Claims
- 1. An internal combustion engine comprising:cylinders within which combustion takes place; an engine mechanism comprising a crankshaft that rotates about a crank axis and connecting rods via which the crankshaft is operatively coupled with pistons that reciprocate within the cylinders; an oiling system for delivering oil under nominal engine lubrication pressure to lubricate moving surfaces of the engine mechanism and comprising first and second control passages to which oil is supplied to effect engine compression ratio change; selectively operated hydraulic control devices for causing pressure in the first passage to be greater than pressure in the second passage to effect an increase in engine compression ratio and for causing pressure in the second passage to be greater than pressure in the first passage to effect a decrease in engine compression ratio.
- 2. An internal combustion engine as set forth in claim 1 in which the oiling system comprises a source for supplying oil at pressure greater than nominal engine lubrication pressure to effect engine compression ratio change, and the hydraulic control devices comprise a device for attenuating the pressure of oil supplied by the source pump to nominal engine lubrication pressure for lubricating the moving surfaces.
- 3. An internal combustion engine as set forth in claim 2 in which the source comprises a pump for supplying oil at pressure greater than nominal engine lubrication pressure to effect engine compression ratio change.
- 4. An internal combustion engine as set forth in claim 3 in which the hydraulic control devices comprise a device for making oil supplied by the pump at pressure greater than nominal engine lubrication pressure selectively available to the first passage, and a device for making oil supplied by the pump at pressure greater than nominal engine lubrication pressure selectively available to the second passage.
- 5. An internal combustion engine as set forth in claim 4 in which each respective device for making oil supplied by the pump at pressure greater than nominal engine lubrication pressure selectively available respectively to the first passage and respectively to the second passage comprises a respective solenoid valve.
- 6. An internal combustion engine as set forth in claim 5 in which the hydraulic control devices comprise a first check valve through which oil whose pressure is attenuated by the device for attenuating the pressure of oil supplied by the pump to nominal engine lubrication pressure can flow to the first passage, and a second check valve through which oil whose pressure is attenuated by the device for attenuating the pressure of oil supplied by the pump to nominal engine lubrication pressure can flow to the second passage.
- 7. An internal combustion engine as set forth in claim 1 in which the oiling system comprises a pump for supplying oil at nominal engine lubrication pressure for lubricating the moving surfaces and a hydraulic amplifier operated by oil from the pump for supplying oil at pressure greater than nominal engine lubrication pressure to effect engine compression ratio change.
- 8. An internal combustion engine as set forth in claim 7 including an accumulator for accumulating a supply of oil from the hydraulic amplifier at pressure greater than nominal engine lubrication pressure.
- 9. An internal combustion engine as set forth in claim 8 in which the hydraulic control devices comprise control valving through which the hydraulic amplifier can deliver oil from the accumulator selectively to the first passage and to the second passage.
- 10. An internal combustion engine as set forth in claim 9 in which the hydraulic control devices comprise a first check valve through which oil at nominal engine lubrication pressure from the pump can flow to the first passage, and a second check valve through which oil at nominal engine lubrication pressure from the pump can flow to the second passage.
- 11. An internal combustion engine as set forth in claim 1 in which the oiling system comprises a first pump for supplying oil at nominal engine lubrication pressure for lubricating the moving surfaces and a second pump for supplying oil at pressure greater than nominal engine lubrication pressure to effect engine compression ratio change, and the control devices comprise valving through which the oil at nominal lubrication pressure and at pressure greater than nominal lubrication pressure are selectively communicated to the first and second passages.
- 12. An internal combustion engine as set forth in claim 11 in which the oiling system includes an accumulator that is supplied by the second pump, and in which the valving comprises a three-way, solenoid-operated directional control valve for selectively communicating the accumulator and the first pump to the first and second passages.
- 13. An internal combustion engine as set forth in claim 12 in which the second pump is cycled on and off to maintain pressure greater than nominal lubrication pressure in the accumulator.
- 14. An internal combustion engine as set forth in claim 1 in which a respective normally open solenoid valve fluid-couples the respective control passage to nominal engine lubrication pressure oil; andwherein a first of the solenoid valves is operated closed while a second remains open to create pressure differential between the first passage and the second passage to effect an increase in engine compression ratio, and the second solenoid valve is operated closed while the first remains open to create pressure differential between the first passage and the second passage to effect a decrease in engine compression ratio.
- 15. An internal combustion engine as set forth in claim 1 in which selectively operated hydraulic control devices for causing pressure in the first passage to be greater than pressure in the second passage to effect an increase in engine compression ratio and for causing pressure in the second passage to be greater than pressure in the first passage to effect a decrease in engine compression ratio comprise a pump mechanism that draws oil from the second passage to relieve pressure in the second passage when an increase in engine compression ratio is being effected and that draws oil from the first passage to relieve pressure in the first passage when a decrease in engine compression ratio is being effected.
- 16. A method of changing compression ratio of an internal combustion engine having cylinders within which combustion takes place, an engine mechanism comprising a crankshaft that rotates about a crank axis and connecting rods via which the crankshaft is operatively coupled with pistons that reciprocate within the cylinders, and an oiling system for delivering oil under nominal engine lubrication pressure to lubricate moving surfaces of the engine mechanism and comprising first and second control passages to effect engine compression ratio change, the method comprising:selectively operating hydraulic control devices for causing pressure in the first passage to be greater than pressure in the second passage to effect an increase in engine compression ratio and for causing pressure in the second passage to be greater than pressure in the first passage to effect a decrease in engine compression ratio.
- 17. A method as set forth in claim 16 in which the step of causing pressure in the first passage to be greater than pressure in the second passage to effect an increase in engine compression ratio comprises supplying oil at nominal lubrication pressure to the first passage while decreasing the oil pressure supplied to the second passage, and the step of causing pressure in the second passage to be greater than pressure in the first passage to effect a decrease in engine compression ratio comprises supplying oil at nominal lubrication pressure to the second passage while decreasing the oil pressure supplied to the first passage.
- 18. A method as set forth in claim 16 in which the step of causing pressure in the first passage to be greater than pressure in the second passage to effect an increase in engine compression ratio comprises supplying oil at pressure greater than nominal lubrication pressure to the first passage while supplying oil at nominal lubrication pressure to the second passage, and the step of causing pressure in the second passage to be greater than pressure in the first passage to effect a decrease in engine compression ratio comprises supplying oil at pressure greater than nominal lubrication pressure to the second passage while supplying oil at nominal lubrication pressure to the first passage.
REFERENCE TO RELATED APPLICATIONS AND INCORPORATION BY REFERNCE
This application is related to the following commonly owned patent applications each of which is expressly incorporated in its entirety herein by reference: Ser. No. 09/691,667 , HYDRAULIC CIRCUIT FOR UNLOCKING VARIABLE COMPRESSION RATIO CONNECTING ROD LOCKING MECHANISMS; Ser. No. 09/690,951, HYDRAULIC CIRCUIT HAVING ACCUMULATOR FOR UNLOCKING VARIABLE COMPRESSION RATIO CONNECTING ROD LOCKING MECHANISMS; and Ser. No. 09/690,946, PULSE-OPERATED VARIABLE COMPRESSION RATIO CONNECTING ROD LOCKING MECHANISM.
US Referenced Citations (7)
Non-Patent Literature Citations (3)
Entry |
U.S. application No. 09/690,946, Rao et al., filed Oct. 18, 2000. |
U.S. application No. 09/690,951, Rao et al., filed Oct. 18, 2000. |
U.S. application No. 09/691,667, Rao et al., filed Oct. 18, 2000. |