Information
-
Patent Grant
-
6299421
-
Patent Number
6,299,421
-
Date Filed
Monday, March 13, 200024 years ago
-
Date Issued
Tuesday, October 9, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Freay; Charles G.
- Gray; Michael K.
Agents
- Ostrolenk, Faber, Gerb & Soffen, LLP
-
CPC
-
US Classifications
Field of Search
US
- 417 571
- 417 557
- 417 562
- 417 417
- 417 211
- 417 1991
- 184 6
-
International Classifications
- F04B3910
- F04B3900
- F04B1704
-
Abstract
An oil supply apparatus of a linear compressor including an oil feeder frame having an oil cylinder, an oil suction hole communicated with the oil cylinder and an oil discharge hole; an oil cover combined to the oil feeder frame to cover the oil cylinder and having an oil suction opening selectively communicated with the oil suction hole and an oil communication space selectively communicated with the oil cylinder and the oil discharge hole; an oil piston positioned between the oil feeder frame and the oil cover, being inserted in the oil cylinder and performing a slidable reciprocal movement to suck and discharge oil; and a single oil valve positioned between the oil cover and the piston. In the apparatus, only one oil valve is used to reduce the parts in number and facilitate the assembling of the valve, and does not contact other structure during its operation of the opening and closing so that a proper amount of oil can be constantly supplied.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an oil supply apparatus of a linear compressor, and more particularly, to an oil supply apparatus of a linear compressor in which only one valve is used to suck and discharge oil, thereby reducing the number of parts and facilitating assembling of the valve.
2. Description of the Background Art
As is known, a linear compressor is an equipment for compressing a coolant by directly reciprocating a piston by means of a magnet and a coil instead of a crank shaft.
FIG. 1
shows a linear compressor in accordance with a conventional art. As shown in the drawing, the linear compressor includes a compression unit C installed in a horizontal direction inside a casing V filled with oil at its bottom, for sucking, compressing and discharging, and a oil feeder
0
fixedly combined at the outside of the compression unit C, to provide oil to each contact sliding portion (sliding portion) of elements.
As shown in
FIG. 2
, the oil feeder O includes a oil cylinder
21
attached onto the bottom surface of the compression unit C, a oil piston
22
inserted in the oil cylinder
21
and dividing the inner space of the oil cylinder into a suction space and a discharge space; a first and a second oil springs
23
a
and
23
b
positioned at both ends of the oil piston
22
to elastically support the oil piston
22
; a oil suction valve
24
contacted to an oil outlet of the oil piston
22
and supported by the second oil spring
23
b
; and a oil discharge valve
25
installed at a oil outlet of the oil cylinder
21
.
In detail, the oil suction valve
24
is inserted inside the oil cylinder
21
, and compressively supported by the second oil spring
23
b
at the end portion of the oil outlet of the oil piston, so as to selectively open and close an oil flow path
22
a
of the oil piston
22
.
The oil piston
22
is inserted in the oil cylinder
21
in a manner that its outer surface slidably contact the inner surface of the oil cylinder
21
, in which the oil flow path
22
a
is formed in a lengthy direction to communicate the inlet and the outlet of the oil cylinder
21
.
Reference numerals
1
denotes a frame,
1
a
denotes an oil inflow path,
1
b
denotes a first oil pocket,
1
d
denotes a oil circulation path,
1
e
denotes an oil discharge hole,
3
denotes a cylinder,
3
a
denotes an oil opening,
4
denotes an inside/outside lamination assembly,
5
denotes a magnet assembly,
6
denotes a piston,
7
denotes a suction valve,
9
denotes a suction pipe,
11
denotes a discharge cover,
12
denotes a discharge valve,
13
denotes a valve spring,
26
denotes a suction cover,
27
denotes a discharge cover, S
1
denotes a suction space, and S
2
denotes a discharge space.
Operation of the oil supply apparatus of the linear compressor constructed as described above in accordance with the conventional art will now be explained.
When the compression unit C is oscillated along with a magnetic assembly
5
in a horizontal direction by a linear reciprocal movement of the magnetic assembly
5
, that is, an rotor of a linear motor, the oscillation is transferred to the oil cylinder
21
fixed at the compression unit C, so that the oil cylinder
21
is reciprocally moved.
In this respect, since the oil piston
22
is slidably inserted in the oil cylinder
21
, oil is sucked and discharged by the inertial force resulted from the reciprocal movement of the oil cylinder
21
.
