The present invention generally relates to oilfield tubular torque wrench spinners used in make up or breakout of wellbore tubular strings and, in particular, to methods and apparatus for detecting tubular spin-in and spin-out completion.
Torque wrench tongs and spinners have been employed when making up or breaking out tubular strings and, in particular, without limiting the invention: drill pipe joints, drill collars, casing and the like in oil well drilling operations. Such tubular strings are formed by threadedly connecting the tubulars in the string. In operation of a torque wrench, a spinner is utilized to initially rotate a first tubular relative to a second tubular to thread the tubulars together. The spinner rotates the first tubular relative to the second tubular rather rapidly but at a relatively low torque and the tongs serve to finally tighten the tubulars together when making up a tubular string. Conversely, when breaking out a tubular string, the tongs initially break apart the threaded connection between tubulars with the spinner subsequently unthreading the upper most tubular from the rest of the tubular string at a relatively high speed and low torque.
In accordance with a broad aspect of the present invention, there is provided an oilfield tubular spinner for an oilfield tubular torque wrench, the oilfield tubular spinner comprising: a powered spin roller including an axis of rotation; a spin motor operatively connected to, and configured to drive, the powered spin roller to rotate about its axis of rotation; and a shoulder-up system configured to detect a shoulder-up condition of a pair of tubulars being driven to threadedly connect by the powered spin roller and to initiate spin motor shutdown subsequent to the detection of the shoulder-up condition.
In accordance with another broad aspect of the present invention, there is provided a method for threadedly connecting an upper tubular and a lower tubular using an oilfield tubular spinner and a torque wrench, the method comprising: holding the lower tubular with the torque wrench; aligning the upper tubular with the lower tubular with their threaded intervals arranged for threaded connection therebetween; frictionally engaging the upper tubular with the tubular spinner; operating a hydraulic motor of the tubular spinner to rotate the upper tubular relative to the lower tubular; monitoring hydraulic fluid pressure of the hydraulic motor to detect a pressure condition of interest during rotation of the upper tubular relative to the lower tubular; and shutting down the hydraulic motor after a pressure condition of interest is detected.
In accordance with a further broad aspect of the present invention, there is provided an oilfield tubular spinner for an oilfield tubular torque wrench, the oilfield tubular spinner comprising: a powered spin roller including an axis of rotation; a spin motor operatively connected to, and configured to drive, the powered spin roller to rotate about its axis of rotation; and a spin-out detection system configured to detect a spun-out condition of an upper tubular being driven by the powered spin roller to threadedly disconnect from a lower tubular and to initiate spin motor shutdown in response to the detection of the spun-out condition.
In accordance with a further broad aspect of the present invention, there is provided a method for breaking out a threaded connection between an upper tubular and a lower tubular using an oilfield tubular spinner and a torque wrench, the method comprising: holding the lower tubular with the torque wrench; frictionally engaging the upper tubular with the tubular spinner; operating a motor of the tubular spinner to rotate the upper tubular relative to the lower tubular; monitoring a condition of the upper tubular to detect a condition of interest during rotation of the upper tubular relative to the lower tubular; and shutting down the motor after a condition of interest is detected.
It is to be understood that other aspects of the present invention will become readily apparent to those of ordinary skill in the art from the following detailed description, wherein various embodiments of the invention are shown and described by way of illustration. As will be realized, the invention is capable for other and different embodiments and its several details are capable of modification in various other respects, all without departing from the spirit and scope of the present invention. Accordingly the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Referring to the drawings wherein like reference numerals indicate similar parts throughout the several views, several aspects of the present invention are illustrated by way of example, and not by way of limitation, in detail in the figures, wherein:
The detailed description set forth below in connection with the appended drawings is intended as a description of various embodiments of the present invention and is not intended to represent the only embodiments contemplated by the inventor. The detailed description includes specific details for the purpose of providing a comprehensive understanding of the present invention. However, it will be apparent to those of ordinary skill in the art that the present invention may be practiced without these specific details.
The present invention generally relates to tubular spinners used in making up or breaking apart oilfield tubular strings. Such strings are made up of threadedly connected tubulars such as, for example, drill pipe joints, drill collars, casing and the like in oil well drilling operations. The following description may refer to drill pipe and drill pipe joints, but it is to be understood that a torque wrench and tubular spinner may also be useful for the manipulation of other oilfield tubulars.
