Oleaginous Microalgae Having an LPAAT Ablation

Information

  • Patent Application
  • 20160348119
  • Publication Number
    20160348119
  • Date Filed
    April 06, 2016
    8 years ago
  • Date Published
    December 01, 2016
    8 years ago
Abstract
Recombinant DNA techniques are used to produce oleaginous recombinant cells that produce triglyceride oils having desired fatty acid profiles and regiospecific or stereospecific profiles. Genes manipulated include those encoding stearoyl-ACP desaturase, delta 12 fatty acid desaturase, acyl-ACP thioesterase, ketoacyl-ACP synthase, lysophosphatidic acid acyltransferase, ketoacyl-CoA reductase, hydroxyacyl-CoA dehydratase, and/or enoyl-CoA reductase. The oil produced can have enhanced oxidative or thermal stability, or can be useful as a frying oil, shortening, roll-in shortening, tempering fat, cocoa butter replacement, as a lubricant, or as a feedstock for various chemical processes. The fatty acid profile can be enriched in midchain profiles or the oil can be enriched in triglycerides of the saturated-unsaturated-saturated type.
Description
REFERENCE TO A SEQUENCE LISTING

This application includes a list of sequences, as shown at the end of the detailed description.


FIELD OF THE INVENTION

Embodiments of the present invention relate to oils/fats, fuels, foods, and oleochemicals and their production from cultures of genetically engineered cells. Specific embodiments relate to oils with a high content of triglycerides bearing fatty acyl groups upon the glycerol backbone in particular regiospecific patterns, highly stable oils, oils with high levels of oleic or mid-chain fatty acids, and products produced from such oils.


BACKGROUND OF THE INVENTION

PCT Publications WO2008/151149, WO2010/06031, WO2010/06032, WO2011/150410, WO2011/150411, WO2012/061647, WO2012/061647, WO2012/106560, and WO2013/158938 disclose oils and methods for producing those oils in microbes, including microalgae. These publications also describe the use of such oils to make foods, oleochemicals and fuels.


Certain enzymes of the fatty acyl-CoA elongation pathway function to extend the length of fatty acyl-CoA molecules. Elongase-complex enzymes extend fatty acyl-CoA molecules in 2 carbon additions, for example myristoyl-CoA to palmitoyl-CoA, stearoyl-CoA to arachidyl-CoA, or oleoyl-CoA to eicosanoyl-CoA, eicosanoyl-CoA to erucyl-CoA. In addition, elongase enzymes also extend acyl chain length in 2 carbon increments. KCS enzymes condense acyl-CoA molecules with two carbons from malonyl-CoA to form beta-ketoacyl-CoA. KCS and elongases may show specificity for condensing acyl substrates of particular carbon length, modification (such as hydroxylation), or degree of saturation. For example, the jojoba (Simmondsia chinensis) beta-ketoacyl-CoA synthase has been demonstrated to prefer monounsaturated and saturated C18- and C20-CoA substrates to elevate production of erucic acid in transgenic plants (Lassner et al., Plant Cell, 1996, Vol 8(2), pp. 281-292), whereas specific elongase enzymes of Trypanosoma brucei show preference for elongating short and midchain saturated CoA substrates (Lee et al., Cell, 2006, Vol 126(4), pp. 691-9).


The type II fatty acid biosynthetic pathway employs a series of reactions catalyzed by soluble proteins with intermediates shuttled between enzymes as thioesters of acyl carrier protein (ACP). By contrast, the type I fatty acid biosynthetic pathway uses a single, large multifunctional polypeptide.


The oleaginous, non-photosynthetic alga, Prototheca moriformis, stores copious amounts of triacylglyceride oil under conditions when the nutritional carbon supply is in excess, but cell division is inhibited due to limitation of other essential nutrients. Bulk biosynthesis of fatty acids with carbon chain lengths up to C18 occurs in the plastids; fatty acids are then exported to the endoplasmic reticulum where (if it occurs) elongation past C18 and incorporation into triacylglycerides (TAGs) is believed to occur. Lipids are stored in large cytoplasmic organelles called lipid bodies until environmental conditions change to favor growth, whereupon they are mobilized to provide energy and carbon molecules for anabolic metabolism.


SUMMARY OF THE INVENTION

In accordance with an embodiment, there is a cell, optionally a microalgal cell, which produces at least 20% oil by dry weight. The oil has a fatty acid profile with 5% or less of saturated fatty acids, optionally less than 4%, less than 3.5%, or less than 3% of saturated fatty acids. The fatty acid profile can have (a) less than 2.0% C16:0; (b) less than 2% C18:0; and/or (c) a C18:1/C18:0 ratio of greater than 20. Alternately, the fatty acid profile can have (a) less than 1.9% C16:0; (b) less than 1% C18:0; and/or (c) a C18:1/C18:0 ratio of greater than 100. The fatty acid profile can have a sum of C16:0 and C18:0 of 2.5% or less, or optionally, 2.2% or less.


The cell can overexpress both a KASII gene and a SAD gene. Optionally, the KASII gene encodes a mature KASII protein with at least 80, 85, 90, or 95% sequence identity to SEQ ID NO: 18 and/or the SAD gene encodes a mature SAD protein with at least 80, 85, 90, or 95% sequence identity to SEQ ID NO: 65. Optionally, the cell has a disruption of an endogenous FATA gene and/or an endogenous FAD2 gene. In some cases, the cell comprises a nucleic acid encoding an inhibitory RNA to down-regulate the expression of a desaturase. In some cases, the inhibitory RNA is a hairpin RNA that down regulates a FAD2 gene.


The cell can be a Eukaryotic microalgal cell; the oil has sterols with a sterol profile characterized by an excess of ergosterol over β-sitosterol and/or the presence of 22, 23-dihydrobrassicasterol, poriferasterol or clionasterol.


In an embodiment, a method includes cultivating the recombinant cell and extracting the oil from the cell. Optionally, the oil is used in a food product with at least one other edible ingredient or subjected to a chemical reaction.


In one embodiment, an oleaginous eukaryotic microalgal cell that produces a cell oil, the cell comprising an ablation (knock-out) of one or more alleles of an endogenous polynucleotide encoding a lysophosphatidic acid acyltransferase (LPAAT). In some embodiments, the cell comprises ablation of both alleles of an LPAAT. In some embodiments, the cell comprises ablation of an allele of an LPAAT identified as LPAAT1 or ablation of an LPAAT identified as LPAAT2. In some embodiments, the cell comprises ablation of both alleles of LPAAT1 and ablation of both alleles of LPAAT2.


In some embodiments, an oleaginous eukaryotic microalgal cell has both an ablation of an endogenous LPAAT and a recombinant nucleic acid that encodes one or more of an active LPCAT, PDCT, DAG-CPT, LPAAT and FAE. The LPCAT has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 86, 87, 88, 89, 90, 91, or 92 or to the relevant portions of SEQ ID NO: 97, 98, 99, 100, 101, 102, or 103. The PDCT has at least 80, 85, 90 or 95% sequence identity to the relevant portions of SEQ ID NO: 93. The DAG-CPT has at least 80, 85, 90 or 95% sequence identity to the relevant portions of SEQ ID NO: 94, 95, or 96. The LPAAT has at least 80, 85, 90 or 95% sequence identity to the relevant portions of SEQ ID NO: 12, 16, 26, 27, 28, 29, 30, 31, 32, 33, 63, 82, or 83. The FAE has at least 80, 85, 90 or 95% sequence identity to the relevant portions of SEQ ID NO: 19, 20, 84, or 85.


In some embodiments, an oleaginous eukaryotic microalgal cell has both an ablation of an endogenous LPAAT and a first recombinant nucleic acid that encodes one or more of an active LPCAT, PDCT, DAG-CPT, and LPAAT and a second recombinant nucleic acid that encodes an active FAE.


In some embodiments, an oleaginous eukaryotic microalgal cell has both an ablation of an endogenous LPAAT and a recombinant nucleic acid that encodes one or more of an active LPCAT, PDCT, DAG-CPT, LPAAT and FAE and another recombinant nucleic acid that encodes an active sucrose invertase.


In some embodiments, the invention is an oil produced by a eukaryotic microalgal cell, the cell optionally of the genus Prototheca, the cell comprising an ablation of one or more alleles of an endogenous polynucleotide encoding LPAAT.


In other embodiments, the invention comprises an oil produced by a eukaryotic microalgal cell that has both an ablation of an endogenous LPAAT and a recombinant nucleic acid that encodes one or more of an active LPCAT, PDCT, DAG-CPT, LPAAT and FAE.


In some embodiments, the invention comprises an oil produced an oleaginous eukaryotic microalgal cell has both an ablation of an endogenous LPAAT and a first recombinant nucleic acid that encodes one or more of an active LPCAT, PDCT, DAG-CPT, and LPAAT and a second recombinant nucleic acid that encodes an active FAE.


In some embodiments, the oil comprises at least 10%, at least 15%, at least 20%, or at least 25% or higher C18:2. In other embodiments the oil comprises at least 5%, at least 10%, at least 20%, or at least 25% or higher C18:3. In some embodiments, the oil comprises at least 1%, at least 5%, at least 7%, or at least 10% or higher C20:1. In some embodiments, the oil comprises at least 1%, at least 5%, at least 7%, or at least 10% or higher C22:1.


In some embodiments, the oil comprises at least 10%, at least 15%, or at least 20% or higher of the combined amount of C20:1 and C22:1.


In some embodiments, the oil comprises less than 50%, less than 40%, less than 30%, or less than 20% or lower C18:1.


In some embodiments, an oleaginous eukaryotic microalgal cell that produces a cell oil, the cell comprising a recombinant nucleic acid that encodes one or more of an active enzymes selected from the group consisting of LPCAT, PDCT, DAG-CPT, LPAAT and FAE. In other embodiments, the cell comprises a second exogenous gene encoding an active sucrose invertase.


In an embodiment, an oleaginous eukaryotic microalgal cell produces a cell oil. The cell is optionally of the genus Prototheca and includes an first exogenous gene encoding an active enzyme of one of the following types:


(a) a lysophosphatidylcholine acyltransferase (LPCAT);


(b) a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT); or


(c) CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT);


and optionally a second exogenous gene encoding


(d) a fatty acid elongase (FAE) active to increase the amount of C20:1 and/or C22:1 fatty acids in the oil.


In some embodiments methods of heterotrophically cultivating recombinant cells of the invention are provided. In some embodiments methods of cultivating recombinant cells heterotrophically and in the dark are provided. The cultivated cells can be dewatered and/or dried. Oil from the cultivated cells can be extracted by mechanical means. Oil from the cultivated cells can be extracted by the use of non-polar organic solvents such as hexane, heptane, pentane and the like. Alternatively methanol, ethanol, or other polar organic solvents may be used. When miscible solvents such as ethanol are used, salts such as NaCl may be used to “break” the emulsion between aqueous and organic phase.


In one aspect, the present invention is directed to an oil produced by an oleaginous eukaryotic microalgal cell as discussed above or herein.


In some embodiments, one or more chemical reactions are performed on the oil of the invention to produce a lubricant, fuel, or other useful products. In other embodiments, a food product is prepared by adding the oil of the invention to another edible food ingredient.


In one aspect, the present invention is directed to an oleaginous eukaryotic microalgal cell that produces a cell oil, in which the cell is optionally of the genus Prototheca, and the cell comprises an exogenous polynucleotide that encodes an active ketoacyl-CoA reductase, hydroxyacyl-CoA dehydratase, or enoyl-CoA reductase. In some embodiments, the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 144 and encodes an active ketoacyl-CoA reductase. In some embodiments, the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 143 and encodes an active hydroxyacyl-CoA dehydratase. In some embodiments, the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to the enoyl-CoA reductase encoding portion of SEQ ID NO: 142 and encodes an active enoyl-CoA reductase.


In some cases, the cell further comprises an exogenous nucleic acid encoding a lysophosphatidylcholine acyltransferase (LPCAT), a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT), a lysophosphatidic acid acyltransferase (LPAAT) or a fatty acid elongase (FAE). In some cases, the cell further comprises an exogenous nucleic acid encoding an enzyme selected from the group consisting of a sucrose invertase and an alpha galactosidase. In some cases, the cell further comprises an exogenous nucleic acid that encodes a desaturase and/or a ketoacyl synthase. In some cases, the cell further comprises a disruption of an endogenous FATA gene. In some cases, the cell further comprises a disruption of an endogenous or FAD2 gene. In some embodiments, the cell further comprises a nucleic acid encoding an inhibitory RNA that down-regulates the expression of a desaturase.


In some embodiments, the cell oil comprises sterols with a sterol profile characterized by an excess of ergosterol over β-sitosterol and/or the presence of 22, 23-dihydrobrassicasterol, poriferasterol or clionasterol.


In one aspect, the present invention provides an oil produced by an oleaginous eukaryotic microalgal cell, in which the cell is optionally of the genus Prototheca, and the cell comprises an exogenous polynucleotide that encodes an active ketoacyl-CoA reductase, hydroxyacyl-CoA dehydratase, or enoyl-CoA reductase. In some cases, the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 144 and encodes an active ketoacyl-CoA reductase. In some cases, the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 143 and encodes an active hydroxyacyl-CoA dehydratase. In some cases, the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to the enoyl-CoA reductase encoding portion of SEQ ID NO: 142 and encodes an active enoyl-CoA reductase.


In some embodiments, the oil is produced by a cell that further comprises an exogenous nucleic acid encoding a lysophosphatidylcholine acyltransferase (LPCAT), a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT), a lysophosphatidic acid acyltransferase (LPAAT) or a fatty acid elongase (FAE). In some cases, the cell further comprises and exogenous nucleic acid encoding an enzyme selected from the group consisting of a sucrose invertase and an alpha galactosidase.


In some cases, the oil comprises at least 10% C18:2. In some cases, the oil comprises at least 15% C18:2. In some cases, the oil comprises at least 1% C18:3. In some cases, the oil comprises at least 5% C18:3. In some cases, the oil comprises at least 10% C18:3. In some cases, the oil comprises at least 1% C20:1. In some cases, the oil comprises at least 5% C20:1. In some cases, the oil comprises at least 7% C20:1. In some cases, the oil comprises at least 1% C22:1. In some cases, the oil comprises at least 5% C22:1. In some cases, the oil comprises at least 7% C22:1. In some embodiments, the oil comprises sterols with a sterol profile characterized by an excess of ergosterol over β-sitosterol and/or the presence of 22, 23-dihydrobrassicasterol, poriferasterol or clionasterol.


In one aspect, the present invention is directed to a cell of the genera Prototheca or Chlorella that produces a cell oil, wherein the cell comprises an exogenous polynucleotide that replaces an endogenous regulatory element of an endogenous gene. In some cases, the cell is a Prototheca cell. In some cases, the cell is a Prototheca moriformis cell.


In some embodiments, the endogenous regulatory element is a promoter that controls the expression of an endogenous acetyl-CoA carboxylase. In some cases, the exogenous polynucleotide is a Prototheca moriformis AMT03 promoter.


In some cases, the cell further comprises an exogenous nucleic acid that encodes an active ketoacyl-CoA reductase, hydroxyacyl-CoA dehydratase, or enoyl-CoA reductase. In some embodiments, the exogenous nucleic acid has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 144 and encodes an active ketoacyl-CoA reductase. In some embodiments, the exogenous nucleic acid has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 143 and encodes an active hydroxyacyl-CoA dehydratase. In some embodiments, the exogenous nucleic acid has at least 80, 85, 90 or 95% sequence identity to the enoyl-CoA reductase encoding portion of SEQ ID NO: 142 and encodes an active enoyl-CoA reductase.


In some cases, the cell further comprises an exogenous nucleic acid encoding a lysophosphatidylcholine acyltransferase (LPCAT), a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT), a lysophosphatidic acid acyltransferase (LPAAT) or a fatty acid elongase (FAE). In some cases, the cell further comprises an exogenous nucleic acid that encodes a desaturase and/or a ketoacyl synthase. In some cases, the cell further comprises a disruption of an endogenous FATA gene. In some cases, the cell further comprises a disruption of an endogenous or FAD2 gene. In some cases, the cell further comprises a nucleic acid encoding an inhibitory RNA that down-regulates the expression of a desaturase.


In some embodiments, the cell oil comprises sterols with a sterol profile characterized by an excess of ergosterol over β-sitosterol and/or the presence of 22, 23-dihydrobrassicasterol, poriferasterol or clionasterol.


In one aspect, the present invention provides an oil produced by any one of the cells discussed above or herein.


In one aspect, the present invention provides a method comprising (a) cultivating a cell as discussed above or herein to produce an oil, and (b) extracting the oil from the cell.


In one aspect, the present invention provides a method of preparing a composition comprising subjecting the oil discussed above or herein to a chemical reaction.


In one aspect, the present invention provides a method of preparing a food product comprising adding the oil discussed above or herein to another edible ingredient.


In one aspect, the present invention provides a polynucleotide with at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 144. In some cases, the polynucleotide comprises the nucleotide sequence of SEQ ID NO: 144.


In one aspect, the present invention provides a polynucleotide with at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 143. In some cases, the polynucleotide comprises the nucleotide sequence of SEQ ID NO: 143.


In one aspect, the present invention provides a polynucleotide with at least 80, 85, 90 or 95% sequence identity to nucleotides 4884 to 5816 of SEQ ID NO: 142. In some cases, the polynucleotide comprises the nucleotide sequence of nucleotides 4884 to 5816 of SEQ ID NO: 142.


In one aspect, the present invention provides a ketoacyl-CoA reductase (KCR) encoded by the nucleotide sequence of SEQ ID NO: 144. In some cases, the KCR is encoded by a polynucleotide with at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 144.


In one aspect, the present invention provides a hydroxylacyl-CoA dehydratase (HACD) encoded by the nucleotide sequence of SEQ ID NO: 143. In some cases, the HACD is encoded by a polynucleotide with at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 143.


In one aspect, the present invention provides an enoyl-CoA reductase (ECR) encoded by the nucleotide sequence of nucleotides 4884 to 5816 of SEQ ID NO: 142. In some cases, the ECR is encoded by a polynucleotide with at least 80, 85, 90 or 95% sequence identity to nucleotides 4884 to 5816 of SEQ ID NO: 142.


In various embodiments of the invention, two or more features discussed above or herein can be combined together.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the total saturated fatty acid levels of S8188 in 15-L fed-batch fermentation runs 140558F22 and 140574F24.



FIG. 2 shows the percent saturates produced from various cell lines discussed in Example 17. “MCB” refers to the master cell bank, and “WCB” refers to the working cell bank. Strains S8695 and S8696, when cultivated in liquid culture media, had total saturates of about 3.6% and 3.75%, respectively.



FIG. 3 shows the alignment of the amino acid sequences of P. morformis and plant ketoacyl-CoA reductase proteins.



FIG. 4 shows the alignment of the amino acid sequences of P. morformis and plant hydroxyacyl-CoA dehydratase proteins.



FIG. 5 shows the alignment of the amino acid sequences of P. morformis and plant enoyl-CoA reductase proteins.



FIGS. 6A and 6B show the alignment of the amino acid sequences of the two alleles of P. morformis acetyl-CoA carboxylase proteins, PmACCase 1-1 and PmACCase1-2





DETAILED DESCRIPTION OF THE INVENTION
I. Definitions

An “allele” refers to a copy of a gene where an organism has multiple similar or identical gene copies, even if on the same chromosome. An allele may encode the same or similar protein.


In connection with two fatty acids in a fatty acid profile, “balanced” shall mean that the two fatty acids are within a specified percentage of their mean area percent. Thus, for fatty acid a in x % abundance and fatty acid b in y % abundance, the fatty acids are “balanced to within z %” if |x−((x+y)/2)| and |y−((x+y)/2)| are ≦100(z).


A “cell oil” or “cell fat” shall mean a predominantly triglyceride oil obtained from an organism, where the oil has not undergone blending with another natural or synthetic oil, or fractionation so as to substantially alter the fatty acid profile of the triglyceride. In connection with an oil comprising triglycerides of a particular regiospecificity, the cell oil or cell fat has not been subjected to interesterification or other synthetic process to obtain that regiospecific triglyceride profile, rather the regiospecificity is produced naturally, by a cell or population of cells. For a cell oil produced by a cell, the sterol profile of oil is generally determined by the sterols produced by the cell, not by artificial reconstitution of the oil by adding sterols in order to mimic the cell oil. In connection with a cell oil or cell fat, and as used generally throughout the present disclosure, the terms oil and fat are used interchangeably, except where otherwise noted. Thus, an “oil” or a “fat” can be liquid, solid, or partially solid at room temperature, depending on the makeup of the substance and other conditions. Here, the term “fractionation” means removing material from the oil in a way that changes its fatty acid profile relative to the profile produced by the organism, however accomplished. The terms “cell oil” and “cell fat” encompass such oils obtained from an organism, where the oil has undergone minimal processing, including refining, bleaching and/or degumming, which does not substantially change its triglyceride profile. A cell oil can also be a “noninteresterified cell oil”, which means that the cell oil has not undergone a process in which fatty acids have been redistributed in their acyl linkages to glycerol and remain essentially in the same configuration as when recovered from the organism.


“Exogenous gene” shall mean a nucleic acid that codes for the expression of an RNA and/or protein that has been introduced into a cell (e.g. by transformation/transfection), and is also referred to as a “transgene”. A cell comprising an exogenous gene may be referred to as a recombinant cell, into which additional exogenous gene(s) may be introduced. The exogenous gene may be from a different species (and so heterologous), or from the same species (and so homologous), relative to the cell being transformed. Thus, an exogenous gene can include a homologous gene that occupies a different location in the genome of the cell or is under different control, relative to the endogenous copy of the gene. An exogenous gene may be present in more than one copy in the cell. An exogenous gene may be maintained in a cell as an insertion into the genome (nuclear or plastid) or as an episomal molecule.


“FADc”, also referred to as “FAD2” is a gene encoding a delta-12 fatty acid desaturase.


“Fatty acids” shall mean free fatty acids, fatty acid salts, or fatty acyl moieties in a glycerolipid. It will be understood that fatty acyl groups of glycerolipids can be described in terms of the carboxylic acid or anion of a carboxylic acid that is produced when the triglyceride is hydrolyzed or saponified.


“Fixed carbon source” is a molecule(s) containing carbon, typically an organic molecule that is present at ambient temperature and pressure in solid or liquid form in a culture media that can be utilized by a microorganism cultured therein. Accordingly, carbon dioxide is not a fixed carbon source.


“In operable linkage” is a functional linkage between two nucleic acid sequences, such a control sequence (typically a promoter) and the linked sequence (typically a sequence that encodes a protein, also called a coding sequence). A promoter is in operable linkage with an exogenous gene if it can mediate transcription of the gene.


“Microalgae” are eukaryotic microbial organisms that contain a chloroplast or other plastid, and optionally that is capable of performing photosynthesis, or a prokaryotic microbial organism capable of performing photosynthesis. Microalgae include obligate photoautotrophs, which cannot metabolize a fixed carbon source as energy, as well as heterotrophs, which can live solely off of a fixed carbon source. Microalgae include unicellular organisms that separate from sister cells shortly after cell division, such as Chlamydomonas, as well as microbes such as, for example, Volvox, which is a simple multicellular photosynthetic microbe of two distinct cell types. Microalgae include cells such as Chlorella, Dunaliella, and Prototheca. Microalgae also include other microbial photosynthetic organisms that exhibit cell-cell adhesion, such as Agmenellum, Anabaena, and Pyrobotrys. Microalgae also include obligate heterotrophic microorganisms that have lost the ability to perform photosynthesis, such as certain dinoflagellate algae species and species of the genus Prototheca.


In connection with fatty acid length, “mid-chain” shall mean C8 to C16 fatty acids.


In connection with a recombinant cell, the term “knockdown” refers to a gene that has been partially suppressed (e.g., by about 1-95%) in terms of the production or activity of a protein encoded by the gene.


Also, in connection with a recombinant cell, the term “knockout” refers to a gene that has been completely or nearly completely (e.g., >95%) suppressed in terms of the production or activity of a protein encoded by the gene. Knockouts can be prepared by ablating the gene by homologous recombination of a nucleic acid sequence into a coding sequence, gene deletion, mutation or other method. When homologous recombination is performed, the nucleic acid that is inserted (“knocked-in”) can be a sequence that encodes an exogenous gene of interest or a sequence that does not encode for a gene of interest.


An “oleaginous” cell is a cell capable of producing at least 20% lipid by dry cell weight, naturally or through recombinant or classical strain improvement. An “oleaginous microbe” or “oleaginous microorganism” is a microbe, including a microalga that is oleaginous (especially eukaryotic microalgae that store lipid). An oleaginous cell also encompasses a cell that has had some or all of its lipid or other content removed, and both live and dead cells.


An “ordered oil” or “ordered fat” is one that forms crystals that are primarily of a given polymorphic structure. For example, an ordered oil or ordered fat can have crystals that are greater than 50%, 60%, 70%, 80%, or 90% of the 13 or (3′ polymorphic form.


In connection with a cell oil, a “profile” is the distribution of particular species or triglycerides or fatty acyl groups within the oil. A “fatty acid profile” is the distribution of fatty acyl groups in the triglycerides of the oil without reference to attachment to a glycerol backbone. Fatty acid profiles are typically determined by conversion to a fatty acid methyl ester (FAME), followed by gas chromatography (GC) analysis with flame ionization detection (FID), as in Example 1. The fatty acid profile can be expressed as one or more percent of a fatty acid in the total fatty acid signal determined from the area under the curve for that fatty acid. FAME-GC-FID measurement approximate weight percentages of the fatty acids. A “sn-2 profile” is the distribution of fatty acids found at the sn-2 position of the triacylglycerides in the oil. A “regiospecific profile” is the distribution of triglycerides with reference to the positioning of acyl group attachment to the glycerol backbone without reference to stereospecificity. In other words, a regiospecific profile describes acyl group attachment at sn-1/3 vs. sn-2. Thus, in a regiospecific profile, POS (palmitate-oleate-stearate) and SOP (stearate-oleate-palmitate) are treated identically. A “stereospecific profile” describes the attachment of acyl groups at sn-1, sn-2 and sn-3. Unless otherwise indicated, triglycerides such as SOP and POS are to be considered equivalent. A “TAG profile” is the distribution of fatty acids found in the triglycerides with reference to connection to the glycerol backbone, but without reference to the regiospecific nature of the connections. Thus, in a TAG profile, the percent of SSO in the oil is the sum of SSO and SOS, while in a regiospecific profile, the percent of SSO is calculated without inclusion of SOS species in the oil. In contrast to the weight percentages of the FAME-GC-FID analysis, triglyceride percentages are typically given as mole percentages; that is the percent of a given TAG molecule in a TAG mixture.


The term “percent sequence identity,” in the context of two or more amino acid or nucleic acid sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. For sequence comparison to determine percent nucleotide or amino acid identity, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters. Optimal alignment of sequences for comparison can be conducted using the NCBI BLAST software (ncbi.nlm.nih.gov/BLAST/) set to default parameters. For example, to compare two nucleic acid sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) set at the following default parameters: Matrix: BLOSUM62; Reward for match: 1; Penalty for mismatch: −2; Open Gap: 5 and Extension Gap: 2 penalties; Gap x drop-off: 50; Expect: 10; Word Size: 11; Filter: on. For a pairwise comparison of two amino acid sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) with blastp set, for example, at the following default parameters: Matrix: BLOSUM62; Open Gap: 11 and Extension Gap: 1 penalties; Gap x drop-off 50; Expect: 10; Word Size: 3; Filter: on.


“Recombinant” is a cell, nucleic acid, protein or vector that has been modified due to the introduction of an exogenous nucleic acid or the alteration of a native nucleic acid. Thus, e.g., recombinant cells can express genes that are not found within the native (non-recombinant) form of the cell or express native genes differently than those genes are expressed by a non-recombinant cell. Recombinant cells can, without limitation, include recombinant nucleic acids that encode for a gene product or for suppression elements such as mutations, knockouts, antisense, interfering RNA (RNAi) or dsRNA that reduce the levels of active gene product in a cell. A “recombinant nucleic acid” is a nucleic acid originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases, ligases, exonucleases, and endonucleases, using chemical synthesis, or otherwise is in a form not normally found in nature. Recombinant nucleic acids may be produced, for example, to place two or more nucleic acids in operable linkage. Thus, an isolated nucleic acid or an expression vector formed in vitro by ligating DNA molecules that are not normally joined in nature, are both considered recombinant for the purposes of this invention. Once a recombinant nucleic acid is made and introduced into a host cell or organism, it may replicate using the in vivo cellular machinery of the host cell; however, such nucleic acids, once produced recombinantly, although subsequently replicated intracellularly, are still considered recombinant for purposes of this invention. Similarly, a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid.


The terms “triglyceride”, “triacylglyceride” and “TAG” are used interchangeably as is known in the art.


II. General

Illustrative embodiments of the present invention feature oleaginous cells that produce altered fatty acid profiles and/or altered regiospecific distribution of fatty acids in glycerolipids, and products produced from the cells. Examples of oleaginous cells include microbial cells having a type II fatty acid biosynthetic pathway, including plastidic oleaginous cells such as those of oleaginous algae and, where applicable, oil producing cells of higher plants including but not limited to commercial oilseed crops such as soy, corn, rapeseed/canola, cotton, flax, sunflower, safflower and peanut. Other specific examples of cells include heterotrophic or obligate heterotrophic microalgae of the phylum Chlorophtya, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. Examples of oleaginous microalgae and method of cultivation are also provided in Published PCT Patent Applications WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/150411, including species of Chlorella and Prototheca, a genus comprising obligate heterotrophs. The oleaginous cells can be, for example, capable of producing 25, 30, 40, 50, 60, 70, 80, 85, or about 90% oil by cell weight, ±5%. Optionally, the oils produced can be low in highly unsaturated fatty acids such as DHA or EPA fatty acids. For example, the oils can comprise less than 5%, 2%, or 1% DHA and/or EPA. The above-mentioned publications also disclose methods for cultivating such cells and extracting oil, especially from microalgal cells; such methods are applicable to the cells disclosed herein and incorporated by reference for these teachings. When microalgal cells are used they can be cultivated autotrophically (unless an obligate heterotroph) or in the dark using a sugar (e.g., glucose, fructose and/or sucrose) In any of the embodiments described herein, the cells can be heterotrophic cells comprising an exogenous invertase gene so as to allow the cells to produce oil from a sucrose feedstock. Alternately, or in addition, the cells can metabolize xylose from cellulosic feedstocks. For example, the cells can be genetically engineered to express one or more xylose metabolism genes such as those encoding an active xylose transporter, a xylulose-5-phosphate transporter, a xylose isomerase, a xylulokinase, a xylitol dehydrogenase and a xylose reductase. See WO2012/154626, “GENETICALLY ENGINEERED MICROORGANISMS THAT METABOLIZE XYLOSE”, published Nov. 15, 2012, including disclosure of genetically engineered Prototheca strains that utilize xylose.


The oleaginous cells may, optionally, be cultivated in a bioreactor/fermenter. For example, heterotrophic oleaginous microalgal cells can be cultivated on a sugar-containing nutrient broth. Optionally, cultivation can proceed in two stages: a seed stage and a lipid-production stage. In the seed stage, the number of cells is increased from a starter culture. Thus, the seed stage(s) typically includes a nutrient rich, nitrogen replete, media designed to encourage rapid cell division. After the seed stage(s), the cells may be fed sugar under nutrient-limiting (e.g. nitrogen sparse) conditions so that the sugar will be converted into triglycerides. As used herein, “standard lipid production conditions” means that the culture conditions are nitrogen limiting. Sugar and other nutrients can be added during the fermentation but no additional nitrogen is added. The cells will consume all or nearly all of the nitrogen present, but no additional nitrogen is provided. For example, the rate of cell division in the lipid-production stage can be decreased by 50%, 80% or more relative to the seed stage. Additionally, variation in the media between the seed stage and the lipid-production stage can induce the recombinant cell to express different lipid-synthesis genes and thereby alter the triglycerides being produced. For example, as discussed below, nitrogen and/or pH sensitive promoters can be placed in front of endogenous or exogenous genes. This is especially useful when an oil is to be produced in the lipid-production phase that does not support optimal growth of the cells in the seed stage.


The oleaginous cells express one or more exogenous genes encoding fatty acid biosynthesis enzymes. As a result, some embodiments feature cell oils that were not obtainable from a non-plant or non-seed oil, or not obtainable at all.


The oleaginous cells (optionally microalgal cells) can be improved via classical strain improvement techniques such as UV and/or chemical mutagenesis followed by screening or selection under environmental conditions, including selection on a chemical or biochemical toxin. For example the cells can be selected on a fatty acid synthesis inhibitor, a sugar metabolism inhibitor, or an herbicide. As a result of the selection, strains can be obtained with increased yield on sugar, increased oil production (e.g., as a percent of cell volume, dry weight, or liter of cell culture), or improved fatty acid or TAG profile. Co-owned U.S. application 60/141,167 filed on 31 Mar. 2015 describes methods for classically mutagenizing oleaginous cells.


For example, the cells can be selected on one or more of 1,2-Cyclohexanedione; 19-Norethindone acetate; 2,2-dichloropropionic acid; 2,4,5-trichlorophenoxyacetic acid; 2,4,5-trichlorophenoxyacetic acid, methyl ester; 2,4-dichlorophenoxyacetic acid; 2,4-dichlorophenoxyacetic acid, butyl ester; 2,4-dichlorophenoxyacetic acid, isooctyl ester; 2,4-dichlorophenoxyacetic acid, methyl ester; 2,4-dichlorophenoxybutyric acid; 2,4-dichlorophenoxybutyric acid, methyl ester; 2,6-dichlorobenzonitrile; 2-deoxyglucose; 5-Tetradecyloxy-w-furoic acid; A-922500; acetochlor; alachlor; ametryn; amphotericin; atrazine; benfluralin; bensulide; bentazon; bromacil; bromoxynil; Cafenstrole; carbonyl cyanide m-chlorophenyl hydrazone (CCCP); carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP); cerulenin; chlorpropham; chlorsulfuron; clofibric acid; clopyralid; colchicine; cycloate; cyclohexamide; C75; DACTHAL (dimethyl tetrachloroterephthalate); dicamba; dichloroprop ((R)-2-(2,4-dichlorophenoxy)propanoic acid); Diflufenican; dihyrojasmonic acid, methyl ester; diquat; diuron; dimethylsulfoxide; Epigallocatechin gallate (EGCG); endothall; ethalfluralin; ethanol; ethofumesate; Fenoxaprop-p-ethyl; Fluazifop-p-Butyl; fluometuron; fomasefen; foramsulfuron; gibberellic acid; glufosinate ammonium; glyphosate; haloxyfop; hexazinone; imazaquin; isoxaben; Lipase inhibitor THL ((−)-Tetrahydrolipstatin); malonic acid; MCPA (2-methyl-4-chlorophenoxyacetic acid); MCPB (4-(4-chloro-o-tolyloxy)butyric acid); mesotrione; methyl dihydrojasmonate; metolachlor; metribuzin; Mildronate; molinate; naptalam; norharman; orlistat; oxadiazon; oxyfluorfen; paraquat; pendimethalin; pentachlorophenol; PF-04620110; phenethyl alcohol; phenmedipham; picloram; Platencin; Platensimycin; prometon; prometryn; pronamide; propachlor; propanil; propazine; pyrazon; Quizalofop-p-ethyl; s-ethyl dipropylthiocarbamate (EPTC); s,s,s-tributylphosphorotrithioate; salicylhydroxamic acid; sesamol; siduron; sodium methane arsenate; simazine; T-863 (DGAT inhibitor); tebuthiuron; terbacil; thiobencarb; tralkoxydim; triallate; triclopyr; triclosan; trifluralin; and vulpinic acid.


The oleaginous cells produce a storage oil, which is primarily triacylglyceride and may be stored in storage bodies of the cell. A raw oil may be obtained from the cells by disrupting the cells and isolating the oil. The raw oil may comprise sterols produced by the cells. WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/1504 disclose heterotrophic cultivation and oil isolation techniques for oleaginous microalgae. For example, oil may be obtained by providing or cultivating, drying and pressing the cells. The oils produced may be refined, bleached and deodorized (RBD) as known in the art or as described in WO2010/120939. The raw or RBD oils may be used in a variety of food, chemical, and industrial products or processes. Even after such processing, the oil may retain a sterol profile characteristic of the source. Microalgal sterol profiles are disclosed below. See especially Section XIII of this patent application. After recovery of the oil, a valuable residual biomass remains. Uses for the residual biomass include the production of paper, plastics, absorbents, adsorbents, drilling fluids, as animal feed, for human nutrition, or for fertilizer.


The nucleic acids of the invention may contain control sequences upstream and downstream in operable linkage with the gene of interest, including LPAAT, LPCAT, FAE, PDCT, DAG-CPT, and other lipid biosynthetic pathway genes as discussed herein. These control sequences include promoters, targeting sequences, untranslated sequences and other control elements.


The nucleic acids of the invention can be codon optimized for expression in a target host cell (e.g., using the codon usage tables of Tables 1 and 2.) For example, at least 60, 65, 70, 75, 80, 85, 90, 95 or 100% of the codons used can be the most preferred codon according to Table 1 or 2. Alternately, at least 60, 65, 70, 75, 80, 85, 90, 95 or 100% of the codons used can be the first or second most preferred codon according to Table 1 or 2. Preferred codons for Prototheca strains and for Chlorella protothecoides are shown below in Tables 1 and 2, respectively.









TABLE 1





Preferred codon usage in Prototheca strains.




















Ala
GCG
345 (0.36)
Asn
AAT
  8 (0.04)



GCA
 66 (0.07)

AAC
201 (0.96)



GCT
101 (0.11)






GCC
442 (0.46)
Pro
CCG
161 (0.29)






CCA
 49 (0.09)


Cys
TGT
 12 (0.10)

CCT
 71 (0.13)



TGC
105 (0.90)

CCC
267 (0.49)


Asp
GAT
 43 (0.12)
Gln
CAG
226 (0.82)



GAC
316 (0.88)

CAA
 48 (0.18)


Glu
GAG
377 (0.96)
Arg
AGG
 33 (0.06)



GAA
 14 (0.04)

AGA
 14 (0.02)






CGG
102 (0.18)


Phe
TTT
 89 (0.29)

CGA
 49 (0.08)



TTC
216 (0.71)

CGT
 51 (0.09)






CGC
331 (0.57)





Gly
GGG
 92 (0.12)






GGA
 56 (0.07)
Ser
AGT
 16 (0.03)



GGT
 76 (0.10)

AGC
123 (0.22)



GGC
559 (0.71)

TCG
152 (0.28)






TCA
 31 (0.06)


His
CAT
 42 (0.21)

TCT
 55 (0.10)



CAC
154 (0.79)

TCC
173 (0.31)


Ile
ATA
  4 (0.01)
Thr
ACG
184 (0.38)



ATT
 30 (0.08)

ACA
 24 (0.05)



ATC
338 (0.91)

ACT
 21 (0.05)






ACC
249 (0.52)





Lys
AAG
284 (0.98)






AAA
  7 (0.02)
Val
GTG
308 (0.50)






GTA
  9 (0.01)


Leu
TTG
 26 (0.04)

GTT
 35 (0.06)



TTA
  3 (0.00)

GTC
262 (0.43)



CTG
447 (0.61)






CTA
 20 (0.03)
Trp
TGG
107 (1.00)



CTT
 45 (0.06)






CTC
190 (0.26)
Tyr
TAT
 10 (0.05)






TAC
180 (0.95)


Met
ATG
191 (1.00)

















Stop
TGA/TAG/TAA
















TABLE 2





Preferred codon usage in Chlorella protothecoides.


