That is, when the oil cylinder
21
is moved in the ‘P’ direction as shown in
FIG. 3A
, the oil piston
22
overcomes the elasticity of the second oil spring
23
b
and is moved in the ‘Q’ direction to thereby push the oil charged in the discharge space S
2
in the ‘Q’ direction, while oil flows in to be charged in the suction space S
1
between the oil piston
22
and the oil suction cover
26
.
At this time, the oil suction valve
24
is closed, closing the oil flow path
22
a
of the oil piston
22
, while the oil discharge valve
27
is pulled back in the ‘Q’ direction to thereby open the discharge side of the oil cylinder
21
.
Reversely, in case that the oil cylinder
21
is moved in the ‘Q’ direction in
FIG. 3B
, the oil piston
22
overcomes the first oil spring
23
a
and is moved in the ‘P’ direction, so that the pressure of the discharge space S
2
becomes relatively low compared to that of the suction space S
1
and the oil of the suction space S
1
flows to the discharge space S
2
.
At this time, the oil suction valve
24
is turned to open in the ‘Q’ direction, while the oil discharge valve
27
is turned in the ‘P’ direction, closing the discharge side of the oil cylinder
21
to thereby prevent the oil from flowing backward.
However, as to the oil supply apparatus of the linear compressor of the conventional art, since the number of parts constructing the oil feeder is too many, the number of assembly process is increased, causing a problem in that its productivity is deteriorated.
In addition, since the oil suction valve controlling inputting and outputting of the oil is so small, its fabrication and assembling is very difficult.
Moreover, the opening and closing portion of the oil suction valve contacts the compressive coil spring supporting the oil piston, opening and closing operation of the oil valve is not made smoothly, failing to control properly the input and outputting of the oil.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide an oil supply apparatus of a linear compressor which is capable of improving a productivity by reducing assembly holes in number by reducing the number of parts for construction of the oil supply apparatus.
Another object of the present invention is to provide an oil supply apparatus of a linear compressor by which a productivity and assembly of a valve controlling inputting and outputting of oil is facilitated, and the valve does not contact any other structure during its opening and closing so that a proper amount of oil is constantly supplied.
To achieve these and other advantages and in accordance with the purposed of the present invention, as embodied and broadly described herein, there is provided an oil supply apparatus of a linear compressor including an oil feeder frame having an oil cylinder, an oil suction hole communicated with the oil cylinder and an oil discharge hole; an oil cover combined to the oil feeder frame to cover the oil cylinder and having an oil suction opening selectively communicated with the oil suction hole and an oil communication space selectively communicated with the oil cylinder and the oil discharge hole; an oil piston positioned between the oil feeder frame and the oil cover, being inserted in the oil cylinder and performing a slidable reciprocal movement to suck and discharge oil; and a single oil valve positioned between the oil cover and the piston.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
FIG. 1
is a partial vertical-sectional view of a linear compressor in accordance with a conventional art;
FIG. 2
is an enlarged vertical-sectional view of an oil feeder and an oil inflow path of the linear compressor in accordance with the conventional art;
FIG. 3A
is a vertical-sectional view showing an operation that oil flows into an oil suction path in an oil supply apparatus of the linear compressor in accordance with the conventional art;
FIG. 3B
is a vertical-sectional view showing an operation that oil flows into a discharge space of an oil cylinder in the oil supply apparatus of the linear compressor in accordance with the conventional art;
FIG. 4
is a partial vertical-sectional view of a linear compressor provided with an oil supply apparatus in accordance with the present invention;
FIG. 5
is a front view of a compression unit provided with the oil supply apparatus of the linear compressor in accordance with the present invention;
FIG. 6
is disassembled perspective view of the oil supply apparatus of the linear compressor in accordance with the present invention;
FIG. 7A
is a vertical-sectional view showing an operation that oil flows into an oil suction path from the oil supply apparatus of the linear compressor in accordance with the present invention; and
FIG. 7B
is a vertical-sectional view showing an operation that oil flows into an oil suction hole from the oil supply apparatus of the linear compressor in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
The oil supply apparatus of the linear compressor according to the present invention is to render the oil filled in the bottom of a casing V to flow into a compression unit C. As shown in
FIGS. 4 through 6
, The oil supply apparatus of the linear compressor includes: an oil feeder frame having an oil cylinder
111
at its center, an oil suction hole
112
communicated with the oil cylinder
111
at the lower side of the oil cylinder and an oil discharge hole
113
formed at one side of the oil cylinder; an oil cover having an oil suction opening
121
selectively communicated with the oil suction hole
112
at its lower portion, an oil communication space
122
selectively communicated with the oil cylinder
111
and the oil discharge hole
113
, and being combined to the oil feeder frame
110
to cover the oil cylinder
111
; an oil piston positioned between the oil feeder frame and the oil cover, being inserted in the oil cylinder and performing a slidable reciprocal movement to suck and discharge oil; and a single oil valve positioned between the oil cover and the piston, and having a piston support portion
141
formed horizontally cut, to which the side of the oil piston
130
directed to the oil cover
120
is engaged, a suction side opening and closing portion
142
vertically cut to be formed at the lower side of the piston support portion
141
so as to selectively open and close the oil suction opening
121
of the oil cover
120
, and a discharge side opening and closing portion
143
horizontally cut to be formed to the piston support portion
141
at the side of the piston support portion
141
so as to selectively open and close the oil discharge hole
113
of the oil feeder frame
110
.