A tubular spinner is often used with a torque wrench, also known as an iron rough neck. Commonly, a torque wrench includes tongs that grip and rotate tubulars being handled and a tubular spinner includes rollers that frictionally engage and rotate a tubular being handled. In operation of a torque wrench and tubular spinner, the tubular spinner is utilized to initially rotate an upper drill pipe when making up the drill pipe, with the spinner rotating the pipe rapidly but at a relatively low torque and the tongs of the torque wrench serving to finally tighten the drill pipe joints when making up a tubular string. Conversely, when breaking out a tubular string, the tongs initially torque the connection to “break” it and begin the unthreading process, with the tubular spinner subsequently unthreading the upper most tubular from the rest of the tubular string at a relatively high speed and low torque.
To facilitate understanding of tubular torque wrench tongs and spinners, reference may be made to
While the invention is hereafter described utilizing hydraulically actuated power cylinders and a hydraulic circuit therefor, it will be readily appreciated and understood by those of ordinary skill in the art that any one or all of the power cylinders of this invention can alternately be pneumatic and a conventional pneumatic circuit may be used in conjunction therewith. Alternately, screw drives or other drivers may be used.
Wrench 10 includes drill pipe tongs including an upper tong 22 and a lower tong 24 each of which may be substantially identical and which each include a body 26 with a generally U-shaped recess 28 in an edge thereof to receive oilfield tubulars to be handled thereby including for example joints of drill pipe, drill collars, casing, wellbore liners and the like. Recesses 28 are formed to accommodate tubulars extending generally along an axis x through the recess. Axis x is substantially vertically oriented.
In the illustrated embodiment, tubulars 30 and 31 are positioned to be acted upon by the wrench tongs and the spinner. In operation, upper tong 22 and spinner 20 generally act on an upper tubular 30 and lower tong 24 generally acts on a lower tubular 31. Considering a normal oilfield string and its manipulation by a torque wrench, tubular 30 is the upper most or last tubular and tubular 31 is the penultimate tubular of the string. The tubulars 30, 31 are shown in phantom to facilitate illustration. With the upper tong 22 gripping an upper tubular and the lower tong gripping a lower tubular, tongs 22, 24 may be swiveled relative to each other, which often includes holding one of the tongs stationary, while the other tong swivels relative thereto, to either torque up or break out a threaded connection between the tubulars.
The tongs may include various devices to permit tubulars to be gripped. For example, in one embodiment, a plurality of dies 34 having pipe gripping teeth thereon are mounted in each recess 28. In the illustrated embodiment, dies 34 are mounted on die heads 38 that are moveable, as by hydraulics 39, pneumatics, screw drives, etc., toward and away from axis x. As such, dies 34 may be moved into a gripping position or pulled back from a gripping position, as desired. The die heads may be positioned in recess 28, as shown, to act substantially diametrically opposite each other to grip a tubular therebetween.
Each die head 38 may have an angular or curved surface on which its dies 34 are mounted in spaced apart relation so that the dies are arranged along an arcuate path to generally follow the outer surface of a tubular 30 to be gripped, which is also generally acuate. The spaced, angular positioning may enable the dies 34 to engage spaced points on the circumference of the drill pipe or tool joint.
The upper tong 22 may swivel in relation to the lower tong 24 to move the tongs from a neutral position shown in
Extension and retraction of the piston and cylinder assembly 96, in this embodiment, causes the upper and lower tongs 22 and 24 to move toward and away from the torqueing position and into or through the neutral position shown in
When the tongs are properly aligned with oilfield tubulars 30, 31 to be handled, a threaded connection therebetween is positioned between the dies 34 of upper tong 22 and the dies of lower tong 24 with the tubulars extending generally along axis x. In that position, die heads 38 of lower tong 24 may be actuated to grip therebetween lower tubular 31. Then, depending upon whether the threaded connection is being made up or broken apart, the torque piston and cylinder assembly 96 is extended or retracted. During the extension or retraction of the torque cylinder, the die heads 38 on the upper tong 22 will be in their retracted positions so that the upper tong 22 can rotate in relation to the upper tubular 40. Thus, with the upper tong 22 released and the torque piston and cylinder assembly 96 either extended or retracted to an initial position depending upon whether the drill pipe is being made up or broken out, the upper tong 22 may then be brought into gripping engagement with the upper tubular 30 by moving the die heads out to place the dies carried thereon into gripping relation with the tubular. After this has occurred, both the upper tubular 30 and the lower tubular 31 are securely gripped by the respective tongs. Then, the piston and cylinder assembly 96 is actuated for moving the upper and lower tongs 22 and 24 pivotally in relation to each other thus torqueing the tubulars 30 and 31 either in a clockwise manner or a counterclockwise manner depending upon whether the drill pipe is being made up or broken out.