TTC (Phe)
TAC (Tyr)
TGC (Cys)
TGA (Stop)





TGG (Trp)
CCC (Pro)
CAC (His)
CGC (Arg)





CTG (Leu)
CAG (Gln)
ATC (Ile)
ACC (Thr)





GAC (Asp)
TCC (Ser)
ATG (Met)
AAG (Lys)





GCC (Ala)
AAC (Asn)
GGC (Gly)
GTG (Val)





GAG (Glu)









The cell oils of this invention can be distinguished from conventional vegetable or animal triacylglycerol sources in that the sterol profile will be indicative of the host organism as distinguishable from the conventional source. Conventional sources of oil include soy, corn, sunflower, safflower, palm, palm kernel, coconut, cottonseed, canola, rape, peanut, olive, flax, tallow, lard, cocoa, shea, mango, sal, illipe, kokum, and allanblackia. See section XIII of this disclosure for a discussion of microalgal sterols.









TABLE 3







The fatty acid profiles of some commercial oilseed strains.















Common Food Oils*
C12:0
C14:0
C16:0
C16:1
C18:0
C18:1
C18:2
C18:3


















Corn oil (Zea mays)

<1.0
8.0-19.0
<0.5
0.5-4.0
19-50
38-65
<2.0


Cottonseed oil (Gossypium barbadense)
<0.1
0.5-2.0
17-29 
<1.5
1.0-4.0
13-44
40-63
0.1-2.1


Canola (Brassica rapa, B. napus, B. juncea)
<0.1
<0.2
<6.0
<1.0
<2.5
>50
<40
<14


Olive (Olea europea)

<0.1
6.5-20.0
≦3.5
0.5-5.0
56-85
 3.5-20.0
≦1.2


Peanut (Arachis hypogaea)
<0.1
<0.2
7.0-16.0
<1.0
1.3-6.5
35-72
13.0-43
<0.6


Palm (Elaeis guineensis)

0.5-5.9
32.0-47.0 

2.0-8.0
34-44
 7.2-12.0


Safflower (Carthamus tinctorus)
<0.1
<1.0
2.0-10.0
<0.5
 1.0-10.0
 7.0-16.0
72-81
<1.5


Sunflower (Helianthus annus)
<0.1
<0.5
3.0-10.0
<1.0
 1.0-10.0
14-65
20-75
<0.5


Soybean (Glycine max)
<0.1
<0.5
7.0-12.0
<0.5
2.0-5.5
19-30
48-65
 5.0-10.0


Solin-Flax (Linum usitatissimum)
<0.1
<0.5
2.0-9.0 
<0.5
2.0-5.0
8.0-60 
40-80
<5.0





*Unless otherwise indicated, data taken from the U.S. Pharacopeia's Food and Chemicals Codex, 7th Ed. 2010-2011**






Where a fatty acid profile of a triglyceride (also referred to as a “triacylglyceride” or “TAG”) cell oil is given here, it will be understood that this refers to a nonfractionated sample of the storage oil extracted from the cell analyzed under conditions in which phospholipids have been removed or with an analysis method that is substantially insensitive to the fatty acids of the phospholipids (e.g. using chromatography and mass spectrometry). The oil may be subjected to an RBD process to remove phospholipids, free fatty acids and odors yet have only minor or negligible changes to the fatty acid profile of the triglycerides in the oil. Because the cells are oleaginous, in some cases the storage oil will constitute the bulk of all the TAGs in the cell. Example 1 below gives analytical methods for determining TAG fatty acid composition and regiospecific structure.


Broadly categorized, certain embodiments of the invention include (i) recombinant oleaginous cells that comprise an ablation of one or two or all alleles of an endogenous polynucleotide, including polynucleotides encoding lysophosphatidic acid acyltransferase (LPAAT) or (ii) cells that produce oils having low concentrations of polyunsaturated fatty acids, including cells that are auxotrophic for unsaturated fatty acids; (iii) cells producing oils having high concentrations of particular fatty acids due to expression of one or more exogenous genes encoding enzymes that transfer fatty acids to glycerol or a glycerol ester; (iv) cells producing regiospecific oils, (v) genetic constructs or cells encoding a an LPAAT, a lysophosphatidylcholine acyltransferase (LPCAT), a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), diacylglycerol cholinephosphotransferase (DAG-CPT) or fatty acyl elongase (FAE), (vi) cells producing low levels of saturated fatty acids and/or high levels of C18:1, C18:2, C18:3, C20:1 or C22:1, (vii) and other inventions related to producing cell oils with altered profiles. The embodiments also encompass the oils made by such cells, the residual biomass from such cells after oil extraction, oleochemicals, fuels and food products made from the oils and methods of cultivating the cells.


In any of the embodiments below, the cells used are optionally cells having a type II fatty acid biosynthetic pathway such as microalgal cells including heterotrophic or obligate heterotrophic microalgal cells, including cells classified as Chlorophyta, Treboindophyceae, Chlorellales, Chlorellaceae, or Chlorophyceae, or cells engineered to have a type II fatty acid biosynthetic pathway using the tools of synthetic biology (i.e., transplanting the genetic machinery for a type II fatty acid biosynthesis into an organism lacking such a pathway). Use of a host cell with a type II pathway avoids the potential for non-interaction between an exogenous acyl-ACP thioesterase or other ACP-binding enzyme and the multienzyme complex of type I cellular machinery. In specific embodiments, the cell is of the species Prototheca moriformis, Prototheca krugani, Prototheca stagnora or Prototheca zopfii or has a 23S rRNA sequence with at least 65, 70, 75, 80, 85, 90 or 95% nucleotide identity SEQ ID NO: 25. By cultivating in the dark or using an obligate heterotroph, the cell oil produced can be low in chlorophyll or other colorants. For example, the cell oil can have less than 100, 50, 10, 5, 1, 0.0.5 ppm of chlorophyll without substantial purification.


The stable carbon isotope value δ13C is an expression of the ratio of 13C/12C relative to a standard (e.g. PDB, carbonite of fossil skeleton of Belemnite americana from Peedee formation of South Carolina). The stable carbon isotope value δ13C (%) of the oils can be related to the δ13C value of the feedstock used. In some embodiments the oils are derived from oleaginous organisms heterotrophically grown on sugar derived from a C4 plant such as corn or sugarcane. In some embodiments the δ13C (%) of the oil is from −10 to −17% from −13 to −16%.


In specific embodiments and examples discussed below, one or more fatty acid synthesis genes (e.g., encoding an acyl-ACP thioesterase, a keto-acyl ACP synthase, an LPAAT, an LPCAT, a PDCT, a DAG-CPT, an FAE a stearoyl ACP desaturase, or others described herein) is incorporated into a microalga. It has been found that for certain microalga, a plant fatty acid synthesis gene product is functional in the absence of the corresponding plant acyl carrier protein (ACP), even when the gene product is an enzyme, such as an acyl-ACP thioesterase, that requires binding of ACP to function. Thus, optionally, the microalgal cells can utilize such genes to make a desired oil without co-expression of the plant ACP gene.


For the various embodiments of recombinant cells comprising exogenous genes or combinations of genes, it is contemplated that substitution of those genes with genes having 60, 70, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% nucleic acid sequence identity can give similar results, as can substitution of genes encoding proteins having 60, 70, 80, 85, 90, 91, 92, 93, 94, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99 or 99.5% amino acid sequence identity. Likewise, for novel regulatory elements, it is contemplated that substitution of those nucleic acids with nucleic acids having 60, 70, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% nucleic acid can be efficacious. In the various embodiments, it will be understood that sequences that are not necessary for function (e.g. FLAG® tags or inserted restriction sites) can often be omitted in use or ignored in comparing genes, proteins and variants.


Although discovered using or exemplified with microalgae, the novel genes and gene combinations reported here can be used in higher plants using techniques that are well known in the art. For example, the use of exogenous lipid metabolism genes in higher plants is described in U.S. Pat. Nos. 6,028,247, 5,850,022, 5,639,790, 5,455,167, 5,512,482, and 5,298,421 disclose higher plants with exogenous acyl-ACP thioesterases. WO2009129582 and WO1995027791 disclose cloning of LPAAT in plants. FAD2 suppression in higher plants is taught in WO 2013112578, and WO 2008006171.


As described in Example 7, transcript profiling was used to discover promoters that modulate expression in response to low nitrogen conditions. The promoters are useful to selectively express various genes and to alter the fatty acid composition of microbial oils. In accordance with an embodiment, there are non-natural constructs comprising a heterologous promoter and a gene, wherein the promoter comprises at least 60, 65, 70, 75, 80, 85, 90, or 95% sequence identity to any of the promoters of Example 7 (e.g., SEQ ID NOs: 43-58) and the gene is differentially expressed under low vs. high nitrogen conditions. Optionally, the expression is less pH sensitive than for the AMT03 promoter. For example, the promoters can be placed in front of a FAD2 gene in a linoleic acid auxotroph to produce an oil with less than 5, 4, 3, 2, or 1% linoleic acid after culturing under high, then low nitrogen conditions.


III. Ablation (Knock Out) of LPAAT and/or FATA

In an embodiment, the cell is genetically engineered so that one, two or all alleles of a lipid pathway gene are knocked out. In an embodiment, the lipid pathway gene is an LPAAT gene. Alternately, the amount or activity of the gene products of the alleles is knocked down, for example by inhibitory RNA technologies including RNAi, siRNA, miRNA, dsRNA, antisense, and hairpin RNA techniques. When one allele of the lipid pathway gene is knocked out, a corresponding decrease in the enzymatic activity is observed. When all alleles of the lipid pathway gene are knocked out or sufficiently inhibited an auxotroph is created. A first transformation construct can be generated bearing donor sequences homologous to one or more of the alleles of the gene. This first transformation construct may be introduced and selection methods followed to obtain an isolated strain characterized by one or more allelic disruptions. Alternatively, a first strain may be created that is engineered to express a selectable marker from an insertion into a first allele, thereby inactivating the first allele. This strain may be used as the host for still further genetic engineering to knockout or knockdown the remaining allele(s) of the lipid pathway gene (e.g., using a second selectable marker to disrupt a second allele). Complementation of the endogenous gene can be achieved through engineered expression of an additional transformation construct bearing the endogenous gene whose activity was originally ablated, or through the expression of a suitable heterologous gene. The expression of the complementing gene can either be regulated constitutively or through regulatable control, thereby allowing for tuning of expression to the desired level so as to permit growth or create an auxotrophic condition at will. In an embodiment, a population of the fatty acid auxotroph cells are used to screen or select for complementing genes; e.g., by transformation with particular gene candidates for exogenous fatty acid synthesis enzymes, or a nucleic acid library believed to contain such candidates.


Knockout of all alleles of the desired gene and complementation of the knocked-out gene need not be carried out sequentially. The disruption of an endogenous gene of interest and its complementation either by constitutive or inducible expression of a suitable complementing gene can be carried out in several ways. In one method, this can be achieved by co-transformation of suitable constructs, one disrupting the gene of interest and the second providing complementation at a suitable, alternative locus. In another method, ablation of the target gene can be effected through the direct replacement of the target gene by a suitable gene under control of an inducible promoter (“promoter hijacking”). In this way, expression of the targeted gene is now put under the control of a regulatable promoter. An additional approach is to replace the endogenous regulatory elements of a gene with an exogenous, inducible gene expression system. Under such a regime, the gene of interest can now be turned on or off depending upon the particular needs. A still further method is to create a first strain to express an exogenous gene capable of complementing the gene of interest, then to knockout out or knockdown all alleles of the gene of interest in this first strain. The approach of multiple allelic knockdown or knockout and complementation with exogenous genes may be used to alter the fatty acid profile, regiospecific profile, sn-2 profile, or the TAG profile of the engineered cell.


Where a regulatable promoter is used, the promoter can be pH-sensitive (e.g., amt03), nitrogen and pH sensitive (e.g., amt03), or nitrogen sensitive but pH-insensitive (e.g., newly discovered promoters of Example 7) or variants thereof comprising at least 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98 or 99% sequence identity to any of the aforementioned promoters. In connection with a promoter, pH-insensitive means that the promoter is less sensitive than the amt03 promoter when environmental conditions are shifter from pH 6.8 to 5.0 (e.g., at least 5, 10, 15, or 20% less relative change in activity upon the pH-shift as compared to an equivalent cell with amt03 as the promoter).


In a specific embodiment, the recombinant cell comprises nucleic acids operable to reduce the activity of an endogenous acyl-ACP thioesterase; for example a FatA or FatB acyl-ACP thioesterase having a preference for hydrolyzing fatty acyl-ACP chains of length C18 (e.g., stearate (C18:0) or oleate (C18:1), or C8:0-C16:0 fatty acids. The activity of an endogenous acyl-ACP thioesterase may be reduced by knockout or knockdown approaches. Knockdown may be achieved, for example, through the use of one or more RNA hairpin constructs, by promoter hijacking (substitution of a lower activity or inducible promoter for the native promoter of an endogenous gene), or by a gene knockout combined with introduction of a similar or identical gene under the control of an inducible promoter. Example 9 describes the ablation of an endogenous FATA locus and the expression of sucrose inveratase and SAD from the ablated locus.


Accordingly, oleaginous cells, including those of organisms with a type II fatty acid biosynthetic pathway can have knockouts or knockdowns of acyl-ACP thioesterase-encoding or LPAAT-encoding alleles to such a degree as to eliminate or severely limit viability of the cells in the absence of fatty acid supplementation or genetic complementations. These strains can be used to select for transformants expressing acyl-ACP-thioesterase or LPAAT transgenes.


Alternately, or in addition, the strains can be used to completely transplant exogenous acyl-ACP-thioesterases to give dramatically different fatty acid profiles of cell oils produced by such cells. For example, FATA expression can be completely or nearly completely eliminated and replaced with FATB genes that produce mid-chain fatty acids. Alternately, an organism with an endogenous FatA gene having specificity for palmitic acid (C16) relative to stearic or oleic acid (C18) can be replaced with an exogenous FatA gene having a greater relative specificity for stearic acid (C18:0) or replaced with an exogenous FatA gene having a greater relative specificity for oleic acid (C18:1). In certain specific embodiments, these transformants with double knockouts of an endogenous acyl-ACP thioesterase produce cell oils with more than 50, 60, 70, 80, or 90% caprylic, capric, lauric, myristic, or palmitic acid, or total fatty acids of chain length less than 18 carbons. Such cells may require supplementation with longer chain fatty acids such as stearic or oleic acid or switching of environmental conditions between growth permissive and restrictive states in the case of an inducible promoter regulating a FatA gene.


As discussed herein, the LPAAT enzyme catalyzes the transfer of a fatty-acyl group to the sn-2 position of a substituted acylglyceroester. Depending on the particular LPAAT, the enzyme may prefer substrates of short-chain, mid-chain or long-chain fatty-acyl groups. Certain LPAATs have broad specificity and can catalyze short-chain and mid-chain fatty-acly groups or mid-chain or long-chain fatty acyl groups.


In host cells of the invention, the host cell may have one or more endogenous LPAAT enzymes as well as having 1, 2 or more alleles encoding a particular LPAAT. The notation used herein to designate the LPAATs and their respective alleles is as follows. LPAAT1-1 designates allele 1 encoding LPAAT1; LPAAT1-2 designates allele 2 encoding LPAAT1; LPAAT2-1 designates allele 1 encoding LPAAT2; LPAAT2-2 designates allele 2 encoding LPAAT2.


In host cells of the invention, the host cell may have one or more endogenous thioesterase enzymes as well as having 1, 2 or more alleles encoding a particular thioesteras. The notation used herein to designate the thioesterases and their respective alleles is as follows. FATA-1 designates allele 1 encoding FATA; FATA-2 designates allele 2 encoding FATA; FATB-1 designates allele 1 encoding FATB; FATB-2 designates allele 2 encoding FATB.


Alternately, or in addition, the strains can be used to completely transplant exogenous LPATT to give dramatically different SN-2 profiles of cell oils produced by such cells. For example, LPAAT expression can be completely or nearly completely eliminated and replaced with LPAAT genes that catalyze the transfer of fatty-acyl groups to the SN-2 position. Alternately, an organism with an endogenous LPAAT gene having specificity for long-chain fatty-acyl groups can be replaced with an exogenous LPAAT gene having a greater relative specificity for mid-chains or replaced with an exogenous LPAAT gene having a greater relative specificity for short-chain fatty-acyl groups.


In an embodiment the oleaginous cells are cultured (e.g., in a bioreactor). The cells are fully auxotrophic or partially auxotrophic (i.e., lethality or synthetic sickness) with respect to one or more types of fatty acid. The cells are cultured with supplementation of the fatty acid(s) so as to increase the cell number, then allowing the cells to accumulate oil (e.g. to at least 40% by dry cell weight). Alternatively, the cells comprise a regulatable fatty acid synthesis gene that can be switched in activity based on environmental conditions and the environmental conditions during a first, cell division, phase favor production of the fatty acid and the environmental conditions during a second, oil accumulation, phase disfavor production of the fatty acid. In the case of an inducible gene, the regulation of the inducible gene can be mediated, without limitation, via environmental pH (for example, by using the AMTS promoter as described in the Examples).


As a result of applying either of these supplementation or regulation methods, a cell oil may be obtained from the cell that has low amounts of one or more fatty acids essential for optimal cell propagation. Specific examples of oils that can be obtained include those low in stearic, linoleic and/or linolenic acids.


These cells and methods are illustrated in connection with low polyunsaturated oils in the section immediately below.


Likewise, fatty acid auxotrophs can be made in other fatty acid synthesis genes including those encoding a SAD, FAD, KASIII, KASI, KASII, KCS, FAE, LPCAT. PDCT. DAG-CPT, GPAT, LPAAT, DGAT or AGPAT or PAP. These auxotrophs can also be used to select for complement genes or to eliminate native expression of these genes in favor of desired exogenous genes in order to alter the fatty acid profile, regiospecific profile, or TAG profile of cell oils produced by oleaginous cells.


Accordingly, in an embodiment of the invention, there is a method for producing an oil/fat. The method comprises cultivating a recombinant oleaginous cell in a growth phase under a first set of conditions that is permissive to cell division so as to increase the number of cells due to the presence of a fatty acid, cultivating the cell in an oil production phase under a second set of conditions that is restrictive to cell division but permissive to production of an oil that is depleted in the fatty acid, and extracting the oil from the cell, wherein the cell has a mutation or exogenous nucleic acids operable to suppress the activity of a fatty acid synthesis enzyme, the enzyme optionally being a stearoyl-ACP desaturase, delta 12 fatty acid desaturase, or a ketoacyl-ACP synthase, FAD, KASIII, KASI, KASII, KCS, FAE, LPCAT. PDCT. DAG-CPT, GPAT, LPAAT, DGAT or AGPAT or PAP. The oil produced by the cell can be depleted in the fatty acid by at least 50, 60, 70, 80, or 90%. The cell can be cultivated heterotrophically. The cell can be a microalgal cell cultivated heterotrophically or autotrophically and may produce at least 40, 50, 60, 70, 80, or 90% oil by dry cell weight.


IV. Cell Oils with Less than 3% Saturated Fats

In an embodiment of the present invention, the cell oil produced by the cell has less than 3% total saturated fatty acids. The cell oil can be a liquid or solid at room temperature, or a blend of liquid and solid oils, including the regiospecific or stereospecific oils, or oils with high mono-unsaturated fatty acid content, described infra.


For example, the OSI (oxidative stability index) test may be run at temperatures between 110° C. and 140° C. The oil is produced by cultivating cells (e.g., any of the plastidic microbial cells mentioned above or elsewhere herein) that are genetically engineered to reduce the activity of one or more fatty acid desaturase. For example, the cells may be genetically engineered to reduce the activity of one or more fatty acyl Δ12 desaturase(s) responsible for converting oleic acid (18:1) into linoleic acid (18:2) and/or one or more fatty acyl Δ15 desaturase(s) responsible for converting linoleic acid (18:2) into linolenic acid (18:3). Various methods may be used to inhibit the desaturase including knockout or mutation of one or more alleles of the gene encoding the desaturase in the coding or regulatory regions, inhibition of RNA transcription, or translation of the enzyme, including RNAi, siRNA, miRNA, dsRNA, antisense, and hairpin RNA techniques. Other techniques known in the art can also be used including introducing an exogenous gene that produces an inhibitory protein or other substance that is specific for the desaturase. In specific examples, a knockout of one fatty acyl 412 desaturase allele is combined with RNA-level inhibition of a second allele. Example 9 describes an oil will less than 3% total saturated fatty acids produced by an oleaginous microalgal cell in which the FAD gene was knocked out.


In another specific embodiment there is an oil that is combined with antioxidants such as PANA and ascorbyl palmitate. Triglyceride oils and the combination of these antioxidants may have general applicability including in producing stable biodegradable lubricants (e.g., jet engine lubricants). The oxidative stability of oils can be determined by well-known techniques including the Rancimat method using the AOCS Cd 12b-92 standard test at a defined temperature. For example, the OSI (oxidative stability index) can be determined at a range of temperatures, preferably between 110° C. and 140° C.


Antioxidants suitable for use with the oils of the present invention include alpha, delta, and gamma tocopherol (vitamin E), tocotrienol, ascorbic acid (vitamin C), glutathione, lipoic acid, uric acid, β-carotene, lycopene, lutein, retinol (vitamin A), ubiquinol (coenzyme Q), melatonin, resveratrol, flavonoids, rosemary extract, propyl gallate (PG), tertiary butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT), N,N′-di-2-butyl-1,4-phenylenediamine, 2,6-di-tert-butyl-4-methylphenol, 2,4-dimethyl-6-tert-butylphenol, 2,4-dimethyl-6-tert-butylphenol, 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butylphenol, and phenyl-alpha-naphthylamine (PANA).


In addition to the desaturase modifications, in a related embodiment other genetic modifications may be made to further tailor the properties of the oil, as described throughout, including introduction or substitution of acyl-ACP thioesterases having altered chain length specificity and/or overexpression of an endogenous or exogenous gene encoding a KAS, SAD, LPAAT, DGAT, KASIII, KASI, KASII, KCS, FAE, LPCAT. PDCT. DAG-CPT, GPAT, LPAAT, DGAT or AGPAT or PAP gene. For example, a strain that produces elevated oleic levels may also produce low levels of polyunsaturates. Such genetic modifications can include increasing the activity of stearoyl-ACP desaturase (SAD) by introducing an exogenous SAD gene, increasing elongase activity by introducing an exogenous KASII gene, and/or knocking down or knocking out a FATA gene. See Example 9.


In a specific embodiment, a high oleic cell oil with low polyunsaturates may be produced. For example, the oil may have a fatty acid profile with greater than 60, 70, 80, 90, or 95% oleic acid and less than 5, 4, 3, 2, or 1% polyunsaturates. In related embodiments, a cell oil is produced by a cell having recombinant nucleic acids operable to decrease fatty acid 412 desaturase activity and optionally fatty acid 415 desaturase so as to produce an oil having less than or equal to 3% polyunsaturated fatty acids with greater than 60% oleic acid, less than 2% polyunsaturated fatty acids and greater than 70% oleic acid, less than 1% polyunsaturated fatty acids and greater than 80% oleic acid, or less than 0.5% polyunsaturated fatty acids and greater than 90% oleic acid. It has been found that one way to increase oleic acid is to use recombinant nucleic acids operable to decrease expression of a FATA acyl-ACP thioesterase and optionally overexpress a KAS II gene; such a cell can produce an oil with greater than or equal to 75% oleic acid. Alternately, overexpression of KASII can be used without the FATA knockout or knockdown. Oleic acid levels can be further increased by reduction of delta 12 fatty acid desaturase activity using the methods above, thereby decreasing the amount of oleic acid the is converted into the unsaturates linoleic acid and linolenic acid. Thus, the oil produced can have a fatty acid profile with at least 75% oleic and at most 3%, 2%, 1%, or 0.5% linoleic acid. In a related example, the oil has between 80 to 95% oleic acid and about 0.001 to 2% linoleic acid, 0.01 to 2% linoleic acid, or 0.1 to 2% linoleic acid. In another related embodiment, an oil is produced by cultivating an oleaginous cell (e.g., a microalga) so that the microbe produces a cell oil with less than 10% palmitic acid, greater than 85% oleic acid, 1% or less polyunsaturated fatty acids, and less than 7% saturated fatty acids. Such an oil is produced in a microalga with FAD and FATA knockouts plus expression of an exogenous KASII gene. Such oils will have a low freezing point, with excellent stability and are useful in foods, for frying, fuels, or in chemical applications. Further, these oils may exhibit a reduced propensity to change color over time.


V. Cells with Exogenous Acyltransferases

In various embodiments of the present invention, one or more genes encoding an acyltransferase (an enzyme responsible for the condensation of a fatty acid with glycerol or a glycerol derivative to form an acylglyceride) can be introduced into an oleaginous cell (e.g., a plastidic microalgal cell) so as to alter the fatty acid composition of a cell oil produced by the cell. The genes may encode one or more of a glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAAT), also known as 1-acylglycerol-3-phosphate acyltransferase (AGPAT), phosphatidic acid phosphatase (PAP), or diacylglycerol acyltransferase (DGAT) that transfers an acyl group to the sn-3 position of DAG, thereby producing a TAG.


Recombinant nucleic acids may be integrated into a plasmid or chromosome of the cell. Alternately, the gene encodes an enzyme of a lipid pathway that generates TAG precursor molecules through fatty acyl-CoA-independent routes separate from that above. Acyl-ACPs may be substrates for plastidial GPAT and LPAAT enzymes and/or mitochondrial GPAT and LPAAT enzymes. Among further enzymes capable of incorporating acyl groups (e.g., from membrane phospholipids) to produce TAGs is phospholipid diacylglycerol acyltransferase (PDAT). Still further acyltransferases, including lysophosphosphatidylcholine acyltransferase (LPCAT), lysophosphosphatidylserine acyltransferase (LPSAT), lysophosphosphatidylethanolamine acyltransferase (LPEAT), and lysophosphosphatidylinositol acyltransferase (LPIAT), are involved in phospholipid synthesis and remodeling that may impact triglyceride composition.


The exogenous gene can encode an acyltransferase enzyme having preferential specificity for transferring an acyl substrate comprising a specific number of carbon atoms and/or a specific degree of saturation is introduced into a oleaginous cell so as to produce an oil enriched in a given regiospecific triglyceride. For example, the coconut (Cocos nucifera) lysophosphatidic acid acyltransferase has been demonstrated to prefer C12:0-CoA substrates over other acyl-CoA substrates (Knutzon et al., Plant Physiology, Vol. 120, 1999, pp. 739-746), whereas the 1-acyl-sn-3-glycerol-3-phosphate acyltransferase of maturing safflower seeds shows preference for linoleoyl-CoA and oleoyl-CoA substrates over other acyl-CoA substrates, including stearoyl-CoA (Ichihara et al., European Journal of Biochemistry, Vol. 167, 1989, pp. 339-347). Furthermore, acyltransferase proteins may demonstrate preferential specificity for one or more short-chain, medium-chain, or long-chain acyl-CoA or acyl-ACP substrates, but the preference may only be encountered where a particular, e.g. medium-chain, acyl group is present in the sn-1 or sn-3 position of the lysophosphatidic acid donor substrate. As a result of the exogenous gene, a TAG oil can be produced by the cell in which a particular fatty acid is found at the sn-2 position in greater than 20, 30, 40, 50, 60, 70, 90, or 90% of the TAG molecules.


In some embodiments of the invention, the cell makes an oil rich in saturated-unsaturated-saturated (sat-unsat-sat) TAGs. Sat-unsat-sat TAGS include 1,3-dihexadecanoyl-2-(9Z-octadecenoyl)-glycerol (referred to as 1-palmitoyl-2-oleyl-glycero-3-palmitoyl), 1,3-dioctadecanoyl-2-(9Z-octadecenoyl)-glycerol (referred to as 1-stearoyl-2-oleyl-glycero-3-stearoyl), and 1-hexadecanoyl-2-(9Z-octadecenoyl)-3-octadecanoy-glycerol (referred to as 1-palmitoyl-2-oleyl-glycero-3-stearoyl). These molecules are more commonly referred to as POP, SOS, and POS, respectively, where ‘P’ represents palmitic acid, ‘S’ represents stearic acid, and ‘0’ represents oleic acid. Further examples of saturated-unsaturated-saturated TAGs include MOM, LOL, MOL, COC and COL, where ‘M’ represents myristic acid, ‘L’ represents lauric acid, and ‘C’ represents capric acid (C8:0). Trisaturates, triglycerides with three saturated fatty acyl groups, are commonly sought for use in food applications for their greater rate of crystallization than other types of triglycerides. Examples of trisaturates include PPM, PPP, LLL, SSS, CCC, PPS, PPL, PPM, LLP, and LLS. In addition, the regiospecific distribution of fatty acids in a TAG is an important determinant of the metabolic fate of dietary fat during digestion and absorption.


In some embodiments, the expression of the acyltransferase, e.g., LPAAT, decreases the C18:1 content of the TAG and/or increases the C18:2, C18:3, C20:1, or C22:1 content of the TAG. Example 10 discloses the expression of LPAAT in microalgae that show significant decrease of C18:1 and significant increase in C18:2, C18:3, C20:1, or C22:1. The amount of decrease in C18:1 present in the cell oil may be decreased by lower than 10%, lower than 15%, lower than 20%, lower than 25%, lower than 30%, lower than 35%, lower than 50%, lower than 55%, lower than 60%, lower than 65%, lower than 70%, lower than 75%, lower than 80%, lower than 85%, lower than 90%, or lower than 95% than in the cell oil produced by the microorganism without the recombinant nucleic acids.


In some embodiments, the expression of the acyltransferase, e.g., LPAAT, increases the C18:2, C18:3, C20:1, or C22:1 content of the TAG. The amount of increase in C18:2, C18:3, C20:1, or C22:1 present in the cell oil may be increased by greater than 10%, greater than 15%, greater than 20%, greater than 25%, greater than 30%, greater than 35%, greater than 50%, greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 100%, greater than 100-500%, or greater than 500% than in the cell oil produced by the microorganism without the recombinant nucleic acids.


According to certain embodiments of the present invention, oleaginous cells are transformed with recombinant nucleic acids so as to produce cell oils that comprise an elevated amount of a specified regiospecific triglyceride, for example 1-acyl-2-oleyl-glycero-3-acyl, or 1-acyl-2-lauric-glycero-3-acyl where oleic or lauric acid respectively is at the sn-2 position, as a result of introduced recombinant nucleic acids. Alternately, caprylic, capric, myristic, or palmitic acid may be at the sn-2 position. The amount of the specified regiospecific triglyceride present in the cell oil may be increased by greater than 5%, greater than 10%, greater than 15%, greater than 20%, greater than 25%, greater than 30%, greater than 35%, greater than 40%, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90%, greater than 100-500%, or greater than 500% than in the cell oil produced by the microorganism without the recombinant nucleic acids. As a result, the sn-2 profile of the cell triglyceride may have greater than 10, 20, 30, 40, 50, 60, 70, 80, or 90% of the particular fatty acid.


The identity of the acyl chains located at the distinct stereospecific or regiospecific positions in a glycerolipid can be evaluated through one or more analytical methods known in the art (see Luddy et al., J. Am. Oil Chem. Soc., 41, 693-696 (1964), Brockerhoff, J. Lipid Res., 6, 10-15 (1965), Angers and Aryl, J. Am. Oil Chem. Soc., Vol. 76:4, (1999), Buchgraber et al., Eur. J. Lipid Sci. Technol., 106, 621-648 (2004)), or in accordance with Example 1 given below.


The positional distribution of fatty acids in a triglyceride molecule can be influenced by the substrate specificity of acyltransferases and by the concentration and type of available acyl moieties substrate pool. Nonlimiting examples of enzymes suitable for altering the regiospecificity of a triglyceride produced in a recombinant microorganism are listed in Tables 4-7. One of skill in the art may identify additional suitable proteins.









TABLE 4





Glycerol-3-phosphate acyltransferases and GenBank accession numbers.

















glycerol-3-phosphate acyltransferase

Arabidopsis

BAA00575




thaliana



glycerol-3-phosphate acyltransferase

Chlamydomonas

EDP02129




reinhardtii



glycerol-3-phosphate acyltransferase

Chlamydomonas

Q886Q7




reinhardtii



acyl-(acyl-carrier-protein):

Cucurbita moschata

BAB39688


glycerol-3-phosphate acyltransferase


glycerol-3-phosphate acyltransferase

Elaeis guineensis

AAF64066


glycerol-3-phosphate acyltransferase

Garcina

ABS86942




mangostana



glycerol-3-phosphate acyltransferase

Gossypium hirsutum

ADK23938


glycerol-3-phosphate acyltransferase

Jatropha curcas

ADV77219


plastid glycerol-3-phosphate

Jatropha curcas

ACR61638


acyltransferase


plastidial glycerol-phosphate

Ricinus communis

EEF43526


acyltransferase


glycerol-3-phosphate acyltransferase

Vica faba

AAD05164


glycerol-3-phosphate acyltransferase

Zea mays

ACG45812









Lysophosphatidic acid acyltransferases suitable for use with the microbes and methods of the invention include, without limitation, those listed in Table 5.









TABLE 5





Lysophosphatidic acid acyltransferases and GenBank accession numbers.

















1-acyl-sn-glycerol-3-phosphate acyltransferase

Arabidopsis thaliana

AEE85783


1-acyl-sn-glycerol-3-phosphate acyltransferase

Brassica juncea

ABQ42862


1-acyl-sn-glycerol-3-phosphate acyltransferase

Brassica juncea

ABM92334


1-acyl-sn-glycerol-3-phosphate acyltransferase

Brassica napus

CAB09138


lysophosphatidic acid acyltransferase

Chlamydomonas

EDP02300




reinhardtii



lysophosphatidic acid acyltransferase

Limnanthes alba

AAC49185


1-acyl-sn-glycerol-3-phosphate acyltransferase

Limnanthes douglasii

CAA88620


(putative)


acyl-CoA:sn-1-acylglycerol-3-phosphate

Limnanthes douglasii

ABD62751


acyltransferase


1-acylglycerol-3-phosphate O-acyltransferase

Limnanthes douglasii

CAA58239


1-acyl-sn-glycerol-3-phosphate acyltransferase

Ricinus communis

EEF39377


lysophosphatidic acid acyltransferase

Limnanthes douglasii

Q42870


lysophosphatidic acid acyltransferase

Limnanthes alba

Q42868









Diacylglycerol acyltransferases suitable for use with the microbes and methods of the invention include, without limitation, those listed in Table 6.









TABLE 6





Diacylglycerol acyltransferases and GenBank accession numbers.

















diacylglycerol acyltransferase

Arabidopsis

CAB45373




thaliana



diacylglycerol acyltransferase

Brassica juncea

AAY40784


putative diacylglycerol acyltransferase

Elaeis guineensis

AEQ94187


putative diacylglycerol acyltransferase

Elaeis guineensis

AEQ94186


acyl CoA:diacylglycerol acyltransferase

Glycine max

AAT73629


diacylglycerol acyltransferase

Helianthus annus

ABX61081


acyl-CoA:diacylglycerol

Olea europaea

AAS01606


acyltransferase 1


diacylglycerol acyltransferase

Ricinus communis

AAR11479









Phospholipid diacylglycerol acyltransferases suitable for use with the microbes and methods of the invention include, without limitation, those listed in Table 7.









TABLE 7





Phospholipid diacylglycerol acyltransferases and GenBank accession


numbers.

















phospholipid:diacylglycerol

Arabidopsis

AED91921


acyltransferase

thaliana



Putative

Elaeis guineensis

AEQ94116


phospholipid:diacylglycerol


acyltransferase


phospholipid:diacylglycerol

Glycine max

XP_003541296


acyltransferase 1-like


phospholipid:diacylglycerol

Jatropha curcas

AEZ56255


acyltransferase


phospholipid:diacylglycerol

Ricinus

ADK92410


acyltransferase

communis



phospholipid:diacylglycerol

Ricinus

AEW99982


acyltransferase

communis










In an embodiment of the invention, known or novel LPAAT genes are transformed into the oleaginous cells so as to alter the fatty acid profile of triglycerides produced by those cells, by altering the sn-2 profile of the triglycerides or by increasing the C18:3, C20:1, or C22:1 content of the triglycerides or by decreasing the C18:1 content of the triglycerides. For example, by virtue of expressing an exogenous active LPAAT in an oleaginous cell, the percent of unsaturated fatty acid at the sn-2 position is increased by 10, 20, 30, 40, 50, 60, 70, 80, 90% or more. For example, a cell may produce triglycerides with 30% unsaturates (which may be primarily 18:1 and 18:2 and 18:3 fatty acids) at the sn-2 position. In another embodiment, the expression of the active LPPAT results in decreased production of C18:1 by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%. In another embodiment, the expression of the active LPPAT results in increase production of C18:2, C18:3, C20:1, or C22:1 either individually or together by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, or more than 500%. Alternately, an exogenous LPAAT can be used to increase mid-chain fatty acids including saturated mid-chains such as C8:0, C10:0, C12:0, C14:0 or C16:0 moieties at the sn-2 position. As a result, mid-chain levels in the overall fatty acid profile may be increased. The choice of LPAAT gene is important in that different LPAATs can cause a shift in the sn-2 and fatty acid profiles toward different acyl group chain-lengths or saturation levels.


Specific embodiments of the invention are a nucleic acid construct, a cell comprising the nucleic acid construct, a method of cultivating the cell to produce a triglyceride, and the triglyceride oil produced where the nucleic acid construct has a promoter operably linked to a novel LPAAT coding sequence. The coding sequence can have an initiation codon upstream and a termination codon downstream followed by a 3 UTR sequence. In a specific embodiment, the LPAAT gene has LPAAT activity and a coding sequence have at least 75, 80, 85, 90, 95, 96, 97, 98, or 99% sequence identity to any of the cDNAs of SEQ ID NOs: 29 to 34 or a functional fragment thereof including equivalent sequences by virtue of degeneracy of the genetic code. Introns can be inserted into the sequence as well. In addition to microalgae and other oleaginous cells, plants expressing the novel LPAAT as transgenes are expressly included in the embodiments and can be produced using known genetic engineering techniques.


VI. Cells with Exogenous Elongases or Elongase Complex Enzymes

In various embodiments of the present invention, one or more genes encoding elongases or components of the fatty acyl-CoA elongation complex can be introduced into an oleaginous cell (e.g., a plastidic microalgal cell) so as to alter the fatty acid composition of the cell or of a cell oil produced by the cell. The genes may encode a beta-ketoacyl-CoA synthase (also referred to as Elongase, 3-ketoacyl synthase, beta-ketoacyl synthase or KCS), a ketoacyl-CoA reductase, a hydroxyacyl-CoA dehydratase, enoyl-CoA reductase, or elongase. The enzymes encoded by these genes are active in the elongation of acyl-coA molecules liberated by acyl-ACP thioesterases. Recombinant nucleic acids may be integrated into a plasmid or chromosome of the cell. In a specific embodiment, the cell is of Chlorophyta, including heterotrophic cells such as those of the genus Prototheca.


Beta-Ketoacyl-CoA synthase and elongase enzymes suitable for use with the microbes and methods of the invention include, without limitation, those listed in Table 8 and in the sequence listing.









TABLE 8





Beta-Ketoacyl-CoA synthases and elongases listed with GenBank


accession numbers.
















