The present invention relates to an oil supply apparatus of a linear compressor which can pump the oil stored at a lower portion of a shell into a gap between a cylinder and a piston in a state where a structure including the cylinder, the piston and a linear motor is elastically installed inside the shell and the piston is linearly reciprocated inside the cylinder, and more particularly, to an oil supply apparatus of a linear compressor which can reduce abrasion by setting a natural frequency according to a mass member and oil springs for elastically supporting both ends of the mass member inside an oil cylinder to be smaller than an operating frequency of the linear compressor.
In general, a compressor is a mechanical apparatus for compressing the air, refrigerant or other various operation gases and raising a pressure thereof, by receiving power from a power generation apparatus such as an electric motor or turbine. The compressor has been widely used for an electric home appliance such as a refrigerator and an air conditioner, or in the whole industry.
The compressors are roughly classified into a reciprocating compressor in which a compression space for sucking or discharging an operation gas is formed between a piston and a cylinder, and the piston is linearly reciprocated inside the cylinder, for compressing a refrigerant, a rotary compressor in which a compression space for sucking or discharging an operation gas is formed between an eccentrically-rotated roller and a cylinder, and the roller is eccentrically rotated along the inner wall of the cylinder, for compressing a refrigerant, and a scroll compressor in which a compression space for sucking or discharging an operation gas is formed between an orbiting scroll and a fixed scroll, and the orbiting scroll is rotated along the fixed scroll, for compressing a refrigerant.
Recently, a linear compressor which can improve compression efficiency and simplify the whole structure without a mechanical loss resulting from motion conversion by connecting a piston directly to a linearly-reciprocated driving motor has been popularly developed among the reciprocating compressors.
In the linear compressor, the piston is linearly reciprocated in a cylinder by a linear motor inside a hermetic shell, for sucking, compressing and discharging a refrigerant. An oil supply apparatus for pumping the oil stored at the lower portion of the shell into a gap between the cylinder and the piston is provided to perform cooling and lubrication against the friction generated when the piston is linearly reciprocated inside the cylinder.
Referring to
The main body frame 3 fixes the cylinder 2 and the linear motor. The piston 4 is linearly reciprocated between a top dead center (TDC) and a bottom dead center (BDC) inside the cylinder 2, for repeatedly performing a suction stroke for sucking a refrigerant into a compression space P formed between the piston 4 and the cylinder 2, and a compression stroke for compressing and discharging the refrigerant. A suction valve 6 for sucking the refrigerant is installed at an end of the piston 4, and a discharge valve 8a for discharging the compressed refrigerant is elastically supported and opened and closed by a discharge valve spring 8c inside a discharge cap 8b fixed to an end of the cylinder 2.
The oil supply passage 12 and the oil recovery passage 14 are formed in the main body frame 3 and the cylinder 2, for supplying and recovering the oil to/from the oil circulation passage 10 formed between the cylinder 2 and the piston 4. The oil circulation passage 10 is formed by a ring-shaped cylinder groove 2h of the inner circumference of the cylinder 2 and a ring-shaped piston groove 4h of the outer circumference of the piston overlapped with each other, for circulating the oil.
The oil cylinder 22 communicates with the end of the oil supply passage 12 at the lower portion of the structure 1 to be vibrated with the structure 1. The mass member 24 is linearly reciprocated inside the oil cylinder 22 due to an inertia force to the vibration of the oil cylinder 22. The oil springs 26a and 26b elastically support both ends of the mass member 24 in the axial direction, and generate the pressure difference in the oil cylinder 22. The oil supply tube 21 is installed at the lower portion of the oil cylinder 22 to communicate with the oil cylinder 22. The end of the oil supply tube 21 is soaked in the oil stored at the shell. In detail, an end of the oil cylinder 22 is fixedly inserted into a fixing groove 3h steppedly formed at the bottom end of the main body frame 3 communicating with the oil supply passage 12. A fixing cap 27 is forcibly inserted into the other end of the oil cylinder 22. Both ends of the mass member 24 are elastically supported by the oil springs 26a and 26b between the stepped fixing groove 3h of the oil supply passage 12 and the fixing cap 27, respectively. Here, an end of the fixing cap 27 is forcibly inserted into the other end of the oil cylinder 22, and the other end thereof is caught on the other end of the oil cylinder 22. That is, the fixing cap 27 is double stepped to be elastically supported by the oil spring 26a. A through hole 27h is formed at the center portion of the fixing cap 27. Accordingly, although the mass member 24 is linearly reciprocated in the oil cylinder 22, one side inner space of the oil cylinder 22 maintains the same pressure as the pressure inside the shell without a pressure difference.