In operation of the torque wrench, spinner 20 is utilized to quickly rotate one of the pair of tubulars being handled while the other is held against rotation by one of the tongs of the torque wrench. For example, when making up a drill string, spinner 20 is utilized to initially rotate drill pipe 30, which is the drill pipe being added to the remainder of the string, into threaded engagement with tubular 31, which is held steady. When making up the drill string, the spinner rotates the pipe to be added rather rapidly but at a relatively low torque while the upper tong 22 is disengaged and the lower tong 24 grips, for example, bites into, tubular 31 to hold it steady. The tongs 22 and 24 serve to finally tighten the threaded connection between drill pipe joints 30, 31 when making up a drill pipe string. Conversely, when breaking out a drill pipe, the tongs 22 and 24 initially torque the connection at low speed and high torque to initiate an unthreading operation of the connection with the spinner 20 subsequently frictionally engaging and unthreading the upper tubular 30 from the lower tubular 31 at a relatively high speed and low torque.
Making reference to the Figures, spinner 20 frictionally engages and rotates a tubular being handled. Thus, a tubular spinner often has an overall clamp configuration. For example in the illustrated embodiment, spinner 20 includes a pair of clamp arms 300, pivotally connected by pivot pins 302 to a frame for clamping about a tubular to be added to the tubular string during make up, or about the upper most tubular, which is that tubular to be removed from the tubular string, during break out. Of course, the invention is not limited to a clamp shaped spinner; a variety of other spinner configurations may be used.
Engagement between spinner clamp arms 300 and the tubular to be spun is through spinner rollers 310 and 312. Spinner rollers 310, 312 rotate about an axis of rotation substantially parallel to axis x. Without limiting the invention, the spinner rollers include one or more powered rollers 312 and, optionally, idler rollers 310. While
The implementation shown in the Figures includes a powered roller 312 and an idler 310 on each clamp arm 300. In the illustrated embodiment, the rollers are mounted on a clamp arm extension 304, which has some provision for pivotal movement relative to its clamp arm 300, as through pivot pin 308. In accordance with the implementation, the rollers 312 and idlers 310 are moved from a neutral position towards axis x to a spinning position for engaging tubular 30 via clamping action of the clamp arms 300. Clamp arms 300 may be driven, for example, by a hydraulic or pneumatic cylinder 306 to open or close relative to axis x. The pivotal movement of clamp arm extensions 304 may allow the rollers 312 and idlers 310 to engage and accommodate tubulars of various different diameters and to provide for a variance in grip pressure and positioning the spinner 20 about a tubular 30. Each extension 304 may be limited in its pivotal motion relative to its arm to prevent the extension from moving out of a useful position during operation. Alternately or in addition, the two extensions 304 may be connected by a linkage to maintain their relative alignment during movement of clamp arms 300 between the neutral and the spinning positions.
Powered rollers 312 are formed to frictionally engage a tubular to be handled. In one embodiment, rollers 312 are formed of durable materials such as steel. Rollers 312 may include surface treatments such as spiral grooving, roughening, etc. to enhance engagement of the tubular. During spin-in and spin-out, spinning motion is imparted to the tubular 30 via rollers 312 as powered by motors 314. In particular, motors 314 drive rollers 312 to rotate about their axis of rotation and in turn rollers engage and drive rotation of the tubular. In accordance with a paired spin drive implementation, such as shown in
It could be said that tubular connection make-up may be divided into three steps: spin-in, shouldering up, and tightening, and conversely that the tubular connection break-out may be divided into loosening and spin-out. Shouldering up is achieved when the entire tapered thread of a pin end of the tubular being added to a tubular string is inserted in the box end of the last tubular of the tubular string. With reference to
The tightening and loosening of tubular connections may be performed as described hereinabove using tongs 22 and 24 of the torque wrench, wherein relatively high torques are imparted to tubulars at relatively low rotational speeds. In contrast, the spin-in and spin-out steps are desirably performed at comparatively high rotational speeds by the spinner 20 while employing comparatively much reduced torque. Relatively high spin-in and spin-out speeds are desired as tubular strings include large numbers of tubulars and as the minimization of make-up and break-out time overheads is desired.