Trypanosoma brucei elongase 3 (GenBank Accession No. AAX70673), Marchanita




polymorpha (GenBank Accession No. AAP74370), Trypanosoma cruzi fatty acid elongase,



putative (GenBank Accession No. EFZ33366), Nannochloropsis oculata fatty acid elongase


(GenBank Accession No. ACV21066.1), Leishmania donovani fatty acid elongase, putative


(GenBank Accession No. CBZ32733.1), Glycine max 3-ketoacyl-CoA synthase 11-like


(GenBank Accession No. XP_003524525.1), Medicago truncatula beta-ketoacyl-CoA


synthase (GenBank Accession No. XP_003609222), Zea mays fatty acid elongase (GenBank


Accession No. ACG36525), Gossypium hirsutum beta-ketoacyl-CoA synthase (GenBank


Accession No. ABV60087), Helianthus annuus beta-ketoacyl-CoA synthase (GenBank


Accession No. ACC60973.1), Saccharomyces cerevisiae ELO1 (GenBank Accession No.


P39540), Simmondsia chinensis beta-ketoacyl-CoA synthase (GenBank Accession No.


AAC49186), Tropaeolum majus putative fatty acid elongase (GenBank Accession No.


AAL99199, Brassica napus fatty acid elongase (GenBank Accession No. AAA96054)









In an embodiment of the invention, an exogenous gene encoding a beta-ketoacyl-CoA synthase or elongase enzyme having preferential specificity for elongating an acyl substrate comprising a specific number of carbon atoms and/or a specific degree of acyl chain saturation is introduced into a oleaginous cell so as to produce a cell or an oil enriched in fatty acids of specified chain length and/or saturation. Examples 10 and 15 describe engineering of Prototheca strains in which exogenous fatty acid elongases with preferences for extending long-chain fatty acyl-CoAs have been overexpressed to increase the concentration of C18:2, C18:3, C20:1, and/or C22:1.


In specific embodiments, the oleaginous cell produces an oil comprising greater than 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60 70, or 80% linoleic, linolenic, erucic and/or eicosenoic acid. Alternately, the cell produces an oil comprising 0.5-5, 5-10, 10-15, 15-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, or 90-99% linoleic, linolenic, erucic or eicosenoic acid. The cell may comprise recombinant acids described above in connection with high-oleic oils with a further introduction of an exogenous beta-ketoacyl-CoA synthase that is active in elongating oleoyl-CoA. As a result of the expression of the exogenous beta-ketoacyl-CoA synthase, the natural production of linolenic, erucic or eicosenoic acid by the cell can be increased by more than 2, 3, 4, 5, 10, 20, 30, 40, 50, 70, 100, 130, 170, 200, 250, 300, 350, Or 400 fold. The high erucic and/or eicosenoic oil can also be a high stability oil; e.g., one comprising less than 5, 4, 3, 2, or 1% polyunsaturates and/or having the OSI values described in Section IV or this application and accompanying Examples. In a specific embodiment, the cell is a microalgal cell, optionally cultivated heterotrophically. As in the other embodiments, the oil/fat can be produced by genetic engineering of a plastidic cell, including heterotrophic microalgae of the phylum Chlorophyta, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. Preferably, the cell is oleaginous and capable of accumulating at least 40% oil by dry cell weight. The cell can be an obligate heterotroph, such as a species of Prototheca, including Prototheca moriformis or Prototheca zopfii.


In specific embodiments, an oleaginous microbial cell, optionally an oleaginous microalgal cell, optionally of the phylum Chlorophyta, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae expresses an enzyme having 80, 85, 90, 95, 96, 97, 98, or 99% amino acid sequence identity to an enzyme of Table 8.


VII. Regiospecific and Stereospecific Oils/Fats

In an embodiment, a recombinant cell produces a cell fat or oil having a given regiospecific makeup. As a result, the cell can produce triglyceride fats having a tendency to form crystals of a given polymorphic form; e.g., when heated to above melting temperature and then cooled to below melting temperature of the fat. For example, the fat may tend to form crystal polymorphs of the β or β′ form (e.g., as determined by X-ray diffraction analysis), either with or without tempering. The fats may be ordered fats. In specific embodiments, the fat may directly from either β or β′ crystals upon cooling; alternatively, the fat can proceed through a β form to a β′ form. Such fats can be used as structuring, laminating or coating fats for food applications. The cell fats can be incorporated into candy, dark or white chocolate, chocolate flavored confections, ice cream, margarines or other spreads, cream fillings, pastries, or other food products. Optionally, the fats can be semi-solid (at room temperature) yet free of artificially produced trans-fatty acids. Such fats can also be useful in skin care and other consumer or industrial products.


As in the other embodiments, the fat can be produced by genetic engineering of a plastidic cell, including heterotrophic eukaryotic microalgae of the phylum Chlorophyta, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. Preferably, the cell is oleaginous and capable of accumulating at least 40% oil by dry cell weight. The cell can be an obligate heterotroph, such as a species of Prototheca, including Prototheca moriformis or Prototheca zopfii. The fats can also be produced in autotrophic algae or plants. Optionally, the cell is capable of using sucrose to produce oil and a recombinant invertase gene may be introduced to allow metabolism of sucrose, as described in PCT Publications WO2008/151149, WO2010/06032, WO2011/150410, WO2011/150411, and international patent application PCT/US12/23696. The invertase may be codon optimized and integrated into a chromosome of the cell, as may all of the genes mentioned here. It has been found that cultivated recombinant microalgae can produce hardstock fats at temperatures below the melting point of the hardstock fat. For example, Prototheca moriformis can be altered to heterotrophically produce triglyceride oil with greater than 50% stearic acid at temperatures in the range of 15 to 30° C., wherein the oil freezes when held at 30° C.


In an embodiment, the cell fat has at least 30, 40, 50, 60, 70, 80, or 90% fat of the general structure [saturated fatty acid (sn-1)-unsaturated fatty acid (sn-2)-saturated fatty acid (sn-3)]. This is denoted below as Sat-Unsat-Sat fat. In a specific embodiment, the saturated fatty acid in this structure is preferably stearate or palmitate and the unsaturated fatty acid is preferably oleate. As a result, the fat can form primarily β or β′ polymorphic crystals, or a mixture of these, and have corresponding physical properties, including those desirable for use in foods or personal care products. For example, the fat can melt at mouth temperature for a food product or skin temperature for a cream, lotion or other personal care product (e.g., a melting temperature of 30 to 40, or 32 to 35° C.). Optionally, the fats can have a 2 L or 3 L lamellar structure (e.g., as determined by X-ray diffraction analysis). Optionally, the fat can form this polymorphic form without tempering.


In a specific related embodiment, a cell fat triglyceride has a high concentration of SOS (i.e. triglyceride with stearate at the terminal sn-1 and sn-3 positions, with oleate at the sn-2 position of the glycerol backbone). For example, the fat can have triglycerides comprising at least 50, 60, 70, 80 or 90% SOS. In an embodiment, the fat has triglyceride of at least 80% SOS. Optionally, at least 50, 60, 70, 80 or 90% of the sn-2 linked fatty acids are unsaturated fatty acids. In a specific embodiment, at least 95% of the sn-2 linked fatty acids are unsaturated fatty acids. In addition, the SSS (tri-stearate) level can be less than 20, 10 or 5% and/or the C20:0 fatty acid (arachidic acid) level may be less than 6%, and optionally greater than 1% (e.g., from 1 to 5%). For example, in a specific embodiment, a cell fat produced by a recombinant cell has at least 70% SOS triglyceride with at least 80% sn-2 unsaturated fatty acyl moieties. In another specific embodiment, a cell fat produced by a recombinant cell has TAGs with at least 80% SOS triglyceride and with at least 95% sn-2 unsaturated fatty acyl moieties. In yet another specific embodiment, a cell fat produced by a recombinant cell has TAGs with at least 80% SOS, with at least 95% sn-2 unsaturated fatty acyl moieties, and between 1 to 6% C20 fatty acids.


In yet another specific embodiment, the sum of the percent stearate and palmitate in the fatty acid profile of the cell fat is twice the percentage of oleate, ±10, 20, 30 or 40% [e.g., (% P+% S)/% O=2.0±20%]. Optionally, the sn-2 profile of this fat is at least 40%, and preferably at least 50, 60, 70, or 80% oleate (at the sn-2 position). Also optionally, this fat may be at least 40, 50, 60, 70, 80, or 90% SOS. Optionally, the fat comprises between 1 to 6% C20 fatty acids.


In any of these embodiments, the high SatUnsatSat fat may tend to form β′ polymorphic crystals. Unlike previously available plant fats like cocoa butter, the SatUnsatSat fat produced by the cell may form β′ polymorphic crystals without tempering. In an embodiment, the polymorph forms upon heating to above melting temperature and cooling to less that the melting temperature for 3, 2, 1, or 0.5 hours. In a related embodiment, the polymorph forms upon heating to above 60° C. and cooling to 10° C. for 3, 2, 1, or 0.5 hours.


In various embodiments the fat forms polymorphs of the β form, β′ form, or both, when heated above melting temperature and the cooled to below melting temperature, and optionally proceeding to at least 50% of polymorphic equilibrium within 5, 4, 3, 2, 1, 0.5 hours or less when heated to above melting temperature and then cooled at 10° C. The fat may form β′ crystals at a rate faster than that of cocoa butter.


Optionally, any of these fats can have less than 2 mole % diacylglycerol, or less than 2 mole % mono and diacylglycerols, in sum.


In an embodiment, the fat may have a melting temperature of between 30-60° C., 30-40° C., 32 to 37° C., 40 to 60° C. or 45 to 55° C. In another embodiment, the fat can have a solid fat content (SFC) of 40 to 50%, 15 to 25%, or less than 15% at 20° C. and/or have an SFC of less than 15% at 35° C.


The cell used to make the fat may include recombinant nucleic acids operable to modify the saturate to unsaturate ratio of the fatty acids in the cell triglyceride in order to favor the formation of SatUnsatSat fat. For example, a knock-out or knock-down of stearoyl-ACP desaturase (SAD) gene can be used to favor the formation of stearate over oleate or expression of an exogenous mid-chain-preferring acyl-ACP thioesterase gene can increase the levels mid-chain saturates. Alternately a gene encoding a SAD enzyme can be overexpressed to increase unsaturates.


In a specific embodiment, the cell has recombinant nucleic acids operable to elevate the level of stearate in the cell. As a result, the concentration of SOS may be increased. Another genetic modification to increase stearate levels includes increasing a ketoacyl ACP synthase (KAS) activity in the cell so as to increase the rate of stearate production. Methods of increasing the level of sterate in the cell are described in WO2012/1106560, WO2013/158938, and PCT/US2014/059161.


The cell oils invention can be distinguished from conventional vegetable or animal triacylglycerol sources in that the sterol profile will be indicative of the host organism as distinguishable from the conventional source. Conventional sources of oil include soy, corn, sunflower, safflower, palm, palm kernel, coconut, cottonseed, canola, rape, peanut, olive, flax, tallow, lard, cocoa, shea, mango, sal, illipe, kokum, and allanblackia. See section XIII of this disclosure for a discussion of microalgal sterols.


VIII. Cells Expressing a Recombinant Nucleic Acid Encoding LPCAT, PDCT, DAG-PCT and/or FAE and Oils Enriched in C18:2, C18:3, C20:1 and C22:1

Lysophosphatidylcholine acyltransferase (LPCAT) enzymes play a central role in acyl editing of phosphatidylcholine (PC). LPCAT enzymes work in both forward and reversible reaction modes. In the forward mode, they are responsible for the channeling of fatty acids into PC (at both available sn positions). In the reverse reaction mode, LPCAT enzymes transfer of fatty acid out of PC into the acyl CoA pool. The liberated fatty acid can then be incorporated into the formation of a TAG or further desaturated or elongated. In the case of a liberated oleic acid, it can be incorporated into the formation of a TAG or can be further processed to linoleic acid, linolenic acid or further elongated to C20:1, C22:1 or more highly desaturated fatty acids which then can be incorporated to form a TAG.


Phosphotidylcholine diacylglycerol cholinephosphotransferase (PDCT) and diacylglycerol cholinephosphotransferas (DAG-CPT) catalyze the removal of linoleic acid or linolenic acid from PC. The liberated fatty acids can then can be incorporated into the formation of a TAG or further elongated to C20:1 or C22:1 or more highly desaturated fatty acids which then can be incorporated to form a TAG.


In various embodiments of the present invention, one or more nucleic acids encoding LPCAT, PDCT, DAG-CPT and/or FAE can be introduced into an oleaginous cell (e.g., a plastidic microalgal cell) so as to alter the fatty acid composition of the cell or of a cell oil produced by the cell. Recombinant nucleic acids may be integrated into a plasmid or chromosome of the cell. In a specific embodiment, the cell is of Chlorophyta, including heterotrophic cells such as those of the genus Prototheca.


In some embodiments, the expression of the LPCAT, PDCT, DAG-CPT, and/or FAE decreases the C18:1 content of the TAG and/or increases the C18:2, C18:3, C20:1, or C22:1 content of the TAG. Examples 11, 12 and 16 disclose the expression of LPCAT in microalgae that show significant decrease of C18:1 and significant increase in C18:2, C18:3, C20:1, or C22:1. Examples 13 and 14 disclose the expression of PDCT in microalgae that show significant decrease of C18:1 and significant increase in C18:2, C18:3, C20:1, or C22:1. Example 15 discloses the expression of DAG-CPT in microalgae that show significant decrease of C18:1 and significant increase in C18:2, C18:3, C20:1, or C22:1. The amount of decrease in C18:1 present in the cell oil may be decreased by lower than 10%, lower than 15%, lower than 20%, lower than 25%, lower than 30%, lower than 35%, lower than 50%, lower than 55%, lower than 60%, lower than 65%, lower than 70%, lower than 75%, lower than 80%, lower than 85%, lower than 90%, or lower than 95% than in the cell oil produced by the microorganism without the recombinant nucleic acids.


In some embodiments, the expression of the LPCAT, PDCT, DAG-CPT, and/or FAE increases the C18:2, C18:3, C20:1, or C22:1 content of the TAG. The amount of increase in C18:2, C18:3, C20:1, or C22:1 present in the cell oil may be increased by greater than 10%, greater than 15%, greater than 20%, greater than 25%, greater than 30%, greater than 35%, greater than 50%, greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 100%, greater than 100-500%, or greater than 500% than in the cell oil produced by the microorganism without the recombinant nucleic acids.


IX. Cells with an Ablation of an Endogenous Gene and a Recombinant Nucleic Acid Encoding LPCAT, PDCT, DAG-Pct and/or FAE and Oils Enriched in C18:2, C18:3, C20:1 and C22:1

One embodiment of the invention is a recombinant cell in which one, two or all the alleles of an endogenous gene is ablated (knocked-out) and one or more recombinant nucleic acids encoding LPCAT, PDCT, DAG-PCT, AND/OR FAE is expressed. Optionally, the gene that is ablated is a lipid biosynthetic pathway gene. Alternately, the amount or activity of the gene products of the alleles is knocked down, for example by inhibitory RNA technologies including RNAi, siRNA, miRNA, dsRNA, antisense, and hairpin RNA techniques. so as to require supplementation with fatty acids. When one allele of the lipid pathway gene is knocked out, a corresponding decrease in the enzymatic activity is observed. When all alleles of the lipid pathway gene are knocked out or sufficiently inhibited an auxotroph is created. As discussed herein, constructs can be generated bearing donor sequences homologous to one or more of the alleles of the gene. This first transformation construct may be introduced and selection methods followed to obtain an isolated strain characterized by one or more allelic disruptions. Alternatively, a first strain may be created that is engineered to express a selectable marker from an insertion into a first allele, thereby inactivating the first allele. This strain may be used as the host for still further genetic engineering to knockout or knockdown the remaining allele(s) of the lipid pathway gene (e.g., using a second selectable marker to disrupt a second allele).


In some embodiments, an allele that is ablated is also locus for insertion of the nucleic acids encoding encoding LPCAT, PDCT, DAG-PCT and/or FAE. In one embodiment the allele that is knocked-out is a gene that encodes an LPAAT. In Example 10, one allele of LPAAT1, designated as LPAAT1-1 was ablated and served as the locus for insertion of a nucleic acid encoding LPAAT. Also in Example 10, the 6S site served as the locus for insertion of a nucleic acid encoding FAE. In Examples 11, one allele of LPAAT1, designated as LPAAT1-1 was ablated and served as the locus for insertion of a nucleic acid encoding LPCAT. Example 11 also discloses ablation of LPAAT1-1 which served as the locus for insertion of a nucleic acid encoding FAE. In Example 13, LPAAT1-1 (allele 1), or LPAAT1-2 (allele 2) served as the locus for insertion of a nucleic acid encoding PDCT. Example 13 also discloses insertion of FAE into the 6S site. In Example 14, LPAAT1-1 was the locus for insertion of PDCT. In Example 15, LPAAT1-1 or LPAAT2-2 was the locus for insertion of DAG-PCT. Example 15 also discloses insertion of FAE into the 6S site. In Example 16, LPAAT1-1 was the locus for insertion of LPCAT. Example 16 also discloses insertion of FAE into the 6S site.


In some embodiments, the ablation of a lipid biosynthetic pathway gene, optionally LPAAT, and expression of the LPCAT, PDCT, DAG-CPT, and/or FAE decreases the C18:1 content of the TAG and/or increases the C18:2, C18:3, C20:1, or C22:1 content of the TAG. The amount of decrease in C18:1 present in the cell oil may be decreased by lower than 10%, lower than 15%, lower than 20%, lower than 25%, lower than 30%, lower than 35%, lower than 50%, lower than 55%, lower than 60%, lower than 65%, lower than 70%, lower than 75%, lower than 80%, lower than 85%, lower than 90%, or lower than 95% than in the cell oil produced by the microorganism without the recombinant nucleic acids.


In some embodiments, the ablation of a lipid biosynthetic pathway gene, optionally LPAAT, the expression of the LPCAT, PDCT, DAG-CPT, and/or FAE increases the C18:2, C18:3, C20:1, or C22:1 content of the TAG. The amount of increase in C18:2, C18:3, C20:1, or C22:1 present in the cell oil may be increased by greater than 10%, greater than 15%, greater than 20%, greater than 25%, greater than 30%, greater than 35%, greater than 50%, greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 100%, greater than 100-500%, or greater than 500% than in the cell oil produced by the microorganism without the recombinant nucleic acids.


X. Low Saturate Oil

In an embodiment, a cell oil is produced from a recombinant cell. The oil produced has a fatty acid profile that has less that 4%, 3%, 2%, or 1% (area %), saturated fatty acids. In a specific embodiment, the oil has 0.1 to 5%, 0.1 to 4%, or 0.1 to 3.5% saturated fatty acids. Certain of such oils can be used to produce a food with negligible amounts of saturated fatty acids. Optionally, these oils can have fatty acid profiles comprising at least 90% oleic acid or at least 90% oleic acid with at least 3% polyunsaturated fatty acids. In an embodiment, a cell oil produced by a recombinant cell comprises at least 90% oleic acid, at least 3% of the sum of linoleic and linolenic acid, or at least 2% of the sum of linoleic and linolenic acid, and has less than 4%, or less than 3.5% saturated fatty acids. In a related embodiment, a cell oil produced by a recombinant cell comprises at least 90% oleic acid, at least 3% of the sum of linoleic and linolenic acid and has less than 4%, or less than 3.5% saturated fatty acids, the majority of the saturated fatty acids being comprised of chain length 10 to 16. In a related embodiment, a cell oil produced by a recombinant cell comprises at least 90% oleic acid, at least 2% or 3% of the sum of linoleic and linolenic acid, has less than 3.5% saturated fatty acids and comprises at least 0.5%, at least 1%, or at least 2% palmitic acid. These oils may be produced by recombinant oleaginous cells including but not limited to those described here and in U.S. patent application Ser. No. 13/365,253. For example, overexpression of a KASII enzyme in a cell with a highly active SAD can produce a high oleic oil with less than or equal to 3.75%, 3.6% or 3.5% saturates. Optionally, an oleate-specific acyl-ACP thioesterase is also overexpressed and/or an endogenous thioesterase having a propensity to hydrolyze acyl chains of less than C18 knocked out or suppressed. The oleate-specific acyl-ACP thioesterase may be a transgene with low activity toward ACP-palmitate and ACP-stearate so that the ratio of oleic acid relative to the sum of palmitic acid and stearic acid in the fatty acid profile of the oil produced is greater than 3, 5, 7, or 10. Alternately, or in addition, a FATA gene may be knocked out or knocked down. A FATA gene may be knocked out or knocked down and an exogenous KASII overexpressed. Another optional modification is to increase KASI and/or KASIII activity, which can further suppress the formation of shorter chain saturates. Optionally, one or more acyltransferases (e.g., an LPAAT) having specificity for transferring unsaturated fatty acyl moieties to a substituted glycerol is also overexpressed and/or an endogenous acyltransferase is knocked out or attenuated. An additional optional modification is to increase the activity of KCS enzymes having specificity for elongating unsaturated fatty acids and/or an endogenous KCS having specificity for elongating saturated fatty acids is knocked out or attenuated. Optionally, oleate is increased at the expense of linoleate production by knockout or knockdown of a delta 12 fatty acid desaturase. Optionally, the exogenous genes used can be plant genes; e.g., obtained from cDNA derived from mRNA found in oil seeds. Example 9 discloses a cell oil with less than 3.5% saturated fatty acids.


In addition to the above genetic modifications, the low saturate oil can be a high-stability oil by virtue of low amounts of polyunsaturated fatty acids. Methods and characterizations of high-stability, low-polyunsaturated oils are described herein, including method to reduce the activity of endogenous 412 fatty acid desaturase. In a specific embodiment, an oil is produced by a oleaginous microbial cell having a type II fatty acid synthetic pathway and has no more than 3.5% saturated fatty acids and also has no more than 3% polyunsaturated fatty acids. In another specific embodiment, the oil has no more than 3% saturated fatty acids and also has no more than 2% polyunsaturated fatty acids. In another specific embodiment, the oil has no more than 3% saturated fatty acids and also has no more than 1% polyunsaturated fatty acids. In another specific embodiment, a eukaryotic microalgal cell comprises an exogenous gene that desaturates palmitic acid to palmitoleic acid in operable linkage with regulatory elements operable in the microalgal cell. The cell further comprises a knockout or knockdown of a FAD gene. Due to the genetic modifications, the cell produces a cell oil having a fatty acid profile in which the ratio of palmitoleic acid (C16:1) to palmitic acid (C16:0) is greater than 0.1, with no more than 3% polyunsaturated fatty acids. Optionally, palmitoleic acid comprises 0.5% or more of the profile. Optionally, the cell oil comprises less than 3.5% saturated fatty acids.


The low saturate and low saturate/high stability oil can be blended with less expensive oils to reach a targeted saturated fatty acid level at less expense. For example, an oil with 1% saturated fat can be blended with an oil having 7% saturated fat (e.g. high-oleic sunflower oil) to give an oil having 3.5% or less saturated fat.


Oils produced according to embodiments of the present invention can be used in the transportation fuel, oleochemical, and/or food and cosmetic industries, among other applications. For example, transesterification of lipids can yield long-chain fatty acid esters useful as biodiesel. Other enzymatic and chemical processes can be tailored to yield fatty acids, aldehydes, alcohols, alkanes, and alkenes. In some applications, renewable diesel, jet fuel, or other hydrocarbon compounds are produced. The present disclosure also provides methods of cultivating microalgae for increased productivity and increased lipid yield, and/or for more cost-effective production of the compositions described herein. The methods described here allow for the production of oils from plastidic cell cultures at large scale; e.g., 1000, 10,000, 100,000 liters or more.


In an embodiment, an oil extracted from the cell has 3.5%, 3%, 2.5%, or 2% saturated fat or less and is incorporated into a food product. The finished food product has 3.5, 3, 2.5, or 2% saturated fat or less. For example, oils recovered from such recombinant microalgae can be used for frying oils or as an ingredient in a prepared food that is low in saturated fats. The oils can be used neat or blended with other oils so that the food has less than 0.5 g of saturated fat per serving, thus allowing a label stating zero saturated fat (per US regulation). In a specific embodiment, the oil has a fatty acid profile with at least 90% oleic acid, less than 3% saturated fat, and more oleic acid than linoleic acid.


As with the other oils disclosed in this patent application, the low-saturate oils described in this section, including those with increased levels palmitoleic acid, can have a microalgal sterol profile as described in Section XIII of this application. For example, via expression of an exogenous PAD gene, an oil can be produced with a fatty acid profile characterized by a ratio of palmitoleic acid to palmitic acid of at least 0.1 and/or palmitoleic acid levels of 0.5% or more, as determined by FAME GC/FID analysis and a sterol profile characterized by an excess of ergosterol over β-sitosterol and/or the presence of 22, 23-dihydrobrassicasterol, poriferasterol or clionasterol.


XI. Minor Oil Components

The oils produced according to the above methods in some cases are made using a microalgal host cell. As described above, the microalga can be, without limitation, fall in the classification of Chlorophyta, Trebouxiophyceae, Chlorellales, Chlorellaceae, or Chlorophyceae. It has been found that microalgae of Trebouxiophyceae can be distinguished from vegetable oils based on their sterol profiles. Oil produced by Chlorella protothecoides was found to produce sterols that appeared to be brassicasterol, ergosterol, campesterol, stigmasterol, and β-sitosterol, when detected by GC-MS. However, it is believed that all sterols produced by Chlorella have C24β stereochemistry. Thus, it is believed that the molecules detected as campesterol, stigmasterol, and β-sitosterol, are actually 22,23-dihydrobrassicasterol, poriferasterol and clionasterol, respectively. Thus, the oils produced by the microalgae described above can be distinguished from plant oils by the presence of sterols with C24β stereochemistry and the absence of C24α stereochemistry in the sterols present. For example, the oils produced may contain 22, 23-dihydrobrassicasterol while lacking campesterol; contain clionasterol, while lacking in β-sitosterol, and/or contain poriferasterol while lacking stigmasterol. Alternately, or in addition, the oils may contain significant amounts of Δ7-poriferasterol.


In one embodiment, the oils provided herein are not vegetable oils. Vegetable oils are oils extracted from plants and plant seeds. Vegetable oils can be distinguished from the non-plant oils provided herein on the basis of their oil content. A variety of methods for analyzing the oil content can be employed to determine the source of the oil or whether adulteration of an oil provided herein with an oil of a different (e.g. plant) origin has occurred. The determination can be made on the basis of one or a combination of the analytical methods. These tests include but are not limited to analysis of one or more of free fatty acids, fatty acid profile, total triacylglycerol content, diacylglycerol content, peroxide values, spectroscopic properties (e.g. UV absorption), sterol profile, sterol degradation products, antioxidants (e.g. tocopherols), pigments (e.g. chlorophyll), d13C values and sensory analysis (e.g. taste, odor, and mouth feel). Many such tests have been standardized for commercial oils such as the Codex Alimentarius standards for edible fats and oils.


Sterol profile analysis is a particularly well-known method for determining the biological source of organic matter. Campesterol, b-sitosterol, and stigmasterol are common plant sterols, with β-sitosterol being a principle plant sterol. For example, β-sitosterol was found to be in greatest abundance in an analysis of certain seed oils, approximately 64% in corn, 29% in rapeseed, 64% in sunflower, 74% in cottonseed, 26% in soybean, and 79% in olive oil (Gul et al. J. Cell and Molecular Biology 5:71-79, 2006).


Oil isolated from Prototheca moriformis strain UTEX1435 were separately clarified (CL), refined and bleached (RB), or refined, bleached and deodorized (RBD) and were tested for sterol content according to the procedure described in JAOCS vol. 60, no. 8, August 1983. Results of the analysis are shown below (units in mg/100 g) in Table 9.









TABLE 9







Sterol profiles of oils from UTEX 1435.

















Refined,






Refined &
bleached, &



Sterol
Crude
Clarified
bleached
deodorized
















1
Ergosterol
384
398
293
302




 (56%)
 (55%)
 (50%)
 (50%)


2
5,22-cholestadien-
14.6
18.8
14
15.2



24-methyl-3-ol
(2.1%)
(2.6%)
(2.4%)
(2.5%)



(Brassicasterol)


3
24-methylcholest-
10.7
11.9
10.9
10.8



5-en-3-ol
(1.6%)
(1.6%)
(1.8%)
(1.8%)



(Campesterol or



22,23-dihydro-



brassicasterol)


4
5,22-cholestadien-
57.7
59.2
46.8
49.9



24-ethyl-3-ol
(8.4%)
(8.2%)
(7.9%)
(8.3%)



(Stigmasterol



or poriferasterol)


5
24-ethylcholest-5-
9.64
9.92
9.26
10.2



en-3-ol (β-Sitosterol
(1.4%)
(1.4%)
(1.6%)
(1.7%)



or clionasterol)


6
Other sterols
209
221
216
213



Total sterols
685.64
718.82
589.96
601.1









These results show three striking features. First, ergosterol was found to be the most abundant of all the sterols, accounting for about 50% or more of the total sterols. The amount of ergosterol is greater than that of campesterol, β-sitosterol, and stigmasterol combined. Ergosterol is steroid commonly found in fungus and not commonly found in plants, and its presence particularly in significant amounts serves as a useful marker for non-plant oils. Secondly, the oil was found to contain brassicasterol. With the exception of rapeseed oil, brassicasterol is not commonly found in plant based oils. Thirdly, less than 2% β-sitosterol was found to be present. β-sitosterol is a prominent plant sterol not commonly found in microalgae, and its presence particularly in significant amounts serves as a useful marker for oils of plant origin. In summary, Prototheca moriformis strain UTEX1435 has been found to contain both significant amounts of ergosterol and only trace amounts of β-sitosterol as a percentage of total sterol content. Accordingly, the ratio of ergosterol:β-sitosterol or in combination with the presence of brassicasterol can be used to distinguish this oil from plant oils.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% β-sitosterol. In other embodiments the oil is free from β-sitosterol. For any of the oils or cell-oils disclosed in this application, the oil can have the sterol profile of any column of Table 9, above, with a sterol-by-sterol variation of 30%, 20%, 10% or less.


In some embodiments, the oil is free from one or more of β-sitosterol, campesterol, or stigmasterol. In some embodiments the oil is free from β-sitosterol, campesterol, and stigmasterol. In some embodiments the oil is free from campesterol. In some embodiments the oil is free from stigmasterol.


In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 24-ethylcholest-5-en-3-ol. In some embodiments, the 24-ethylcholest-5-en-3-ol is clionasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% clionasterol.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 24-methylcholest-5-en-3-ol. In some embodiments, the 24-methylcholest-5-en-3-ol is 22, 23-dihydrobrassicasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% 22,23-dihydrobrassicasterol.


In some embodiments, the oil content of an oil provided herein contains, as a percentage of total sterols, less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% 5,22-cholestadien-24-ethyl-3-ol. In some embodiments, the 5, 22-cholestadien-24-ethyl-3-ol is poriferasterol. In some embodiments, the oil content of an oil provided herein comprises, as a percentage of total sterols, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% poriferasterol.


In some embodiments, the oil content of an oil provided herein contains ergosterol or brassicasterol or a combination of the two. In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 25% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 40% ergosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% of a combination of ergosterol and brassicasterol.


In some embodiments, the oil content contains, as a percentage of total sterols, at least 1%, 2%, 3%, 4% or 5% brassicasterol. In some embodiments, the oil content contains, as a percentage of total sterols less than 10%, 9%, 8%, 7%, 6%, or 5% brassicasterol.


In some embodiments the ratio of ergosterol to brassicasterol is at least 5:1, 10:1, 15:1, or 20:1.


In some embodiments, the oil content contains, as a percentage of total sterols, at least 5%, 10%, 20%, 25%, 35%, 40%, 45%, 50%, 55%, 60%, or 65% ergosterol and less than 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% β-sitosterol. In some embodiments, the oil content contains, as a percentage of total sterols, at least 25% ergosterol and less than 5% β-sitosterol. In some embodiments, the oil content further comprises brassicasterol.


Sterols contain from 27 to 29 carbon atoms (C27 to C29) and are found in all eukaryotes. Animals exclusively make C27 sterols as they lack the ability to further modify the C27 sterols to produce C28 and C29 sterols. Plants however are able to synthesize C28 and C29 sterols, and C28/C29 plant sterols are often referred to as phytosterols. The sterol profile of a given plant is high in C29 sterols, and the primary sterols in plants are typically the C29 sterols b-sitosterol and stigmasterol. In contrast, the sterol profile of non-plant organisms contain greater percentages of C27 and C28 sterols. For example the sterols in fungi and in many microalgae are principally C28 sterols. The sterol profile and particularly the striking predominance of C29 sterols over C28 sterols in plants has been exploited for determining the proportion of plant and marine matter in soil samples (Huang, Wen-Yen, Meinschein W. G., “Sterols as ecological indicators”; Geochimica et Cosmochimia Acta. Vol 43. pp 739-745).


In some embodiments the primary sterols in the microalgal oils provided herein are sterols other than b-sitosterol and stigmasterol. In some embodiments of the microalgal oils, C29 sterols make up less than 50%, 40%, 30%, 20%, 10%, or 5% by weight of the total sterol content.


In some embodiments the microalgal oils provided herein contain C28 sterols in excess of C29 sterols. In some embodiments of the microalgal oils, C28 sterols make up greater than 50%, 60%, 70%, 80%, 90%, or 95% by weight of the total sterol content. In some embodiments the C28 sterol is ergosterol. In some embodiments the C28 sterol is brassicasterol.


XII. Fuels and Chemicals

The oils discussed above alone or in combination are useful in the production of foods, fuels and chemicals (including plastics, foams, films, etc.). The oils, triglycerides, fatty acids from the oils may be subjected to C—H activation, hydroamino methylation, methoxy-carbonation, ozonolysis, enzymatic transformations, epoxidation, methylation, dimerization, thiolation, metathesis, hydro-alkylation, lactonization, or other chemical processes.


The oils can be converted to alkanes (e.g., renewable diesel) or esters (e.g., methyl or ethyl esters for biodisesel produced by transesterification). The alkanes or esters may be used as fuel, as solvents or lubricants, or as a chemical feedstock. Methods for production of renewable diesel and biodiesel are well established in the art. See, for example, WO2011/150411.


In a specific embodiment of the present invention, a high-oleic or high-oleic-high stability oil described above is esterified. For example, the oils can be transesterified with methanol to an oil that is rich in methyl oleate. Such formulations have been found to compare favorably with methyl oleate from soybean oil.


In another specific example, the oil is converted to C36 diacids or products of C36 diacids. Fatty acids produced from the oil can be polymerized to give a composition rich in C36 dimer acids. In a specific example, high-oleic oil is split to give a high-oleic fatty acid material which is polymerized to give a composition rich in C36-dimer acids. Optionally, the oil is high oleic high stability oil (e.g., greater than 60% oleic acid with less than 3% polyunsaturates, greater than 70% oleic acid with less than 2% polyunsaturates, or greater than 80% oleic acid with less than 1% polyunsaturates). It is believed that using a high oleic, high stability, starting material will give lower amounts of cyclic products, which may be desirable in some cases. After hydrolyzing the oil, one obtains a high concentration of oleic acid. In the process of making dimer acids, a high oleic acid stream will convert to a “cleaner” C36 dimer acid and not produce trimers acids (C54) and other more complex cyclic by-products which are obtained due to presence of C18:2 and C18:3 acids. For example, the oil can be hydrolyzed to fatty acids and the fatty acids purified and dimerized at 250° C. in the presence of montmorillonite clay. See SRI Natural Fatty Acid, March 2009. A product rich in C36 dimers of oleic acid is recovered.




embedded image


Further, the C36 dimer acids can be esterified and hydrogenated to give diols. The diols can be polymerized by catalytic dehydration. Polymers can also be produced by transesterification of dimerdiols with dimethyl carbonate.


For the production of fuel in accordance with the methods of the invention lipids produced by cells of the invention are harvested, or otherwise collected, by any convenient means. Lipids can be isolated by whole cell extraction. The cells are first disrupted, and then intracellular and cell membrane/cell wall-associated lipids as well as extracellular hydrocarbons can be separated from the cell mass, such as by use of centrifugation. Intracellular lipids produced in oleaginous cells are, in some embodiments, extracted after lysing the cells. Once extracted, the lipids are further refined to produce oils, fuels, or oleochemicals.


Various methods are available for separating lipids from cellular lysates. For example, lipids and lipid derivatives such as fatty aldehydes, fatty alcohols, and hydrocarbons such as alkanes can be extracted with a hydrophobic solvent such as hexane (see Frenz et al. 1989, Enzyme Microb. Technol., 11:717). Lipids and lipid derivatives can also be extracted using liquefaction (see for example Sawayama et al. 1999, Biomass and Bioenergy 17:33-39 and Inoue et al. 1993, Biomass Bioenergy 6(4):269-274); oil liquefaction (see for example Minowa et al. 1995, Fuel 74(12):1735-1738); and supercritical CO2 extraction (see for example Mendes et al. 2003, Inorganica Chimica Acta 356:328-334). Miao and Wu describe a protocol of the recovery of microalgal lipid from a culture of Chlorella protothecoides in which the cells were harvested by centrifugation, washed with distilled water and dried by freeze drying. The resulting cell powder was pulverized in a mortar and then extracted with n-hexane. Miao and Wu, Biosource Technology (2006) 97:841-846.


Lipids and lipid derivatives can be recovered by extraction with an organic solvent. In some cases, the preferred organic solvent is hexane. Typically, the organic solvent is added directly to the lysate without prior separation of the lysate components. In one embodiment, the lysate generated by one or more of the methods described above is contacted with an organic solvent for a period of time sufficient to allow the lipid and/or hydrocarbon components to form a solution with the organic solvent. In some cases, the solution can then be further refined to recover specific desired lipid or hydrocarbon components. Hexane extraction methods are well known in the art.


Lipids produced by cells in vivo, or enzymatically modified in vitro, as described herein can be optionally further processed by conventional means. The processing can include “cracking” to reduce the size, and thus increase the hydrogen:carbon ratio, of hydrocarbon molecules. Catalytic and thermal cracking methods are routinely used in hydrocarbon and triglyceride oil processing. Catalytic methods involve the use of a catalyst, such as a solid acid catalyst. The catalyst can be silica-alumina or a zeolite, which result in the heterolytic, or asymmetric, breakage of a carbon-carbon bond to result in a carbocation and a hydride anion. These reactive intermediates then undergo either rearrangement or hydride transfer with another hydrocarbon. The reactions can thus regenerate the intermediates to result in a self-propagating chain mechanism. Hydrocarbons can also be processed to reduce, optionally to zero, the number of carbon-carbon double, or triple, bonds therein. Hydrocarbons can also be processed to remove or eliminate a ring or cyclic structure therein. Hydrocarbons can also be processed to increase the hydrogen:carbon ratio. This can include the addition of hydrogen (“hydrogenation”) and/or the “cracking” of hydrocarbons into smaller hydrocarbons.


Thermal methods involve the use of elevated temperature and pressure to reduce hydrocarbon size. An elevated temperature of about 800° C. and pressure of about 700 kPa can be used. These conditions generate “light,” a term that is sometimes used to refer to hydrogen-rich hydrocarbon molecules (as distinguished from photon flux), while also generating, by condensation, heavier hydrocarbon molecules which are relatively depleted of hydrogen. The methodology provides homolytic, or symmetrical, breakage and produces alkenes, which may be optionally enzymatically saturated as described above.