The oil supply valve assembly 28 includes a plate-shaped valve sheet 28a installed at one side of the main body frame 3 communicating with the oil cylinder 22 and the oil supply passage 12, an oil suction valve (not shown) for sucking the oil and an oil discharge valve (not shown) for discharging the oil being installed on the valve sheet 28a to be opened and closed, and a sheet cover 28b installed outside the valve sheet 28a to overlap with the valve sheet 28a, for forming a suction storage space A and a discharge storage space B for temporarily storing the oil. Various components such as a gasket are additionally installed between the valve sheet 28a and the sheet cover 28b, for preventing leakage of the oil. In the conventional oil supply apparatus, when the oil cylinder 22 is vibrated with the structure 1, the mass member 24 is linearly reciprocated inside the oil cylinder 22 die to the inertia force to generate the pressure difference at one side inner space of the oil cylinder 22. Therefore, the oil stored at the lower portion of the shell is sucked into the oil supply tube 21, passed through the oil supply valve assembly 28a and 28b, supplied through the oil supply passage 12, circulated along the oil circulation passage 10 for cooling and lubrication, and recovered to the lower portion of the shell through the oil recovery passage 14.
The conventional oil supply apparatus of the linear compressor supplies the oil by vibration generated by an operating frequency of the main body frame 3 by linear reciprocation of the piston 4. When a natural frequency according to the oil springs 26a and 26b and the mass member 24 exists in a specific band, the mass member 24 is excessively moved to abrade support portions of the oil springs 26a and 26b.
An object of the present invention is to reduce vibration and noise of an oil supply apparatus of a linear compressor and improve quality thereof, by setting a natural frequency of the oil supply apparatus not to cause abrasion.
Another object of the present invention is to improve durability of an oil supply apparatus of a linear compressor, and efficiently supply oil according to a smooth operation.
There is provided an oil supply apparatus of a linear compressor including a refrigerant compression unit having a piston linearly reciprocated inside a cylinder, comprising: an oil supply passage for supplying the oil to a gap between the cylinder and the piston; an oil cylinder communicating with the oil supply passage; and a mass member installed in the oil cylinder and linearly reciprocated by the motion of the refrigerant compression unit, for pumping the oil, a natural frequency of the mass member being smaller than an operating frequency of the refrigerant compression unit. By this configuration, the natural frequency of the oil supply apparatus is equalized to the operating frequency of the refrigerant compression unit, thereby preventing resonance of the mass member.
In another aspect of the present invention, the natural frequency of the mass member is set to be smaller than the operating frequency of the refrigerant compression unit to prevent the mass member from performing a motion with an excessively large amplitude. This configuration prevents the oil supply apparatus from being abraded due to the excessively large amplitude of the mass member.
In another aspect of the present invention, the natural frequency of the mass member is set to be smaller than the operating frequency of the refrigerant compression unit by at least 20 Hz.
In another aspect of the present invention, the oil supply apparatus farther includes an oil spring for supporting the mass member in the oil cylinder, and the natural frequency is set in consideration of the oil spring. The oil filled in the oil cylinder is provided with elasticity in the motion of the mass member, and thus operated as a kind of elastic member. When the natural frequency of the mass member is computed in consideration of a modulus of elasticity of the oil, the mass member can be more precisely controlled.