It is desirable that the process of spinning-in a tubular be rapid to reduce the overall time for drill string handling. A person of ordinary skill in the art would appreciate that high-speed spin-in imparts a large angular momentum to the tubular 30. If the spinner roller(s) 312 slip while being driven, the tubular being handled may be marred and both the tubular and the spinner rollers may potentially be damaged. Thus, roller slipping should be avoided as much as possible.
Other variables require consideration when spinning-in and shouldering-up tubular 30. The thread on the pin end of tubular 30 is tapered, as is the thread on the box end of tubular 31. The same tubulars 30 and 31 are used and reused in making-up and breaking-out a number of tubular strings, which may result in cumulative wear of the tapered threads. As it may be appreciated, doping may be used to grease the threads. The pipe dope has different viscosity under different environmental conditions (i.e. temperature, humidity, etc.) and depending on the type of pipe dope being used.
With reference to
The maximum pressure Pmax of the tubular spinner hydraulic system can be determined such that an operator can establish a pressure threshold, Pthreshold, for the system. Pthreshold is substantially equal to Pmax. The operator can then actively or automatically control the system based on the pressure threshold established for the system. In particular, since the pressure threshold offers an indication of a shouldered up condition, an operator can monitor system pressure and use the established Pthreshold value to indicate a shouldered up condition. Pmax, and therefore the pressure threshold, may vary depending on the profile of the tubulars being handled, for example, thread type, tool joint design, etc. However, Pmax, and therefore Pthreshold, can be determined and recorded for a tubular spinner and for any of the various tubulars to be handled, such that during operation measured pressure can be compared against expected pressure conditions, such as the pressure threshold. In addition, since tubular strings often include many hundreds of similar connection types to be handled in direct succession, any established pressure conditions of interest can be used repeatedly and systems can be set up based thereon.
With reference to
A control system that monitors the roller motor's hydraulic system pressure may be useful in systems to prevent roller slipping. For example, rollers can slip when the tubular that they are rotating shoulders up and can no longer be rotated. Thus, recalling that Pthreshold indicates that a tubular has shouldered up, it will be appreciated that shutting down the roller drive motors when Pthreshold is reached may prevent roller slipping.
However, additionally or alternately, further slip prevention options may be employed. For example, in one embodiment, hydraulic system pressure may be monitored to detect a slip condition occurring prior to shouldering up. If the rollers begin to slip on the tubular, the hydraulic system pressure for the spinner may cease to increase and may begin to fluctuate about a level lower than Pthreshold. If, for example with reference to
In another embodiment, a shoulder-up time limit can be established for any particular type of tubular connection to be handled by a tubular spinner. The time required to spin-in and shoulder up a tubular connection will be affected by the number of threads, flow rate of the hydraulic system, etc. and can be determined by testing. If the rollers begin to slip, the threading in operation may be delayed or never be completed such that the connection does not shoulder in the expected connection time. In such an embodiment, a timer, such as timer 525 can be used to monitor the length of time from system start, when the motors begin to drive rollers 312 to spin the tubular, until a shoulder up condition is detected, for example, when Pthreshold is reached. If through timer 525 and pressure sensing, as by use of transducer 519, it is determined that Pthreshold has not been reached in an expected time frame, the system may determine that a problem has occurred and shut down the motors. Again, an error message may be sent to an operator interface 529.
In accordance with an implementation of the invention, the pressure sensing and control systems may employ high-speed sense and communication electronics to effectively monitor and analyze the system pressure during operation.
