioned above, by applying a deformation in the circumferential direction and a deformation in the radial direction, the amount of discharge can be increased without increasing the size of the rotor (i.e. preventing the size increase of the rotor), and the number of teeth may be increased to provide an oil-pump rotor with reduced pulsation and noise level. However, by applying only a compressing deformation in the circumferential direction, the amount of discharge can be increased while maintaining the radius of the rotor and the number of teeth may be increased to provide an oil pump rotor with reduced pulsation and noise level.
Here, the shape of the addendum and the shape of the tooth groove may be deformed with the same deformation ratio (γ1=γ2 in
With respect to the outer rotor that meshes properly with the inner rotor having an external tooth profile obtained by applying various deformation to the tooth profile defined by a mathematical curve, such as ones described in the embodiment mentioned above, namely, the deformation in the circumferential direction maintaining the distance between the radius RA1 of the addendum circle A1 and the radius RA2 of the tooth groove circle A2 and the deformation in the radial direction, or the above-mentioned compressing deformation in the circumferential direction, the outer rotor may be formed as described in the following different embodiment although the same deformation as the one(s) applied to the inner rotor may be applied to the outer rotor. The following deformation may be applied to any inner rotor. And this different embodiment is described in detail with reference to
Firstly, as shown in
First, the envelope Z0 shown in
The following operation is performed to obtain a curve in which the envelope Z0 is deformed by deforming, in the radially outward direction, at least a neighborhood of an intersecting portion between the envelope Z0 and the axis in the direction of 0 revolution angle, and by deforming, in the radially outward direction, a neighborhood of an intersecting portion between the envelope Z0 and the axis in the direction of the revolution angle θ2 (=π/(n+1)) to an extent less than or equal to the radially outward deformation of the neighborhood of the intersecting portion between the envelope Z0 and the axis in the direction of 0 revolution angle.
When making the center O1 of the inner rotor 10 revolve along the circumference of the circle F while making it rotate about itself as mentioned above, the shape of the addendum of the inner rotor 10 is deformed in the radially outward direction with an expanding correction coefficient β1 when the revolution angle is greater or equal to 0 and less than or equal to θ1, and the shape of the addendum of the inner rotor 10 is deformed in the radially outward direction with an expanding correction coefficient β2 when the revolution angle is greater or equal to θ1 and less than 2π. However, while, in the present embodiment, the value of the extended correction coefficient β2 is smaller than the value of the extended correction coefficient β1, the value of the extended correction coefficient β2 and the value of the extended correction coefficient β1 may be chosen at will, without being limited to this relationship.
As shown in
Next, as shown in
And the extracted partial envelope PZ1 is rotated in the revolution direction with respect to the center (e, 0) of the circle F by a minute angle α, and the portion that falls out of the region W by rotation is cut off, and the gap G formed between the partial envelope PZ1 and the axis in the direction of 0 revolution angle is connected to form a corrected partial envelope MZ1. While the gap G is connected with a straight line in this embodiment, the connection may be made not only with the straight line but with a curve.
Further, this corrected partial envelope MZ1 is duplicated to have a line symmetry with respect to the axis in the direction of 0 revolution angle to form a partial tooth profile PT, and the tooth profile of the outer rotor 20 is formed by duplicating this partial tooth profile PT at every rotation angle of 2π/(n+1) with respect to the center (e, 0) of the circle F.
By forming the outer rotor using the envelope Z1 defined as described above by deforming the envelope Z0, a proper clearance between the inner rotor 10 and the outer rotor 20 is reliably obtained. And, a proper backlash can be obtained by rotating the partial envelope PZ1 by a minute angle α. Thus, an outer rotor 20 which meshes and rotates smoothly with the deformed inner rotor 10 can be obtained.
Although a deformation in the circumferential direction and a deformation in the radial direction, or a compressing deformation in the circumferential direction is applied to the tooth profile defined by a mathematical curve in each of the embodiments mentioned above to form the external tooth profile (internal tooth profile) of the inner rotor 10 (outer rotor 20) in the oil pump rotor, a deformation only in the radial direction may be applied to form the external tooth profile (internal tooth profile) of the inner rotor 10 (outer rotor 20). Also, the deformation in the radial direction is not restricted to the deformation to both of the addendum and the tooth groove, but can be applied to form either one of the addendum and the tooth groove.
The present invention may be used in an oil pump rotor which draws in and discharges fluid through volume changes in cells formed between the inner rotor and the outer rotor.
Number | Date | Country | Kind |
---|---|---|---|
2007-060288 | Mar 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/073489 | 12/5/2007 | WO | 00 | 9/3/2009 |