Catalytic and thermal methods are standard in plants for hydrocarbon processing and oil refining. Thus hydrocarbons produced by cells as described herein can be collected and processed or refined via conventional means. See Hillen et al. (Biotechnology and Bioengineering, Vol. XXIV:193-205 (1982)) for a report on hydrocracking of microalgae-produced hydrocarbons. In alternative embodiments, the fraction is treated with another catalyst, such as an organic compound, heat, and/or an inorganic compound. For processing of lipids into biodiesel, a transesterification process is used as described below in this Section.


Hydrocarbons produced via methods of the present invention are useful in a variety of industrial applications. For example, the production of linear alkylbenzene sulfonate (LAS), an anionic surfactant used in nearly all types of detergents and cleaning preparations, utilizes hydrocarbons generally comprising a chain of 10-14 carbon atoms. See, for example, U.S. Pat. Nos. 6,946,430; 5,506,201; 6,692,730; 6,268,517; 6,020,509; 6,140,302; 5,080,848; and 5,567,359. Surfactants, such as LAS, can be used in the manufacture of personal care compositions and detergents, such as those described in U.S. Pat. Nos. 5,942,479; 6,086,903; 5,833,999; 6,468,955; and 6,407,044.


Increasing interest is directed to the use of hydrocarbon components of biological origin in fuels, such as biodiesel, renewable diesel, and jet fuel, since renewable biological starting materials that may replace starting materials derived from fossil fuels are available, and the use thereof is desirable. There is an urgent need for methods for producing hydrocarbon components from biological materials. The present invention fulfills this need by providing methods for production of biodiesel, renewable diesel, and jet fuel using the lipids generated by the methods described herein as a biological material to produce biodiesel, renewable diesel, and jet fuel.


Traditional diesel fuels are petroleum distillates rich in paraffinic hydrocarbons. They have boiling ranges as broad as 370° to 780° F., which are suitable for combustion in a compression ignition engine, such as a diesel engine vehicle. The American Society of Testing and Materials (ASTM) establishes the grade of diesel according to the boiling range, along with allowable ranges of other fuel properties, such as cetane number, cloud point, flash point, viscosity, aniline point, sulfur content, water content, ash content, copper strip corrosion, and carbon residue. Technically, any hydrocarbon distillate material derived from biomass or otherwise that meets the appropriate ASTM specification can be defined as diesel fuel (ASTM D975), jet fuel (ASTM D1655), or as biodiesel if it is a fatty acid methyl ester (ASTM D6751).


After extraction, lipid and/or hydrocarbon components recovered from the microbial biomass described herein can be subjected to chemical treatment to manufacture a fuel for use in diesel vehicles and jet engines.


Biodiesel is a liquid which varies in color—between golden and dark brown—depending on the production feedstock. It is practically immiscible with water, has a high boiling point and low vapor pressure. Biodiesel refers to a diesel-equivalent processed fuel for use in diesel-engine vehicles. Biodiesel is biodegradable and non-toxic. An additional benefit of biodiesel over conventional diesel fuel is lower engine wear. Typically, biodiesel comprises C14-C18 alkyl esters. Various processes convert biomass or a lipid produced and isolated as described herein to diesel fuels. A preferred method to produce biodiesel is by transesterification of a lipid as described herein. A preferred alkyl ester for use as biodiesel is a methyl ester or ethyl ester.


Biodiesel produced by a method described herein can be used alone or blended with conventional diesel fuel at any concentration in most modern diesel-engine vehicles. When blended with conventional diesel fuel (petroleum diesel), biodiesel may be present from about 0.1% to about 99.9%. Much of the world uses a system known as the “B” factor to state the amount of biodiesel in any fuel mix. For example, fuel containing 20% biodiesel is labeled B20. Pure biodiesel is referred to as B100.


Biodiesel can be produced by transesterification of triglycerides contained in oil-rich biomass. Thus, in another aspect of the present invention a method for producing biodiesel is provided. In a preferred embodiment, the method for producing biodiesel comprises the steps of (a) cultivating a lipid-containing microorganism using methods disclosed herein (b) lysing a lipid-containing microorganism to produce a lysate, (c) isolating lipid from the lysed microorganism, and (d) transesterifying the lipid composition, whereby biodiesel is produced. Methods for growth of a microorganism, lysing a microorganism to produce a lysate, treating the lysate in a medium comprising an organic solvent to form a heterogeneous mixture and separating the treated lysate into a lipid composition have been described above and can also be used in the method of producing biodiesel. The lipid profile of the biodiesel is usually highly similar to the lipid profile of the feedstock oil.


Lipid compositions can be subjected to transesterification to yield long-chain fatty acid esters useful as biodiesel. Preferred transesterification reactions are outlined below and include base catalyzed transesterification and transesterification using recombinant lipases. In a base-catalyzed transesterification process, the triacylglycerides are reacted with an alcohol, such as methanol or ethanol, in the presence of an alkaline catalyst, typically potassium hydroxide. This reaction forms methyl or ethyl esters and glycerin (glycerol) as a byproduct.


Transesterification has also been carried out, as discussed above, using an enzyme, such as a lipase instead of a base. Lipase-catalyzed transesterification can be carried out, for example, at a temperature between the room temperature and 80° C., and a mole ratio of the TAG to the lower alcohol of greater than 1:1, preferably about 3:1. Other examples of lipases useful for transesterification are found in, e.g., U.S. Pat. Nos. 4,798,793; 4,940,845 5,156,963; 5,342,768; 5,776,741 and WO89/01032. Such lipases include, but are not limited to, lipases produced by microorganisms of Rhizopus, Aspergillus, Candida, Mucor, Pseudomonas, Rhizomucor, Candida, and Humicola and pancreas lipase.


Subsequent processes may also be used if the biodiesel will be used in particularly cold temperatures. Such processes include winterization and fractionation. Both processes are designed to improve the cold flow and winter performance of the fuel by lowering the cloud point (the temperature at which the biodiesel starts to crystallize). There are several approaches to winterizing biodiesel. One approach is to blend the biodiesel with petroleum diesel. Another approach is to use additives that can lower the cloud point of biodiesel. Another approach is to remove saturated methyl esters indiscriminately by mixing in additives and allowing for the crystallization of saturates and then filtering out the crystals. Fractionation selectively separates methyl esters into individual components or fractions, allowing for the removal or inclusion of specific methyl esters. Fractionation methods include urea fractionation, solvent fractionation and thermal distillation.


Another valuable fuel provided by the methods of the present invention is renewable diesel, which comprises alkanes, such as C10:0, C12:0, C14:0, C16:0 and C18:0 and thus, are distinguishable from biodiesel. High quality renewable diesel conforms to the ASTM D975 standard. The lipids produced by the methods of the present invention can serve as feedstock to produce renewable diesel. Thus, in another aspect of the present invention, a method for producing renewable diesel is provided. Renewable diesel can be produced by at least three processes: hydrothermal processing (hydrotreating); hydroprocessing; and indirect liquefaction. These processes yield non-ester distillates. During these processes, triacylglycerides produced and isolated as described herein, are converted to alkanes.


In one embodiment, the method for producing renewable diesel comprises (a) cultivating a lipid-containing microorganism using methods disclosed herein (b) lysing the microorganism to produce a lysate, (c) isolating lipid from the lysed microorganism, and (d) deoxygenating and hydrotreating the lipid to produce an alkane, whereby renewable diesel is produced. Lipids suitable for manufacturing renewable diesel can be obtained via extraction from microbial biomass using an organic solvent such as hexane, or via other methods, such as those described in U.S. Pat. No. 5,928,696. Some suitable methods may include mechanical pressing and centrifuging.


In some methods, the microbial lipid is first cracked in conjunction with hydrotreating to reduce carbon chain length and saturate double bonds, respectively. The material is then isomerized, also in conjunction with hydrotreating. The naptha fraction can then be removed through distillation, followed by additional distillation to vaporize and distill components desired in the diesel fuel to meet an ASTM D975 standard while leaving components that are heavier than desired for meeting the D975 standard. Hydrotreating, hydrocracking, deoxygenation and isomerization methods of chemically modifying oils, including triglyceride oils, are well known in the art. See for example European patent applications EP1741768 (A1); EP1741767 (A1); EP1682466 (A1); EP1640437 (A1); EP1681337 (A1); EP1795576 (A1); and U.S. Pat. Nos. 7,238,277; 6,630,066; 6,596,155; 6,977,322; 7,041,866; 6,217,746; 5,885,440; 6,881,873.


In one embodiment of the method for producing renewable diesel, treating the lipid to produce an alkane is performed by hydrotreating of the lipid composition. In hydrothermal processing, typically, biomass is reacted in water at an elevated temperature and pressure to form oils and residual solids. Conversion temperatures are typically 300° to 660° F., with pressure sufficient to keep the water primarily as a liquid, 100 to 170 standard atmosphere (atm). Reaction times are on the order of 15 to 30 minutes. After the reaction is completed, the organics are separated from the water. Thereby a distillate suitable for diesel is produced.


In some methods of making renewable diesel, the first step of treating a triglyceride is hydroprocessing to saturate double bonds, followed by deoxygenation at elevated temperature in the presence of hydrogen and a catalyst. In some methods, hydrogenation and deoxygenation occur in the same reaction. In other methods deoxygenation occurs before hydrogenation. Isomerization is then optionally performed, also in the presence of hydrogen and a catalyst. Naphtha components are preferably removed through distillation. For examples, see U.S. Pat. No. 5,475,160 (hydrogenation of triglycerides); U.S. Pat. No. 5,091,116 (deoxygenation, hydrogenation and gas removal); U.S. Pat. No. 6,391,815 (hydrogenation); and U.S. Pat. No. 5,888,947 (isomerization).


One suitable method for the hydrogenation of triglycerides includes preparing an aqueous solution of copper, zinc, magnesium and lanthanum salts and another solution of alkali metal or preferably, ammonium carbonate. The two solutions may be heated to a temperature of about 20° C. to about 85° C. and metered together into a precipitation container at rates such that the pH in the precipitation container is maintained between 5.5 and 7.5 in order to form a catalyst. Additional water may be used either initially in the precipitation container or added concurrently with the salt solution and precipitation solution. The resulting precipitate may then be thoroughly washed, dried, calcined at about 300° C. and activated in hydrogen at temperatures ranging from about 100° C. to about 400° C. One or more triglycerides may then be contacted and reacted with hydrogen in the presence of the above-described catalyst in a reactor. The reactor may be a trickle bed reactor, fixed bed gas-solid reactor, packed bubble column reactor, continuously stirred tank reactor, a slurry phase reactor, or any other suitable reactor type known in the art. The process may be carried out either batchwise or in continuous fashion. Reaction temperatures are typically in the range of from about 170° C. to about 250° C. while reaction pressures are typically in the range of from about 300 psig to about 2000 psig. Moreover, the molar ratio of hydrogen to triglyceride in the process of the present invention is typically in the range of from about 20:1 to about 700:1. The process is typically carried out at a weight hourly space velocity (WHSV) in the range of from about 0.1 h−1 to about 5 h−1. One skilled in the art will recognize that the time period required for reaction will vary according to the temperature used, the molar ratio of hydrogen to triglyceride, and the partial pressure of hydrogen. The products produced by the such hydrogenation processes include fatty alcohols, glycerol, traces of paraffins and unreacted triglycerides. These products are typically separated by conventional means such as, for example, distillation, extraction, filtration, crystallization, and the like.


Petroleum refiners use hydroprocessing to remove impurities by treating feeds with hydrogen. Hydroprocessing conversion temperatures are typically 300° to 700° F. Pressures are typically 40 to 100 atm. The reaction times are typically on the order of 10 to 60 minutes. Solid catalysts are employed to increase certain reaction rates, improve selectivity for certain products, and optimize hydrogen consumption.


Suitable methods for the deoxygenation of an oil includes heating an oil to a temperature in the range of from about 350° F. to about 550° F. and continuously contacting the heated oil with nitrogen under at least pressure ranging from about atmospheric to above for at least about 5 minutes.


Suitable methods for isomerization include using alkali isomerization and other oil isomerization known in the art.


Hydrotreating and hydroprocessing ultimately lead to a reduction in the molecular weight of the triglyceride feed. The triglyceride molecule is reduced to four hydrocarbon molecules under hydroprocessing conditions: a propane molecule and three heavier hydrocarbon molecules, typically in the C8 to C18 range.


Thus, in one embodiment, the product of one or more chemical reaction(s) performed on lipid compositions of the invention is an alkane mixture that comprises ASTM D975 renewable diesel. Production of hydrocarbons by microorganisms is reviewed by Metzger et al. Appl Microbiol Biotechnol (2005) 66: 486-496 and A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae, NREL/TP-580-24190, John Sheehan, Terri Dunahay, John Benemann and Paul Roessler (1998).


The distillation properties of a diesel fuel is described in terms of T10-T90 (temperature at 10% and 90%, respectively, volume distilled). Methods of hydrotreating, isomerization, and other covalent modification of oils disclosed herein, as well as methods of distillation and fractionation (such as cold filtration) disclosed herein, can be employed to generate renewable diesel compositions with other T10-T90 ranges, such as 20, 25, 30, 35, 40, 45, 50, 60 and 65° C. using triglyceride oils produced according to the methods disclosed herein.


Methods of hydrotreating, isomerization, and other covalent modification of oils disclosed herein, as well as methods of distillation and fractionation (such as cold filtration) disclosed herein, can be employed to generate renewable diesel compositions with other T10 values, such as T10 between 180 and 295, between 190 and 270, between 210 and 250, between 225 and 245, and at least 290.


Methods of hydrotreating, isomerization, and other covalent modification of oils disclosed herein, as well as methods of distillation and fractionation (such as cold filtration) disclosed herein can be employed to generate renewable diesel compositions with certain T90 values, such as T90 between 280 and 380, between 290 and 360, between 300 and 350, between 310 and 340, and at least 290.


Methods of hydrotreating, isomerization, and other covalent modification of oils disclosed herein, as well as methods of distillation and fractionation (such as cold filtration) disclosed herein, can be employed to generate renewable diesel compositions with other FBP values, such as FBP between 290 and 400, between 300 and 385, between 310 and 370, between 315 and 360, and at least 300.


Other oils provided by the methods and compositions of the invention can be subjected to combinations of hydrotreating, isomerization, and other covalent modification including oils with lipid profiles including (a) at least 1%-5%, preferably at least 4%, C8-C14; (b) at least 0.25%-1%, preferably at least 0.3%, C8; (c) at least 1%-5%, preferably at least 2%, C10; (d) at least 1%-5%, preferably at least 2%, C12; and (3) at least 20%-40%, preferably at least 30% C8-C14.


A traditional ultra-low sulfur diesel can be produced from any form of biomass by a two-step process. First, the biomass is converted to a syngas, a gaseous mixture rich in hydrogen and carbon monoxide. Then, the syngas is catalytically converted to liquids. Typically, the production of liquids is accomplished using Fischer-Tropsch (FT) synthesis. This technology applies to coal, natural gas, and heavy oils. Thus, in yet another preferred embodiment of the method for producing renewable diesel, treating the lipid composition to produce an alkane is performed by indirect liquefaction of the lipid composition.


The present invention also provides methods to produce jet fuel. Jet fuel is clear to straw colored. The most common fuel is an unleaded/paraffin oil-based fuel classified as Aeroplane A-1, which is produced to an internationally standardized set of specifications. Jet fuel is a mixture of a large number of different hydrocarbons, possibly as many as a thousand or more. The range of their sizes (molecular weights or carbon numbers) is restricted by the requirements for the product, for example, freezing point or smoke point. Kerosene-type Aeroplane fuel (including Jet A and Jet A-1) has a carbon number distribution between about 8 and 16 carbon numbers. Wide-cut or naphtha-type Aeroplane fuel (including Jet B) typically has a carbon number distribution between about 5 and 15 carbons.


In one embodiment of the invention, a jet fuel is produced by blending algal fuels with existing jet fuel. The lipids produced by the methods of the present invention can serve as feedstock to produce jet fuel. Thus, in another aspect of the present invention, a method for producing jet fuel is provided. Herewith two methods for producing jet fuel from the lipids produced by the methods of the present invention are provided: fluid catalytic cracking (FCC); and hydrodeoxygenation (HDO).


Fluid Catalytic Cracking (FCC) is one method which is used to produce olefins, especially propylene from heavy crude fractions. The lipids produced by the method of the present invention can be converted to olefins. The process involves flowing the lipids produced through an FCC zone and collecting a product stream comprised of olefins, which is useful as a jet fuel. The lipids produced are contacted with a cracking catalyst at cracking conditions to provide a product stream comprising olefins and hydrocarbons useful as jet fuel.


In one embodiment, the method for producing jet fuel comprises (a) cultivating a lipid-containing microorganism using methods disclosed herein, (b) lysing the lipid-containing microorganism to produce a lysate, (c) isolating lipid from the lysate, and (d) treating the lipid composition, whereby jet fuel is produced. In one embodiment of the method for producing a jet fuel, the lipid composition can be flowed through a fluid catalytic cracking zone, which, in one embodiment, may comprise contacting the lipid composition with a cracking catalyst at cracking conditions to provide a product stream comprising C2-05 olefins.


In certain embodiments of this method, it may be desirable to remove any contaminants that may be present in the lipid composition. Thus, prior to flowing the lipid composition through a fluid catalytic cracking zone, the lipid composition is pretreated. Pretreatment may involve contacting the lipid composition with an ion-exchange resin. The ion exchange resin is an acidic ion exchange resin, such as Amberlyst™-15 and can be used as a bed in a reactor through which the lipid composition is flowed, either upflow or downflow. Other pretreatments may include mild acid washes by contacting the lipid composition with an acid, such as sulfuric, acetic, nitric, or hydrochloric acid. Contacting is done with a dilute acid solution usually at ambient temperature and atmospheric pressure.


The lipid composition, optionally pretreated, is flowed to an FCC zone where the hydrocarbonaceous components are cracked to olefins. Catalytic cracking is accomplished by contacting the lipid composition in a reaction zone with a catalyst composed of finely divided particulate material. The reaction is catalytic cracking, as opposed to hydrocracking, and is carried out in the absence of added hydrogen or the consumption of hydrogen. As the cracking reaction proceeds, substantial amounts of coke are deposited on the catalyst. The catalyst is regenerated at high temperatures by burning coke from the catalyst in a regeneration zone. Coke-containing catalyst, referred to herein as “coked catalyst”, is continually transported from the reaction zone to the regeneration zone to be regenerated and replaced by essentially coke-free regenerated catalyst from the regeneration zone. Fluidization of the catalyst particles by various gaseous streams allows the transport of catalyst between the reaction zone and regeneration zone. Methods for cracking hydrocarbons, such as those of the lipid composition described herein, in a fluidized stream of catalyst, transporting catalyst between reaction and regeneration zones, and combusting coke in the regenerator are well known by those skilled in the art of FCC processes. Exemplary FCC applications and catalysts useful for cracking the lipid composition to produce C2-05 olefins are described in U.S. Pat. Nos. 6,538,169, 7,288,685, which are incorporated in their entirety by reference.


Suitable FCC catalysts generally comprise at least two components that may or may not be on the same matrix. In some embodiments, both two components may be circulated throughout the entire reaction vessel. The first component generally includes any of the well-known catalysts that are used in the art of fluidized catalytic cracking, such as an active amorphous clay-type catalyst and/or a high activity, crystalline molecular sieve. Molecular sieve catalysts may be preferred over amorphous catalysts because of their much-improved selectivity to desired products. In some preferred embodiments, zeolites may be used as the molecular sieve in the FCC processes. Preferably, the first catalyst component comprises a large pore zeolite, such as a Y-type zeolite, an active alumina material, a binder material, comprising either silica or alumina and an inert filler such as kaolin.


In one embodiment, cracking the lipid composition of the present invention, takes place in the riser section or, alternatively, the lift section, of the FCC zone. The lipid composition is introduced into the riser by a nozzle resulting in the rapid vaporization of the lipid composition. Before contacting the catalyst, the lipid composition will ordinarily have a temperature of about 149° C. to about 316° C. (300° F. to 600° F.). The catalyst is flowed from a blending vessel to the riser where it contacts the lipid composition for a time of abort 2 seconds or less.


The blended catalyst and reacted lipid composition vapors are then discharged from the top of the riser through an outlet and separated into a cracked product vapor stream including olefins and a collection of catalyst particles covered with substantial quantities of coke and generally referred to as “coked catalyst.” In an effort to minimize the contact time of the lipid composition and the catalyst which may promote further conversion of desired products to undesirable other products, any arrangement of separators such as a swirl arm arrangement can be used to remove coked catalyst from the product stream quickly. The separator, e.g. swirl arm separator, is located in an upper portion of a chamber with a stripping zone situated in the lower portion of the chamber. Catalyst separated by the swirl arm arrangement drops down into the stripping zone. The cracked product vapor stream comprising cracked hydrocarbons including light olefins and some catalyst exit the chamber via a conduit which is in communication with cyclones. The cyclones remove remaining catalyst particles from the product vapor stream to reduce particle concentrations to very low levels. The product vapor stream then exits the top of the separating vessel. Catalyst separated by the cyclones is returned to the separating vessel and then to the stripping zone. The stripping zone removes adsorbed hydrocarbons from the surface of the catalyst by counter-current contact with steam.


Low hydrocarbon partial pressure operates to favor the production of light olefins. Accordingly, the riser pressure is set at about 172 to 241 kPa (25 to 35 psia) with a hydrocarbon partial pressure of about 35 to 172 kPa (5 to 25 psia), with a preferred hydrocarbon partial pressure of about 69 to 138 kPa (10 to 20 psia). This relatively low partial pressure for hydrocarbon is achieved by using steam as a diluent to the extent that the diluent is 10 to 55 wt-% of lipid composition and preferably about 15 wt-% of lipid composition. Other diluents such as dry gas can be used to reach equivalent hydrocarbon partial pressures.


The temperature of the cracked stream at the riser outlet will be about 510° C. to 621° C. (950° F. to 1150° F.). However, riser outlet temperatures above 566° C. (1050° F.) make more dry gas and more olefins. Whereas, riser outlet temperatures below 566° C. (1050° F.) make less ethylene and propylene. Accordingly, it is preferred to run the FCC process at a preferred temperature of about 566° C. to about 630° C., preferred pressure of about 138 kPa to about 240 kPa (20 to 35 psia). Another condition for the process is the catalyst to lipid composition ratio which can vary from about 5 to about 20 and preferably from about 10 to about 15.


In one embodiment of the method for producing a jet fuel, the lipid composition is introduced into the lift section of an FCC reactor. The temperature in the lift section will be very hot and range from about 700° C. (1292° F.) to about 760° C. (1400° F.) with a catalyst to lipid composition ratio of about 100 to about 150. It is anticipated that introducing the lipid composition into the lift section will produce considerable amounts of propylene and ethylene.


In another embodiment of the method for producing a jet fuel using the lipid composition or the lipids produced as described herein, the structure of the lipid composition or the lipids is broken by a process referred to as hydrodeoxygenation (HDO). HDO means removal of oxygen by means of hydrogen, that is, oxygen is removed while breaking the structure of the material. Olefinic double bonds are hydrogenated and any sulfur and nitrogen compounds are removed. Sulfur removal is called hydrodesulphurization (HDS). Pretreatment and purity of the raw materials (lipid composition or the lipids) contribute to the service life of the catalyst.


Generally in the HDO/HDS step, hydrogen is mixed with the feed stock (lipid composition or the lipids) and then the mixture is passed through a catalyst bed as a co-current flow, either as a single phase or a two phase feed stock. After the HDO/MDS step, the product fraction is separated and passed to a separate isomerization reactor. An isomerization reactor for biological starting material is described in the literature (FI 100 248) as a co-current reactor.


The process for producing a fuel by hydrogenating a hydrocarbon feed, e.g., the lipid composition or the lipids herein, can also be performed by passing the lipid composition or the lipids as a co-current flow with hydrogen gas through a first hydrogenation zone, and thereafter the hydrocarbon effluent is further hydrogenated in a second hydrogenation zone by passing hydrogen gas to the second hydrogenation zone as a counter-current flow relative to the hydrocarbon effluent. Exemplary HDO applications and catalysts useful for cracking the lipid composition to produce C2-05 olefins are described in U.S. Pat. No. 7,232,935, which is incorporated in its entirety by reference.


Typically, in the hydrodeoxygenation step, the structure of the biological component, such as the lipid composition or lipids herein, is decomposed, oxygen, nitrogen, phosphorus and sulfur compounds, and light hydrocarbons as gas are removed, and the olefinic bonds are hydrogenated. In the second step of the process, i.e. in the so-called isomerization step, isomerization is carried out for branching the hydrocarbon chain and improving the performance of the paraffin at low temperatures.


In the first step, i.e. HDO step, of the cracking process, hydrogen gas and the lipid composition or lipids herein which are to be hydrogenated are passed to a HDO catalyst bed system either as co-current or counter-current flows, said catalyst bed system comprising one or more catalyst bed(s), preferably 1-3 catalyst beds. The HDO step is typically operated in a co-current manner. In case of a HDO catalyst bed system comprising two or more catalyst beds, one or more of the beds may be operated using the counter-current flow principle. In the HDO step, the pressure varies between 20 and 150 bar, preferably between 50 and 100 bar, and the temperature varies between 200 and 500° C., preferably in the range of 300−400° C. In the HDO step, known hydrogenation catalysts containing metals from Group VII and/or VIB of the Periodic System may be used. Preferably, the hydrogenation catalysts are supported Pd, Pt, Ni, NiMo or a CoMo catalysts, the support being alumina and/or silica. Typically, NiMo/Al2O3 and CoMo/Al2O3 catalysts are used.


Prior to the HDO step, the lipid composition or lipids herein may optionally be treated by prehydrogenation under milder conditions thus avoiding side reactions of the double bonds. Such prehydrogenation is carried out in the presence of a prehydrogenation catalyst at temperatures of 50−400° C. and at hydrogen pressures of 1-200 bar, preferably at a temperature between 150 and 250° C. and at a hydrogen pressure between 10 and 100 bar. The catalyst may contain metals from Group VIII and/or VIB of the Periodic System. Preferably, the prehydrogenation catalyst is a supported Pd, Pt, Ni, NiMo or a CoMo catalyst, the support being alumina and/or silica.


A gaseous stream from the HDO step containing hydrogen is cooled and then carbon monoxide, carbon dioxide, nitrogen, phosphorus and sulfur compounds, gaseous light hydrocarbons and other impurities are removed therefrom. After compressing, the purified hydrogen or recycled hydrogen is returned back to the first catalyst bed and/or between the catalyst beds to make up for the withdrawn gas stream. Water is removed from the condensed liquid. The liquid is passed to the first catalyst bed or between the catalyst beds.


After the HDO step, the product is subjected to an isomerization step. It is substantial for the process that the impurities are removed as completely as possible before the hydrocarbons are contacted with the isomerization catalyst. The isomerization step comprises an optional stripping step, wherein the reaction product from the HDO step may be purified by stripping with water vapor or a suitable gas such as light hydrocarbon, nitrogen or hydrogen. The optional stripping step is carried out in counter-current manner in a unit upstream of the isomerization catalyst, wherein the gas and liquid are contacted with each other, or before the actual isomerization reactor in a separate stripping unit utilizing counter-current principle.


After the stripping step the hydrogen gas and the hydrogenated lipid composition or lipids herein, and optionally an n-paraffin mixture, are passed to a reactive isomerization unit comprising one or several catalyst bed(s). The catalyst beds of the isomerization step may operate either in co-current or counter-current manner.


It is important for the process that the counter-current flow principle is applied in the isomerization step. In the isomerization step this is done by carrying out either the optional stripping step or the isomerization reaction step or both in counter-current manner. In the isomerization step, the pressure varies in the range of 20-150 bar, preferably in the range of 20-100 bar, the temperature being between 200 and 500° C., preferably between 300 and 400° C. In the isomerization step, isomerization catalysts known in the art may be used. Suitable isomerization catalysts contain molecular sieve and/or a metal from Group VII and/or a carrier. Preferably, the isomerization catalyst contains SAPO-11 or SAPO41 or ZSM-22 or ZSM-23 or ferrierite and Pt, Pd or Ni and Al2O3 or SiO2. Typical isomerization catalysts are, for example, Pt/SAPO-11/Al2O3, Pt/ZSM-22/Al2O3, Pt/ZSM-23/Al2O3 and Pt/SAPO-11/SiO2. The isomerization step and the HDO step may be carried out in the same pressure vessel or in separate pressure vessels. Optional prehydrogenation may be carried out in a separate pressure vessel or in the same pressure vessel as the HDO and isomerization steps.


Thus, in one embodiment, the product of one or more chemical reactions is an alkane mixture that comprises HRJ-5. In another embodiment, the product of the one or more chemical reactions is an alkane mixture that comprises ASTM D1655 jet fuel. In some embodiments, the composition conforming to the specification of ASTM 1655 jet fuel has a sulfur content that is less than 10 ppm. In other embodiments, the composition conforming to the specification of ASTM 1655 jet fuel has a T10 value of the distillation curve of less than 205° C. In another embodiment, the composition conforming to the specification of ASTM 1655 jet fuel has a final boiling point (FBP) of less than 300° C. In another embodiment, the composition conforming to the specification of ASTM 1655 jet fuel has a flash point of at least 38° C. In another embodiment, the composition conforming to the specification of ASTM 1655 jet fuel has a density between 775K/M3 and 840K/M3. In yet another embodiment, the composition conforming to the specification of ASTM 1655 jet fuel has a freezing point that is below −47° C. In another embodiment, the composition conforming to the specification of ASTM 1655 jet fuel has a net Heat of Combustion that is at least 42.8 MJ/K. In another embodiment, the composition conforming to the specification of ASTM 1655 jet fuel has a hydrogen content that is at least 13.4 mass %. In another embodiment, the composition conforming to the specification of ASTM 1655 jet fuel has a thermal stability, as tested by quantitative gravimetric JFTOT at 260° C., which is below 3 mm of Hg. In another embodiment, the composition conforming to the specification of ASTM 1655 jet fuel has an existent gum that is below 7 mg/dl.


Thus, the present invention discloses a variety of methods in which chemical modification of microalgal lipid is undertaken to yield products useful in a variety of industrial and other applications. Examples of processes for modifying oil produced by the methods disclosed herein include, but are not limited to, hydrolysis of the oil, hydroprocessing of the oil, and esterification of the oil. Other chemical modification of microalgal lipid include, without limitation, epoxidation, oxidation, hydrolysis, sulfations, sulfonation, ethoxylation, propoxylation, amidation, and saponification. The modification of the microalgal oil produces basic oleochemicals that can be further modified into selected derivative oleochemicals for a desired function. In a manner similar to that described above with reference to fuel producing processes, these chemical modifications can also be performed on oils generated from the microbial cultures described herein. Examples of basic oleochemicals include, but are not limited to, soaps, fatty acids, fatty esters, fatty alcohols, fatty nitrogen compounds including fatty amides, fatty acid methyl esters, and glycerol. Examples of derivative oleochemicals include, but are not limited to, fatty nitriles, esters, dimer acids, quats (including betaines), surfactants, fatty alkanolamides, fatty alcohol sulfates, resins, emulsifiers, fatty alcohols, olefins, drilling muds, polyols, polyurethanes, polyacrylates, rubber, candles, cosmetics, metallic soaps, soaps, alpha-sulphonated methyl esters, fatty alcohol sulfates, fatty alcohol ethoxylates, fatty alcohol ether sulfates, imidazolines, surfactants, detergents, esters, quats (including betaines), ozonolysis products, fatty amines, fatty alkanolamides, ethoxysulfates, monoglycerides, diglycerides, triglycerides (including medium chain triglycerides), lubricants, hydraulic fluids, greases, dielectric fluids, mold release agents, metal working fluids, heat transfer fluids, other functional fluids, industrial chemicals (e.g., cleaners, textile processing aids, plasticizers, stabilizers, additives), surface coatings, paints and lacquers, electrical wiring insulation, and higher alkanes. Other derivatives include fatty amidoamines, amidoamine carboxylates, amidoamine oxides, amidoamine oxide carboxylates, amidoamine esters, ethanolamine amides, sulfonates, amidoamine sulfonates, diamidoamine dioxides, sulfonated alkyl ester alkoxylates, betaines, quarternized diamidoamine betaines, and sulfobetaines.


Hydrolysis of the fatty acid constituents from the glycerolipids produced by the methods of the invention yields free fatty acids that can be derivatized to produce other useful chemicals. Hydrolysis occurs in the presence of water and a catalyst which may be either an acid or a base. The liberated free fatty acids can be derivatized to yield a variety of products, as reported in the following: U.S. Pat. No. 5,304,664 (Highly sulfated fatty acids); U.S. Pat. No. 7,262,158 (Cleansing compositions); U.S. Pat. No. 7,115,173 (Fabric softener compositions); U.S. Pat. No. 6,342,208 (Emulsions for treating skin); U.S. Pat. No. 7,264,886 (Water repellant compositions); U.S. Pat. No. 6,924,333 (Paint additives); U.S. Pat. No. 6,596,768 (Lipid-enriched ruminant feedstock); and U.S. Pat. No. 6,380,410 (Surfactants for detergents and cleaners).


In some methods, the first step of chemical modification may be hydroprocessing to saturate double bonds, followed by deoxygenation at elevated temperature in the presence of hydrogen and a catalyst. In other methods, hydrogenation and deoxygenation may occur in the same reaction. In still other methods deoxygenation occurs before hydrogenation. Isomerization may then be optionally performed, also in the presence of hydrogen and a catalyst. Finally, gases and naphtha components can be removed if desired. For example, see U.S. Pat. No. 5,475,160 (hydrogenation of triglycerides); U.S. Pat. No. 5,091,116 (deoxygenation, hydrogenation and gas removal); U.S. Pat. No. 6,391,815 (hydrogenation); and U.S. Pat. No. 5,888,947 (isomerization).


In some embodiments of the invention, the triglyceride oils are partially or completely deoxygenated. The deoxygenation reactions form desired products, including, but not limited to, fatty acids, fatty alcohols, polyols, ketones, and aldehydes. In general, without being limited by any particular theory, the deoxygenation reactions involve a combination of various different reaction pathways, including without limitation: hydrogenolysis, hydrogenation, consecutive hydrogenation-hydrogenolysis, consecutive hydrogenolysis-hydrogenation, and combined hydrogenation-hydrogenolysis reactions, resulting in at least the partial removal of oxygen from the fatty acid or fatty acid ester to produce reaction products, such as fatty alcohols, that can be easily converted to the desired chemicals by further processing. For example, in one embodiment, a fatty alcohol may be converted to olefins through FCC reaction or to higher alkanes through a condensation reaction.


One such chemical modification is hydrogenation, which is the addition of hydrogen to double bonds in the fatty acid constituents of glycerolipids or of free fatty acids. The hydrogenation process permits the transformation of liquid oils into semi-solid or solid fats, which may be more suitable for specific applications.


Hydrogenation of oil produced by the methods described herein can be performed in conjunction with one or more of the methods and/or materials provided herein, as reported in the following: U.S. Pat. No. 7,288,278 (Food additives or medicaments); U.S. Pat. No. 5,346,724 (Lubrication products); U.S. Pat. No. 5,475,160 (Fatty alcohols); U.S. Pat. No. 5,091,116 (Edible oils); U.S. Pat. No. 6,808,737 (Structural fats for margarine and spreads); U.S. Pat. No. 5,298,637 (Reduced-calorie fat substitutes); U.S. Pat. No. 6,391,815 (Hydrogenation catalyst and sulfur adsorbent); U.S. Pat. Nos. 5,233,099 and 5,233,100 (Fatty alcohols); U.S. Pat. No. 4,584,139 (Hydrogenation catalysts); U.S. Pat. No. 6,057,375 (Foam suppressing agents); and U.S. Pat. No. 7,118,773 (Edible emulsion spreads).


One skilled in the art will recognize that various processes may be used to hydrogenate carbohydrates. One suitable method includes contacting the carbohydrate with hydrogen or hydrogen mixed with a suitable gas and a catalyst under conditions sufficient in a hydrogenation reactor to form a hydrogenated product. The hydrogenation catalyst generally can include Cu, Re, Ni, Fe, Co, Ru, Pd, Rh, Pt, Os, Ir, and alloys or any combination thereof, either alone or with promoters such as W, Mo, Au, Ag, Cr, Zn, Mn, Sn, B, P, Bi, and alloys or any combination thereof. Other effective hydrogenation catalyst materials include either supported nickel or ruthenium modified with rhenium. In an embodiment, the hydrogenation catalyst also includes any one of the supports, depending on the desired functionality of the catalyst. The hydrogenation catalysts may be prepared by methods known to those of ordinary skill in the art.


In some embodiments the hydrogenation catalyst includes a supported Group VIII metal catalyst and a metal sponge material (e.g., a sponge nickel catalyst). Raney nickel provides an example of an activated sponge nickel catalyst suitable for use in this invention. In other embodiment, the hydrogenation reaction in the invention is performed using a catalyst comprising a nickel-rhenium catalyst or a tungsten-modified nickel catalyst. One example of a suitable catalyst for the hydrogenation reaction of the invention is a carbon-supported nickel-rhenium catalyst.


In an embodiment, a suitable Raney nickel catalyst may be prepared by treating an alloy of approximately equal amounts by weight of nickel and aluminum with an aqueous alkali solution, e.g., containing about 25 weight % of sodium hydroxide. The aluminum is selectively dissolved by the aqueous alkali solution resulting in a sponge shaped material comprising mostly nickel with minor amounts of aluminum. The initial alloy includes promoter metals (i.e., molybdenum or chromium) in the amount such that about 1 to 2 weight % remains in the formed sponge nickel catalyst. In another embodiment, the hydrogenation catalyst is prepared using a solution of ruthenium (III) nitrosylnitrate, ruthenium (III) chloride in water to impregnate a suitable support material. The solution is then dried to form a solid having a water content of less than about 1% by weight. The solid may then be reduced at atmospheric pressure in a hydrogen stream at 300° C. (uncalcined) or 400° C. (calcined) in a rotary ball furnace for 4 hours. After cooling and rendering the catalyst inert with nitrogen, 5% by volume of oxygen in nitrogen is passed over the catalyst for 2 hours.


In certain embodiments, the catalyst described includes a catalyst support. The catalyst support stabilizes and supports the catalyst. The type of catalyst support used depends on the chosen catalyst and the reaction conditions. Suitable supports for the invention include, but are not limited to, carbon, silica, silica-alumina, zirconia, titania, ceria, vanadia, nitride, boron nitride, heteropolyacids, hydroxyapatite, zinc oxide, chromia, zeolites, carbon nanotubes, carbon fullerene and any combination thereof.


The catalysts used in this invention can be prepared using conventional methods known to those in the art. Suitable methods may include, but are not limited to, incipient wetting, evaporative impregnation, chemical vapor deposition, wash-coating, magnetron sputtering techniques, and the like.


The conditions for which to carry out the hydrogenation reaction will vary based on the type of starting material and the desired products. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate reaction conditions. In general, the hydrogenation reaction is conducted at temperatures of 80° C. to 250° C., and preferably at 90° C. to 200° C., and most preferably at 100° C. to 150° C. In some embodiments, the hydrogenation reaction is conducted at pressures from 500 KPa to 14000 KPa.


The hydrogen used in the hydrogenolysis reaction of the current invention may include external hydrogen, recycled hydrogen, in situ generated hydrogen, and any combination thereof. As used herein, the term “external hydrogen” refers to hydrogen that does not originate from the biomass reaction itself, but rather is added to the system from another source.