As noted above, after a shouldering-up, the motors may be shut down. However, in accordance with another embodiment of the invention, after shouldering-up, the tubular spinner may be permitted to operate for an additional period to apply additional torque to the connection being made up. This additional time may be termed a “grunt” time, as shown in
The spin-out operation is started subsequent to the loosening of a connection between tubulars 30 and 31. The spin rollers 312 may be used to unthread enough of the tubular threads to allow disengagement of the tubulars 30 and 31. However, as soon as the pin and box threads disengage, the last thread of the upper tubular 30 drops down on the first thread of the lower tubular 31, called jumping. If the upper tubular 30 continues to be rotated after it is disengaged from the lower tubular 31 the last thread will repeatedly ride up the first thread of the lower tubular and drop down. During jumping, the threads may be damaged to a lesser or greater extent by the impact therebetween. Thus, it may be useful to know when tubular 30 has been spun-out and the threads have disengaged, to allow removal of the upper tubular 30 before it ever or repeatedly drops down on the tubular below it. On the other hand, attempting to remove tubular 30 prior to thread disengagement may result in the tubulars 30 and 31 snagging and may possibly cause thread damage.
In accordance with another embodiment of the invention, the tubular spinner may include a spin-out detection system to identify when a pair of tubulars has been fully or nearly spun-out so that the motors driving the rollers of the tubular spinner can be shut down. In one embodiment, for example, a system may be employed to monitor the number of tubular revolutions (angular displacement) that the tubular undergoes during a spin-out operation and this can be compared against a known number of tubular revolutions required to disengage the threads of the tubulars being handled. For many oilfield tubulars, it may take between 2 to 21 turns of one tubular relative to the other to disengage the threads. Depending on the tubular type being employed it may only require 3 to 4 turns to disengage the threads, but in some situations it may take between 10 to 20 turns to disengage the threads. The number of turns required to disengage a pair of tubulars, is readily determinable and may already be publicly known for some tubular types. In such a system, an encoder may be employed to count the number of tubular revolutions being driven by the tubular spinner.
In accordance with an implementation of this embodiment of the invention, an encoder may be employed to sense number of turns of a component of the tubular spinner, such as the motor 314, or rollers 310, 312, for example rotations of the motor shaft, motor gears, roller shaft, etc. This count can be used to determine the number of times the tubular 30 is rotated about its axis. As will be appreciated, such a correlation may be made based on the diameter of the roller and the diameter of the pipe being rotated. During operation, an operator may input a pipe diameter being handled to a control system such that the tubular spinner may be automatically controlled to stop after the selected number of tubular rotations for that pipe diameter. If desired, a detector may be employed on the tubular spinner, for example, to detect the space between the rollers to automatically determine the pipe diameter of the pipe being handled and therefore, the ratio of a roller rotation to a pipe rotation.
It is to be noted, however, that in practice the spin-out operation may start with the driven rollers 312 skipping over the surface of the tubular being handled which does not preserve the ratio of motor 314 revolutions to tubular 30 revolutions thus introducing errors in the counting of the turns; the discrepancy being non-determinable. Also, if the tubular 30 being unthreaded is not clean, this may also introduce problems in sensing/measuring tubular rotation. These possible errors must be considered in the use of a tubular rotation count to detect a spun-out condition.
In accordance with another implementation of the embodiment of the invention, an accelerometer may be employed to detect acceleration or jerk (changes in acceleration) during thread jumps. An accelerometer may be employed with high-speed feedback electronics to monitor the accelerometer output. The accelerometer may be installed adjacent the tubular being handled, such as a portion of the spinner frame for example on arm 300 or extensions 304 to monitor vertical tubular accelerations and, in particular, the G forces generated by the tubular. The accelerometer may generate a signal for handling by a control system, for example to alert an operator or for processing for automated operation. In the high vibration environment of well bore drilling; the accelerometer may be affected by false triggering. Also, at least one thread jump must be incurred for the accelerometer to trigger and a thread jump occurs in such a short period that normal electronic monitoring rates sometimes can miss one or more thread jump events.
In accordance with a further implementation of the embodiment of the invention, a linear transducer may be employed to detect linear separation between the upper and lower tubulars 30 and 31, reverse linear displacement in the separation indicating thread jump. The linear transducer may be installed on a stationary structure, such as a portion of the spinner or torque wrench frame, adjacent the tubular being handled. The linear transducer may be installed between a stationary point and the tubular or the rollers, which tend to move vertically with the tubular, to monitor vertical displacements of the tubular vs. time. Again, with the thread jump being very sudden and occurring during a short duration of time, a highly sensitive linear transducer and high-speed feedback electronics may be employed to read the linear transducer output and feed that to a control system. In the high vibration environment of well bore drilling; the linear transducer may be affected by false triggering. Also, at least one thread jump must be incurred for the linear transducer to trigger.
