Oil supply route in a camshaft for a cam phaser

Information

  • Patent Grant
  • 6543400
  • Patent Number
    6,543,400
  • Date Filed
    Friday, October 19, 2001
    22 years ago
  • Date Issued
    Tuesday, April 8, 2003
    21 years ago
Abstract
A cam phaser assembly having an improved configuration of the C1 oil gallery in the camshaft supplying oil to the cam phaser. An axial bore in the camshaft is formed over its non-threaded outer portion at a diameter substantially greater than the diameter of the bolt connecting the phaser to the camshaft. Upon assembly of the cam phaser to the camshaft, an annular, cylindrical gallery is formed between the bolt surface and the bore, which gallery replaces the plurality of axial bores required for the C1 gallery in the prior art camshaft. The prior art C2 gallery, which utilizes a second axial bore in the bolt itself, is substantially unchanged, and an O-ring around the cam bolt in the first axial bore seals the C1 and C2 pressure galleries from communicating with each other.
Description




TECHNICAL FIELD




The present invention relates to cam phasers for reciprocating internal combustion engines for altering the phase relationship between valve motion and piston motion; more particularly, to cam phasers which are mountable on the front or forward ends of camshafts and which are supplied with pressurized engine oil from the camshaft oil supply; and most particularly, to an improved cam phaser assembly having an improved oil supply route through a camshaft.




BACKGROUND OF THE INVENTION




Cam phasers are well known in the automotive art as elements of systems for reducing combustion formation of nitrogen oxides (NOX), reducing emission of unburned hydrocarbons, improving fuel economy, and improving engine torque at various speeds.




Typically, cam phasers employ a first element driven in fixed relationship to the crankshaft and a second element adjacent to the first element and mounted to the end of the camshaft in either the engine head or block.




In the known art, the first element is typically a cylindrical stator mounted coaxially to a crankshaft-driven gear or pulley and having a plurality of radially-disposed chambers and an axial bore, and the second element is a vaned rotor mounted to the end of the camshaft through the stator bore and having a vane disposed in each of the stator chambers such that limited relative rotational motion is possible between the stator and the rotor. The chambers are sealed typically by front and rear face seals of the stator. The camshaft and phaser are provided with suitable porting so that hydraulic fluid, for example, engine oil under engine oil pump pressure, can be brought to bear controllably on opposite sides of the vanes in the chambers. Control circuitry and valving, commonly a multiport spool valve, permits the programmable control of the volume of oil on opposite sides (C1 and C2) of each vane to cause a change in rotational phase between the stator and the rotor, in either the rotationally forward or backwards direction, thus advancing or retarding the timing of the valve opening and closing with respect to the pistons.




A serious problem is known in the art of manufacturing engines having cam phasers. Typically, the end portion of the camshaft which interfaces with the phaser requires substantial drilling and machining to provide hydraulic porting for the phaser. Specifically, in the prior art, the C1 oil gallery routing includes an annular groove in the camshaft at the cam bearing intersected by a plurality of bores drilled axially along the camshaft from the cam end. Another annular groove in the cam phaser intersects the bores to complete the routing. Drilling of the camshaft to provide the axially-directed bores is not easily and inexpensively performed, especially on chilled cast iron camshafts, because the bores are necessarily quite long and quite small in diameter. Further, being of small diameter, the bores can significantly reduce the pressure of oil being supplied to the cam phaser.




What is needed is an improved C1 oil gallery configuration in the camshaft that is easier and less expensive to manufacture and that improves the flow of oil to a cam phaser.




SUMMARY OF THE INVENTION




The present invention is directed to an improved configuration of the C1 oil gallery in a camshaft bolted to, and supplying oil to, a cam phaser. In the prior art, a first axial central bore in the camshaft is threaded over a portion of its outer end for receiving an axial bolt for securing a cam phaser to the camshaft. In the present invention, the axial bore is formed over a non-threaded outer portion at a diameter substantially greater than the diameter of the bolt. Upon assembly of the cam phaser to the camshaft, an annular, cylindrical gallery is formed between the bolt surface and the bore, which gallery replaces the plurality of axial bores required for the C1 gallery in the prior art. The prior art C2 gallery, which utilizes a second axial bore in the bolt itself, is substantially unchanged, and an O-ring around the cam bolt in the first axial bore seals the C1 and C2 pressure galleries from communicating with each other.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing and other objects, features, and advantages of the invention, as well as presently preferred embodiments thereof, will become more apparent from a reading of the following description, in connection with the accompanying drawings in which:





FIG. 1

is an elevational cross-sectional view of the outer end of a prior art camshaft, showing prior art oil galleries machined for providing C1 and C2 oil to a cam phaser;





FIG. 2

is an elevational cross-sectional view of the prior art camshaft shown in

FIG. 1

, shown with a cam phaser bolted thereto;





FIG. 3

is an elevational cross-sectional view of the outer end of a camshaft, machined in accordance with the invention for providing C1 and C2 oil to a cam phaser;





FIG. 4

is an elevational cross-sectional view of the improved camshaft shown in

FIG. 3

, shown with a cam phaser bolted thereto; and





FIG. 5

is an enlarged and detailed view of a portion of

FIG. 4

, showing the relationship of the cam phaser bolt to the oil galleries in the improved camshaft.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to

FIG. 1

, a prior art camshaft


10


includes a first annular groove


12


formed in an outer surface thereof and connected by one or more first radial bores


14


to one or more axially-directed bores


16


opening on camshaft end


18


. A blind axial bore


20


extending from end


18


is stepped from a first diameter portion


22


to a narrower diameter portion defining a well


24


at the distal end thereof. Portion


22


is provided with female threads


23


. A second annular groove


26


separated by an axial distance from first annular groove


12


is connected to well


24


by one or more second radial bores


28


.




Referring to

FIG. 2

, a vane type cam phaser


30


is shown attached to prior art camshaft


10


, and part of internal combustion engine


60


. Phaser


30


is well known in the art. A flanged hub


32


of the phaser is fitted to the camshaft and extends in a bore


34


formed in engine


36


for snugly receiving hub


32


. Camshaft


10


extends into phaser


30


beyond hub


32


, camshaft end


18


mating with vaned rotor


38


having C1 oil distribution passages


40


communicating with camshaft bores


16


. Bolt


42


extends through a central aperture


27


in phaser


30


into bore


20


and thereby secures phaser


30


to camshaft


10


via threads


23


. Bolt


42


terminates outside of well


24


and has an axial bore


44


in communication between well


24


and a C2 oil distribution annulus


46


in outer hub


39


.




In operation, oil is provided conventionally via a known supply control means (not shown) to camshaft


10


as required. C1 oil, for retarding rotor


38


, is supplied to groove


12


and ascends through bores


16


to passages


40


. C2 oil, for advancing rotor


38


, is supplied to groove


26


and ascends through bore


44


to annulus


46


.




Referring to

FIGS. 3 through 5

, an improved cam phaser assembly


49


includes improved camshaft


50


in accordance with the invention, which is similar to prior art camshaft


10


, but with the following differences.




The prior art plurality of axially-directed bores


16


is eliminated, and a larger-diameter blind axial bore


20


′ is provided. The diameter of the outer portion of bore


20


′ is substantially larger than the diameter


29


of improved bolt


42


′ such that an annular, cylindrical space


52


is provided therebetween when cam phaser


30


is assembled to improved camshaft


50


. Radial bores


14


extend through the wall of camshaft


50


into space


52


. Space


52


communicates (not shown in the section of

FIG. 4

) with C1 passages


40


in rotor


38


. Threads


23


′ in bore


20


′ are provided at the distal end of bore


20


′ and well


24


is eliminated. Improved bolt


42


′ extends inwards of improved camshaft


50


beyond second radial bores


28


and is provided with radial bores


54


to connect bores


28


with bolt axial bore


44


′, thus providing a pathway for C2 oil from groove


26


to rotor


38


. First radial bores


14


are sealed from second radial bores


28


by an O-ring


56


disposed on bolt


42


′ between bores


14


and


28


. Preferably, O-ring


56


is retained on bolt


42


′ by a pair of radial flanges


58


formed in bolt


42


′, as shown in FIG.


5


.