In some embodiments of the invention, it is desirable to convert the starting carbohydrate to a smaller molecule that will be more readily converted to desired higher hydrocarbons. One suitable method for this conversion is through a hydrogenolysis reaction. Various processes are known for performing hydrogenolysis of carbohydrates. One suitable method includes contacting a carbohydrate with hydrogen or hydrogen mixed with a suitable gas and a hydrogenolysis catalyst in a hydrogenolysis reactor under conditions sufficient to form a reaction product comprising smaller molecules or polyols. As used herein, the term “smaller molecules or polyols” includes any molecule that has a smaller molecular weight, which can include a smaller number of carbon atoms or oxygen atoms than the starting carbohydrate. In an embodiment, the reaction products include smaller molecules that include polyols and alcohols. Someone of ordinary skill in the art would be able to choose the appropriate method by which to carry out the hydrogenolysis reaction.


In some embodiments, a 5 and/or 6 carbon sugar or sugar alcohol may be converted to propylene glycol, ethylene glycol, and glycerol using a hydrogenolysis catalyst. The hydrogenolysis catalyst may include Cr, Mo, W, Re, Mn, Cu, Cd, Fe, Co, Ni, Pt, Pd, Rh, Ru, Ir, Os, and alloys or any combination thereof, either alone or with promoters such as Au, Ag, Cr, Zn, Mn, Sn, Bi, B, O, and alloys or any combination thereof. The hydrogenolysis catalyst may also include a carbonaceous pyropolymer catalyst containing transition metals (e.g., chromium, molybdenum, tungsten, rhenium, manganese, copper, cadmium) or Group VIII metals (e.g., iron, cobalt, nickel, platinum, palladium, rhodium, ruthenium, iridium, and osmium). In certain embodiments, the hydrogenolysis catalyst may include any of the above metals combined with an alkaline earth metal oxide or adhered to a catalytically active support. In certain embodiments, the catalyst described in the hydrogenolysis reaction may include a catalyst support as described above for the hydrogenation reaction.


The conditions for which to carry out the hydrogenolysis reaction will vary based on the type of starting material and the desired products. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate conditions to use to carry out the reaction. In general, they hydrogenolysis reaction is conducted at temperatures of 110° C. to 300° C., and preferably at 170° C. to 220° C., and most preferably at 200° C. to 225° C. In some embodiments, the hydrogenolysis reaction is conducted under basic conditions, preferably at a pH of 8 to 13, and even more preferably at a pH of 10 to 12. In some embodiments, the hydrogenolysis reaction is conducted at pressures in a range between 60 KPa and 16500 KPa, and preferably in a range between 1700 KPa and 14000 KPa, and even more preferably between 4800 KPa and 11000 KPa.


The hydrogen used in the hydrogenolysis reaction of the current invention can include external hydrogen, recycled hydrogen, in situ generated hydrogen, and any combination thereof.


In some embodiments, the reaction products discussed above may be converted into higher hydrocarbons through a condensation reaction in a condensation reactor. In such embodiments, condensation of the reaction products occurs in the presence of a catalyst capable of forming higher hydrocarbons. While not intending to be limited by theory, it is believed that the production of higher hydrocarbons proceeds through a stepwise addition reaction including the formation of carbon-carbon, or carbon-oxygen bond. The resulting reaction products include any number of compounds containing these moieties, as described in more detail below.


In certain embodiments, suitable condensation catalysts include an acid catalyst, a base catalyst, or an acid/base catalyst. As used herein, the term “acid/base catalyst” refers to a catalyst that has both an acid and a base functionality. In some embodiments the condensation catalyst can include, without limitation, zeolites, carbides, nitrides, zirconia, alumina, silica, aluminosilicates, phosphates, titanium oxides, zinc oxides, vanadium oxides, lanthanum oxides, yttrium oxides, scandium oxides, magnesium oxides, cerium oxides, barium oxides, calcium oxides, hydroxides, heteropolyacids, inorganic acids, acid modified resins, base modified resins, and any combination thereof. In some embodiments, the condensation catalyst can also include a modifier. Suitable modifiers include La, Y, Sc, P, B, Bi, Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, and any combination thereof. In some embodiments, the condensation catalyst can also include a metal. Suitable metals include Cu, Ag, Au, Pt, Ni, Fe, Co, Ru, Zn, Cd, Ga, In, Rh, Pd, Ir, Re, Mn, Cr, Mo, W, Sn, Os, alloys, and any combination thereof.


In certain embodiments, the catalyst described in the condensation reaction may include a catalyst support as described above for the hydrogenation reaction. In certain embodiments, the condensation catalyst is self-supporting. As used herein, the term “self-supporting” means that the catalyst does not need another material to serve as support. In other embodiments, the condensation catalyst in used in conjunction with a separate support suitable for suspending the catalyst. In an embodiment, the condensation catalyst support is silica.


The conditions under which the condensation reaction occurs will vary based on the type of starting material and the desired products. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate conditions to use to carry out the reaction. In some embodiments, the condensation reaction is carried out at a temperature at which the thermodynamics for the proposed reaction are favorable. The temperature for the condensation reaction will vary depending on the specific starting polyol or alcohol. In some embodiments, the temperature for the condensation reaction is in a range from 80° C. to 500° C., and preferably from 125° C. to 450° C., and most preferably from 125° C. to 250° C. In some embodiments, the condensation reaction is conducted at pressures in a range between 0 Kpa to 9000 KPa, and preferably in a range between 0 KPa and 7000 KPa, and even more preferably between 0 KPa and 5000 KPa.


The higher alkanes formed by the invention include, but are not limited to, branched or straight chain alkanes that have from 4 to 30 carbon atoms, branched or straight chain alkenes that have from 4 to 30 carbon atoms, cycloalkanes that have from 5 to 30 carbon atoms, cycloalkenes that have from 5 to 30 carbon atoms, aryls, fused aryls, alcohols, and ketones. Suitable alkanes include, but are not limited to, butane, pentane, pentene, 2-methylbutane, hexane, hexene, 2-methylpentane, 3-methylpentane, 2,2,-dimethylbutane, 2,3-dimethylbutane, heptane, heptene, octane, octene, 2,2,4-trimethylpentane, 2,3-dimethyl hexane, 2,3,4-trimethylpentane, 2,3-dimethylpentane, nonane, nonene, decane, decene, undecane, undecene, dodecane, dodecene, tridecane, tridecene, tetradecane, tetradecene, pentadecane, pentadecene, nonyldecane, nonyldecene, eicosane, eicosene, uneicosane, uneicosene, doeicosane, doeicosene, trieicosane, trieicosene, tetraeicosane, tetraeicosene, and isomers thereof. Some of these products may be suitable for use as fuels.


In some embodiments, the cycloalkanes and the cycloalkenes are unsubstituted. In other embodiments, the cycloalkanes and cycloalkenes are mono-substituted. In still other embodiments, the cycloalkanes and cycloalkenes are multi-substituted. In the embodiments comprising the substituted cycloalkanes and cycloalkenes, the substituted group includes, without limitation, a branched or straight chain alkyl having 1 to 12 carbon atoms, a branched or straight chain alkylene having 1 to 12 carbon atoms, a phenyl, and any combination thereof. Suitable cycloalkanes and cycloalkenes include, but are not limited to, cyclopentane, cyclopentene, cyclohexane, cyclohexene, methyl-cyclopentane, methyl-cyclopentene, ethyl-cyclopentane, ethyl-cyclopentene, ethyl-cyclohexane, ethyl-cyclohexene, isomers and any combination thereof.


In some embodiments, the aryls formed are unsubstituted. In another embodiment, the aryls formed are mono-substituted. In the embodiments comprising the substituted aryls, the substituted group includes, without limitation, a branched or straight chain alkyl having 1 to 12 carbon atoms, a branched or straight chain alkylene having 1 to 12 carbon atoms, a phenyl, and any combination thereof. Suitable aryls for the invention include, but are not limited to, benzene, toluene, xylene, ethyl benzene, para xylene, meta xylene, and any combination thereof.


The alcohols produced in the invention have from 4 to 30 carbon atoms. In some embodiments, the alcohols are cyclic. In other embodiments, the alcohols are branched. In another embodiment, the alcohols are straight chained. Suitable alcohols for the invention include, but are not limited to, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptyldecanol, octyldecanol, nonyldecanol, eicosanol, uneicosanol, doeicosanol, trieicosanol, tetraeicosanol, and isomers thereof.


The ketones produced in the invention have from 4 to 30 carbon atoms. In an embodiment, the ketones are cyclic. In another embodiment, the ketones are branched. In another embodiment, the ketones are straight chained. Suitable ketones for the invention include, but are not limited to, butanone, pentanone, hexanone, heptanone, octanone, nonanone, decanone, undecanone, dodecanone, tridecanone, tetradecanone, pentadecanone, hexadecanone, heptyldecanone, octyldecanone, nonyldecanone, eicosanone, uneicosanone, doeicosanone, trieicosanone, tetraeicosanone, and isomers thereof.


Another such chemical modification is interesterification. Naturally produced glycerolipids do not have a uniform distribution of fatty acid constituents. In the context of oils, interesterification refers to the exchange of acyl radicals between two esters of different glycerolipids. The interesterification process provides a mechanism by which the fatty acid constituents of a mixture of glycerolipids can be rearranged to modify the distribution pattern. Interesterification is a well-known chemical process, and generally comprises heating (to about 200° C.) a mixture of oils for a period (e.g., 30 minutes) in the presence of a catalyst, such as an alkali metal or alkali metal alkylate (e.g., sodium methoxide). This process can be used to randomize the distribution pattern of the fatty acid constituents of an oil mixture, or can be directed to produce a desired distribution pattern. This method of chemical modification of lipids can be performed on materials provided herein, such as microbial biomass with a percentage of dry cell weight as lipid at least 20%.


Directed interesterification, in which a specific distribution pattern of fatty acids is sought, can be performed by maintaining the oil mixture at a temperature below the melting point of some TAGs which might occur. This results in selective crystallization of these TAGs, which effectively removes them from the reaction mixture as they crystallize. The process can be continued until most of the fatty acids in the oil have precipitated, for example. A directed interesterification process can be used, for example, to produce a product with a lower calorie content via the substitution of longer-chain fatty acids with shorter-chain counterparts. Directed interesterification can also be used to produce a product with a mixture of fats that can provide desired melting characteristics and structural features sought in food additives or products (e.g., margarine) without resorting to hydrogenation, which can produce unwanted trans isomers.


Interesterification of oils produced by the methods described herein can be performed in conjunction with one or more of the methods and/or materials, or to produce products, as reported in the following: U.S. Pat. No. 6,080,853 (Nondigestible fat substitutes); U.S. Pat. No. 4,288,378 (Peanut butter stabilizer); U.S. Pat. No. 5,391,383 (Edible spray oil); U.S. Pat. No. 6,022,577 (Edible fats for food products); U.S. Pat. No. 5,434,278 (Edible fats for food products); U.S. Pat. No. 5,268,192 (Low calorie nut products); U.S. Pat. No. 5,258,197 (Reduce calorie edible compositions); U.S. Pat. No. 4,335,156 (Edible fat product); U.S. Pat. No. 7,288,278 (Food additives or medicaments); U.S. Pat. No. 7,115,760 (Fractionation process); U.S. Pat. No. 6,808,737 (Structural fats); U.S. Pat. No. 5,888,947 (Engine lubricants); U.S. Pat. No. 5,686,131 (Edible oil mixtures); and U.S. Pat. No. 4,603,188 (Curable urethane compositions).


In one embodiment in accordance with the invention, transesterification of the oil, as described above, is followed by reaction of the transesterified product with polyol, as reported in U.S. Pat. No. 6,465,642, to produce polyol fatty acid polyesters. Such an esterification and separation process may comprise the steps as follows: reacting a lower alkyl ester with polyol in the presence of soap; removing residual soap from the product mixture; water-washing and drying the product mixture to remove impurities; bleaching the product mixture for refinement; separating at least a portion of the unreacted lower alkyl ester from the polyol fatty acid polyester in the product mixture; and recycling the separated unreacted lower alkyl ester.


Transesterification can also be performed on microbial biomass with short chain fatty acid esters, as reported in U.S. Pat. No. 6,278,006. In general, transesterification may be performed by adding a short chain fatty acid ester to an oil in the presence of a suitable catalyst and heating the mixture. In some embodiments, the oil comprises about 5% to about 90% of the reaction mixture by weight. In some embodiments, the short chain fatty acid esters can be about 10% to about 50% of the reaction mixture by weight. Non-limiting examples of catalysts include base catalysts, sodium methoxide, acid catalysts including inorganic acids such as sulfuric acid and acidified clays, organic acids such as methane sulfonic acid, benzenesulfonic acid, and toluenesulfonic acid, and acidic resins such as Amberlyst 15. Metals such as sodium and magnesium, and metal hydrides also are useful catalysts.


Another such chemical modification is hydroxylation, which involves the addition of water to a double bond resulting in saturation and the incorporation of a hydroxyl moiety. The hydroxylation process provides a mechanism for converting one or more fatty acid constituents of a glycerolipid to a hydroxy fatty acid. Hydroxylation can be performed, for example, via the method reported in U.S. Pat. No. 5,576,027. Hydroxylated fatty acids, including castor oil and its derivatives, are useful as components in several industrial applications, including food additives, surfactants, pigment wetting agents, defoaming agents, water proofing additives, plasticizing agents, cosmetic emulsifying and/or deodorant agents, as well as in electronics, pharmaceuticals, paints, inks, adhesives, and lubricants. One example of how the hydroxylation of a glyceride may be performed is as follows: fat may be heated, preferably to about 30-50° C. combined with heptane and maintained at temperature for thirty minutes or more; acetic acid may then be added to the mixture followed by an aqueous solution of sulfuric acid followed by an aqueous hydrogen peroxide solution which is added in small increments to the mixture over one hour; after the aqueous hydrogen peroxide, the temperature may then be increased to at least about 60° C. and stirred for at least six hours; after the stirring, the mixture is allowed to settle and a lower aqueous layer formed by the reaction may be removed while the upper heptane layer formed by the reaction may be washed with hot water having a temperature of about 60° C.; the washed heptane layer may then be neutralized with an aqueous potassium hydroxide solution to a pH of about 5 to 7 and then removed by distillation under vacuum; the reaction product may then be dried under vacuum at 100° C. and the dried product steam-deodorized under vacuum conditions and filtered at about 50° to 60° C. using diatomaceous earth.


Hydroxylation of microbial oils produced by the methods described herein can be performed in conjunction with one or more of the methods and/or materials, or to produce products, as reported in the following: U.S. Pat. No. 6,590,113 (Oil-based coatings and ink); U.S. Pat. No. 4,049,724 (Hydroxylation process); U.S. Pat. No. 6,113,971 (Olive oil butter); U.S. Pat. No. 4,992,189 (Lubricants and lube additives); U.S. Pat. No. 5,576,027 (Hydroxylated milk); and U.S. Pat. No. 6,869,597 (Cosmetics).


Hydroxylated glycerolipids can be converted to estolides. Estolides consist of a glycerolipid in which a hydroxylated fatty acid constituent has been esterified to another fatty acid molecule. Conversion of hydroxylated glycerolipids to estolides can be carried out by warming a mixture of glycerolipids and fatty acids and contacting the mixture with a mineral acid, as described by Isbell et al., JAOCS 71(2):169-174 (1994). Estolides are useful in a variety of applications, including without limitation those reported in the following: U.S. Pat. No. 7,196,124 (Elastomeric materials and floor coverings); U.S. Pat. No. 5,458,795 (Thickened oils for high-temperature applications); U.S. Pat. No. 5,451,332 (Fluids for industrial applications); U.S. Pat. No. 5,427,704 (Fuel additives); and U.S. Pat. No. 5,380,894 (Lubricants, greases, plasticizers, and printing inks).


Another such chemical modification is olefin metathesis. In olefin metathesis, a catalyst severs the alkylidene carbons in an alkene (olefin) and forms new alkenes by pairing each of them with different alkylidine carbons. The olefin metathesis reaction provides a mechanism for processes such as truncating unsaturated fatty acid alkyl chains at alkenes by ethenolysis, cross-linking fatty acids through alkene linkages by self-metathesis, and incorporating new functional groups on fatty acids by cross-metathesis with derivatized alkenes.


In conjunction with other reactions, such as transesterification and hydrogenation, olefin metathesis can transform unsaturated glycerolipids into diverse end products. These products include glycerolipid oligomers for waxes; short-chain glycerolipids for lubricants; homo- and hetero-bifunctional alkyl chains for chemicals and polymers; short-chain esters for biofuel; and short-chain hydrocarbons for jet fuel. Olefin metathesis can be performed on triacylglycerols and fatty acid derivatives, for example, using the catalysts and methods reported in U.S. Pat. No. 7,119,216, US Patent Pub. No. 2010/0160506, and U.S. Patent Pub. No. 2010/0145086.


Olefin metathesis of bio-oils generally comprises adding a solution of Ru catalyst at a loading of about 10 to 250 ppm under inert conditions to unsaturated fatty acid esters in the presence (cross-metathesis) or absence (self-metathesis) of other alkenes. The reactions are typically allowed to proceed from hours to days and ultimately yield a distribution of alkene products. One example of how olefin metathesis may be performed on a fatty acid derivative is as follows: A solution of the first generation Grubbs Catalyst (dichloro[2(1-methylethoxy-α-O)phenyl]methylene-α-C] (tricyclohexyl-phosphine) in toluene at a catalyst loading of 222 ppm may be added to a vessel containing degassed and dried methyl oleate. Then the vessel may be pressurized with about 60 psig of ethylene gas and maintained at or below about 30° C. for 3 hours, whereby approximately a 50% yield of methyl 9-decenoate may be produced.


Olefin metathesis of oils produced by the methods described herein can be performed in conjunction with one or more of the methods and/or materials, or to produce products, as reported in the following: Patent App. PCT/US07/081427 (α-olefin fatty acids) and U.S. patent application Ser. No. 12/281,938 (petroleum creams), Ser. No. 12/281,931 (paintball gun capsules), Ser. No. 12/653,742 (plasticizers and lubricants), Ser. No. 12/422,096 (bifunctional organic compounds), and Ser. No. 11/795,052 (candle wax).


Other chemical reactions that can be performed on microbial oils include reacting triacylglycerols with a cyclopropanating agent to enhance fluidity and/or oxidative stability, as reported in U.S. Pat. No. 6,051,539; manufacturing of waxes from triacylglycerols, as reported in U.S. Pat. No. 6,770,104; and epoxidation of triacylglycerols, as reported in “The effect of fatty acid composition on the acrylation kinetics of epoxidized triacylglycerols”, Journal of the American Oil Chemists' Society, 79:1, 59-63, (2001) and Free Radical Biology and Medicine, 37:1, 104-114 (2004).


The generation of oil-bearing microbial biomass for fuel and chemical products as described above results in the production of delipidated biomass meal. Delipidated meal is a byproduct of preparing algal oil and is useful as animal feed for farm animals, e.g., ruminants, poultry, swine and aquaculture. The resulting meal, although of reduced oil content, still contains high quality proteins, carbohydrates, fiber, ash, residual oil and other nutrients appropriate for an animal feed. Because the cells are predominantly lysed by the oil separation process, the delipidated meal is easily digestible by such animals. Delipidated meal can optionally be combined with other ingredients, such as grain, in an animal feed. Because delipidated meal has a powdery consistency, it can be pressed into pellets using an extruder or expander or another type of machine, which are commercially available.


The invention, having been described in detail above, is exemplified in the following examples, which are offered to illustrate, but not to limit, the claimed invention.


EXAMPLES
Example 1
Fatty Acid Analysis by Fatty Acid Methyl Ester Detection

Lipid samples were prepared from dried biomass. 20-40 mg of dried biomass was resuspended in 2 mL of 5% H2SO4 in MeOH, and 200 ul of toluene containing an appropriate amount of a suitable internal standard (C19:0) was added. The mixture was sonicated briefly to disperse the biomass, then heated at 70-75° C. for 3.5 hours. 2 mL of heptane was added to extract the fatty acid methyl esters, followed by addition of 2 mL of 6% K2CO3 (aq) to neutralize the acid. The mixture was agitated vigorously, and a portion of the upper layer was transferred to a vial containing Na2SO4 (anhydrous) for gas chromatography analysis using standard FAME GC/FID (fatty acid methyl ester gas chromatography flame ionization detection) methods. Fatty acid profiles reported below were determined by this method.


Example 2
Engineering Microorganisms for Fatty Acid and Sn-2 Profiles Increased in Lauric Acid Through Exogenous LPAAT Expression

This example describes the use of recombinant polynucleotides that encode a C. nucifera 1-acyl-sn-glycerol-3-phosphate acyltransferase (Cn LPAAT) enzyme to engineer a microorganism in which the fatty acid profile and the sn-2 profile of the transformed microorganism has been enriched in lauric acid.


A classically mutagenized strain of Prototheca moriformis (UTEX 1435), Strain A, was initially transformed with the plasmid construct pSZ1283 according to biolistic transformation methods as described in PCT/US2009/066141, PCT/US2009/066142, PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696. pSZ1283, described in PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696 hereby incorporated by reference, comprised the coding sequence of the Cuphea wrightii FATB2 (CwTE2) thioesterase (SEQ ID NO: 10), 5′ (SEQ ID NO: 1) and 3′ (SEQ ID NO: 2) homologous recombination targeting sequences (flanking the construct) to the 6S genomic region for integration into the nuclear genome, and a S. cerevisiae suc2 sucrose invertase coding region (SEQ ID NO: 4), to express the protein sequence given in SEQ ID NO: 3, under the control of C. reinhardtii β-tubulin promoter/5′UTR (SEQ ID NO: 5) and Chlorella vulgaris nitrate reductase 3′ UTR (SEQ ID NO: 6). This S. cerevisiae suc2 expression cassette is listed as SEQ ID NO: 7 and served as a selectable marker. The CwTE2 protein coding sequence to express the protein sequence given in SEQ ID NO: 11, was under the control of the P. moriformis Amt03 promoter/5′UTR (SEQ ID NO: 8) and C. vulgaris nitrate reductase 3′UTR. The protein coding regions of CwTE2 and suc2 were codon optimized to reflect the codon bias inherent in P. moriformis UTEX 1435 nuclear genes as described in PCT/US2009/066141, PCT/US2009/066142, PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696.


Upon transformation of pSZ1283 into Strain A, positive clones were selected on agar plates with sucrose as the sole carbon source. Primary transformants were then clonally purified and a single transformant, Strain B, was selected for further genetic modification. This genetically engineered strain was transformed with plasmid construct pSZ2046 to interrupt the pLoop genomic locus of Strain B. Construct pSZ2046 comprised the coding sequence of the C. nucifera 1-acyl-sn-glycerol-3-phosphate acyltransferase (Cn LPAAT) enzyme (SEQ ID NO: 12), 5′ (SEQ ID NO: 13) and 3′ (SEQ ID NO: 14) homologous recombination targeting sequences (flanking the construct) to the pLoop genomic region for integration into the nuclear genome, and a neomycin resistance protein-coding sequence under the control of C. reinhardtii β-tubulin promoter/5′UTR (SEQ ID NO: 5), and Chlorella vulgaris nitrate reductase 3′ UTR (SEQ ID NO: 6). This NeoR expression cassette is listed as SEQ ID NO: 15 and served as a selectable marker. The Cn LPAAT protein coding sequence was under the control of the P. moriformis Amt03 promoter/5′UTR (SEQ ID NO: 8) and C. vulgaris nitrate reductase 3′UTR. The protein coding regions of Cn LPAAT and NeoR were codon optimized to reflect the codon bias inherent in P. moriformis UTEX 1435 nuclear genes as described in PCT/US2009/066141, PCT/US2009/066142, PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696. The amino acid sequence of Cn LPAAT is provided as SEQ ID NO: 16.


Upon transformation of pSZ2046 into Strain B, thereby generating Strain C, positive clones were selected on agar plates comprising G418 (Geneticin). Individual transformants were clonally purified and grown at pH 7.0 under conditions suitable for lipid production as detailed in PCT/US2009/066141, PCT/US2009/066142, PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696. Lipid samples were prepared from dried biomass from each transformant and fatty acid profiles from these samples were analyzed using standard fatty acid methyl ester gas chromatography flame ionization (FAME GC/FID) detection methods as described in Example 1. The fatty acid profiles (expressed as Area % of total fatty acids) of P. moriformis UTEX 1435 (U1) grown on glucose as a sole carbon source, untransformed Strain B and five pSZ2046 positive transformants (Strain C, 1-5) are presented in Table 10.









TABLE 10







Effect of LPAAT expression on fatty acid profiles


of transformed Prototheca moriformis (UTEX 1435)


comprising a mid-chain preferring thioesterase.














Area %

Strain
Strain
Strain
Strain
Strain
Strain


Fatty acid
U1
B
C-1
C-2
C-3
C-4
C-5

















C10:0
0.01
5.53
11.37
11.47
10.84
11.13
11.12


C12:0
0.04
31.04
46.63
46.47
45.84
45.80
45.67


C14:0
1.27
15.99
15.14
15.12
15.20
15.19
15.07


C16:0
27.20
12.49
7.05
7.03
7.30
7.20
7.19


C18:0
3.85
1.30
0.71
0.72
0.74
0.74
0.74


C18:l
58.70
24.39
10.26
10.41
10.95
11.31
11.45


C18:2
7.18
7.79
7.05
6.93
7.30
6.88
7.01


C10-C12
0.50
36.57
58.00
57.94
56.68
56.93
56.79









As shown in Table 10, the fatty acid profile of Strain B expressing CwTE2 showed increased composition of C10:0, C12:0, and C14:0 fatty acids and a decrease in C16:0, C18:0, and C18:1 fatty acids relative to the fatty acid profile of the untransformed UTEX 1435 strain. The impact of additional genetic modification on the fatty acid profile of the transformed strains, namely the expression of CnLPAAT in Strain B, is a still further increase in the composition of C10:0 and C12:0 fatty acids, a still further decrease in C16:0, C18:0, and C18:1 fatty acids, but no significant effect on the C14:0 fatty acid composition. These data indicate that the CnLPAAT shows substrate preference in the context of a microbial host organism.


The untransformed P. moriformis Strain A is characterized by a fatty acid profile comprising less than 0.5% C12 fatty acids and less than 1% C10-C12 fatty acids. In contrast, the fatty acid profile of Strain B expressing a C. wrightii thioesterase comprised 31% C12:0 fatty acids, with C10-C12 fatty acids comprising greater than 36% of the total fatty acids. Further, fatty acid profiles of Strain C, expressing a higher plant thioesterase and a CnLPAAT enzyme, comprised between 45.67% and 46.63% C12:0 fatty acids, with C10-C12% fatty acids comprising between 71 and 73% of total fatty acids. The result of expressing an exogenous thioesterase was a 62-fold increase in the percentage of C12 fatty acid present in the engineered microbe. The result of expressing an exogenous thioesterase and exogenous LPAAT was a 92-fold increase in the percentage of C12 fatty acids present in the engineered microbe.


The TAG fraction of oil samples extracted from Strains A, B, and C were analyzed for the sn-2 profile of their triacylglycerides. The TAGs were extracted and processed, and analyzed as in Example 1. The fatty acid composition and the sn-2 profiles of the TAG fraction of oil extracted from Strains A, B, and C (expressed as Area % of total fatty acids) are presented in Table 11. Values not reported are indicated as “n.r.”









TABLE 11







Effect of LPAAT expression on the fatty acid composition and the


sn-2 profile of TAGs produced from transformed Prototheca moriformis


(UTEX 1435) comprising a mid-chain preferring thioesterase.









Strain











Strain A
Strain B
Strain C



(untransformed)
(pSZ1500)
(pSZ1500 + pSZ2046)













Area %

sn-2

sn-2

sn-2


fatty acid
FA
profile
FA
profile
FA
profile
















C10:0
n.r.
n.r.
11.9
14.2
12.4
7.1


C12:0
n.r.
n.r.
42.4
25
47.9
52.8


C14:0
1.0
0.6
12
10.4
13.9
9.1


C16:0
23.9
1.6
7.2
1.3
6.1
0.9


C18:0
3.7
0.3
n.r
n.r.
0.8
0.3


C18:1
64.3
90.5
18.3
36.6
9.9
17.5


C18:2
4.5
5.8
5.8
10.8
6.5
10


C18:3
n.r.
n.r.
n.r.
n.r.
1.1
1.6









As shown in Table 11, the fatty acid composition of triglycerides (TAGs) isolated from Strain B expressing CwTE2 was increased for C10:0, C12:0, and C14:0 fatty acids and decrease in C16:0 and C18:1 fatty acids relative to the fatty acid profile of TAGs isolated from untransformed Strain A. The impact of additional genetic modification on the fatty acid profile of the transformed strains, namely the expression of CnLPAAT, was a still further increase in the composition of C10:0 and C12:0 fatty acids, a still further decrease in C16:0, C18:0, and C18:1 fatty acids, but no significant effect on the C14:0 fatty acid composition. These data indicate that expression of the exogenous CnLPAAT improves the midchain fatty acid profile of transformed microbes.


The untransformed P. moriformis Strain A is characterized by an sn-2 profile of about 0.6% C14, about 1.6% C16:0, about 0.3% C18:0, about 90% C18:1, and about 5.8% C18:2. In contrast to Strain A, Strain B, expressing a C. wrightii thioesterase is characterized by an sn-2 profile that is higher in midchain fatty acids and lower in long chain fatty acids. C12 fatty acids comprised 25% of the sn-2 profile of Strain B. The impact of additional genetic modification on the sn-2 profile of the transformed strains, namely the expression of CnLPAAT, was still a further increase in C12 fatty acids (from 25% to 52.8%), a decrease in C18:1 fatty acids (from 36.6% to 17.5%), and a decrease in C10:0 fatty acids. (The sn-2 profile composition of C14:0 and C16:0 fatty acids was relatively similar for Strains B and C.)


These data demonstrate the utility and effectiveness of polynucleotides permitting exogenous LPAAT expression to alter the fatty acid profile of engineered microorganisms, and in particular in increasing the concentration of C10:0 and C12:0 fatty acids in microbial cells. These data further demonstrate the utility and effectiveness of polynucleotides permitting exogenous thioesterase and exogenous LPAAT expression to alter the sn-2 profile of TAGs produced by microbial cells, in particular in increasing the C12 composition of sn-2 profiles and decreasing the C18:1 composition of sn-2 profiles.


Example 3
Analysis of Regiospecific Profile

LC/MS TAG distribution analyses were carried out using a Shimadzu Nexera ultra high performance liquid chromatography system that included a SIL-30AC autosampler, two LC-30AD pumps, a DGU-20A5 in-line degasser, and a CTO-20A column oven, coupled to a Shimadzu LCMS 8030 triple quadrupole mass spectrometer equipped with an APCI source. Data was acquired using a Q3 scan of m/z 350-1050 at a scan speed of 1428 u/sec in positive ion mode with the CID gas (argon) pressure set to 230 kPa. The APCI, desolvation line, and heat block temperatures were set to 300, 250, and 200° C., respectively, the flow rates of the nebulizing and drying gases were 3.0 L/min and 5.0 L/min, respectively, and the interface voltage was 4500 V. Oil samples were dissolved in dichloromethane-methanol (1:1) to a concentration of 5 mg/mL, and 0.8 μL of sample was injected onto Shimadzu Shim-pack XR-ODS III (2.2 μm, 2.0×200 mm) maintained at 30° C. A linear gradient from 30% dichloromethane-2-propanol (1:1)/acetonitrile to 51% dichloromethane-2-propanol (1:1)/acetonitrile over 27 minutes at 0.48 mL/min was used for chromatographic separations.


Example 4
Engineering Microorganisms for Increased Production of Erucic Acid Through Elongase or Beta-Ketoacyl-CoA Synthase Overexpression

In an embodiment of the present invention, a recombinant polynucleotide transformation vector operable to express an exogenous elongase or beta-ketoacyl-CoA synthase in an optionally plastidic oleaginous microbe is constructed and employed to transform Prototheca moriformis (UTEX 1435) according to the biolistic transformation methods as described in PCT/US2009/066141, PCT/US2009/066142, PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696 to obtain a cell increased for production of erucic acid. The transformation vector includes a protein coding region to overexpress an elongase or beta-ketoacyl-CoA synthase such as those listed in Table 8, promoter and 3′UTR control sequences to regulate expression of the exogenous gene, 5′ and 3′ homologous recombination targeting sequences targeting the recombinant polynucleotides for integration into the P. moriformis (UTEX 1435) nuclear genome, and nucleotides operable to express a selectable marker. The protein-coding sequences of the transformation vector are codon-optimized for expression in P. moriformis (UTEX 1435) as described in PCT/US2009/066141, PCT/US2009/066142, PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696. Recombinant polynucleotides encoding promoters, 3′ UTRs, and selectable markers operable for expression in P. moriformis (UTEX 1435) are disclosed herein and in PCT/US2009/066141, PCT/US2009/066142, PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696.


Upon transformation of the transformation vector into P. moriformis (UTEX 1435) or a classically-mutagenized strain of P. moriformis (UTEX 1435), positive clones are selected on agar plates. Individual transformants are clonally purified and cultivated under heterotrophic conditions suitable for lipid production as detailed in PCT/US2009/066141, PCT/US2009/066142, PCT/US2011/038463, PCT/US2011/038464, and PCT/US2012/023696. Lipid samples are prepared from dried biomass from each transformant and fatty acid profiles from these samples are analyzed using fatty acid methyl ester gas chromatography flame ionization (FAME GC/FID) detection methods as described in Example 1. As a result of these manipulations, the cell may exhibit an increase in erucic acid of at least 5, 10, 15, or 20 fold.


The transgenic CuPSR23 LPAAT2 strains (D1520A-E) show a significant increase in the accumulation of C10:0, C12:0, and C14:0 fatty acids with a concomitant decrease in C18:1 and C18:2. The transgenic CuPSR23 LPAAT3 strains (D1521A-E) show a significant increase in the accumulation of C10:0, C12:0, and C14:0 fatty acids with a concomitant decrease in C18:1. The expression of the CuPSR23 LPAAT in these transgenic lines appears to be directly responsible for the increased accumulation of mid-chain fatty acids in general, and especially laurates. While the transgenic lines show a shift from longer chain fatty acids (C16:0 and above) to mid-chain fatty acids, the shift is targeted predominantly to C10:0 and C12:0 fatty acids with a slight effect on C14:0 fatty acids. The data presented also show that co-expression of the LPAAT2 and LPAAT3 genes from Cuphea PSR23 and the FATB2 from C. wrightii (expressed in the strain Strain B) have an additive effect on the accumulation of C12:0 fatty acids.


Our results suggest that the LPAAT enzymes from Cuphea PSR23 are active in the algal strains derived from UTEX 1435. These results also demonstrate that the enzyme functions in conjunction with the heterologous FatB2 acyl-ACP thioesterase enzyme expressed in Strain B, which is derived from Cuphea wrightii.


The transgenic CuPSR23 LPAATx strains (D1542A-E) show a significant decrease in the accumulation of C10:0, C12:0, and C14:0 fatty acids relative to the parent, Strain B, with a concomitant increase in C16:0, C18:0, C18:1 and C18:2. The expression of the CuPSR23 LPAATx gene in these transgenic lines appears to be directly responsible for the decreased accumulation of mid-chain fatty acids (C10-C14) and the increased accumulation of C16:0 and C18 fatty acids, with the most pronounced increase observed in palmitates (C16:0). The data presented also show that despite the expression of the midchain specific FATB2 from C. wrightii (present in Strain B), the expression of CuPSR23 LPAATx appears to favor incorporation of longer chain fatty acids into TAGs.


Our results suggest that the LPAATx enzyme from Cuphea PSR23 is active in the algal strains derived from UTEX 1435. Contrary to Cuphea PSR23 LPAAT2 and LPAAT3, which increase mid-chain fatty acid levels, CuPSR23 LPAATx leads to increased C16:0 and C18:0 levels. These results demonstrate that the different LPAATs derived from CuPSR23 (LPAAT2, LPAAT3, and LPAATx) exhibit different fatty acid specificities in Strain B as judged by their effects on overall fatty acid levels.


Example 5
Production of Eicosenoic and Erucic Fatty Acids

In this example we demonstrate that expression of heterologous fatty acid elongase (FAE), also known as 3-ketoacyl-CoA synthase (KCS), genes from Cramble abyssinica (CaFAE, Accession No: AY793549), Lunaria annua (LaFAE, ACJ61777), and Cardamine graeca (CgFAE, ACJ61778) leads to production of very long chain monounsaturated fatty acids such as eicosenoic (20:1Δ11) and erucic (22:1Δ13) acids in classically mutagenized derivative of UTEX 1435, Strain Z. On the other hand a putative FAE gene from Tropaeolum majus (TmFAE, ABD77097) and two FAE genes from Brassica napus (BnFAE1, AAA96054 and BnFAE2, AAT65206), while resulting in modest increase in eicosenoic (20:1Δ11), produced no detectable erucic acid in STRAIN Z. Interestingly the unsaturated fatty acid profile obtained with heterologous expression of BnFAE1 in STRAIN Z resulted in noticeable increase in Docosadienoic acid (22:2n6). All the genes were codon optimized to reflect UTEX 1435 codon usage. These results suggest that CaFAE, LaFAE or CgFAE genes encode condensing enzymes involved in the biosynthesis of very long-chain utilizing monounsaturated and saturated acyl substrates, with specific capability for improving the eicosenoic and erucic acid content.


Construct Used for the Expression of the Cramble abyssinica Fatty Acid Elongase (CaFAE) in P. moriformis (UTEX 1435 Strain Z)—[pSZ3070]:


In this example STRAIN Z strains, transformed with the construct pSZ3070, were generated, which express sucrose invertase (allowing for their selection and growth on medium containing sucrose) and C. abyssinica FAE gene. Construct pSZ3070 introduced for expression in STRAIN Z can be written as 6S::CrTUB2-ScSUC2-Cvnr:PmAmt03-CaFAE-Cvnr::6S.


