The present invention relates generally to an oil separator-muffler for a compressor. More specifically, the present invention relates to an oil separator-muffler that separates oil from gaseous medium by impingement.
In a typical automotive air conditioning system, a mixture of oil and refrigerant enters the compressor through its suction port and is compressed through a reciprocating action of one or more pistons. The compressed, high-pressure refrigerant-oil mixture exits from the compressor through discharge ports to make its cyclic journey around the air conditioning system.
The aforementioned system is known as “oil in circulation.” Although the oil is carried around the entire air conditioning system and lubricates the compressor upon entering the compressor as a mixture within the refrigerant, the compressor is the only component in the system that requires constant lubrication. Thus, as the oil refrigerant mixture circulates through the system, the oil coats on the tubes and fins of the condenser and evaporator. The presence of oil on the tubes and fins of the heat exchanger compromises the heat transfer efficiency of the system. Hence, the customer feels warmer air being discharged from the vehicle's registers. The oil that coats the heat exchanger is ultimately wasted because it does not cycle back to the compressor. With the advent of micro-channel heat exchangers, the likelihood that the oil will clog up the narrow tubes is more probable.
Moreover, in a clutchless compressor, the compressor never entirely shuts off. That is, instead of cycling off to prevent the flow of refrigerant, the compressor reduces its displacement and minimizes the flow. This type of compressor also features a check value, which prevents any undesired flow of refrigerant from entering the air conditioning system. Because the compressor has not cycled off, but has merely reduced its displacement volume, the internal components are still in motion and are therefore generating friction and heat. Hence, these components still require constant lubrication. This lubrication, however, is not available under such conditions with the conventional oil in circulation techniques. Thus, the compressor must rely on whatever oil has been retained within the compressor to lubricate the components. Because of the pumping action of the compressor, discharge side pressure pulsations are observed. These pressure pulsations lead to noise and compressor vibrations. There is therefore a need to control these pulsations for quieter compressor operation.
In satisfying the above need, as well as overcoming the enumerated drawbacks and other limitations of the related art, the present invention provides an oil separator-muffler for a compressor. The oil separator-muffler has an inner chamber with an oil accumulation region and a wall positioned in the inner chamber. The wall defines a separator region and has an impingement surface. The arrangement of the wall in the inner chamber defines flow channels of varying cross-sectional areas. A mixture inlet for the separator-muffler provides a passageway for an oil gaseous refrigerant mixture to flow from the exterior of the separator-muffler into the separator region. The oil is separated from the mixture as the mixture impinges against the impingement surface and flows into the oil accumulation region. A channel in fluid communication with the oil accumulation region provides a passageway for the separated oil from the accumulation region to the exterior of the separator-muffler. The separated gaseous refrigerant flows from the separator region and through the flow channels of varying cross-sectional areas, and a gas outlet provides a passageway for the separated gaseous refrigerant to exit the separator-muffler.
Further features and advantages of this invention will become apparent from the following description, and from the claims.
Referring now to the drawings, an oil separator-muffler embodying the principles of the present invention is illustrated in
The separator-muffler 10 further includes a mixture inlet 12, a gas outlet 14 and a wall 20 that defines an inner chamber 18. Inside the inner chamber 18 are an oil accumulation region or trough 16 and a substantially hemispherical wall 24 that defines a separator region 26 and an impingement surface 28. As used herein, the term “impingement” refers to the removal of suspended liquid droplets from a flowing stream of gas or vapor by a collision between the stream and a solid surface, such as the impingement surface 28. The collision forces the droplets to fall away from the stream.
The mixture inlet 12 is a passageway that provides communication between the exterior of the separator-muffler 10 and the inner chamber 18. For example, in some implementations, the mixture inlet 12 functions as a passageway between the separator-muffler 10 and a discharge outlet of a compressor to which the separator-muffler is associated such that an oil-refrigerant mixture 40 can enter into the separator-muffler 10.