In another aspect of the present invention, the oil supply apparatus further comprises oil springs for supporting both sides of the mass member in the oil cylinder and the natural frequency of the mass member considering the oil springs is set to be smaller than the operating frequency of the refrigerant compression unit by at least 20 Hz.
In another aspect of the present invention, a mass of the mass member is set so that the natural frequency can be smaller than the operating frequency of the refrigerant compression unit by at least 20 Hz.
In another aspect of the present invention, the oil supply apparatus further comprises oil springs for supporting both sides of the mass member in the oil cylinder, and moduli of elasticity the oil springs are set so that the natural frequency can be smaller than the operating frequency of the refrigerant compression unit by at least 20 Hz.
In addition, there is provided a control method of an oil supply apparatus of a linear compressor, the linear compressor including a refrigerant compression unit having a piston linearly reciprocated inside a cylinder, the oil supply apparatus including an oil supply passage, an oil cylinder and a mass member, comprising the steps of: setting an operating frequency of the refrigerant compression unit; and setting a natural frequency of the oil supply apparatus to be smaller than the operating frequency of the refrigerant compression unit in order to restrict excessive increase of an amplitude of the mass member.
In another aspect of the present invention, in the step of setting the natural frequency, the natural frequency of the oil supply apparatus is set to be smaller than the operating frequency of the refrigerant compression unit by at least 20 Hz.
In another aspect of the present invention, in the step of setting the natural frequency, the natural frequency is set in consideration of a modulus of elasticity of the oil in the oil cylinder and a mass of the mass member.
In accordance with the present invention, the natural frequency of the oil supply apparatus of the linear compressor is set to prevent abrasion. As a result, vibration and noise of the oil supply apparatus of the linear compressor can be reduced and quality thereof can be improved.
In addition, durability of the oil supply apparatus of the linear compressor can be improved, and the oil can be efficiently supplied according to the smooth operation.
The present invention will become better understood with reference to the accompanying drawings which are given only by way of illustration and thus are not limitative of the present invention, wherein:
The present invention will now be described in detail with reference to the accompanying drawings. The scope of the present invention is not limited to any of the details of the following description or the attached drawings. In addition, the scope of the present invention can be easily embodied by the ordinary people skilled in the art to which the present invention pertains. The right scope of the present invention is only limited by the claims as hereinafter recited.
As illustrated in
An end of the piston 54 is linearly reciprocated inside the cylinder 52. A suction hole 54h is formed at an end of the piston 54, for sucking a refrigerant into a compression space P formed between the cylinder 52 and the piston 54. A thin suction valve 56 is installed at the end of the piston 54 to open and close the suction hole 54h. A discharge cover 58a is elastically supported and opened and closed by a discharge valve spring 58c inside a discharge cap 58b fixed to an end of the cylinder 52, for discharging the refrigerant compressed in the compression space P. A ring-shaped cylinder groove (not shown) and a ring-shaped piston groove (not shown) are formed on the inner circumference of the cylinder 52 and the outer circumference of the piston 54, respectively. The cylinder groove and the piston groove cooperate with each other, for forming an oil circulation passage 60 for circulating the oil.
The linear motor 55 includes an inner stator 552 formed by laminating a plurality of laminations in the circumferential direction, an outer stator 554 disposed around the cuter circumference of the inner stator 552 with intervals, including core blocks 554b formed by laminating a plurality of laminations being installed around a wound coil 554a at intervals, and a permanent magnet 556 disposed between the inner stator 552 and the outer stator 554, and linearly reciprocated by a mutual electromagnetic force. The permanent magnet 556 is connected directly to the other end of the piston 54 by a connection member 558, for driving the piston 54.
An end of the cylinder 52 is fixedly inserted into the center portion of the main body frame 53. An end of the outer stator 554 is supported by the surface of the main body frame 53 facing the cylinder 52. An oil supply passage 62 and an oil recovery passage 64 for supplying the oil to the oil circulation passage 60 and recovering the supplied oil are formed in the main body frame 53.