The sequence of the transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold, and are from 5′-3′ BspQI, KpnI, XbaI, MfeI, BamHI, EcoRI, SpeI, AflII, SacI, BspQI, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from STRAIN Z that permit targeted integration at the 6S locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the C. reinhardtii β-tubulin promoter driving the expression of the Saccharomyces cerevisiae SUC2 gene (encoding sucrose hydrolyzing activity, thereby permitting the strain to grow on sucrose) is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for SUC2 are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text followed by an endogenous AMTS promoter of P. moriformis, indicated by boxed italicized text. The Initiator ATG and terminator TGA codons of the CaFAE are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the STRAIN Z 6S genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ3070:



(SEQ ID NO: 35)








gctcttc

gccgccgccactcctgctcgagcgcgcccgcgcgtgcgccgccagcgccttggccttttcgccgcgctcgtgcgcgtcgctgatgt








ccatcaccaggtccatgaggtctgccttgcgccggctgagccactgcttcgtccgggcggccaagaggagcatgagggaggactcctggt







ccagggtcctgacgtggtcgcggctctgggagcgggccagcatcatctggctctgccgcaccgaggccgcctccaactggtcctccagca







gccgcagtcgccgccgaccctggcagaggaagacaggtgaggggggtatgaattgtacagaacaaccacgagccttgtctaggcagaa







tccctaccagtcatggctttacctggatgacggcctgcgaacagctgtccagcgaccctcgctgccgccgcttctcccgcacgcttctttcca







gcaccgtgatggcgcgagccagcgccgcacgctggcgctgcgcttcgccgatctgaggacagtcggggaactctgatcagtctaaacccc







cttgcgcgttagtgttgccatcctttgcagaccggtgagagccgacttgttgtgcgccaccccccacaccacctcctcccagaccaattctgt








embedded image







cacctttttggcgaaggcatcggcctcggcctgcagagaggacagcagtgcccagccgctgggggttggcggatgcacgctcaggtacc







embedded image









embedded image









embedded image









embedded image








atgacgaacgagacgtccgaccgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgag







aaggacgccaagtggcacctgtacttccagtacaacccgaacgacaccgtctggggacgcccttgttctggggccacgccacgtccgacg







acctgaccaactgggaggaccagcccatcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaa







caacacctccggcttcttcaacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagt







acatctcctacagcctggacggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccg







aaggtcttctggtacgagccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctg







aagtcctggaagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagca







ggaccccagcaagtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttc







aacggcacccacttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgac







ccgacctacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccctggcgctcctccatgtcc







ctcgtgcgcaagttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagccgatcctgaacatca







gcaacgccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgtccaacagcaccggca







ccctggagttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctctggttcaagggcctgga







ggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaagga







gaacccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaacgacctgtcctactacaaggtgtacggcttgctgg







accagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatgaccaccgggaacgccctgggctccgtg








embedded image








gtatcgacacactctggacctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctc







agtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgctt







gcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcc







tgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaggatcccgcgtctc






gaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttggtt





cttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacgttcac







embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








ggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttg







tgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccaccctcgtttcatatcgcttgcatcccaaccgca







acttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtac







tgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctcttgttttccaga







aggagttgctccttgagcctttcattctcagcctcgataacctccaaagccgctctaattgtggagggggttcgaatttaaaagcttggaatg







ttggttcgtgcgtctggaacaagcccagacttgttgctcactgggaaaaggaccatcagctccaaaaaacttgccgctcaaaccgcgtacc







tctgctttcgcgcaatctgccctgttgaaatcgccaccacattcatattgtgacgcttgagcagtctgtaattgcctcagaatgtggaatcatc







tgccccctgtgcgagcccatgccaggcatgtcgcgggcgaggacacccgccactcgtacagcagaccattatgctacctcacaatagttca







taacagtgaccatatttctcgaagctccccaacgagcacctccatgctctgagtggccaccccccggccctggtgcttgcggagggcaggt







caaccggcatggggctaccgaaatccccgaccggatcccaccacccccgcgatgggaagaatctctccccgggatgtgggcccaccacc







agcacaacctgctggcccaggcgagcgtcaaaccataccacacaaatatccttggcatcggccctgaattccttctgccgctctgctacccg







gtgcttctgtccgaagcaggggttgctagggatcgctccgagtccgcaaacccttgtcgcgtggcggggcttgttcgagctt

gaagagc








Constructs Used for the Expression of the FAE Genes from Higher Plants in Strain Z:


In addition to the CaFAE gene (pSZ3070), LaFAE (pSZ3071) from Lunaria annua, CgFAE (pSZ3072) from Cardamine graeca, TmFAE (pSZ3067) Tropaeolum majus and BnFAE1 (pSZ3068) and BnFAE2 (pSZ3069) genes from Brassica napus have been constructed for expression in STRAIN Z. These constructs can be described as:


pSZ3071—6S::CrTUB2-ScSUC2-Cvnr:PmAmt03-LaFAE-Cvnr::6S


pSZ3072—6S::CrTUB2-ScSUC2-Cvnr:PmAmt03-CgFAE-Cvnr::6S


pSZ3067—6S::CrTUB2-ScSUC2-Cvnr:PmAmt03-TmFAE-Cvnr::6S


pSZ3068—6S::CrTUB2-ScSUC2-Cvnr:PmAmt03-BnFAE1-Cvnr::6S


pSZ3069—6S::CrTUB2-ScSUC2-Cvnr:PmAmt03-BnFAE2-Cvnr::6S


All these constructs have the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ3070, differing only in the respective FAE genes. Relevant restriction sites in these constructs are also the same as in pSZ3070. The sequences of LaFAE, CgFAE, TmFAE, BnFAE1 and BnFAE2 are shown below. Relevant restriction sites as bold text including SpeI and AflII are shown 5′-3′ respectively.














Nucleotide sequence of LaFAE contained in pSZ3071:


(SEQ ID NO:36)




embedded image




Nucleotide sequence of CgFAE contained in pSZ3072:


(SEQ ID NO:37)




embedded image




Nucleotide sequence of TmFAE contained in pSZ3067:


(SEQ ID NO:38)




embedded image




Nucleotide sequence of BnFAE1 contained in pSZ3068:


(SEQ ID NO:39)




embedded image




Nucleotide sequence of BnFAE2 contained in pSZ3069:


(SEQ ID NO:40)




embedded image











To determine their impact on fatty acid profiles, the above constructs containing various heterologous FAE genes, driven by the PmAMT3 promoter, were transformed independently into STRAIN Z.


Primary transformants were clonally purified and grown under low-nitrogen lipid production conditions at pH7.0 (all the plasmids require growth at pH 7.0 to allow for maximal FAE gene expression when driven by the pH regulated PmAMT03 promoter). The resulting profiles from a set of representative clones arising from transformations with pSZ3070, pSZ3071, pSZ3072, pSZ3067, pSZ3068 and pSZ3069 into STRAIN Z are shown in Tables 12-17, respectively, below.


All the transgenic STRAIN Z strains expressing heterologous FAE genes show an increased accumulation of C20:1 and C22:1 fatty acid (see Tables 12-17). The increase in eicosenoic (20:1Δ11) and erucic (22:1Δ13) acids levels over the wildtype is consistently higher than the wildtype levels. Additionally, the unsaturated fatty acid profile obtained with heterologous expression of BnFAE1 in STRAIN Z resulted in noticeable increase in Docosadienoic acid (C22:2n6). Protein alignment of aforementioned FAE expressed in STRAIN Z is shown in Figure.









TABLE 12







Unsaturated fatty acid profile in STRAIN Z and representative derivative


transgenic lines transformed with pSZ3070 (CaFAE) DNA.














Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1
C22:2n6
C22:5

















STRAIN Z;
51.49
9.13
0.65
4.35
1.24
0.11
0.00


T588;


D1828-20


STRAIN Z;
55.59
7.65
0.50
3.78
0.85
0.00
0.13


T588;


D1828-23


STRAIN Z;
54.70
7.64
0.50
3.44
0.85
0.09
0.00


T588;


D1828-43


STRAIN Z;
52.43
7.89
0.59
2.72
0.73
0.00
0.00


T588;


D1828-12


STRAIN Z;
56.02
7.12
0.52
3.04
0.63
0.10
0.11


T588;


D1828-19


Cntrl
57.99
6.62
0.56
0.19
0.00
0.06
0.05


STRAIN Z


pH 7


Cntrl
57.70
7.08
0.54
0.11
0.00
0.05
0.05


STRAIN Z


pH 5
















TABLE 13







Unsaturated fatty acid profile in STRAIN Z and representative derivative


transgenic lines transformed with pSZ3071 (LaFAE) DNA.














Sample ID
C18:1
C18:2
C18:3 a
C20:1
C22:1
C22:2n6
C22:5

















STRAIN Z;
54.66
7.04
0.52
1.82
0.84
0.12
0.09


T588;


D1829-36


STRAIN Z;
56.27
6.72
0.51
1.70
0.72
0.09
0.00


T588;


D1829-24


STRAIN Z;
56.65
8.36
0.54
2.04
0.67
0.00
0.00


T588;


D1829-11


STRAIN Z;
55.57
7.71
0.53
0.10
0.66
0.00
0.00


T588;


D1829-35


STRAIN Z;
56.03
7.06
0.54
1.54
0.51
0.06
0.08


T588;


D1829-42


Cntrl
57.70
7.08
0.54
0.11
0.00
0.06
0.05


STRAIN Z


pH 7


Cntrl
57.99
6.62
0.56
0.19
0.00
0.05
0.05


STRAIN Z


pH 5
















TABLE 14







Unsaturated fatty acid profile in STRAIN Z and representative derivative


transgenic lines transformed with pSZ3072 (CgFAE) DNA.














Sample ID
C18:1
C18:2
C18:3 a
C20:1
C22:1
C22:2n6
C22:5

















STRAIN Z;
57.74
7.79
0.52
1.61
0.25
0.11
0.05


T588;


D1830-47


STRAIN Z;
58.06
7.39
0.55
1.64
0.22
0.07
0.06


T588;


D1830-16


STRAIN Z;
57.77
6.86
0.51
1.34
0.19
0.09
0.00


T588;


D1830-12


STRAIN Z;
58.45
7.54
0.49
1.65
0.19
0.06
0.00


T588;


D1830-37


STRAIN Z;
57.10
7.28
0.56
1.43
0.19
0.07
0.00


T588;


D1830-44


Cntrl
57.70
7.08
0.54
0.11
0.00
0.06
0.05


STRAIN Z


pH 7


Cntrl
57.99
6.62
0.56
0.19
0.00
0.05
0.05


STRAIN Z


pH 5
















TABLE 15







Unsaturated fatty acid profile in Strain AR and representative


derivative transgenic lines transformed with pSZ3070


(TmFAE) DNA. No detectable Erucic (22:1) acid peaks


were reported for these transgenic lines.













Sample ID
C18:1
C18:2
C18:3 a
C20:1
C22:2n6
C22:5
















STRAIN Z;
59.97
7.44
0.56
0.57
0.00
0.00


T588;


D1825-47


STRAIN Z;
58.77
7.16
0.51
0.50
0.09
0.11


T588;


D1825-35


STRAIN Z;
60.40
7.82
0.47
0.44
0.07
0.07


T588;


D1825-27


STRAIN Z;
58.07
7.32
0.54
0.41
0.05
0.05


T588;


D1825-14


STRAIN Z;
58.66
7.74
0.46
0.39
0.08
0.00


T588;


D1825-40


Cntrl
57.99
6.62
0.56
0.19
0.05
0.05


STRAIN Z


pH 7


Cntrl
57.70
7.08
0.54
0.11
0.06
0.05


STRAIN Z


pH 5
















TABLE 16







Unsaturated fatty acid profile in STRAIN Z and representative


derivative transgenic lines transformed with pSZ3068


(BnFAE1) DNA. No detectable Erucic (22:1) acid peaks


were reported for these transgenic lines.













Sample ID
C18:1
C18:2
C18:3 a
C20:1
C22:2n6
C22:5
















STRAIN Z;
59.82
7.88
0.55
0.32
0.17
0.10


T588;


D1826-30


STRAIN Z;
59.32
8.02
0.58
0.27
0.18
0.07


T588;


D1826-23


STRAIN Z;
59.63
7.49
0.55
0.27
0.19
0.08


T588;


D1826-45


STRAIN Z;
59.35
7.78
0.57
0.26
0.23
0.00


T588;


D1826-24


STRAIN Z;
59.14
7.61
0.57
0.25
0.22
0.05


T588;


D1826-34


Cntrl
57.81
7.15
0.59
0.19
0.04
0.06


STRAIN Z


pH 7


Cntrl
58.23
6.70
0.58
0.18
0.05
0.06


STRAIN Z


pH 5
















TABLE 17







Unsaturated fatty acid profile in STRAIN Z and representative


derivative transgenic lines transformed with pSZ3069


(BnFAE2) DNA. No detectable Erucic (22:1) acid peaks


were reported for these transgenic lines.













Sample ID
C18:1
C18:2
C18:3 a
C20:1
C22:2n6
C22:5
















STRAIN Z;
60.59
8.20
0.57
0.34
0.00
0.07


T588;


D1827-6


STRAIN Z;
59.62
6.44
0.52
0.30
0.07
0.00


T588;


D1827-42


STRAIN Z;
59.71
7.99
0.59
0.30
0.06
0.00


T588;


D1827-48


STRAIN Z;
60.66
8.21
0.59
0.29
0.04
0.00


T588;


D1827-43


STRAIN Z;
60.26
7.99
0.57
0.28
0.04
0.00


T588;


D1827-3


Cntrl
57.81
7.15
0.59
0.19
0.04
0.06


STRAIN Z


pH 7


Cntrl
58.23
6.70
0.58
0.18
0.05
0.06


STRAIN Z


pH 5









Example 6
Tag Regiospecificity in UTEX1435 by Expression of Cuphea PSR23 LPAAT2 and LPAAT3 Genes

We have demonstrated that the expression of 2 different 1-acyl-sn-glycerol-3-phosphate acyltransferases (LPAATs), the LPAAT2 and LPAAT3 genes from Cuphea PSR23 (CuPSR23) in the UTEX1435 derivative strain S2014 resulted in elevation of C10:0, C12:0 and C14:0 fatty acids levels. In this example we provide evidence that Cuphea PSR23 LPAAT2 exhibits high specificity towards incorporating C10:0 fatty acids at sn-2 position in TAGs. The Cuphea PSR23 LPAAT3 specifically incorporates C18:2 fatty acids at sn-2 position in TAGs.


Composition and properties of Prototheca moriformis (UTEX 1435) transgenic strain B, transforming vectors pSZ2299 and pSZ2300 that express CuPSR23 LPAAT2 and LPAAT3 genes, respectively, and their sequences were described previously.


To determine the impact of Cuphea PSR23 LPAAT genes on the resulting fatty acid profiles we have taken advantage of Strain B which synthesizes both mid chain and long chain fatty acids at relatively high levels. As shown in Table 18, the expression of the LPAAT2 gene (D1520) in Strain B resulted in increased C10-C12:0 levels (up to 12% in the best strain, D1520.3-7) suggesting that this LPAAT is specific for mid chain fatty acids. Alternatively, expression of the LPAAT3 gene resulted in a relatively modest increase, (up to 5% in the best strain, D1521.28-7) indicating it has little or no impact on mid-chain levels.









TABLE 18







Fatty acid profiles of Strain B and representative transgenic


lines transformed with pSZ2299 (D1520) and pSZ2300 (D1521) DNA.










Fatty Acid (area %)
Total

















Strain
C8:0
C10:0
C12:0
C14:0
C16:0
C18:0
C18:1
C18:2
C10-C12
Saturates




















Strain B
0.09
4.95
29.02
15.59
12.55
1.27
27.93
7.60
33.97
63.47


D1520.8-6
0.00
6.71
31.15
15.80
13.04
1.42
24.32
6.56
37.86
68.12


D1520.13-4
0.00
6.58
30.96
16.14
13.34
1.25
24.32
6.27
37.54
68.27


D1520.19-4
0.00
7.53
32.94
16.64
12.63
1.17
21.96
6.11
40.47
70.91


D1520.3-7
0.06
9.44
36.26
16.71
11.44
1.28
18.41
5.59
45.70
75.19


D1521.13-8
0.00
6.21
33.13
16.70
12.30
1.18
20.84
8.70
39.34
69.52


D1521.18-2
0.00
5.87
31.91
16.46
12.60
1.22
22.14
8.59
37.78
68.06


D1521.24-8
0.00
5.75
31.47
16.13
12.60
1.42
23.31
8.22
37.22
67.37


D1521.28-7
0.00
6.28
32.82
16.33
12.27
1.43
21.98
7.91
39.10
69.13









To determine if expression of the Cuphea PSR23 LPAAT genes affected regiospecificity of fatty acids at the sn-2 position, we analyzed TAGs from representative D1520 and D1521 strains utilizing the porcine pancreatic lipase method. As demonstrated in Table 19, the Cuphea PSR23 LPAAT2 gene shows remarkable specificity towards C10:0 fatty acids and appears to incorporate 50% more C10:0 fatty acids into the sn-2 position. The Cuphea PSR23 LPAAT3 gene appears to act exclusively on C18:2 fatty acids, resulting in redistribution of C18:2 fatty acids onto sn-2 position. Accordingly, microbial triglyceride oils with sn-2 profiles of greater than 15% or 20% C10:0 or C18:2 fatty acids are obtainable by introduction of an exogenous LPAAT gene having corresponding specificity.









TABLE 19







TAG and sn-2 fatty acid profiles in oils of parental


S2014 strain and the progeny strains expressing Cuphea


PSR23 LPAAT2 (BJ) and LPAAT3 (BK) genes.









Strain











Strain
Strain BI
Strain BK



B
(D1520.3-7)
(D1521.13-8)









Analysis














TAG
sn-2
TAG
sn-2
TAG
sn-2



Profile
Profile
Profile
Profile
Profile
Profile


















Fatty
C8:0
0
0
0.1
0
0
0


Acid
C10:0
12
14.2
11
24.9
6.21
6.3


(area
C12:0
42.8
25.1
40.5
24.3
33.13
19.5


%)
C14:0
12.1
10.4
16.3
10
16.7
11.8



C16:0
7.3
1.3
10.2
1.4
12.3
3



C18:0
0.7
0.2
0.9
0.6
1.18
0.5



C18:1
18.5
36.8
15.4
29.2
20.84
36.3



C18:2
5.8
10.9
4.9
8.7
8.7
20.9



C18:3a
0.6
0.8
0.4
0.8
0.48
1.2



C10-
66.9
49.7
67.8
59.2
56.0
37.6



C14



C10-
54.8
39.3
51.5
49.2
39.3
25.8



C12









Example 7
A Suite of Regulatable Promoters to Conditionally Control Gene Expression Levels in Oleaginous Cells in Synchrony with Lipid Production

S5204 was generated by knocking out both copies of FATAL in Prototheca moriformis (PmFATA1) while simultaneously overexpressing the endogenous PmKASII gene in a Δfad2 line, S2532. S2532 itself is a FAD2 (also known as FADc) double knockout strain that was previously generated by insertion of C. tinctorius ACP thioesterase (Accession No: AAA33019.1) into S1331, under the control of CrTUB2 promoter at the FAD2 locus. S5204 and its parent S2532 have a disrupted endogenous PmFAD2-1 gene resulting in no 412 specific desaturase activity manifested as 0% C18:2 (linoleic acid) levels in both seed and lipid production stages. Lack of any C18:2 in S5204 (and its parent S2532) results in growth defects which can be partially mitigated by exogenous addition of linoleic acid in the seed stage. For industrial applications of a zero linoleic oil however, exogenous addition of linoleic acid entails additional cost. We have previously shown that complementation of S5204 (and other Δfad2 strains S2530 and S2532) with pH inducible AMT03p driven PmFAD2-1 restores C18:2 to wild-type levels at pH 7.0 and also results in rescued growth characteristics during seed stage without any linoleic supplementation. Additionally when the seed from pH 7.0 grown complemented lines is subsequently transferred into low-nitrogen lipid production flasks with pH adjusted to 5.0 (to control AMT03p driven FAD2 protein levels), the resulting final oil profile matches the parent S5204 or S2532 profile with zero linoleic levels but with rescued growth and productivity metrics. Thus in essence with AMT03p driven FAD2-1 we have developed a pH regulatable strain that potentially could be used to generate oils with varying linoleic levels depending on the desired application.



Prototheca moriformis undergoes rapid cell division during the first 24-30 hrs in fermenters before nitrogen runs out in the media and the cells switch to storing lipids. This initial cell division and growth in fermenters is critical for the overall strain productivity and, as reported above, FAD2 protein is crucial for sustaining vigorous growth characteristic of a particular strain. However when first generation, single insertion, genetically clean, PmFAD2-1 complemented strains (S4694 and S4695) were run in 7 L fermenters at pH 5.0 (with seed grown at pH 7.0), they did not perform on par with the original parent base strain (S1331) in terms of productivity. Western data suggested that AMT03p promoter driving PmFAD2-1 (as measured by FAD2 protein levels) is severely down regulated between 0-30 hrs in fermenters irrespective of fermenter pH (5.0 or 7.0). Work on fermentation conditions (batched vs unbatched/limited initial N, pH shift from 7 to 5 at different time points during production phase) suggested that initial batching (and excess amounts) of nitrogen during early lipid production was the likely cause of AMT03p promoter down regulation in fermenters. Indeed, this initial repression in AMT03 can be directly seen in transcript time-course during fermentation. A significant depression of Amt03 expression was observed early in the run, which corresponds directly with NH4 levels in the fermenter.


When the fermentations were performed with limited N, we were able to partially rescue the AMT03p promoter activity and while per cell productivity of S4694/S4695 was on par with the parent S1331, the overall productivity still lagged behind. These results suggest that a suboptimal or inactive AMT03p promoter and thus limitation of FAD2 protein in early fermentation stages inhibits any complemented strains from attaining their full growth potential and overall productivity. Here we identify new, improved promoter that allow differential gene activity during high-nitrogen growth and low-nitrogen lipid production phases.


In particular, we observed that:

    • In trans expression of the fatty acid desaturase-2 gene from Prototheca moriformis (PmFad2-1) under the control of down regulated promoter elements identified using a transcriptome based bioinformatics approach results in functional complementation of PmFAD2-1 with restored growth in Δfad2, Δfata1 strain S5204.
    • Complementation of S5204 manifested in a robust growth phenotype only occurs in seed and early fermentation stages when the new promoter elements are actively driving the expression of PmFAD2-1.
    • Once the cells enter the active lipid production phase (around the time when N runs out in the fermenter), the newly identified promoters are down regulated resulting in no additional FAD2 protein and the final oil profile of the complemented lines is same as the parent S5204 albeit with better growth characteristics.
    • These strains should potentially mitigate the problems that were encountered with AMT03p driven FAD2 in earlier complemented strains.
    • Importantly, we have identified down-regulatable promoters of varying strengths, some of which are relatively strong in the beginning with low-to-moderate levels provided during the remainder of the run. Thus depending on phenotype these promoters can be selected for fine-tuning the desired levels of transgenes.


Bioinformatics Methods:


RNA was prepared from cells taken from 8 time points during a typical fermenter run. RNA was polyA-selected for run on an Illumina HiSeq. Illumina paired-end data (100 bp reads×2, ˜600 bp fragment size) was collected and processed for read quality using FastQC [www.bioinformatics.babraham.ac.uk/projects/fastqc/]. Reads were run through a custom read-processing pipeline that de-duplicates, quality-trims, and length-trims reads.


Transcripts were assembled from Illumina paired-end reads using Oases/velvet [Velvet: algorithms for de novo short read assembly using de Bruijn graphs. D. R. Zerbino and E. Birney. Genome Research 18:821-829] and assessed by N50 and other metrics. The transcripts from all 8 time points were further collapsed using CD-Hit. [Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu and Weizhong Li, CD-HIT: accelerated for clustering the next generation sequencing data. Bioinformatics, (2012), 28 (23): 3150-3152. doi: 10.1093/bioinformatics/bts565; Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences”, Weizhong Li & Adam Godzik Bioinformatics, (2006) 22:1658-9].


These transcripts were used as the base (reference assembly) for expression-level analysis. Reads from the 8 time points were analyzed using RSEM which provides raw read counts as well as a normalized value provided in Transcripts Per Million (TPM). [Li, Bo & Dewey, Colin N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BioMed Central: The Open Access Publisher. Retrieved at Oct. 10, 2012, from the website temoa: Open Educational Resources (OER) Portal at www.temoa.info/node/4416141 The TPM was used to determine expression levels. Genes previously identified in screens for strong promoters were also used to gauge which levels should be considered as significantly high or low. This data was loaded into a Postgres database and visualized with Spotfire, along with integrated data that includes gene function and other characteristics such as categorization based on expression profile. This enabled rapid and targeted analysis of genes with significant changes in expression.


The promoters for genes, which we selected, were mapped onto a high-quality reference genome for 5376 (our reference Prototheca moriformis strain). Briefly, PacBio long reads (˜2 kb) were error-corrected by high-quality PacBio CCS reads (˜600 bp) and assembled using the Allora assembler in SMRTPipe [pacbiodevnet.com]. This reference genome, in conjunction with transcriptome read mapping, was used to annotate the precise gene structures, promoter and UTR locations, and promoter elements within the region of interest, which then guided further sequencing and promoter element selection.


The criteria used for identifying new promoter elements were:

    • 1. Reasonable expression (e.g., >500, <100, or <50 transcripts per million [TPM]) of a downstream gene in seed and early lipid production stages (T0-T30 hrs)
    • 2. Severe down regulation of the gene above (e.g., >5-fold. 10-fold, or 15-fold) when the nitrogen gets depleted in the fermenters.
    • 3. pH neutrality of the promoter elements (e.g., less than a 2-fold change in TPM on going from pH 5.0 top 7.0 in cultivation conditions), or at least effective operation under pH5 conditions.


Using the above described criteria we identified several potentially down regulated promoter elements that were eventually used to drive PmFAD2-1 expression in S5204. A range of promoters was chosen that included some that started as being weak promoters and went down to extremely low levels, through those that started quite high and dropped only to moderately low levels. This was done because it was unclear a priori how much expression would be needed for FAD2 early on to support robust growth, and how little FAD2 would be required during the lipid production phase in order to achieve the zero linoleic phenotype.


The promoter elements that were selected for screening and their allelic forms were named after their downstream gene and are as follows:


1. Carbamoyl phosphate synthase (PmCPS1p and PmCPS2p)


2. Dipthine synthase (PmDPS1p and PmDPS2p)


3. Inorganic pyrophosphatase (PmIPP1p)


4. Adenosylhomocysteinase (PmAHC1p and PmAHC2p)


5. Peptidyl-prolyl cis-trans isomerase (PmPPI1p and PmPPI2p)


6. GMP Synthetase (PmGMPS1p and PmGMPS2p)


7. Glutamate Synthase (PmGSp)


8. Citrate Synthase (PmCS1p and PmCS2p)


9. Gamma Glutamyl Hydrolase (PmGGH1p)


10. Acetohydroxyacid Isomerase (PmAHI1p and PmAHI2p)


11. Cysteine Endopeptidase (PmCEP1p)


12. Fatty acid desaturase 2 (PmFAD2-1p and PmFad2-2p) [CONTROL]


The transcript profile of two representative genes viz. PmIPP (Inorganic Pyrophosphatase) and PmAHC, (Adenosylhomocysteinase) start off very strong (4000-5000 TPM) but once the cells enter active lipid production their levels fall off very quickly. While the transcript levels of PmIPP drop off to nearly 0 TPM, the levels of PmAHC drop to around 250 TPM and then stay steady for the rest of the fermentation. All the other promoters (based on their downstream gene transcript levels) showed similar downward expression profiles.


The elements were PCR amplified and wherever possible promoters from allelic genes were identified, cloned and named accordingly e.g. the promoter elements for 2 genes of Carbamoyl phosphate synthase were named PmCPS1p and PmCPS2p. As a comparator promoter elements from PmFAD2-1 and PmFAD2-2 were also amplified and used to drive PmFAD2-1 gene. While, in the present example, we used FAD2-1 expression and hence C18:2 levels to interrogate the newly identified down regulated promoters, in principle these promoter elements can be used to down regulate any gene of interest.


Construct Used for the Expression of the Prototheca moriformis Fatty Acid Desaturase 2 (PmFAD2-1) Under the Expression of PmCPS1p in Δfad2 Strains S5204—[pSZ3377]:


The Δfad2 Δfata1 S5204 strain was transformed with the construct pSZ3377. The sequence of the transforming DNA is provided below. Relevant restriction sites in the construct pSZ3377 (6S::PmHXT1p-ScMEL1-CvNR::PmCPS1p-PmFAD2-1-CvNR::6S) are indicated in lowercase, underlined and bold, and are from 5′-3′ BspQ 1, KpnI, SpeI, SnaBI, EcoRV, SpeI, AflII, SacI, BspQ I, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from UTEX 1435 that permits targeted integration of the transforming DNA at the 6S locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the Hexose transporter (HXT1) gene promoter from UTEX 1435 driving the expression of the Saccharomyces cerevisiae Melibiase (ScMEL1) gene is indicated by the boxed text. The initiator ATG and terminator TGA for ScMEL1 are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The Chlorella vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by an UTEX 1435 CPS1p promoter of Prototheca moriformis, indicated by boxed italics text. The Initiator ATG and terminator TGA codons of the PmFAD2-1 are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the UTEX 1435 6S genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ3377:



(SEQ ID NO: 41)





gctcttc

ggagtcactgtgccactgagttcgactggtagctgaatggagtcgctgctccactaaacgaattgtcagcaccgcca








gccggccgaggacccgagtcatagcgagggtagtagcgcgccatggcaccgaccagcctgcttgccagtactggcgtctcttc







cgcttctctgtggtcctctgcgcgctccagcgcgtgcgcttttccggtggatcatgcggtccgtggcgcaccgcagcggccgctg







cccatgcagcgccgctgcttccgaacagtggcggtcagggccgcacccgcggtagccgtccgtccggaacccgcccaagagt







tttgggagcagcttgagccctgcaagatggcggaggacaagcgcatcttcctggaggagcaccggtgcgtggaggtccgggg







ctgaccggccgtcgcattcaacgtaatcaatcgcatgatgatcagaggacacgaagtcttggtggcggtggccagaaacact







gtccattgcaagggcatagggatgcgttccttcacctctcatttctcatttctgaatccctccctgctcactctttctcctcctccttc








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








ggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtg







tttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgc







ttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttg







ggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaat








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








cggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgctt







ttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatc







cccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgc







ccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagta







gtgggatgggaacacaaatggaaagcttaattaagagctcttgttttccagaaggagttgctccttgagcctttcattctcagcctcg







ataacctccaaagccgctctaattgtggagggggttcgaatttaaaagcttggaatgttggttcgtgcgtctggaacaagccca







gacttgttgctcactgggaaaaggaccatcagctccaaaaaacttgccgctcaaaccgcgtacctctgctttcgcgcaatctgc







cctgttgaaatcgccaccacattcatattgtgacgcttgagcagtctgtaattgcctcagaatgtggaatcatctgccccctgtgc







gagcccatgccaggcatgtcgcgggcgaggacacccgccactcgtacagcagaccattatgctacctcacaatagttcataac







agtgaccatatttctcgaagctccccaacgagcacctccatgctctgagtggccaccccccggccctggtgcttgcggagggca







ggtcaaccggcatggggctaccgaaatccccgaccggatcccaccacccccgcgatgggaagaatctctccccgggatgtgg







gcccaccaccagcacaacctgctggcccaggcgagcgtcaaaccataccacacaaatatccttggcatcggccagaattcct







tctgccgctctgctacccggtgcttctgtccgaagcaggggttgctagggatcgctccgagtccgcaaacccttgtcgcgtggeg







gggcttgttcgagctt

gaagagc








The recombination between C. vulgaris nitrate reductase 3′ UTR's in the construct pSZ3377 results in multiple copies of PmFAD2-1 in transgenic lines which would then manifest most likely as higher C18:2 levels at the end of fermentation. Since the goal was to create a strain with 0% terminal C18:2, we took precautions to avoid this recombination. In another version of the above plasmid ScMEL1 gene was followed by Chlorella protothecoides (UTEX 250) elongation factor 1a (CpEF1a) 3′ UTR instead of C. vulgaris 3′ UTR. The sequence of C. protothecoides (UTEX 250) elongation factor 1a (CpEF1a) 3′ UTR used in construct pSZ3384 and other constructs with this 3′ UTR (described below) is shown below. Plasmid pSZ3384 could be written as 6S::PmHXT1p-ScMEL1-CpEF1a::PmCPS1p-PmFAD2-1-CvNR::6S.









Nucleotide sequence of Chlorella protothecoides


(UTEX 250) elongation factor 1a (CpEF1a)


3′ UTR in pSZ3384:


(SEQ ID NO: 42)


tacaacttattacgtaacggagcgtcgtgcgggagggagtgtgccgag





cggggagtcccggtctgtgcgaggcccggcagctgacgctggcgagcc





gtacgccccgagggtccccctcccctgcaccctcttccccttccctct





gacggccgcgcctgttcttgcatgttcagcgacgaggatatc






The C. protothecoides (UTEX 250) elongation factor 1a 3′ UTR sequence is flanked by restriction sites SnaBI on 5′ and EcoRV on 3′ ends shown in lowercase bold underlined text. Note that the plasmids containing CpEF1a 3′ UTR (pSZ3384 and others described below) after ScMEL1 stop codon contains 10 extra nucleotides before the 5′ SnaBI site. These nucleotides are not present in the plasmids that contain C. vulgaris nitrate reductase 3′ UTR after the S. ScMEL1 stop codon.


In addition to plasmids pSZ3377 and pSZ3384 expressing either a recombinative CvNR-Promoter-PmFAD2-1-CvNR or non-recombinative CpEF1a-Promoter-PmFAD2-1-CvNR expression unit described above, plasmids using other promoter elements mentioned above were constructed for expression in S5204. These constructs along with their transformation identifiers (D #) can be described as:














Plasmid ID
D #
Description







pSZ3378
D2090
6SA::pPmHXT1-ScarIMEL1-CvNR:PmCPS2p-PmFad2-1-CvNR::6SB


pSZ3385
D2097
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmCPS2p-PmFad2-1-CvNR::6SB


pSZ3379
D2091
6SA::pPmHXT1-ScarIMEL1-CvNR:PmDPS1p-PmFad2-1-CvNR::6SB


pSZ3386
D2098
6SA::pPmHXT1)-ScarIMEL1-CpEF1a:PmDPS1p-PmFad2-1-CvNR::6SB


pSZ3380
D2092
6SA::pPmHXT1-ScarIMEL1-CvNR:PmDPS2p-PmFad2-1-CvNR::6SB


pSZ3387
D2099
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmDPS2p-PmFad2-1-CvNR::6SB


pSZ3480
D2259
6SA::pPmHXT1-ScarIMEL1-CvNR:PmIPP1p-PmFad2-1-CvNR::6SB


pSZ3481
D2260
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmIPP1p-PmFad2-1-CvNR::6SB


pSZ3509
D2434
6SA::pPmHXT1-ScarIMEL1-CvNR:PmAHC1p-PmFad2-1-CvNR::6SB


pSZ3516
D2266
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmAHC1p-PmFad2-1-CvNR::6SB


pSZ3510
D2435
6SA::pPmHXT1-ScarIMEL1-CvNR:PmAHC2p-PmFad2-1-CvNR::6SB


pSZ3513
D2263
6SA::pPmHXT1-ScarIMEL1-CvNR:PmPPI1p-PmFad2-1-CvNR::6SB


pSZ3689
D2440
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmPPI1p-PmFad2-1-CvNR::6SB


pSZ3514
D2264
6SA::pPmHXT1-ScarIMEL1-CvNR:PmPPI2p-PmFad2-1-CvNR::6SB


pSZ3518
D2268
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmPPI2p-PmFad2-1-CvNR::6SB


pSZ3515
D2265
6SA::pPmHXT1-ScarIMEL1-CvNR:PmGMPS1p-PmFad2-1-CvNR::6SB


pSZ3519
D2269
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmGMPS1p-PmFad2-1-CvNR::6SB


pSZ3520
D2270
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmGMPS2p-PmFad2-1-CvNR::6SB


pSZ3684
D2436
6SA::pPmHXT1-ScarIMEL1-CvNR:PmCS1p-PmFad2-1-CvNR::6SB


pSZ3686
D2438
6SA::pPmHXT1-ScarIMEL1-CpEF1A:PmCS1p-PmFad2-1-CvNR::6SB


pSZ3685
D2437
6SA::pPmHXT1-ScarIMEL1-CvNR:PmCS2p-PmFad2-1-CvNR::6SB


pSZ3688
D2439
6SA::pPmHXT1-ScarIMEL1-CvNR:PmGGHp-PmFad2-1-CvNR::6SB


pSZ3511
D2261
6SA::pPmHXT1-ScarIMEL1-CvNR:PmAHI2p-PmFad2-1-CvNR::6SB


pSZ3517
D2267
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmAHI1p-PmFad2-1-CvNR::6SB


pSZ3512
D2262
6SA::pPmHXT1-ScarIMEL1-CvNR:PmCEP1p-PmFad2-1-CvNR::6SB


pSZ3375
D2087
6SA::pPmHXT1-ScarIMEL1-CvNR:PmFAD2-1p-PmFad2-1-CvNR::6SB


pSZ3382
D2094
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmFAD2-1p-PmFad2-1-CvNR::6SB


pSZ3376
D2088
6SA::pPmHXT1-ScarIMEL1-CvNR:PmFAD2-2p-PmFad2-1-CvNR::6SB


pSZ3383
D2095
6SA::pPmHXT1-ScarIMEL1-CpEF1a:PmFAD2-2p-PmFad2-1-CvNR::6SB









The above constructs are the same as pSZ3377 or pSZ3384 except for the promoter element that drives PmFAD2-1. The sequences of different promoter elements used in the above constructs are shown below.










Nucleotide sequence of Carbamoyl phosphate synthase allele 2 promoter contained



in plasmid pSZ3378 and pSZ3385 (PmCPS2p promoter sequence):


(SEQ ID NO: 43)





embedded image










embedded image









embedded image









embedded image







Nucleotide sequence of Dipthine synthase allele 1 promoter contained in plasmid


pSZ3379 and pSZ3386 (PmDPS1p promoter sequence):


(SEQ ID NO: 44)





embedded image










embedded image









embedded image









embedded image







Nucleotide sequence of Dipthine synthase allele 2 promoter contained in plasmid


pSZ3380 and pSZ3387 (PmDPS2p promoter sequence):


(SEQ ID NO: 45)





embedded image










embedded image









embedded image









embedded image







Nucleotide sequence of Inorganic pyrophosphatase allele 1 promoter contained in


plasmid pSZ3480 and pSZ3481 (PmIPP1p promoter sequence):


(SEQ ID NO: 46)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Adenosylhomocysteinase allele 1 promoter contained in


plasmid pSZ3509 and pSZ3516 (PmAHC1p promoter sequence):


(SEQ ID NO: 47)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Adenosylhomocysteinase allele 2 promoter contained in


plasmid pSZ3510 (PmAHC2p promoter sequence):


(SEQ ID NO: 48)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Peptidyl-prolyl cis-trans isomerase allele 1 promoter


contained in plasmid pSZ3513 and pSZ3689 (PmPPI1p promoter sequence):


(SEQ ID NO: 49)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Peptidyl-prolyl cis-trans isomerase allele 2 promoter


contained in plasmid pSZ3514 and pSZ3518 (PmPPI2p promoter sequence):


(SEQ ID NO: 50)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of GMP Synthetase allele 1 promoter contained in plasmid


pSZ3515 and pSZ3519 (PmGMPS 1p promoter sequence):


(SEQ ID NO: 51)





embedded image










embedded image









embedded image









embedded image







Nucleotide sequence of GMP Synthetase allele 2 promoter contained in plasmid


pSZ3520 (PmGMPS2p promoter sequence):


(SEQ ID NO: 52)





embedded image










embedded image









embedded image









embedded image







Nucleotide sequence of Citrate synthase allele 1 promoter contained in plasmid


pSZ3684 and pSZ3686 (PmCS1p promoter sequence):


(SEQ ID NO: 53)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Citrate synthase allele 2 promoter contained in plasmid


pSZ3685 (PmCS2p promoter sequence):


(SEQ ID NO: 54)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Gamma Glutamyl Hydrolase allele 1 promoter contained in


plasmid pSZ3688 (PmGGH1p promoter sequence):


(SEQ ID NO: 55)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Acetohydroxyacid Isomerase allele 1 promoter contained in


plasmid pSZ3517 (PmAHI1p promoter sequence):


(SEQ ID NO: 56)





embedded image










embedded image









embedded image









embedded image







Nucleotide sequence of Acetohydroxyacid Isomerase allele 2 promoter contained in


plasmid pSZ3511 (PmAHI2p promoter sequence):


(SEQ ID NO: 57)





embedded image










embedded image









embedded image









embedded image







Nucleotide sequence of Cysteine Endopeptidase allele 1 promoter contained in


plasmid pSZ3512 (PmCEP1 promoter sequence):


(SEQ ID NO: 58)





embedded image










embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Fatty acid desaturase 2 allele 1 promoter contained in


plasmid pSZ3375 and 3382 (PmFAD2-1 promoter sequence):


(SEQ ID NO: 59)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image







Nucleotide sequence of Fatty acid desaturase 2 allele 2 promoter contained in


plasmid pSZ3376 and 3383 (PmFAD2-2 promoter sequence):


(SEQ ID NO: 60)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








To determine their impact on growth and fatty acid profiles, the above-described constructs were independently transformed into a Δfad2 Δfata1 strain S5204. Primary transformants were clonally purified and grown under standard lipid production conditions at pH5.0 or at pH7.0. The resulting profiles from a set of representative clones arising from transformations are shown in Tables 20-50.