As described in detail below, the separator-muffler 10 can be formed integrally with the housing of the compressor. The mixture inlet 12 can be an aperture in the wall 20 or it can be a tubular member that traverses the wall 20. The mixture inlet 12 can take any form of a communicative passageway suitable for providing access to the inner chamber 18 of the separator-muffler 10. In certain embodiments, the mixture inlet 12 is the same as the discharge outlet of the compressor. Ultimately, the size, shape, and form of the inlet 12 will depend on the characteristics of the discharge outlet of the compressor.
The gas outlet 14 provides a communicative passageway from the inner chamber 18, in particular, a region 27, to the external environment. For instance, the gas outlet 14 can provide a path through which a gaseous medium, such as a refrigerant 42, can leave the separator-muffler 10 and move onto a condenser after the oil has been separated from the refrigerant. The gas outlet 14 can be an aperture in the portion 10b or it can be a tubular member that traverses through the portion 10b, or it can be any other form of a communicative passageway suitable for providing the escape passageway for the gaseous medium.
The trough 16 provides a communicative passageway from the separator region 26. That is, the trough 16 functions as an escape passageway through which oil separated from an oil refrigerant mixture leaves the oil separator-muffler 10 to be circulated again through the compressor.
As shown in
The bottom of the trough 16 is located below the base of the separator region 26 such that oil 45 removed from the oil-refrigerant mixture flows down the surface 28, along the base of the separator region 26, and into the trough 16. The oil then flows from the trough 16 through the channel 30 and back into the compressor by way of the outlet 32.
Accordingly, oil is retained in the compressor, used, for example, in an air conditioning system, to provide constant lubrication to its internal components. This increased lubrication increases the compressor's durability and improves its efficiency. Consequently, the air conditioning system's overall efficiently significantly improves since less oil circulates and deposits onto the heat exchanger's fins and tubes, providing greater heat transfer and hence cooler discharge air through the vehicle's air conditioning registers.
Another particular feature of the separator-muffler 10 is that the wall 24 functions as a baffle. That is, the configuration of the substantially hemispherical wall 24 splits the flow of the refrigerant 42 and causes the refrigerant to change direction and to flow through narrow passageways A1 between the outer part of the wall 24 and the inner wall 20, and hence creates channels of varying cross-sectional areas through which the refrigerant 42 flows. These changes in the cross-sectional areas produce a muffler-like effect and therefore reduce noise from the separator-muffler 10. Specifically, the reduction in the flow areas of the channels or passageways of the separator-muffler 10 reduces discharge pressure pulsations (and hence NVH) caused by the pumping action of the associated compressor.
The oil separator-muffler 10 is particular well suited for incorporation into compressors in refrigeration circuits, such as swashplate compressors typically used in the air conditioning systems of automotive vehicles. An example of a swashplate compressor is shown in
A discharge outlet is in communication with each cylinder bore 106 such that the compressed oil-refrigerant mixture is forced out the discharge outlet into the oil separator-muffler 10 through the mixture inlet 12 (
In this manner, the mixture 40 containing oil suspended in a gaseous refrigerant leaves the compressor 100 and enters the oil separator-muffler 10 through the mixture inlet 12. While in the oil separator-muffler 10, the mixture 40 impinges against the hemispherical surface 28 where the oil separates from the refrigerant gas 42 as described earlier. The refrigerant 42 leaves the oil separator-muffler 10 through the gas outlet 14 and is able to flow through the rest of the refrigeration circuit. The oil gradually accumulates in the trough 16, leaves the oil separator-muffler 10 through the channel 30, and returns to the compressor 100 through the outlet 32.
The oil separator-muffler 10 can be formed integrally with the housing 102 of the compressor 100. The communicative passageways between the compressor 100 and the mixture inlet 12, the gas outlet 14, and the trough 16 of the separator-muffler 10 can be integrally formed within the housing 102. Alternatively, these passageways 12, 14, and 16 can be separately attached members.
In various embodiments, the oil separator-muffler 10 can be formed from steel, aluminum, or any other suitable material by standard techniques, such as casting, stamping and welding, and connected to the compressor 100 with appropriate connections between the compressor 100 and the mixture inlet 12, the gas outlet 14, and the trough 16.
Multiple baffles may be used to enhance the noise reduction capabilities of a separator-muffler. For example,
Other embodiments are within the scope of the following claims.