In accordance with yet another implementation of the embodiment of the invention, a spin-out timer may be employed based on spinner motor 314 operations to spin-out the tubular 30 before reassessing tubular disengagement. The spin-out timer, which may for example be a timer component 525 of a control system 523, is started as the spin-out operation is started (i.e. when the motors start rotating) and given tubular parameters such as, but not limited to: the thread taper, thread pitch and spin-out speed, may typically be set at 3 to 5 sec roughly corresponding to 3 to 4 revolutions of the tubular 30. After the allocated spin-out time elapses, as monitored by the timer, the motors are shut down to stop the spin-out process. If the tubulars 30 and 31 have not disengaged within the period allowed by the timer, tubular 30 may be spun again for another, possibly shorter, period of time. An established time for disconnection for any particular tubular connection type in any particular tubular spinner may be stored to control system and the breaking out process can be controlled by the control system employing its timer component.
In the above it is understood that employing various of these systems, may require a comparator for comparing measured values to the established values of interest. It is further understood that employing a values of interest may require the storage of the values, possibly in memory storage. This is true for example in some systems employing pressure thresholds, system pressures, operational times, etc.
It is understood that the various aspects of the invention and that various elements of the implementation described may be employed alone, severally and in various combinations to improve spin-in and spin-out detection in making-up and breaking-out tubular strings, without limiting the invention.
The previous description of the disclosed embodiments is provided to enable any person of ordinary skill in the art to make or use the present invention. Various modifications to those embodiments will be readily apparent to those of ordinary skill in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the full scope consistent with the claims, wherein reference to an element in the singular, such as by use of the article “a” or “an” is not intended to mean “one and only one” unless specifically so stated, but rather “one or more”. All structural and functional equivalents to the elements of the various embodiments described throughout the disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the elements of the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 USC 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or “step for”.
This application is a divisional application of U.S. patent application Ser. No. 13/293,742, filed Nov. 10, 2011, now allowed, which is a divisional application of U.S. patent application Ser. No. 11/852,519, filed Sep. 10, 2007, now U.S. Pat. No. 8,074,537, which claims priority to U.S. Provisional Application No. 60/825,067, filed Sep. 8, 2006, now expired, the contents of each of which is hereby incorporated herein by express reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
3693727 | Bell | Sep 1972 | A |
3745820 | Weiner | Jul 1973 | A |
3768573 | Jennings | Oct 1973 | A |
3799009 | Guier | Mar 1974 | A |
3881375 | Kelly | May 1975 | A |
3882377 | Kelly | May 1975 | A |
3961399 | Boyadjieff | Jun 1976 | A |
4023449 | Boyadjieff | May 1977 | A |