TABLE 20







Fatty acid profile in some representative complemented


(D2087) and parent S5204 lines transformed with pSZ3375


DNA containing PmFAD2-1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 7; S5204;
0.38
4.43
1.78
83.93
7.58
0.81


T665;


D2087-22


pH 7; S5204;
0.41
4.92
1.94
83.21
7.55
0.84


T665;


D2087-16


pH 7; S5204;
0.40
4.82
1.78
83.51
7.52
0.79


T665;


D2087-17


pH 7; S5204;
1.30
8.06
2.54
79.03
7.30
0.82


T665;


D2087-26


pH 7; S5204;
1.13
7.88
2.45
79.48
7.26
0.79


T665;


D2087-29
















TABLE 21







Fatty acid profile in some representative complemented


(D) and parent S5204 lines transformed with pSZ3382


DNA containing PmFAD2-1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 7; S5204;
0.49
5.76
2.95
83.39
5.08
0.84


T672;


D2094-5


pH 7; S5204;
0.35
5.01
2.41
85.10
5.09
0.64


T672;


D2094-25


pH 7; S5204;
0.33
5.07
2.30
84.89
5.30
0.69


T672;


D2094-13


pH 7; S5204;
0.38
4.33
1.78
85.63
5.31
0.85


T672;


D2094-11


pH 7; S5204;
0.35
5.29
2.32
84.59
5.34
0.66


T672;


D2094-8
















TABLE 22







Fatty acid profile in some representative complemented


(D2088) and parent S5204 lines transformed with pSZ3376


DNA containing PmFAD2-2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 7; S5204;
1.11
8.18
2.92
78.13
6.96
0.87


T665;


D2088-16


pH 7; S5204;
1.06
7.78
2.95
78.65
6.95
0.84


T665;


D2088-20


pH 7; S5204;
0.91
7.13
2.87
79.63
6.93
0.78


T665;


D2088-29


pH 7; S5204;
1.18
8.29
2.98
77.90
6.91
0.88


T665;


D2088-6


pH 7; S5204;
1.10
7.98
3.09
78.42
6.78
0.81


T665;


D2088-18
















TABLE 23







Fatty acid profile in some representative complemented


(D) and parent S5204 lines transformed with pSZ3383


DNA containing PmFAD2-2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 7; S5204;
0.30
5.43
2.45
85.10
4.62
0.68


T673;


D2095-47


pH 7; S5204;
0.38
5.16
2.48
84.46
5.41
0.68


T673;


D2095-14


pH 7; S5204;
0.43
4.60
2.54
84.82
5.47
0.58


T673;


D2095-16


pH 7; S5204;
0.34
5.41
2.57
84.21
5.49
0.66


T673;


D2095-6


pH 7; S5204;
0.42
5.30
2.49
83.97
5.57
0.68


T673;


D2095-39
















TABLE 24







Fatty acid profile in representative complemented


(D2089) and parent S5204 lines transformed with pSZ3377


DNA containing PmCPS1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 7; S5204;
0.35
4.73
2.29
88.94
1.79
0.39


T672;


D2089-40


pH 7; S5204;
0.51
4.85
2.96
87.55
2.05
0.41


T672;


D2089-2


pH 7; S5204;
0.56
5.00
3.04
87.24
2.07
0.36


T672;


D2089-14


pH 7; S5204;
0.38
5.04
2.39
88.02
2.39
0.44


T672;


D2089-7


pH 7; S5204;
0.38
5.00
2.37
87.93
2.42
0.43


T672;


D2089-18
















TABLE 25







Fatty acid profile in some representative complemented


(D2096) and parent S5204 lines transformed with pSZ3384


DNA containing PmCPS1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 7; S5204;
0.33
4.18
1.10
92.91
0.00
0.00


T673;


D2096-6


pH 7; S5204;
0.36
4.14
1.33
92.42
0.34
0.12


T673;


D2096-12


pH 7; S5204;
0.32
4.35
1.64
92.12
0.35
0.14


T673;


D2096-14


pH 7; S5204;
0.50
6.44
0.95
89.81
0.46
0.32


T673;


D2096-8


pH 7; S5204;
0.29
3.93
1.79
91.19
1.34
0.37


T673;


D2096-1
















TABLE 26







Fatty acid profile in some representative complemented


(D2090) and parent S5204 lines transformed with pSZ3378


DNA containing PmCPS2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 7; S5204;
0.33
4.73
1.84
91.24
0.00
0.00


T672;


D2090-5


pH 7; S5204;
0.42
4.99
2.01
91.06
0.00
0.00


T672;


D2090-29


pH 7; S5204;
0.43
4.31
1.87
90.44
0.78
0.16


T672;


D2090-22


pH 7; S5204;
0.32
3.77
2.43
89.72
1.68
0.35


T672;


D2090-1


pH 7; S5204;
0.49
5.01
1.97
88.48
1.84
0.38


T672;


D2090-32
















TABLE 27







Fatty acid profile in some representative complemented


(D2097) and parent S5204 lines transformed with pSZ3385


DNA containing PmCPS2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 5; S5204;
0.50
5.73
1.97
87.12
2.61
0.76


T680;


D2097-1


pH 5; S5204;
0.75
8.20
2.46
85.73
0.89
0.53


T680;


D2097-2
















TABLE 28







Fatty acid profile in some representative complemented


(D2091) and parent S5204 lines transformed with pSZ3379


DNA containing PmDPS1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 7; S5204;
1.42
4.39
2.32
89.87
0.00
0.00


T672;


D2091-4


pH 7; S5204;
0.27
4.79
2.24
90.94
0.00
0.00


T672;


D2091-14


pH 7; S5204;
0.30
5.26
2.20
90.73
0.00
0.00


T672;


D2091-15


pH 7; S5204;
0.31
4.51
1.77
91.65
0.00
0.00


T672;


D2091-19


pH 7; S5204;
0.31
5.36
2.24
90.67
0.00
0.00


T672;


D2091-46
















TABLE 29







Fatty acid profile in some representative complemented


(D2098) and parent S5204 lines transformed with pSZ3386


DNA containing PmDPS1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 7; S5204;
0.34
4.89
1.56
92.08
0.00
0.00


T680;


D2098-39


pH 7; S5204;
0.30
4.31
1.61
92.34
0.30
0.00


T680;


D2098-7


pH 7; S5204;
0.33
3.89
1.58
92.65
0.36
0.00


T680;


D2098-3


pH 7; S5204;
0.32
4.18
1.64
92.34
0.36
0.11


T680;


D2098-25


pH 7; S5204;
0.32
4.36
1.50
92.10
0.37
0.12


T680;


D2098-13
















TABLE 30







Fatty acid profile in some representative complemented


(D2092) and parent S5204 lines transformed with pSZ3380


DNA containing PmDPS2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 7; S5204;
0.29
5.13
1.59
92.16
0.00
0.00


T672;


D2092-35


pH 7; S5204;
0.37
4.66
1.75
91.71
0.19
0.05


T672;


D2092-29


pH 7; S5204;
0.24
3.47
1.84
93.19
0.43
0.11


T672;


D2092-15


pH 7; S5204;
0.25
3.50
1.82
93.16
0.44
0.09


T672;


D2092-21


pH 7; S5204;
0.28
3.18
1.50
93.59
0.52
0.12


T672;


D2092-16
















TABLE 31







Fatty acid profile in some representative complemented


(D2099) and parent S5204 lines transformed with pSZ3387


DNA containing PmDPS2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 7; S5204;
0.31
4.02
1.46
93.07
0.00
0.00


T680;


D2099-20


pH 7; S5204;
0.28
4.67
1.50
92.38
0.00
0.00


T680;


D2099-24


pH 7; S5204;
0.40
4.07
1.22
93.26
0.00
0.00


T680;


D2099-27


pH 7; S5204;
0.32
4.59
1.57
92.40
0.00
0.00


T680;


D2099-30


pH 7; S5204;
0.30
4.56
1.54
92.49
0.00
0.00


T680;


D2099-35
















TABLE 32







Fatty acid profile in some representative complemented


(D2259) and parent S5204 lines transformed with pSZ3480


DNA containing PmIPP1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 5; S5204;
0.36
5.27
2.19
89.32
1.51
0.51


T711;


D2259-43


pH 5; S5204;
0.35
4.88
2.17
86.34
4.41
0.70


T711;


D2259-22


pH 5; S5204;
0.35
4.82
2.18
86.32
4.45
0.69


T711;


D2259-28


pH 5; S5204;
0.33
4.90
2.08
86.33
4.49
0.74


T711;


D2259-21


pH 5; S5204;
0.50
5.97
2.14
84.67
4.49
0.74


T711;


D2259-36
















TABLE 33







Fatty acid profile in some representative complemented


(D2260) and parent S5204 lines transformed with pSZ3481


DNA containing PmIPP1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.10
0.00


pH 5; S5204
0.39
5.67
1.36
91.13
0.00
0.00


pH 5; S5204;
0.36
4.96
2.10
89.46
1.55
0.49


T711;


D2260-32


pH 5; S5204;
0.33
4.83
1.99
89.40
1.63
0.58


T711;


D2260-10


pH 5; S5204;
0.34
4.83
2.16
89.39
1.64
0.49


T711;


D2260-2


pH 5; S5204;
0.37
4.81
2.11
89.51
1.69
0.26


T711;


D2260-30


pH 5; S5204;
0.33
4.91
2.17
89.73
1.72
0.16


T711;


D2260-41
















TABLE 34







Fatty acid profile in some representative complemented


(D2434) and parent S5204 lines transformed with pSZ3509


DNA containing PmAHC1p driving PmFAD2-1.













Sample ID
C14.0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204;
0.33
4.45
1.55
81.55
8.51
1.38


T768;


D2434-32


pH 5; S5204;
0.62
7.27
1.58
78.65
9.44
1.49


T768;


D2434-27


pH 5; S5204;
0.38
5.81
1.79
79.63
10.01
1.18


T768;


D2434-4


pH 5; S5204;
0.5
5.93
1.5
78.7
10.25
1.56


T768;


D2434-23


pH 5; S5204;
0.51
6.08
1.6
78.79
10.25
1.36


T768;


D2434-43
















TABLE 35







Fatty acid profile in some representative complemented (D2266) and


parent S5204 lines transformed with pSZ3516 DNA containing


PmAHC1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T718; D2266-46
0.32
5.41
1.94
91.26
0.11
0.00


pH 5; S5204; T718; D2266-36
0.36
5.33
1.90
91.17
0.17
0.00


pH 5; S5204; T718; D2266-35
0.37
4.96
2.13
90.82
0.41
0.00


pH 5; S5204; T718; D2266-41
0.38
5.33
2.10
90.31
0.44
0.31


pH 5; S5204; T718; D2266-5
0.36
5.15
2.23
90.55
0.48
0.31
















TABLE 36







Fatty acid profile in some representative complemented (D2435) and


parent S5204 lines transformed with pSZ3510 DNA containing


PmAHC2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T768; D2435-37
0.35
6.09
1.90
78.52
11.01
1.18


pH 5; S5204; T768; D2435-3
0.43
5.90
1.97
78.74
10.97
1.20


pH 5; S5204; T768; D2435-20
0.40
6.01
1.89
79.00
10.97
1.14


pH 5; S5204; T768; D2435-13
0.39
6.11
1.89
78.26
10.84
1.24


pH 5; S5204; T768; D2435-34
0.46
6.02
1.97
79.48
10.46
1.19
















TABLE 37







Fatty acid profile in some representative complemented (D2263) and


parent S5204 lines transformed with pSZ3513 DNA containing


PmPPI1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T718; D2263-13
0.75
9.44
1.98
87.09
0.00
0.00


pH 5; S5204; T718; D2263-14
0.58
7.72
1.64
89.26
0.00
0.00


pH 5; S5204; T718; D2263-19
0.62
7.92
1.56
89.25
0.00
0.00


pH 5; S5204; T718; D2263-26
0.42
7.39
1.70
89.28
0.00
0.00


pH 5; S5204; T718; D2263-29
0.58
7.32
1.30
90.07
0.00
0.00
















TABLE 38







Fatty acid profile in some representative complemented (D2440) and


parent S5204 lines transformed with pSZ3689 DNA containing


PmPPI1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T770; D2440-23
0.31
6.24
1.41
90.42
0.17
0.05


pH 5; S5204; T770; D2440-32
0.23
4.69
1.41
91.72
0.17
0.00


pH 5; S5204; T770; D2440-38
0.30
6.31
1.49
90.21
0.17
0.00


pH 5; S5204; T770; D2440-7
0.30
6.33
1.38
90.29
0.18
0.05


pH 5; S5204; T770; D2440-36
0.29
6.38
1.36
90.39
0.18
0.05


pH 5; S5204; T770; D2440-8
0.34
5.63
1.15
91.15
0.19
0.05
















TABLE 39







Fatty acid profile in some representative complemented (D2264) and


parent S5204 lines transformed with pSZ3514 DNA containing


PmPPI2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 7; S6207; T718; D2264-1
0.49
6.15
1.61
90.82
0.00
0.00


pH 7; S6207; T718; D2264-6
0.38
5.36
1.51
91.58
0.00
0.00


pH 7; S6207; T718; D2264-29
0.45
6.09
1.46
91.10
0.00
0.00


pH 7; S6207; T718; D2264-4
0.40
5.42
2.28
89.86
0.90
0.00


pH 7; S6207; T718; D2264-7
0.40
5.37
2.02
90.18
1.04
0.00
















TABLE 40







Fatty acid profile in some representative complemented (D2268) and


parent S5204 lines transformed with pSZ3518 DNA containing


PmPPI2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T720; D2268-1
0.39
6.43
1.78
90.49
0.00
0.00


pH 5; S5204; T720; D2268-2
0.38
6.49
1.74
90.38
0.00
0.00


pH 5; S5204; T720; D2268-3
0.38
6.56
1.74
90.27
0.00
0.00


pH 5; S5204; T720; D2268-4
0.45
5.73
1.52
91.75
0.00
0.00


pH 5; S5204; T720; D2268-5
0.38
6.58
1.81
90.79
0.00
0.00
















TABLE 41







Fatty acid profile in some representative complemented (D2265) and


parent S5204 lines transformed with pSZ3515 DNA containing


PmGMPS1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T718; D2265-16
0.46
7.02
1.71
90.06
0.00
0.00


pH 5; S5204; T718; D2265-43
0.00
7.90
1.90
89.27
0.00
0.00


pH 5; S5204; T718; D2265-14
0.46
5.53
1.68
91.28
0.35
0.00


pH 5; S5204; T718; D2265-4
0.39
6.17
1.75
90.44
0.42
0.00


pH 5; S5204; T718; D2265-9
0.49
5.87
1.77
90.51
0.45
0.00
















TABLE 42







Fatty acid profile in some representative complemented (D2269) and


parent S5204 lines transformed with pSZ3519 DNA containing


PmGMPS1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T720; D2269-1
0.38
6.73
1.68
90.24
0.00
0.00


pH 5; S5204; T720; D2269-3
0.36
6.76
1.71
90.17
0.00
0.00


pH 5; S5204; T720; D2269-4
0.42
6.57
1.71
90.32
0.00
0.00


pH 5; S5204; T720; D2269-5
0.59
8.81
1.93
87.97
0.00
0.00


pH 5; S5204; T720; D2269-6
0.50
7.29
1.73
89.29
0.00
0.00
















TABLE 43







Fatty acid profile in some representative complemented (D2270) and


parent S5204 lines transformed with pSZ3520 DNA containing


PmGMPS2p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T720; D2270-1
0.37
6.80
1.74
90.18
0.00
0.00


pH 5; S5204; T720; D2270-2
0.46
6.76
1.83
89.90
0.00
0.00


pH 5; S5204; T720; D2270-3
0.41
6.69
1.70
90.22
0.00
0.00


pH 5; S5204; T720; D2270-4
0.43
7.44
1.72
89.31
0.00
0.00


pH 5; S5204; T720; D2270-5
0.44
6.98
1.78
89.79
0.00
0.00
















TABLE 44







Fatty acid profile in some representative complemented (D2436) and


parent S5204 lines transformed with pSZ3684 DNA containing PmCS1p


driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T768; D2436-48
7.59
1.57
88.88
0.18
0.00
0.00


pH 5; S5204; T768; D2436-1
6.37
1.50
85.00
3.97
1.04
0.00


pH 5; S5204; T768; D2436-16
9.40
1.86
81.13
4.11
1.21
0.00


pH 5; S5204; T768; D2436-8
6.07
1.77
84.78
4.26
0.94
0.00


pH 5; S5204; T768; D2436-32
5.97
1.62
85.28
4.50
0.98
0.00
















TABLE 45







Fatty acid profile in some representative complemented (D2438) and


parent S5204 lines transformed with pSZ3686 DNA containing


PmCS1p driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T770; D2438-7
0.50
5.96
1.69
89.87
1.30
0.00


pH 5; S5204; T770; D2438-11
0.41
6.05
1.86
87.88
2.46
0.00


pH 5; S5204; T770; D2438-9
0.41
5.75
1.93
88.35
2.50
0.00


pH 5; S5204; T770; D2438-15
0.45
6.18
1.85
87.86
2.59
0.00


pH 5; S5204; T770; D2438-37
0.40
5.92
1.97
87.80
2.59
0.00
















TABLE 46







Fatty acid profile in some representative complemented (D2437) and


parent S5204 lines transformed with pSZ3685 DNA containing


PmCSCp driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T768; D2437-15
0.00
4.83
1.98
90.43
1.17
0.53


pH 5; S5204; T768; D2437-35
0.45
6.03
1.81
88.69
1.88
0.31


pH 5; S5204; T768; D2437-17
0.39
4.96
2.00
88.58
3.24
0.00


pH 5; S5204; T768; D2437-26
0.90
9.55
2.07
82.29
3.37
1.24


pH 5; S5204; T768; D2437-8
0.53
10.76
1.55
79.62
4.46
1.12
















TABLE 47







Fatty acid profile in some representative complemented (D2439) and


parent S5204 lines transformed with pSZ3688 DNA containing PmGGHp


driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T770; D2439-11
0.31
6.79
1.47
89.97
0.00
0.00


pH 5; S5204; T770; D2439-22
0.27
4.19
0.94
92.91
0.08
0.00


pH 5; S5204; T770; D2439-12
0.39
6.02
1.26
90.91
0.16
0.00


pH 5; S5204; T770; D2439-34
0.64
6.50
1.10
89.53
0.20
0.00


pH 5; S5204; T770; D2439-32
0.33
5.25
1.45
89.98
1.08
0.51
















TABLE 48







Fatty acid profile in some representative complemented (D2261) and


parent S5204 lines transformed with pSZ3511 DNA containing PmAHI2p


driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T711; D2261-35
0.45
5.06
2.02
89.35
1.73
0.63


pH 5; S5204; T711; D2261-8
0.46
5.12
2.19
88.92
2.16
0.19


pH 5; S5204; T711; D2261-43
0.37
5.12
2.15
88.62
2.30
0.45


pH 5; S5204; T711; D2261-2
0.42
5.27
2.14
88.23
2.39
0.30


pH 5; S5204; T711; D2261-24
0.41
5.14
2.23
88.44
2.39
0.45
















TABLE 49







Fatty acid profile in some representative complemented (D2267) and


parent S5204 lines transformed with pSZ3517 DNA containing PmAHI1p


driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204; T720; D2267-3
0.34
4.87
2.11
90.00
1.20
0.39


pH 5; S5204; T720; D2267-20
0.37
5.00
2.14
89.50
1.46
0.49


pH 5; S5204; T720; D2267-36
0.34
4.90
2.08
89.75
1.67
0.36


pH 5; S5204; T720; D2267-15
0.37
4.95
2.14
89.77
1.69
0.00


pH 5; S5204; T720; D2267-2
0.35
4.85
2.12
89.71
1.72
0.32
















TABLE 50







Fatty acid profile in some representative complemented (D2262) and


parent S5204 lines transformed with pSZ3512 DNA containing PmCEP1p


driving PmFAD2-1.













Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
















pH 7; S3150
1.71
29.58
3.13
56.53
6.43
0.68


pH 5; S3150
1.56
27.70
2.98
59.49
5.95
0.53


pH 7; S5204
0.30
5.59
1.63
90.88
0.1
0


pH 5; S5204
0.39
5.67
1.36
91.13
0
0


pH 5; S5204;
0.48
5.50
2.08
90.58
0.35
0.00


T711;


D2262-3


pH 5; S5204;
0.39
5.20
2.17
89.90
1.08
0.37


T711;


D2262-33


pH 5; S5204;
0.34
5.08
1.93
89.69
1.34
0.37


T711;


D2262-24


pH 5; S5204;
0.40
4.89
2.19
89.88
1.45
0.27


T711;


D2262-32


pH 5; S5204;
0.39
4.95
2.75
89.30
1.47
0.27


T711;


D2262-34









Combined baseline expression of endogenous PmFAD2-1 and PmFAD2-2 in wild type Prototheca strains (like S3150, S1920 or S1331) manifests as 5-7% C18:2. S5204 overexpresses PmKASII which results in the elongation of C16:0 to C18:0. This increased pool of C18:0 is eventually desaturated by PmSAD2 resulting in elevated C18:1 levels. Additionally disruption of the both copies of PmFAD2 (viz. PmFAD2-1 and PmFAD2-2) in S5204 prevents further desaturation of C18:1 into C18:2 and results in a unique high oleic oil (C18:1) with 0% linoleic acid (C18:2). However as mentioned above any strain with 0% C18:2 grows very poorly and requires exogenous addition of linoleic acid to sustain growth/productivity. Complementation of a strain like S5204 with inducible PmAMT03p driven PmFAD2-1 can rescue the growth phenotype while preserving the terminal high C18:1 with 0% C18:2 levels. However data suggests that PmAMT03 shuts off in the early stages of fermentation thus severely compromising the ability of any complemented strain to achieve its full growth and productivity potential. The goal of this work was to identify promoter elements that would allow the complemented strains to grow efficiently in early stages of fermentation (T0-T30 hrs; irrespective of excess batched N in the fermenters) and then effectively shut off once the cells enter active lipid production (when N in the media gets depleted) so that the complemented strains would still finish with very high C18:1 and 0% C18:2 levels. As a comparator we also complemented S5204 with PmFAD2-1 being driven by either PmFAd2-1p or PmFAD2-2p promoter elements.


Complementation of S5204 with PmFAD2-1 driven by either PmFAD2-1p or PmFAD2-2p promoter elements results in complete restoration of the C18:2 levels using vectors either designed to amplify PmFAD2-1 copy number (e.g. pSZ3375 or pSZ3376) or the ones where PmFAD2-1 copy number is restricted to one (pSZ3382 or pSZ3383). Copy number of the PmFAD2-1 in these strains seems to have very marginal effect on the terminal C18:2 levels.


On the other hand expression of PmFAD2-1 driven by any of new promoter elements results in marked decrease in terminal C18:2 levels. The representative profiles from various strains expressing new promoters driving FAD2-1 are shown in Tables 20-50. This reduction in C18:2 levels is even more pronounced in strains where the copy number of PmFAD2-1 is limited to one. Promoter elements like PmDPS1 (D2091 & D2098), PmDPS2 (D2092 & D2099), PmPPI1 (D2263 & D2440), PmPPI2 (D2264 & D2268), PmGMPS1 (D2265 & D2269), PmGMPS2 (D2270) resulted in strains with 0% or less than 0.5% terminal C18:2 levels in both single or multiple copy PmFAD2-1 versions. The rest of the promoters resulted in terminal C18:2 levels that ranged between 1-5%. One unexpected result was the data from PmAHC1p and PmAHC2p driving PmFAD2-1 in D2434 and D2435. Both these promoters resulted in very high levels of C18:2 (9-20%) in multiple copy FAD2-1 versions. The levels of terminal C18:2 in single copy version in D2266 was more in line with the transcriptomic data suggesting that PmAHC promoter activity and the corresponding PmAHC transcription is severely downregulated when cells are actively producing lipid in depleted nitrogen environment. A quick look at the transcriptome revealed that the initial transcription of PmAHC is very high (4000-5500 TPM) which then suddenly drops down to ˜250 TPM. Thus it is conceivable that in strains with multiple copies on PmFAD2-1 (D2434 and D2435), the massive amount of PmFAD2-1 protein produced earlier in the fermentation lingers and results in high C18:2 levels. In single copy PmFAD2-1 strains this is not the case and thus we do not see elevated C18:2 levels in D2266.


In complemented strains with 0% terminal C18:2 levels, the key question was whether they were complemented in the first place. In order to ascertain that, representative strains along with parent S5204 and previously AMT03p driven PmFAD2-1 complemented S2532 (viz S4695) strains were grown in seed medium in 96 well blocks. The cultures were seeded at 0.1 OD units per ml and the OD750 was checked at different time points. Compared to S5204, which grew very poorly, only S4695 and newly complemented strains grew to any meaningful OD's at 20 and 44 hrs (Table 51) demonstrating that the promoters identified above are active early on and switch off once cells enter the active lipid production phase.









TABLE 51







Growth characteristics of Δfad2 Δfata1 strain S5204, S4695 and


representative complemented S5204 lines in seed medium sorted by OD750 at 44 hrs. Note


that in 1 ml 96 well blocks after initial rapid division and growth, cells stop growing


efficiently because of lack of nutrients, aeration etc.























OD750
OD750
OD750


Sample ID
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3 α
@20 hrs
@44 hrs
@68 hrs



















S5204






0.162
7.914
10.93


S5204






0.224
6.854
9.256


S4695






1.456
29.032
32.766


pH 7; S5204; T672; D2091-46
0.31
5.36
2.24
90.67
0.00
0.00
1.38
33.644
33.226


pH 5; S5204; T720; D2268-1
0.39
6.43
1.78
90.49
0.00
0.00
0.75
32.782
31.624


S5204; T720; D2270-47
0.39
6.69
1.81
90.05
0.00
0.00
1.204
32.752
31.602


pH 5; S5204; T720; D2270-39
0.39
6.87
1.81
89.94
0.00
0.00
1.012
32.552
33.138


pH 7; S5204; T680; D2099-35
0.30
4.56
1.54
92.49
0.00
0.00
0.48
32.088
31.92


pH 5; S5204; T720; D2270-44
0.51
6.85
1.74
90.06
0.00
0.00
1.468
31.802
30.61


pH 5; S5204; T720; D2270-41
0.00
7.85
1.65
89.18
0.00
0.00
1.576
31.35
30.69


pH 5; S5204; T720; D2270-17
0.46
6.78
1.71
90.24
0.00
0.00
1.79
30.732
24.768


pH 7; S5204; T680; D2099-30
0.32
4.59
1.57
92.40
0.00
0.00
0.59
30.166
34.64


pH 5; S5204; T720; D2268-40
0.42
6.66
1.86
90.02
0.00
0.00
0.764
29.62
29


pH 5; S5204; T720; D2270-23
0.39
6.52
1.72
90.35
0.00
0.00
1.334
29.604
27.518


pH 5; S5204; T720; D2270-42
0.61
6.59
1.53
90.28
0.00
0.00
2.042
28.986
32.184


pH 7; S5204; T672; D2090-5
0.33
4.73
1.84
91.24
0.00
0.00
1.326
28.976
35.508


pH 7; S5204; T672; D2091-15
0.30
5.26
2.20
90.73
0.00
0.00
0.826
28.824
32.848


pH 7; S5204; T680; D2099-20
0.31
4.02
1.46
93.07
0.00
0.00
1.31
28.732
26.61


pH 5; S5204; T720; D2269-19
0.42
6.51
1.61
90.43
0.00
0.00
1.278
28.65
31.362


pH 5; S5204; T720; D2269-29
0.43
7.36
1.72
89.35
0.00
0.00
1.342
28.376
28.66


pH 5; S5204; T720; D2270-19
0.39
6.81
1.75
90.05
0.00
0.00
2.142
28.376
25.934


pH 5; S5204; T720; D2270-43
0.80
7.64
1.66
88.93
0.00
0.00
1.896
28.174
32.376


pH 5; S5204; T720; D2270-46
0.45
6.75
1.72
90.02
0.00
0.00
1.644
28.122
30.464


pH 5; S5204; T720; D2268-3
0.38
6.56
1.74
90.27
0.00
0.00
0.926
28.114
31.552


pH 5; S5204; T720; D2268-12
0.00
5.68
1.84
91.53
0.00
0.00
1.414
28.106
30.644


pH 5; S5204; T720; D2269-37
0.54
7.12
1.75
89.80
0.00
0.00
1.268
28.078
30.014


pH 5; S5204; T720; D2270-31
0.46
6.94
1.74
89.71
0.00
0.00
1.224
28.064
29.344


pH 5; S5204; T720; D2270-48
0.00
7.21
1.87
90.16
0.00
0.00
1.352
28
28.21


pH 5; S5204; T720; D2269-8
0.33
6.67
1.64
90.34
0.00
0.00
0.96
27.912
27.564


pH 5; S5204; T720; D2268-32
0.44
6.59
1.85
90.11
0.00
0.00
0.78
27.834
31.952


pH 5; S5204; T720; D2269-47
0.42
6.83
1.82
89.85
0.00
0.00
1.17
27.76
29.648


pH 7; S5204; T672; D2091-19
0.31
4.51
1.77
91.65
0.00
0.00
1.568
27.682
25.828


pH 5; S5204; T720; D2270-38
0.39
6.65
1.83
90.11
0.00
0.00
1.74
27.606
31.104


pH 5; S5204; T720; D2268-2
0.38
6.49
1.74
90.38
0.00
0.00
0.95
27.564
32.254


pH 5; S5204; T720; D2269-35
0.38
7.04
1.68
89.82
0.00
0.00
1.19
27.482
29.186


pH 5; S5204; T720; D2269-20
0.36
7.01
1.73
89.86
0.00
0.00
0.966
27.47
28.284


pH 5; S5204; T720; D2269-13
0.39
6.76
1.89
89.98
0.00
0.00
0.936
27.39
33.464


pH 7; S5204; T680; D2099-24
0.28
4.67
1.50
92.38
0.00
0.00
0.8
27.28
27.35


pH 5; S5204; T720; D2268-11
0.38
6.56
1.85
90.56
0.00
0.00
1.136
27.254
32.508


pH 5; S5204; T720; D2270-3
0.41
6.69
1.70
90.22
0.00
0.00
0.872
27.214
30.23


pH 5; S5204; T720; D2269-33
0.39
6.36
1.67
90.59
0.00
0.00
0.956
27.194
30.568


pH 5; S5204; T720; D2268-10
0.45
6.93
1.70
90.16
0.00
0.00
0.612
27.126
31.616


pH 5; S5204; T720; D2269-43
0.36
6.55
1.84
90.25
0.00
0.00
0.998
27.086
29.618


pH 5; S5204; T720; D2270-1
0.37
6.80
1.74
90.18
0.00
0.00
2.428
27.004
31.044


pH 5; S5204; T720; D2268-4
0.45
5.73
1.52
91.75
0.00
0.00
0.736
26.948
28.796


pH 5; S5204; T720; D2270-9
0.38
6.88
1.74
90.22
0.00
0.00
2.68
26.944
29.92


pH 5; S5204; T720; D2269-26
0.41
6.85
1.68
90.03
0.00
0.00
0.896
26.794
31.31


pH 5; S5204; T720; D2270-24
0.39
6.51
1.78
90.33
0.00
0.00
1.51
26.682
27.486


pH 5; S5204; T720; D2269-18
0.41
7.04
1.71
89.83
0.00
0.00
1.024
26.58
29.794


pH 5; S5204; T720; D2269-32
0.38
6.81
1.72
90.06
0.00
0.00
1.214
26.48
29.478


pH 5; S5204; T720; D2268-31
0.33
6.68
1.76
90.20
0.00
0.00
0.808
26.432
31.294


pH 5; S5204; T720; D2269-7
0.29
5.33
1.69
91.59
0.00
0.00
1.1
26.41
28.754


pH 5; S5204; T720; D2268-6
0.39
6.62
1.70
90.28
0.00
0.00
0.626
26.372
30.822


pH 7; S5204; T680; D2099-27
0.40
4.07
1.22
93.26
0.00
0.00
0.936
26.116
29.75


pH 5; S5204; T720; D2269-39
0.48
6.88
1.82
89.67
0.00
0.00
2.218
26.106
30.8


pH 5; S5204; T720; D2269-12
0.35
6.39
1.80
90.47
0.00
0.00
1.18
26.032
28.19


pH 5; S5204; T720; D2269-42
0.39
6.99
1.67
89.91
0.00
0.00
2.132
25.924
27.854


pH 5; S5204; T720; D2268-8
0.56
6.77
1.49
90.20
0.00
0.00
0.96
25.702
29.788


pH 5; S5204; T720; D2270-37
0.44
7.33
1.71
89.69
0.00
0.00
0.916
25.612
34.034


pH 5; S5204; T720; D2270-40
0.00
9.30
1.62
88.12
0.00
0.00
2.072
25.552
29.474


pH 5; S5204; T720; D2270-14
0.43
7.40
1.71
89.73
0.00
0.00
1.916
25.526
27.908


pH 5; S5204; T720; D2269-21
0.40
6.69
1.69
89.99
0.00
0.00
0.826
25.396
29


pH 5; S5204; T718; D2265-16
0.46
7.02
1.71
90.06
0.00
0.00
0.9
25.332
32.018


pH 5; S5204; T720; D2270-15
0.40
6.90
1.68
90.32
0.00
0.00
1.594
25.32
26.794


pH 5; S5204; T720; D2269-40
0.00
7.00
1.66
90.15
0.00
0.00
1.804
25.286
29.468


pH 5; S5204; T720; D2268-5
0.38
6.58
1.81
90.79
0.00
0.00
0.678
25.156
33.066


pH 5; S5204; T720; D2270-18
0.45
6.20
1.45
91.09
0.00
0.00
2.646
25.126
27.536


pH 5; S5204; T720; D2269-25
0.44
7.02
1.69
89.91
0.00
0.00
0.868
25.018
32.104


pH 5; S5204; T720; D2269-30
0.45
6.77
1.78
90.00
0.00
0.00
0.718
24.978
29.868


pH 5; S5204; T720; D2270-25
0.31
6.82
1.68
90.09
0.00
0.00
2.32
24.814
36.024


pH 5; S5204; T720; D2270-21
0.52
7.23
1.70
89.99
0.00
0.00
1.92
24.58
25.398


pH 5; S5204; T720; D2269-38
0.00
7.45
1.50
90.19
0.00
0.00
1.494
24.578
30.178


pH 5; S5204; T720; D2268-9
0.48
5.94
1.51
90.83
0.00
0.00
0.73
24.344
30.83


pH 5; S5204; T720; D2268-37
0.44
6.35
1.84
90.31
0.00
0.00
0.548
24.306
32.848


pH 5; S5204; T720; D2269-28
0.41
7.12
1.66
89.73
0.00
0.00
0.808
24.288
31.27


pH 5; S5204; T720; D2270-5
0.44
6.98
1.78
89.79
0.00
0.00
2.328
24.14
30.186


pH 5; S5204; T720; D2269-23
0.44
6.99
1.71
89.43
0.00
0.00
0.876
24.076
29.494


pH 5; S5204; T720; D2269-9
0.38
6.84
1.71
90.32
0.00
0.00
0.806
24
26.844


pH 5; S5204; T720; D2269-24
0.55
7.31
1.71
89.68
0.00
0.00
1.09
23.97
29.642


pH 5; S5204; T720; D2270-35
0.36
6.58
1.72
90.38
0.00
0.00
1.554
23.71
28.868


pH 5; S5204; T720; D2269-15
0.00
5.69
1.36
91.86
0.00
0.00
1.246
23.584
28.196


pH 5; S5204; T720; D2270-28
0.39
7.15
1.82
89.92
0.00
0.00
1.648
23.486
30.858


pH 7; S5204; T680; D2098-39
0.34
4.89
1.56
92.08
0.00
0.00
1.08
23.46
31.888


pH 5; S5204; T720; D2269-27
0.33
6.87
1.68
89.98
0.00
0.00
1.3
23.262
33.112


pH 5; S5204; T718; D2265-43
0.00
7.90
1.90
89.27
0.00
0.00
0.832
23.23
30.052


pH 5; S5204; T720; D2270-30
0.41
7.00
1.68
89.83
0.00
0.00
2.144
23.1
30.97


pH 5; S5204; T720; D2268-25
0.00
7.05
1.94
90.20
0.00
0.00
0.716
23.088
29.922


pH 5; S5204; T720; D2270-29
0.34
6.81
1.74
90.11
0.00
0.00
2.542
22.98
31.402


pH 5; S5204; T720; D2269-45
0.00
7.64
1.56
89.90
0.00
0.00
0.806
22.892
29.022


pH 5; S5204; T720; D2270-27
0.72
9.32
1.99
87.35
0.00
0.00
2.352
22.81
29.996


pH 5; S5204; T720; D2269-11
0.65
6.41
1.69
90.22
0.00
0.00
1.056
22.768
26.056


pH 5; S5204; T720; D2270-36
0.00
5.45
1.59
91.60
0.00
0.00
1.886
22.738
24.69


pH 5; S5204; T720; D2269-22
0.39
7.12
1.72
89.63
0.00
0.00
1.08
22.634
27.532


pH 5; S5204; T718; D2263-30
0.54
7.58
1.57
89.47
0.00
0.00
0.71
22.564
29.996


pH 7; S5204; T672; D2091-47
0.32
5.22
2.23
90.45
0.00
0.00
0.938
22.486
32.046


pH 5; S5204; T720; D2269-1
0.38
6.73
1.68
90.24
0.00
0.00
1.154
22.48
29.994


pH 7; S5204; T673; D2096-6
0.33
4.18
1.10
92.91
0.00
0.00
0.91
22.446
28.714


pH 5; S5204; T720; D2270-33
0.40
6.95
1.76
89.89
0.00
0.00
2.28
22.408
29.656


pH 5; S5204; T718; D2263-14
0.58
7.72
1.64
89.26
0.00
0.00
0.306
22.35
32.294


pH 5; S5204; T720; D2270-34
0.36
6.75
1.77
90.10
0.00
0.00
2.398
22.3
28.958


pH 7; S5204; T672; D2090-29
0.42
4.99
2.01
91.06
0.00
0.00
1.16
22.112
30.376


pH 5; S5204; T720; D2269-14
0.00
7.86
1.80
89.57
0.00
0.00
0.574
21.802
31.558


pH 5; S5204; T718; D2263-29
0.58
7.32
1.30
90.07
0.00
0.00
0.418
21.746
30.426


pH 5; S5204; T718; D2263-19
0.62
7.92
1.56
89.25
0.00
0.00
0.574
21.692
29.514


pH 5; S5204; T720; D2269-10
0.39
6.82
1.70
90.05
0.00
0.00
1.104
21.622
25.264


pH 5; S5204; T720; D2269-4
0.42
6.57
1.71
90.32
0.00
0.00
1.082
21.466
29.698


pH 5; S5204; T720; D2270-4
0.43
7.44
1.72
89.31
0.00
0.00
1.758
21.446
32.656


pH 5; S5204; T720; D2269-34
0.00
6.69
1.78
90.64
0.00
0.00
0.946
21.438
28.538


pH 5; S5204; T720; D2270-16
0.39
7.08
1.71
89.70
0.00
0.00
1.592
21.422
27.72


pH 5; S5204; T718; D2263-26
0.42
7.39
1.70
89.28
0.00
0.00
0.514
21.328
29.746


pH 5; S5204; T720; D2269-3
0.36
6.76
1.71
90.17
0.00
0.00
0.668
21.242
29.74


pH 5; S5204; T720; D2270-22
0.35
6.77
1.67
90.15
0.00
0.00
1.194
21.026
25.084


pH 5; S5204; T720; D2270-26
0.41
6.81
1.82
89.66
0.00
0.00
1.606
20.948
32.142


pH 5; S5204; T720; D2270-10
0.46
6.98
1.80
90.03
0.00
0.00
0.792
20.728
28.264


pH 5; S5204; T720; D2269-16
0.51
6.17
1.50
90.64
0.00
0.00
0.922
20.502
30.132


pH 5; S5204; T720; D2270-8
0.50
6.95
1.42
90.34
0.00
0.00
2.252
20.486
28.34


pH 5; S5204; T720; D2270-2
0.46
6.76
1.83
89.90
0.00
0.00
0.97
20.366
31.758


pH 5; S5204; T720; D2269-36
0.00
7.43
1.66
89.88
0.00
0.00
0.754
20.006
29.648


pH 5; S5204; T720; D2269-31
0.72
9.29
1.86
86.92
0.00
0.00
2.062
19.002
27.61


pH 5; S5204; T720; D2269-44
0.00
9.45
1.58
88.16
0.00
0.00
1.378
18.576
22.52


pH 7; S5204; T672; D2091-14
0.27
4.79
2.24
90.94
0.00
0.00
0.93
18.1
30.434


pH 5; S5204; T720; D2270-32
0.40
7.14
1.74
89.63
0.00
0.00
1.668
17.966
27.06


pH 5; S5204; T720; D2270-11
0.82
9.24
1.93
87.35
0.00
0.00
1.178
15.998
28.196


pH 5; S5204; T720; D2269-48
0.72
9.05
2.14
88.08
0.00
0.00
1.172
14.694
25.384


pH 5; S5204; T720; D2269-17
0.66
9.08
2.12
87.12
0.00
0.00
0.84
14.488
25.886


pH 5; S5204; T720; D2270-20
0.62
8.35
1.97
88.43
0.00
0.00
1.37
14.168
23.794


pH 5; S5204; T718; D2263-13
0.75
9.44
1.98
87.09
0.00
0.00
0.64
13.854
29.466


pH 5; S5204; T720; D2269-46
0.43
6.87
1.71
89.81
0.00
0.00
0.646
10.452
31.464


pH 5; S5204; T720; D2269-5
0.59
8.81
1.93
87.97
0.00
0.00
0.654
9.37
25.786


pH 7; S5204; T672; D2091-4
1.42
4.39
2.32
89.87
0.00
0.00
0.686
8.182
16.454


pH 5; S5204; T720; D2269-6
0.50
7.29
1.73
89.29
0.00
0.00
0.79
7.978
21.346


pH 5; S5204; T720; D2270-45
0.00
9.16
1.65
88.19
0.00
0.00
0.464
3.448
16.796


Blank






0
0
0









It is comtemplated that these promoters, or variants thereof, discovered here can be used to regulate a fatty acid synthesis gene (e.g., any of the FATA, FATB, SAD, FAD2, KASI/IV, KASII, LPAAT or KCS genes disclosed herein) or other gene or gene-suppression element expressed in a cell including a microalgal cell. Variants can have for example 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99% or greater identity to the sequences disclosed here.