In the oil supply apparatus of the linear compressor according to the present invention, a single oil valve
140
serves as a suction and a discharge valve at the same time.
Detailed explanation for a formation of the oil feeder frame
110
is as follows.
The oil suction hole
112
is vertically formed at the lower side of the oil cylinder
111
to communicate the oil inflow opening
121
of the oil cover
120
and the oil cylinder
111
.
The oil discharge hole
113
formed at one side of the oil cylinder
111
communicate with the oil inflow path
1
a
so as to guide the oil discharged from the oil cylinder to the oil inflow path
1
a
formed inside the oil feeder frame
110
.
The oil suction hole
112
and the oil discharge hole
113
are concavely formed, respectively, so that the suction side opening and closing portion
142
and the discharge opening and closing portion
143
of the oil valve
140
are smoothly rotated.
The oil suction hole
112
and the oil cylinder
111
are communicated to each other by an oil communication path
114
formed therebetween. The oil cylinder and the oil discharge hole
113
are selectively communicated with the oil communication space
115
by the discharge side opening and closing portion
143
of the oil valve
140
.
The oil communication space serves to guide the oil discharged after being sucked to the oil cylinder
111
through the oil suction opening
121
of the oil cover and the oil suction hole
112
of the oil feeder frame
110
, to the oil discharge hole
113
of the oil feeder frame
110
. The oil communication space
115
is outwardly protruded to be formed so as to smoothly guide the oil flown from the oil cylinder
111
to the oil discharge hole
113
.
Meanwhile, the oil piston
130
is formed in a rod, of which the side directed to the oil cover
130
is engaged with the central portion of the oil valve
140
of the piston support portion
141
.
In the oil supply apparatus of the linear compressor constructed as described above according to the present invention, the oil valve
140
alternately opens and closes the oil inflow opening
121
of the oil cover
120
and the oil discharge hole
113
of the oil feeder frame
110
by the pressure difference formed in the oil cylinder
111
resulted from the reciprocal movement of the oil piston
130
.
Referring to the drawings, the same reference numerals are given for the same parts as in the conventional art.
Reference number
3
denotes a cylinder,
6
denotes a piston,
9
denotes a suction pipe,
11
denotes a discharge cover, and
115
denotes a piston support movable hole.
The operation of the oil supply apparatus of the linear compressor of the present invention constructed as described above will now be explained.
When the frame
1
forming the compression unit C is oscillated in a horizontal direction as the compressor is driven, the oil cylinder
111
formed in the oil feeder frame
110
is accordingly oscillated in the horizontal direction.
Then, the oil piston
130
inserted in the oil cylinder
111
has an inertial force due to the reciprocal movement of the oil cylinder, causing repeatedly a pressure difference between the right and left regions of the oil piston
13
, by which the oil filled in the casing V is sucked or discharged.
In detail, first, as shown in
FIG. 7A
, when the oil cylinder
111
moves in the ‘P’ direction, the oil piston
130
is moved in the ‘Q’ direction, that is, the opposite direction of the oil cylinder
111
, so that the inner space
111
a
of the oil cylinder
111
is relatively highly pressurized.
Then, the suction side opening and closing portion
142
of the oil valve is moved in the ‘Q’ direction according to the pressure of the oil cylinder
111
, so that the oil suction opening
121
of the oil cover
120
is closed, and thus, sucking of the oil is blocked.