4082017 | Eckel | Apr 1978 | A |
4091451 | Weiner et al. | May 1978 | A |
4125040 | True | Nov 1978 | A |
4176436 | McCombs et al. | Dec 1979 | A |
4192206 | Schulze-Beckinghausen | Mar 1980 | A |
4202225 | Sheldon et al. | May 1980 | A |
4208775 | McCombs et al. | Jun 1980 | A |
4210017 | Motsinger | Jul 1980 | A |
4235566 | Beeman et al. | Nov 1980 | A |
4365402 | McCombs et al. | Dec 1982 | A |
4386883 | Hogan et al. | Jun 1983 | A |
4403898 | Thompson | Sep 1983 | A |
4437363 | Haynes | Mar 1984 | A |
4444273 | Ruby | Apr 1984 | A |
4444421 | Ahlstone | Apr 1984 | A |
4470740 | Frias | Sep 1984 | A |
4474520 | Buckner et al. | Oct 1984 | A |
4475607 | Haney | Oct 1984 | A |
4494899 | Hoang et al. | Jan 1985 | A |
4495840 | Freitag et al. | Jan 1985 | A |
4515045 | Gnatchenko et al. | May 1985 | A |
4548544 | Van Appledorn | Oct 1985 | A |
4552041 | Coyle, Sr. | Nov 1985 | A |
4567779 | Byrne | Feb 1986 | A |
4567952 | Lemaire et al. | Feb 1986 | A |
4574664 | Curry | Mar 1986 | A |
4592125 | Skene | Jun 1986 | A |
4603464 | Smith, Jr. et al. | Aug 1986 | A |
4688453 | Schulze-Beckinghausen | Aug 1987 | A |
4696207 | Boyadjieff | Sep 1987 | A |
4700787 | Buck et al. | Oct 1987 | A |
4709766 | Boyadjieff | Dec 1987 | A |
4725179 | Woolslayer et al. | Feb 1988 | A |
4727781 | Yuehui et al. | Mar 1988 | A |
4730254 | Voden, Jr. | Mar 1988 | A |
4738145 | Vincent et al. | Apr 1988 | A |
4739681 | Pietras | Apr 1988 | A |
4765401 | Boyadjieff | Aug 1988 | A |
4808064 | Bartholet | Feb 1989 | A |
4843945 | Dinsdale | Jul 1989 | A |
4924954 | Mead | May 1990 | A |
4941362 | Tambini | Jul 1990 | A |
4981180 | Price | Jan 1991 | A |
5036927 | Willis | Aug 1991 | A |
5050691 | Moses | Sep 1991 | A |
5099725 | Bouligny, Jr. et al. | Mar 1992 | A |
5172613 | Wesch, Jr. | Dec 1992 | A |
5291808 | Buck | Mar 1994 | A |
5297833 | Willis et al. | Mar 1994 | A |
5402688 | Okada et al. | Apr 1995 | A |
5435213 | Buck | Jul 1995 | A |
5509316 | Hall | Apr 1996 | A |
5609077 | Ohmi et al. | Mar 1997 | A |
5855002 | Armstrong | Dec 1998 | A |
6003412 | Dlask et al. | Dec 1999 | A |
6012360 | Concha | Jan 2000 | A |
RE36631 | Tanabe et al. | Mar 2000 | E |
6047775 | Mock | Apr 2000 | A |
6070500 | Dlask et al. | Jun 2000 | A |
6079925 | Morgan et al. | Jun 2000 | A |
6082224 | McDaniels et al. | Jul 2000 | A |
6082225 | Richardson | Jul 2000 | A |
6206096 | Belik | Mar 2001 | B1 |
6213216 | Rogers | Apr 2001 | B1 |
6237445 | Wesch, Jr. | May 2001 | B1 |
6263763 | Feigel, Jr. et al. | Jul 2001 | B1 |
6311789 | Saxman | Nov 2001 | B1 |
6314411 | Armstrong | Nov 2001 | B1 |
6374706 | Newman | Apr 2002 | B1 |
6385837 | Murakami et al. | May 2002 | B1 |
6505531 | Stogner | Jan 2003 | B2 |
6532648 | Murakami et al. | Mar 2003 | B2 |
6533519 | Tolmon et al. | Mar 2003 | B1 |
6634259 | Castille | Oct 2003 | B2 |
6715569 | Rogers | Apr 2004 | B1 |
6720764 | Relton et al. | Apr 2004 | B2 |
6752044 | Hawkins, III | Jun 2004 | B2 |
6814149 | Liess et al. | Nov 2004 | B2 |
6896055 | Koithan | May 2005 | B2 |
6966385 | Hemphill et al. | Nov 2005 | B2 |
6971283 | Belik | Dec 2005 | B2 |
7000502 | Belik | Feb 2006 | B2 |
7028585 | Pietras et al. | Apr 2006 | B2 |
7036396 | Moe et al. | May 2006 | B2 |
7062991 | West et al. | Jun 2006 | B1 |
7100698 | Kracik et al. | Sep 2006 | B2 |
7117938 | Hamilton et al. | Oct 2006 | B2 |
7178612 | Belik | Feb 2007 | B2 |
7191686 | Angelle et al. | Mar 2007 | B1 |
7191840 | Pietras et al. | Mar 2007 | B2 |