A hole H is formed at the center portion of the motor cover 80, so that the other end of the piston 54 can pass through the hole H. In a state where the other end of the outer stator 554 is supported by the surface of the motor cover 80 facing the cylinder 52, the circumference of the motor cover 80 is fixed to the main body frame 53 through the outer stator 554. Here, a plurality of springs (not shown) for elastically supporting the piston 54 in the axial direction are elastically supported by the surface of the motor cover 80 opposite to the cylinder 52.
The oil supply apparatus of the linear compressor includes the oil pumping means 70 and the oil supply passage 62. The oil pumping means 70 includes an oil cylinder 72 having an end settled in a stepped fixing groove 53h formed at the bottom end of the main body frame 53 to communicate with the oil supply passage 62, and having the other end disposed adjacently to the bottom end of the motor cover 80, a mass member 74 linearly reciprocated inside the oil cylinder 72, and oil elastic members 76a and 76b for elastically supporting both ends of the mass member 74 between the fixing groove 53h of the main body frame 53 and the bottom end of the motor cover 80, respectively.
The oil supply passage 62 includes an oil supply tube 71 having its bottom end soaked in the oil at the lower portion of the shell 50 to supply the oil, and its top end disposed to communicate with the oil cylinder 72. An oil supply valve assembly 78 for controlling oil supply is installed between the oil supply passage 62 and the oil cylinder 72. The oil supply valve assembly 78 includes a plate-shaped valve sheet 78a closely contacted to a side of the main body frame 53 communicating with the oil supply passage 62 where an oil suction valve (not shown) for sucking the oil and an oil discharge valve (not shown) for discharging the oil being formed to be opened and closed, and a sheet cover 78b installed outside the valve sheet 78a to overlap with the valve sheet 78a, for forming a suction storage space A and a discharge storage space B for temporarily storing the oil.
The oil cylinder 72 is formed in a cylindrical shape. An end of the oil cylinder 72 is fixedly inserted into the stepped fixing groove 53h formed on a surface of the bottom end of the main body frame 53, and the other end thereof is disposed adjacently to a surface of the motor cover 80. The oil cylinder 72 is installed at the right angle with the main body frame 53 and the motor cover 80. The mass member 74 having the same diameter as the inside diameter of the oil cylinder 72 is linearly reciprocated inside the oil cylinder 72 in the axial direction. An end of the mass member 74 is supported by the fixing groove 53h of the main body frame 53 through the first oil elastic member 76a which is a kind of compression spring, and the other end thereof is supported by the bottom end of the motor cover 80 through the second oil elastic member 76b which is a kind of compression spring.
The assembly process of the oil supply apparatus of the linear compressor in accordance with the present invention will now be described. The inner stator 552 is fixedly installed around the outer circumference of the cylinder 52, and an end of the cylinder 52 and an end of the outer stator 554 are installed on the main body frame 53 to be supported. In a state where an end of the piston 54 is inserted into the cylinder 52, the other end of the piston 54 is connected to the permanent magnet 556 disposed between the inner stator 552 and the outer stator 554. In a state where an end of the oil cylinder 72 is inserted into the fixing groove 53h of the main body frame 53, the first oil spring 76a, the mass member 74 and the second oil spring 76b are sequentially inserted into the other end of the oil cylinder 72, and the fixing cap 77 is inserted thereto.
The oil pumping means 70 pumps the oil by vibration generated in the main body frame 53. As shown in
Displacement of the mass member 74: Z(t)=X(t)−Y(t)
Motion equation of the mass member 74: mZ+kZ=mXω2 sin(t)
Displacement of the mass member 74: Z(t)={mX2/(k−m2)} sin(t)=Zpsin(t)
A natural frequency of the mass member 74 is determined according to a mass of the mass member 74 and moduli of elasticity of the oil elastic members 76a and 76b. Therefore, the mass of the mass member 74 and the moduli of elasticity of the oil elastic members 76a and 76b mist be changed to set the natural frequency.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0004670 | Jan 2006 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2007/000271 | 1/16/2007 | WO | 00 | 2/17/2009 |