The foregoing description of the preferred embodiment of the invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive nor is it intended to limit the invention to the precise form disclosed. It will be apparent to those skilled in the art that the disclosed embodiments may be modified in light of the above teachings. For example, a cam phaser may be readily reconfigured to accept C1 oil through bolt axial bore


44


′ and C2 oil through annular space


52


. Such embodiments are within the scope and spirit of the invention. The embodiments described are chosen to provide an illustration of principles of the invention and its practical application to enable thereby one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. Therefore, the foregoing description is to be considered exemplary, rather than limiting, and the true scope of the invention is that described in the following claims.



Claims
  • 1. A camshaft phaser assembly for shifting rotational phase between an engine crankshaft and camshaft, comprising:a) a camshaft having a blind axial bore of a first diameter extending inwards from an end of said camshaft, and first and second annular grooves formed in an outer surface of said camshaft for supplying advancing and retarding oil to said assembly, said grooves being axially spaced apart and communicating via first and second radial bores, respectively, with said blind axial bore; b) a cam phaser disposed on said end of said camshaft and having distribution passages therein for advancing and retarding oil and having a central aperture; and c) a bolt disposed through said central aperture and threadedly engaged in said blind axial bore for securing said phaser to said camshaft, said bolt having a second diameter less than said first diameter such that an annular oil passage is provided in said assembly between said bolt and said blind axial bore communicating between said first annular groove and said cam phaser, said bolt having an axial bore communicating with said second radial bore in said camshaft for providing one of said advancing and retarding oil to said phaser.
  • 2. A cam phaser assembly in accordance with claim 1 further comprising a seal disposed in said blind axial bore between said bore and said bolt to prevent communication between said advancing oil and said retarding oil.
  • 3. A cam phaser assembly in accordance with claim 2 wherein said seal is an O-ring.
  • 4. A cam phaser assembly in accordance with claim 1 wherein said bolt further comprises a radial bore in fluid communication with said second radial bore in said camshaft and said axial bore of said bolt.
  • 5. A cam phaser assembly in accordance with claim 3 wherein said O-ring is retained by a plurality of radial flanges formed in said bolt.
  • 6. A cam phaser assembly in accordance with claim 1, further comprising a distal end of said blind axial bore, wherein said bolt is threadedly engaged with said distal end of said blind axial bore.
  • 7. A camshaft for an engine for mating with and providing actuating oil to a cam phaser, comprising:a) a blind axial bore extending inwards from an end of said camshaft; and b) first and second annular grooves formed in an outer surface of said camshaft, said grooves being axially spaced apart and communicating via first and second radial bores, respectively, with said blind axial bore.
  • 8. A camshaft in accordance with claim 4 wherein said blind axial bore is threaded over a distal portion of its length.
  • 9. An internal combustion engine including a cam phaser assembly for shifting rotational phase between an engine crankshaft and camshaft, wherein said cam phaser assembly includes:a camshaft having a blind axial bore of a first diameter extending inwards from an end of said camshaft, first and second annular grooves formed in an outer surface of said camshaft for supplying advancing and retarding oil to said assembly, said grooves being axially spaced apart and communicating via first and second radial bores, respectively, with said blind axial bore; a cam phaser disposed on said end of said camshaft and having distribution passages therein for advancing and retarding oil and having a central aperture; and a bolt disposed through said central aperture and threadedly engaged in said blind axial bore for securing said phaser to said camshaft, said bolt having a second diameter less than said first diameter such that an annular oil passage is provided in said assembly between said bolt and said blind axial bore communicating between said first annular groove and said cam phaser, said bolt having an axial bore communicating with said second radial bore in said camshaft for providing one of said advancing and retarding oil to said phaser.
US Referenced Citations (8)
Number Name Date Kind
5058539 Saito et al. Oct 1991 A
5197421 Hara Mar 1993 A
5203290 Tsuruta et al. Apr 1993 A
5875751 Strauss et al. Mar 1999 A
6035818 Sato et al. Mar 2000 A
6079382 Schafer et al. Jun 2000 A
6283075 Schafer et al. Sep 2001 B1
6363897 Scheidt et al. Apr 2002 B2