7249639 | Belik | Jul 2007 | B2 |
7281451 | Schulze Beckinghausen | Oct 2007 | B2 |
7435924 | Schmitt-Walter et al. | Oct 2008 | B2 |
7455128 | Belik | Nov 2008 | B2 |
7707914 | Pietras | May 2010 | B2 |
8074537 | Hunter | Dec 2011 | B2 |
20010000832 | Newman | May 2001 | A1 |
20020121012 | Murakami | Sep 2002 | A1 |
20020189804 | Liess et al. | Dec 2002 | A1 |
20040051326 | Belik | Mar 2004 | A1 |
20040144547 | Koithan et al. | Jul 2004 | A1 |
20040237726 | Schulze Beckinghausen | Dec 2004 | A1 |
20050047884 | Belik | Mar 2005 | A1 |
20050076744 | Pietras et al. | Apr 2005 | A1 |
20050077743 | Pietras et al. | Apr 2005 | A1 |
20050092143 | Lehnert et al. | May 2005 | A1 |
20050096846 | Koithan et al. | May 2005 | A1 |
20050188794 | Schulze-Beckinghausen | Sep 2005 | A1 |
20060011350 | Wiggins et al. | Jan 2006 | A1 |
20060017998 | Fujino | Jan 2006 | A1 |
20060118335 | Belik | Jun 2006 | A1 |
20060179980 | Pietras et al. | Aug 2006 | A1 |
20070068669 | Lesko | Mar 2007 | A1 |
20070074606 | Halse | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
1014705 | Aug 1977 | CA |
1062237 | Sep 1979 | CA |
1164443 | Mar 1984 | CA |
1167025 | May 1984 | CA |
1185228 | Apr 1985 | CA |
1194855 | Oct 1985 | CA |
1195241 | Oct 1985 | CA |
2231088 | Jan 1988 | CA |
1250569 | Feb 1989 | CA |
1254194 | May 1989 | CA |
1257881 | Jul 1989 | CA |
1265124 | Jan 1990 | CA |
2018826 | Apr 1991 | CA |
2097089 | Apr 1992 | CA |
2048381 | Feb 1993 | CA |
2113160 | Feb 1993 | CA |
2113161 | Feb 1993 | CA |
2131537 | Sep 1993 | CA |
2134878 | Nov 1993 | CA |
2139774 | Jan 1994 | CA |
1327195 | Feb 1994 | CA |
2148346 | May 1994 | CA |
2115810 | Apr 1995 | CA |
2195128 | Apr 1995 | CA |
2224638 | Jun 1999 | CA |
2325875 | Aug 1999 | CA |
2260514 | Oct 1999 | CA |
2260521 | Oct 1999 | CA |
2306714 | Feb 2000 | CA |
2363178 | Sep 2000 | CA |
2389449 | May 2001 | CA |
2390191 | May 2001 | CA |
2397101 | Jul 2001 | CA |
2404752 | Oct 2001 | CA |
2195128 | Nov 2001 | CA |
2407661 | Nov 2001 | CA |
2476189 | Aug 2003 | CA |
2 381 549 | Oct 2003 | CA |
2451263 | May 2004 | CA |
2535610 | Mar 2005 | CA |
2484053 | Apr 2005 | CA |
2545872 | Jun 2005 | CA |
2 507 788 | Nov 2005 | CA |
2520927 | Mar 2007 | CA |
1470931 | Apr 1977 | GB |
1834351 | Aug 1996 | RU |
787624 | Dec 1980 | SU |
940636 | Jun 1982 | SU |
1141180 | Feb 1985 | SU |
1361314 | Dec 1987 | SU |
1746297 | Jul 1992 | SU |
WO 0052297 | Sep 2000 | WO |
WO 0151764 | Jul 2001 | WO |
WO 0179652 | Oct 2001 | WO |
WO 03069113 | Aug 2003 | WO |
WO 2008022424 | Feb 2008 | WO |
WO 2008022425 | Feb 2008 | WO |
WO 2008022427 | Feb 2008 | WO |
WO 2008028302 | Mar 2008 | WO |
WO 2008034262 | Mar 2008 | WO |
Entry |
---|
www.weatherford.com—Mechanized Rig Systems, 2004. |
HiPer™ Control System, http://www.weatherford.com/weatherford/groups/public/documents/general/wft008924.pdf, 2005. |
JAMPro™ Net, http://www.weatherford.com/weatherford/groups/public/documents/general/wft008924.pdf, 2005. |
www.akerkvaerner.com—Robot Roughneck ready to Rule, Nov. 21, 2005. |
www.akerkvaerner.com—Upgrade Kits for Drilling Equipment & Systems, 2006. |
www.akerkvaerner.com—Drill Floor Equipment, 2006. |
Number | Date | Country | |
---|---|---|---|
20130298734 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
60825067 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13293742 | Nov 2011 | US |
Child | 13927656 | US | |
Parent | 11852519 | Sep 2007 | US |
Child | 13293742 | US |