At the same time, as the discharge side opening and closing portion
143
of the oil valve
140
is moved in the ‘Q’ direction to be opened, the oil cylinder
111
and the oil discharge hole
113
are communicated to each other, so that the oil sucked into the oil cylinder
111
passes through the oil communication space
122
and the oil discharge hole
113
and is flown into the contact sliding portion (sliding portion) of the compression unit C through the oil suction path
1
a.
Reversely, as shown in
FIG. 7B
, in case that the oil cylinder
21
moves in the ‘Q’ direction, the oil piston
130
is moved in the ‘P’ direction, so that the pressure of the inner space
111
a
of the oil cylinder
111
becomes relatively low.
Then, the suction side opening and closing portion
142
of the oil valve
140
submerged in the oil of the casing V is moved in the ‘P’ direction due to the pressure of the oil, so that the oil suction opening
121
is opened, and the oil sucked through the opened oil suction opening
121
flows into the oil cylinder
111
through the oil suction hole
112
and the oil communication path
114
of the oil feeder frame
110
.
At the same time, the discharge side opening and closing portion
143
of the oil valve
140
that was pulled back is also moved in the ‘P’ direction, so that the gap between the oil discharge hole
113
and the oil communication space
122
of the oil cover is closed, and accordingly, the oil cylinder
111
and the oil discharge hole
113
does not communicate to each other.
As so far described, the oil supply apparatus of the linear compressor has a simple structure, and since the parts required for construction of the apparatus is reduced in number, advantageously reducing the assembly process.
Also, since the processing and assembling of the oil valve is facilitated, its productivity is highly improved.
In addition, compared to the conventional art in that the suction valve and discharge valve are separately provided and the suction valve is mounted inside the oil cylinder having a small diameter, in the present invention, the suction valve and the discharge valve are incorporated to a single oil valve and is mounted at outside the oil cylinder, so that installation of each part is facilitated and its productivity is enhanced.
Moreover, an elastic body is excluded from the construction elements of the oil supply apparatus so as to prevent the oil valve from contacting other structure during its operation of opening and closing, so that outputting and inputting of the oil can be properly controlled. Thus, the proper amount of oil is constantly supplied, improving a reliability of the compressor.
As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the meets and bounds of the claims, or equivalence of such meets and bounds are therefore intended to be embraced by the appended claims.
Claims
- 1. An oil supply apparatus of a linear compressor comprising:an oil feeder frame having an oil cylinder, an oil suction hole communicated with the oil cylinder and an oil discharge hole; an oil cover combined to the oil feeder frame to cover the oil cylinder and having an oil suction opening selectively communicated with the oil suction hole and an oil communication space selectively communicated with the oil cylinder and the oil discharge hole; an oil piston positioned between the oil feeder frame and the oil cover, being inserted in the oil cylinder and performing a slidable reciprocal movement to suck and discharge oil; and a single oil valve positioned between the oil cover and the piston.
- 2. The apparatus according to claim 1, wherein the oil valve includes:a piston support portion formed horizontally cut, to which one side of the oil piston is engaged; a suction side opening and closing portion cut to be formed at the lower side of the piston support portion so as to selectively open and close the oil suction opening of the oil cover; and a discharge side opening and closing portion cut to be formed to the piston support portion at the side of the piston support portion so as to selectively open and close the oil discharge hole of the oil feeder frame.
- 3. The apparatus according to claim 1, wherein the oil discharge hole is formed inside the oil feeder frame, communicating with an oil inflow path supplying oil to a contact sliding portion of the compressor.
- 4. The apparatus according to claim 1, wherein the oil suction hole and the oil discharge hole are concavely formed, respectively.
- 5. The apparatus according to claim 1, wherein the oil cylinder and the oil suction hole communicate each other by an oil communication path formed therebetween.
- 6. The apparatus according to claim 1, wherein the oil cylinder and the oil discharge hole selectively communicate by the discharge side opening and closing portion.
- 7. The apparatus according to claim 1, wherein the oil communication space of the oil cover is formed to be outwardly protruded so as to smoothly guide the oil flown from the oil cylinder to the oil discharge hole.
Priority Claims (1)
Number |
Date |
Country |
Kind |
99-38149 |
Sep 1999 |
KR |
|
US Referenced Citations (4)