Example 8
Combining KASII, FATA and LPAAT Transgenes to Produce an Oil High in SOS

In Prototheca moriformis, we overexpressed the P. moriformis KASII, knocked out an endogenous SAD2 allele, knocked out the endogenous FATA allele, and overexpressed both a LPAAT from Brassica napus and a FATA gene from Garcinia mangostana (“GarmFAT1”). The resulting strain produced an oil with over 55% SOS, over 70% Sat-O-Sat, and less than 8% trisaturated TAGs.


A base strain was transformed with a linearized plasmid with flanking regions designed for homologous recombination at the SAD2 site. The construct ablated SAD2 and overexpressed P. moriformis KASII. A ThiC selection marker was used. This strain was further transformed with a construct designed to overexpress GarmFATA1 with a P. moriformis SASD1 plastid targeting peptide via homologous recombination at the 6S chromosomal site using invertase as a selection marker. The resulting strain, produced oil with about 62% stearate, 6% palmitate, 5% linoleate, 45% SOS and 20% trisaturates.


The sequence of the transforming DNA from the GarmFATA1 expression construct (pSZ3204) is shown below in SEQ ID NO:61. Relevant restriction sites are indicated in lowercase, bold, and are from 5′-3′ BspQI, KpnI, XbaI, MfeI, BamHI, AvrII, EcoRV, SpeI, AscI, ClaI, AflII, SacI and BspQI. Underlined sequences at the 5′ and 3′ flanks of the construct represent genomic DNA from P. moriformis that enable targeted integration of the transforming DNA via homologous recombination at the 6S locus. Proceeding in the 5′ to 3′ direction, the CrTUB2 promoter driving the expression of Saccharomyces cerevisiae SUC2 (ScSUC2) gene, enabling strains to utilize exogenous sucrose, is indicated by lowercase, boxed text. The initiator ATG and terminator TGA of ScSUC2 are indicated by uppercase italics, while the coding region is represented by lowercase italics. The 3′ UTR of the CvNR gene is indicated by small capitals. A spacer region is represented by lowercase text. The P. moriformis SAD2-2 (PmSAD2-2) promoter driving the expression of the chimeric CpSAD1tp_GarmFATA1_FLAG gene is indicated by lowercase, boxed text. The initiator ATG and terminator TGA are indicated by uppercase italics; the sequence encoding CpSAD1tp is represented by lowercase, underlined italics; the sequence encoding the GarmFATA1 mature polypeptide is indicated by lowercase italics; and the 3× FLAG epitope tag is represented by uppercase, bold italics. A second CvNR 3′ UTR is indicated by small capitals.














Nucleotide sequence of the transforming DNA from pSZ3204:


(SEQ ID NO:61)



gctcttc
GCCGCCGCCACTCCTGCTCGAGCGCGCCCGCGCGTGCGCCGCCAGCGCCTTGGCCTTTTCGC




CGCGCTCGTGCGCGTCGCTGATGTCCATCACCAGGTCCATGAGGTCTGCCTTGCGCCGGCTGAGCCA




CTGCTTCGTCCGGGCGGCCAAGAGGAGCATGAGGGAGGACTCCTGGTCCAGGGTCCTGACGTGGT




CGCGGCTCTGGGAGCGGGCCAGCATCATCTGGCTCTGCCGCACCGAGGCCGCCTCCAACTGGTCCT




CCAGCAGCCGCAGTCGCCGCCGACCCTGGCAGAGGAAGACAGGTGAGGGGGGTATGAATTGTACA




GAACAACCACGAGCCTTGTCTAGGCAGAATCCCTACCAGTCATGGCTTTACCTGGATGACGGCCTGC




GAACAGCTGTCCAGCGACCCTCGCTGCCGCCGCTTCTCCCGCACGCTTCTTTCCAGCACCGTGATGGC




GCGAGCCAGCGCCGCACGCTGGCGCTGCGCTTCGCCGATCTGAGGACAGTCGGGGAACTCTGATCA




GTCTAAACCCCCTTGCGCGTTAGTGTTGCCATCCTTTGCAGACCGGTGAGAGCCGACTTGTTGTGCG




CCACCCCCCACACCACCTCCTCCCAGACCAATTCTGTCACCTTTTTGGCGAAGGCATCGGCCTCGGCC





embedded image






embedded image






embedded image






embedded image






embedded image





gcttcgccgccaagatcagcgcctccatgacgaacgagacgtccgaccgccccctggtgcacttcacccccaacaagggctgg




atgaacgaccccaacggcctgtggtacgacgagaaggacgccaagtggcacctgtacttccagtacaacccgaacgacacc




gtctgggggacgcccttgttctggggccacgccacgtccgacgacctgaccaactgggaggaccagcccatcgccatcgcccc




gaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacctccggcttcttcaacgacaccatcga




cccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcctacagcctggacggcg




gctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctggtacg




agccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcc




tggaagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccga




gcaggaccccagcaagtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctccttcaaccagtacttc




gtcggcagcttcaacggcacccacttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctg




cagaccttcttcaacaccgacccgacctacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtg




cccaccaacccctggcgctcctccatgtccctcgtgcgcaagttctccctcaacaccgagtaccggccaacccggagacggag




ctgatcaacctgaaggccgagccgatcctgaacatcagcaacgccggcccctggagccggttcgccaccaacaccacgttgac




gaaggccaacagctacaacgtcgacctgtccaacagcaccggcaccctggagttcgagctggtgtacgccgtcaacaccacc




cagacgatctccaagtccgtgttcgcggacctctccctctggttcaagggcctggaggaccccgaggagtacctccgcatgggc




ttcgaggtgtccgcgtcctccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggagaacccctacttcaccaac




cgcatgagcgtgaacaaccagcccttcaagagcgagaacgacctgtcctactacaaggtgtacggcttgctggaccagaaca




tcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatgaccaccgggacgccctgggctccgtga




acatgacgacgggggtggacaacctgttctacatcgacaagttccaggtgcgcgaggtcaagTGA
caattgGCAGCAGCAG



CTCGGATAGTATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACACTTGCTGCCTTGACCTGTGAATA


TCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTA


TTTGCGAATACCACCCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCTACGCTGTCCTGCT


ATCCCTCAGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTACTG


CAACCTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAggatcccgcgtctcga


acagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcg


cttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgat




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





actagt
ATG

g
ccacc
g
catccactttctc
gg
c
g
ttcaat
g
ccc
g
ct
g
c
gg
c
g
acct
g
c
g
tc
g
ct
cggcggg
ctcc
ggg
cccc
gg






cgcccagcgaggcccctccccgt
g
cgcg

ggcgcgcc
atccccccccgcatcatcgtggtgtcctcctcctcctccaaggtgaaccc




cctgaagaccgaggccgtggtgtcctccggcctggccgaccgcctgcgcctgggctccctgaccgaggacggcctgtcctaca




aggagaagttcatcgtgcgctgctacgaggtgggcatcaacaagaccgccaccgtggagaccatcgccaacctgctgcagg




aggtgggctgcaaccacgcccagtccgtgggctactccaccggcggcttctccaccacccccaccatgcgcaagctgcgcctga




tctgggtgaccgcccgcatgcacatcgagatctacaagtaccccgcctggtccgacgtggtggagatcgagtcctggggccag




ggcgagggcaagatcggcacccgccgcgactggatcctgcgcgactacgccaccggccaggtgatcggccgcgccacctcca




agtgggtgatgatgaaccaggacacccgccgcctgcagaaggtggacgtggacgtgcgcgacgagtacctggtgcactgcc




cccgcgagctgcgcctggccttccccgaggagaacaactcctccctgaagaagatctccaagctggaggacccctcccagtac




tccaagctgggcctggtgccccgccgcgccgacctggacatgaaccagcacgtgaacaacgtgacctacatcggctgggtgct




ggagtccatgccccaggagatcatcgacacccacgagctgcagaccatcaccctggactaccgccgcgagtgccagcacgac




gacgtggtggactccctgacctcccccgagccctccgaggacgccgaggccgtgttcaaccacaacggcaccaacggctccgc




caacgtgtccgccaacgaccacggctgccgcaacttcctgcacctgctgcgcctgtccggcaacggcctggagatcaaccgcg




gccgcaccgagtggcgcaagaagcccacccgc
ATGGACTACAAGGACCACGACGGCGACTACAAGGACCAC




GACATCGACTACAAGGACGACGACGACAAG
TGA
atcgatagatctcttaagGCAGCAGCAGCTCGGATAGTAT



CGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACACTTGCTGCCTTGACCTGTGAATATCCCTGCCGCTT


TTATCAAACAGCCTCAGTGTGTTTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTGCGAATACC


ACCCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCTACGCTGTCCTGCTATCCCTCAGCGC


TGCTCCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTACTGCAACCTGTAAAC


CAGCACTGCAATGCTGATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAaagcttaattaagagctcTTGTTTTCC



AGAAGGAGTTGCTCCTTGAGCCTTTCATTCTCAGCCTCGATAACCTCCAAAGCCGCTCTAATTGTGGA




GGGGGTTCGAATTTAAAAGCTTGGAATGTTGGTTCGTGCGTCTGGAACAAGCCCAGACTTGTTGCTC




ACTGGGAAAAGGACCATCAGCTCCAAAAAACTTGCCGCTCAAACCGCGTACCTCTGCTTTCGCGCAA




TCTGCCCTGTTGAAATCGCCACCACATTCATATTGTGACGCTTGAGCAGTCTGTAATTGCCTCAGAAT




GTGGAATCATCTGCCCCCTGTGCGAGCCCATGCCAGGCATGTCGCGGGCGAGGACACCCGCCACTC




GTACAGCAGACCATTATGCTACCTCACAATAGTTCATAACAGTGACCATATTTCTCGAAGCTCCCCAA




CGAGCACCTCCATGCTCTGAGTGGCCACCCCCCGGCCCTGGTGCTTGCGGAGGGCAGGTCAACCGG




CATGGGGCTACCGAAATCCCCGACCGGATCCCACCACCCCCGCGATGGGAAGAATCTCTCCCCGGG




ATGTGGGCCCACCACCAGCACAACCTGCTGGCCCAGGCGAGCGTCAAACCATACCACACAAATATCC




TTGGCATCGGCCCTGAATTCCTTCTGCCGCTCTGCTACCCGGTGCTTCTGTCCGAAGCAGGGGTTGCT




AGGGATCGCTCCGAGTCCGCAAACCCTTGTCGCGTGGCGGGGCTTGTTCGAGCTT
gaagagc










The resulting strain was further transformed with a construct designed to recombine at (and thereby disrupt) the endogenous FATA and also express the LPAAT from B. napus under control of the UAPA1 promoter and using alpha galactosidase as a selectable marker with selection on melbiose. The resulting strain showed increased production of SOS (about 57-60%) and Sat-O-Sat (about 70-76%) and lower amounts of trisaturates (4.8 to 7.6%).


Strains were generated in the high-C18:0 56573 background in which we maximized SOS production and minimized the formation of trisaturated TAGs by targeting both the Brassica napus LPAT2(Bn1.13) gene and the PmFAD2hpA RNAi construct to the FATA-1 locus. The sequence of the transforming DNA from the PmFAD2hpA expression construct pSZ4164 is shown below in SEQ ID NO:62. Relevant restriction sites are indicated in lowercase, bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, BamHI, NdeI, NsiI, AflII, EcoRI, SpeI, BsiWI, XhoI, SacI and BspQI. Underlined sequences at the 5′ and 3′ flanks of the construct represent genomic DNA from P. moriformis that enable targeted integration of the transforming DNA via homologous recombination at the FATA-1 locus. Proceeding in the 5′ to 3′ direction, the PmHXT1 promoter driving the expression of Saccharomyces carlbergensis MEL1 (ScarMEL1) gene, enabling strains to utilize exogenous melibiose, is indicated by lowercase, boxed text. The initiator ATG and terminator TGA of ScarMEL1 are indicated by uppercase italics, while the coding region is represented by lowercase italics. The 3′ UTR of the P. moriformis PGK gene is indicated by small capitals. A spacer region is represented by lowercase text. The P. moriformis UAPA1 promoter driving the expression of the BnLPAT2(Bn1.13) gene is indicated by lowercase, boxed text. The initiator ATG and terminator TGA are indicated by uppercase italics; the sequence encoding BnLPAT2(Bn1.13) is represented by lowercase, underlined italics. The 3′ UTR of the CvNR gene is indicated by small capitals. A second spacer region is represented by lowercase text. The C. reinhardtii CrTUB2 promoter driving the expression of the PmFAD2hpA hairpin sequence is indicated by lowercase, boxed text. The FAD2 exon 1 sequence in the forward orientation is indicated with lowercase italics; the FAD2 intron 1 sequence is represented with lowercase, bold italics; a short linker region is indicated with lowercase text, and the FAD2 exon 1 sequence in the reverse orientation is indicated with lowercase, underlined italics. A second CvNR 3′ UTR is indicated by small capitals.














Nucleotide sequence of the transforming DNA from pSZ4164:


(SEQ ID NO:62)


gctcttcCCAACTCAGATAATACCAATACCCCTCCTTCTCCTCCTCATCCATTCAGTACCCCCCCCCTTCTC



TTCCCAAAGCAGCAAGCGCGTGGCTTACAGAAGAACAATCGGCTTCCGCCAAAGTCGCCGAGCACT




GCCCGACGGCGGCGCGCCCAGCAGCCCGCTTGGCCACACAGGCAACGAATACATTCAATAGGGGG




CCTCGCAGAATGGAAGGAGCGGTAAAGGGTACAGGAGCACTGCGCACAAGGGGCCTGTGCAGGA




GTGACTGACTGGGCGGGCAGACGGCGCACCGCGGGCGCAGGCAAGCAGGGAAGATTGAAGCGGC




AGGGAGGAGGATGCTGATTGAGGGGGGCATCGCAGTCTCTCTTGGACCCGGGATAAGGAAGCAAA




TATTCGGCCGGTTGGGTTGTGTGTGTGCACGTTTTCTTCTTCAGAGTCGTGGGTGTGCTTCCAGGGA




GGATATAAGCAGCAGGATCGAATCCCGCGACCAGCGTTTCCCCATCCAGCCAACCACCCTGTC
ggtac





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctgcgac




gtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatcatcct




ggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggccacg




tcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctc




cctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaa




gggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatct




tctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaaactcctggcgcatgtccggcgacgt




cacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctc




catcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctgga




ggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatc




ggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaac




ggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccg




gccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggagga




gatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaa




ctccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggac




ggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtcccc




gcccacggcatcgcgttctaccgcctgcgcccctcctccTGAacaacttattacgtaTTCTGACCGGCGCTGATGTGGCGCGG



ACGCCGTCGTACTCTTTCAGACTTTACTCTTGAGGAATTGAACCTTTCTCGCTTGCTGGCATGTAAACATTGGCGCAATTAA


TTGTGTGATGAAGAAAGGGTGGCACAAGATGGATCGCGAATGTACGAGATCGACAACGATGGTGATTGTTATGAGGGG


CCAAACCTGGCTCAATCTTGTCGCATGTCCGGCGCAATGTGATCCAGCGGCGTGACTCTCGCAACCTGGTAGTGTGTGCG


CACCGGGTCGCTTTGATTAAAACTGATCGCATTGCCATCCCGTCAACTCACAAGCCTACTCTAGCTCCCATTGCGCACTCGG


GCGCCCGGCTCGATCAATGTTCTGAGCGGAGGGCGAAGCGTCAGGAAATCGTCTCGGCAGCTGGAAGCGCATGGAATGC


GGAGCGGAGATCGAATCAggatcccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagc


gcggcatacaccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttg




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgctgcaggccatctgctacgtgctgatccgccccctgtccaagaacacctaccgcaagatcaaccgcgtggtggccgagacc




ctgtggctggagctggtgtggatcgtggactggtgggccggcgtgaagatccaggtgttcgccgacaacgagaccttcaacc




gcatgggcaaggagcacgccctggtggtgtgcaaccaccgctccgacatcgactggctggtgggctggatcctggcccagcg




ctccggctgcctgggctccgccctggccgtgatgaagaagtcctccaagttcctgcccgtgatcggctggtccatgtggttctccg




agtacctgacctggagcgcaactgggccaaggacgagtccaccctgaagtccggcctgcagcgcctgaacgacttcccccgc




cccttctggctggccctgttcgtggagggcacccgcttcaccgaggccaagctgaaggccgcccaggagtacgccgcctcctcc




gagctgcccgtgccccgcaacgtgctgatcccccgcaccaagggcttcgtgtccgccgtgtccaacatgcgctccttcgtgcccg




ccatctacgacatgaccgtggccatccccaagacctcccccccccccaccatgctgcgcctgttcaagggccagccctccgtggt




gcacgtgcacatcaagtgccactccatgaaggacctgcccgagtccgacgacgccatcgcccagtggtgccgcgaccagttcg




tggccaaggacgccctgctggacaagcacatcgccgccgacaccttccccggccagcaggagcagaacatcggccgccccat




caagtccctggccgtggtgctgtcctggtcctgcctgctgatcctgggcgccatgaagttcctgcactggtccaacctgactcctc



ctggaagggcatcgccactccgccctgggcctgggcatcatcaccctgtgcatgcagatcctgatccgctcctcccagtccgag



cgctccacccccgccaaggtggtgcccgccaagcccaaggacaaccacaacgactccggctcctcctcccagaccgaggtgga




gaagcagaagTGA
atgcatGCAGCAGCAGCTCGGATAGTATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTG



CCGCCACACTTGCTGCCTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATCTTGTGTGTACG


CGCTTTTGCGAGTTGCTAG CTG CTTGTGCTATTTGCGAATACCACCCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCAT


CCCAACCGCAACTTATCTACGCTGTCCTGCTATCCCTCAGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGG


TTTGGGCTCCGCCTGTATTCTCCTGGTACTGCAACCTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGGGAT


GGGAACACAAATGGActtaaggatctaagtaagattcgaagcgctcgaccgtgccggacggactgcagccccatgtcgtagtga


ccgccaatgtaagtgggctggcgtttccctgtacgtgagtcaacgtcactgcacgcgcaccaccctctcgaccggcaggaccaggca


tcgcgagatacagcgcgagccagacacggagtgccgagctatgcgcacgctccaactagatatcatgtggatgatgagcatgaatt




embedded image






embedded image






embedded image






embedded image





gtggagaagcctccgttcacgatcgggacgctgcgcaaggccatccccgcgcactgtacgagcgctcggcgcttcgtagcag




catgtacctggcctttgacatcgcggtcatgtccctgctctacgtcgcgtcgacgtacatcgaccctgcaccggtgcctacgtggg





embedded image






embedded image






agtagagcagccacatgatqccgtacttgacccacgtaggcaccgatqcaggatcgatatacgtcgacgcgacgtagagca






ggg
acat
g
acc
gcg
at
g
tcaaa
gg
cca
gg
tacat
g
ct
g
ctac
g
aa
g
c
g
cc
g
a
g
c
g
ctc
g
aaaca
g
t
g
c
g
c
gggg
at
gg
cct






tgcgcagcgtcccgatcgtgaacggaggcttctccacaggctgcctgttcgtcttgatagccat

ctcgagGCAGCAGCAGCTCG



GATAGTATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACACTTGCTGCCTTGACCTGTGAATATCCC


TGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTG


CGAATACCACCCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCTACGCTGTCCTGCTATCC


CTCAGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTACTGCAAC


CTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAAAGCTGTAgagctcttgtttt


ccagaaggagttgctccttgagcctttcattctcagcctcgataacctccaaagccgctctaattgtggagggggttcgaaCCGAA



TGCTGCGTGAACGGGAAGGAGGAGGAGAAAGAGTGAGCAGGGAGGGATTCAGAAATGAGAAATG




AGAGGTGAAGGAACGCATCCCTATGCCCTTGCAATGGACAGTGTTTCTGGCCACCGCCACCAAGACT




TCGTGTCCTCTGATCATCATGCGATTGATTACGTTGAATGCGACGGCCGGTCAGCCCCGGACCTCCA




CGCACCGGTGCTCCTCCAGGAAGATGCGCTTGTCCTCCGCCATCTTGCAGGGCTCAAGCTGCTCCCA




AAACTCTTGGGCGGGTTCCGGACGGACGGCTACCGCGGGTGCGGCCCTGACCGCCACTGTTCGGAA




GCAGCGGCGCTGCATGGGCAGCGGCCGCTGCGGTGCGCCACGGACCGCATGATCCACCGGAAAAG




CGCACGCGCTGGAGCGCGCAGAGGACCACAGAGAAGCGGAAGAGACGCCAGTACTGGCAAGCAG




GCTGGTCGGTGCCATGGCGCGCTACTACCCTCGCTATGACTCGGGTCCTCGGCCGGCTGGCGGTGCT




GACAATTCGTTTAGTGGAGCAGCGACTCCATTCAGCTACCAGTCGAACTCAGTGGCACAGTGACTcc




gctcttc










Example 9
Algal Oil with “Zero” Saturated Fat Per Serving

In this example, we demonstrate that triacylglycerols in Prototheca moriformis (derived from UTEX 1435) can be significantly reduced in levels of saturated fatty acids, utilizing both molecular genetics and classical mutagenesis approaches. As described below, strain S8188 produces oil with less than or about 3% total saturated fatty acids in multiple fermentation runs. Strain 8188 expresses exogenous genes that produce the mature KASII and SAD proteins of SEQ ID NOS: 64 and 65, respectively with an insertion that disrupts the expression of an endogenous FATA allele.


Summary of Strain S8188 Generation.


The strain S8188 was created by two successive transformations. The high oleic base strain S7505 was first transformed with pSZ3870 (FATA1 3′::CrTUB2-ScSUC2-CvNR:PmSAD2-2-CpSADtp-PmKASII-CvNR::FATA1 5′), a construct that disrupts a single copy of the FATA1 allele while simultaneously overexpressing the P. moriformis KASII. The resulting high-oleic, lower-palmitic strain S7740 produces 1.4% palmitate with 7.3% total saturates in fermentation runs (Table 52).


Specifically, S7505 and S5100 are cerulenen resistant isolates of Strain S3150 with low C16:0 titer and high C18:1 titer made according to the methods disclosed in co-owned application 62/141,167 filed on 31 Mar. 2015.


S7740 was subsequently transformed with pSZ4768 (FAD2-1 5′::PmHXT1V2-ScarMEL1-PmPGK:PmSAD2-2p-CpSADtp-PmKASII-CvNR:PmACP1-PmSAD2-1-CvNR::FAD2-1 3′), introducing another copy of PmKASII and simultaneously overexpressing PmSAD2-1 gene targeting the FAD2 (delta-12 fatty acid desaturase) locus, to yield strain S8188. Strain S8188 produces 1.7% C16:0 and 0.5% C18:0, and total saturated fatty acids levels around 3% (Table 52). Note that disrupting FAD2 elevates the levels of oleic acid relative to polyunsaturates, but this disruption may not be needed to achieve low levels of unsaturates.









TABLE 52







Comparison of fatty acid profiles between strains S7505, S7740 and


S8188 in high cell-density fermentation experiment. Strain S7740


produces lower C16:0; while S8188 produces lower C16:0 and C18:0,


therefore lower in total saturated fatty acids.










Fatty Acids Area %













Strains
C16:0
C18:0
C18:1
C18:2
Total saturates %















S7505
12.5
5.6
75.5
4.8
18.9


S7740
1.4
4.9
85.2
5.1
7.3


S8188
1.7
0.5
91.8
3.8
3.0









Optimization of PmKASII Expression to Generate a Lower Palmitic Strain.


The major saturated fatty acids in P. moriformis UTEX 1435 strain include C16:0 and C18:0. In an effort to minimize C16:0 fatty acid levels, we investigated if optimizing PmKASII gene expression might result in further reductions in palmitate, thereby reducing total saturated fatty acids levels. A total of 14 putative strong, endogenous promoters were utilized to drive the expression of PmKASII gene (Table 53). These promoters were individually cloned upstream of the PmKASII gene as part of a cassette which simultaneously knocks out a single allele of FATA.









TABLE 53







Endogenous promoters identified through transcriptome analysis and


evaluated in this study: PmUAPA1 (Uric acid xanthine permease 1); PmHXT1 (Hexose co-


transporter); PmSAD2-2 (Stearoyl ACP desaturase 2-2); PmSOD (Superoxide dismutase);


PmATPB1 (ATP synthase subunit B); PmEF1-1 (Elongation factor allele 1); PmEF1-2


(Elongation factor allele 2); PmACP-P1(Acyl carrier protein plastidic-1); PmACP-P2 (Acyl


carrier protein plastidic-2); PmC1LYR1 (Homology to C1 LYR family domain); PmAMT1-1


(Ammonium transporter 1-1) PmAMT1-2 (Ammonium transporter 1-2); PmAMT3-1


(Ammonium transporter 3-1); PmAMT3-2 (Ammonium transporter 3-2)








pSZ#
Construct





pSZ2533
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmUAPA1-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3869
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmHXT1-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3870
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmSAD2-2-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3935
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmSOD-CpSADtp-PmKASII-CvNR::FATA1



5′


pSZ3936
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmATPB1-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3937
FATA1 3′::CrTUB2-ScSUC2-CvNR-PmEF1-1-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3938
FATA1 3′::CrTUB2-ScSUC2-CvNR-PmEF1-2-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3939
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmACP-P1-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3940
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmACP-P2-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3941
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmC1LYR1-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3942
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmAMT1-1-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3943
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmAMT1-2-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3944
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmAMT3-1-CpSADtp-PmKASII-



CvNR::FATA1 5′


pSZ3945
FATA1 3′::CrTUB2-ScSUC2-CvNR:PmAMT3-2-CpSADtp-PmKASII-



CvNR::FATA1 5′









All the 14 constructs have same configuration except the different promoters that drive the expression of PmKASII gene. The sequences of these transforming DNAs are provided in the sequences below. In these constructs, the Saccharomyces cerevisiae invertase gene (SUC2) was utilized as the selectable marker, conferring on strains the ability to grow on sucrose. The resulting constructs were first transformed into high oleic base strain S5100, and a minimum of 20 transgenic lines arising from each transformation were assayed. As shown in Table 54, transgenic lines overexpressing the PmKASII gene that driven by promoters such as PmSAD2-2, PmACP-P1, PmACP-P2, PmUAPA1, and PmHXT1, show significant decreases in C16:0 fatty acid levels. We also observed a significant accumulation of C18:1 fatty acids.


We then transformed these top five constructs (PmSAD2-2, PmACP-P1, PmACP-P2, PmUAPA1, and PmHXT1) into high oleic strain S7505. Again, a minimum of 20 transgenic lines were assayed. Overall, the average C16:0 level achieved by transgenic lines generated in S7505 are lower than those generated in S5100, which is consistent with the levels observed in the parental strains. On the other hand, the promoter which resulted in the lowest C16:0 level, was different depending upon which high oleic base strain was tested. For example, PmACP-P2 appears to be the best promoter driving the expression of PmKASII in S5100, while in S7505, the PmSAD2-2 promoter performs the best (Table 54).









TABLE 54







Palmitate levels achieved in transgenic lines over expressing PmKASII


concomitant with down regulation of FATA1 in the high oleic base strains


S5100 and S7505. The lowest and average C16:0 levels are the result


of assessing a minimum of 20 transgenic lines from each transformation.










Parental
Parental



strain S5100
strain S7505












Lowest
Average
lowest
Average


Constructs
C16:0
C16:0
C16:0
C16:0














PmUAPA1::PmKASII, Δfata1
3.88
8.78
4.74
7.99


PmHXT1::PmKASII, Δfata1
4.37
9.47
5.99
8.09


PmSAD2-2::PmKASII, Δfata1
3.82
8.36
2.38
5.88


PmSOD::PmKASII, Δfata1
7.71
9.83




PmATPB1::PmKASII, Δfata1
10.11
13.97




PmEF1-1::PmKASII, Δfata1
8.29
8.91




PmEF1-2::PmKASII, Δfata1
8.47
10.15




PmACP-P1::PmKASII, Δfata1
3.03
7.93
3.09
6.94


PmACP-P2::PmKASII, Δfata1
3.01
7.81
3.55
6.63


PmC1LYR1::PmKASII, Δfata1
10.31
11.45




PmAMT1-1::PmKASII, Δfata1
6.51
9.62




PmAMT1-2::PmKASII, Δfata1
5.21
8.56




PmAMT3-1::PmKASII, Δfata1
6.37
10.72




PmAMT3-2::PmKASII, Δfata1
9.69
10.83











Given the initial results seen through the inactivation of FATA1 and overexpression of PmKASII when driven by the PmSAD2-2 promoter in strain S7505, we moved several of these transgenic lines into genetic stability assays and assessment of the integration events by Southern blot analysis. Strain S7740 is a resulting stable line showing the correct integration of the DNA into the FATA1 locus. The fatty acid profile of S7740 when evaluated in lab scale fermenter is shown in Table 55. As expected, the C16:0 levels in strain S7740 are 2.3% lower than that observed in previous high oleic leading strain S5587 run under the same conditions (Table 55). S5587 is a strain in which pSZ2533 was expressed in S5100.









TABLE 55







Comparison of fatty acid profiles between strains S5587 and S7740 in


high cell-density fermentation experiment. Strain S7740 produces


2.3% less C16:0 than S5587, while the oleate levels are comparable


between the two strains.









Fatty Acid area %













Strains
C16:0
C18:0
C18:1
C18:2
C20:1
Total saturates





S5587
3.7
3.5
85.6
5.6
0.7
7.9


S7740
1.4
4.9
85.2
5.1
2.1
7.3









S7740 is one of the transformants generated from pSZ3870 (FATA13′::CrTUB2: ScSUC2:CvNR::PmSAD2-2-CpSADtp:PmKASII-CvNR::FATA1 5′) transforming S7505. The sequence of the pSZ3870 transforming DNA is provided in SEQ ID NO: 66. Relevant restriction sites in the construct are indicated in lowercase, bold and underlining and are 5′-3′ BspQ 1, Kpn I, Asc I, Mfe I, EcoRV, SpeI, AscI, ClaI, Sac I, BspQ I, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent FATA1 3′ genomic DNA that permit targeted integration at FATA1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the C. reinhardtii β-tubulin promoter driving the expression of the yeast sucrose invertase gene is indicated by boxed text. The initiator ATG and terminator TGA for invertase are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The Chlorella vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by the P. moriformis SAD2-2 promoter, indicated by boxed italics text. The Initiator ATG and terminator TGA codons of the PmKASII are indicated by uppercase, bold italics, while the remainder of the coding region is indicated by bold italics. The Chlorella protothecoides S106 stearoyl-ACP desaturase transit peptide is located between initiator ATG and the Asc I site. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the FATA1 5′ genomic region indicated by bold, lowercase text.


As we described earlier, we utilized 13 additional promoters for driving the expression of PmKASII. All 14 constructs have same configuration and relevant restriction sites.














Nucleotide sequence of transforming DNA contained in pSZ3870:


(SEQ ID NO: 66)




gctcttc

acccaactcagataataccaatacccctccttctcctcctcatccattcagtacccccccccttctcttcccaaagcagcaagcgcgtg




gcttacagaagaacaatcggcttccgccaaagtcgccgagcactgcccgacggcggcgcgcccagcagcccgcttggccacacaggcaacga




atacattcaatagggggcctcgcagaatggaaggagcggtaaagggtacaggagcactgcgcacaaggggcctgtgcaggagtgactgact




gggcgggcagacggcgcaccgcgggcgcaggcaagcagggaagattgaagcggcagggaggaggatgctgattgaggggggcatcgcagt




ctctcttggacccgggataaggaagcaaatattcggccggttgggttgtgtgtgtgcacgttttcttcttcagagtcgtgggtgtgcttccaggga





embedded image






embedded image






embedded image






embedded image






embedded image





cgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgccaagtggcacct




gtacttccagtacaacccgaacgacaccgtctgggggacgcccttgttctggggccacgccacgtccgacgacctgaccaactgggagga




ccagcccatcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacctccggcttcttca




acgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcctacagcctgg




acggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctggtacga




gccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcctggaagct




ggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggaccccagcaa




gtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttcaacggcaccca




cttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgacccgacctacg




ggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccctggcgctcctccatgtccctcgtgcgca




agttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagccgatcctgaacatcagcaacgcc




ggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgtccaacagcaccggcaccctgga




gttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctctggttcaagggcctggaggacc




ccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggaga




acccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaacgacctgtcctactacaaggtgtacggcttgctgga




ccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatgaccaccgggaacgccctgggctccgtg





embedded image





agtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacag




cctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcat




atcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgg




gctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaggat




cccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaa



tgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtc




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgcc




gcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatcc




ccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgc




acagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatggaa




cacaaatggaaagcttaattaagagctcttgttttccagaaggagttgctccttgagcctttcattctcagcctcgataacctccaaagccgctct




aattgtggagggggttcgaaccgaatgctgcgtgaacgggaaggaggaggagaaagagtgagcagggagggattcagaaatgagaaatg




agaggtgaaggaacgcatccctatgcccttgcaatggacagtgtttctggccaccgccaccaagacttcgtgtcctctgatcatcatgcgattga




ttacgttgaatgcgacggccggtcagccccggacctccacgcaccggtgctcctccaggaagatgcgcttgtcctccgccatcttgcagggctca




agctgctcccaaaactcttgggcgggttccggacggacggctaccgcgggtgcggccctgaccgccactgttcggaagcagcggcgctgcatg




ggcagcggccgctgcggtgcgccacggaccgcatgatccaccggaaaagcgcacgcgctggagcgcgcagaggaccacagagaagcggaa




gagacgccagtactggcaagcaggctggtcggtgccatggcgcgctactaccctcgctatgactcgggtcctcggccggctggcggtgctgaca




attcgtttagtggagcagcgactccattcagctaccagtcgaactcagtggcacagtgactccgctcttc






Nucleotide sequence of PmUAPA1 promoter contained in pSZ2533:


(SEQ ID NO: 67)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmHXT1 promoter contained in pSZ3869:


(SEQ ID NO: 68)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmSOD promoter contained in pSZ3935:


(SEQ ID NO: 69)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmATPB1 promoter contained in pSZ3936:


(SEQ ID NO: 70)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmEf1-1 promoter contained in pSZ3937:


(SEQ ID NO: 71)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmEf1-2 promoter contained in pSZ3938:


(SEQ ID NO: 72)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmACP1 promoter contained in pSZ3939:


(SEQ ID NO: 73)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmACP2 promoter contained in pSZ3940:


(SEQ ID NO: 74)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmC1LYR1 promoter contained in pSZ3941:


(SEQ ID NO: 75)




embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmAMT1-1 promoter contained in pSZ3942:


(SEQ ID NO: 76)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmAMT1-2 promoter contained in pSZ3943:


(SEQ ID NO: 77)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmAMT3-1 promoter contained in pSZ3944:


(SEQ ID NO: 78)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmAMT3-2 promoter contained in pSZ3945:


(SEQ ID NO: 79)




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image











Expression of PmSAD2-1 in S7740 Resulted in Zero SAT FAT Strain S8188


The PmSAD2-1 gene was then introduced into S7740 to reduce the stearic level. Strain S8188 is one of the stable lines generated from the transformation of pSZ4768 DNA (FAD2 5′::PmHXT1V2-ScarMEL1-PmPGK:PmSAD2-2p-CpSADtp-PmKASII-CvNR:PmACP1-PmSAD2-1-CvNR::FAD2 3′) into S7740. In this construct, the Saccharomyces carlbergensis MEL1 gene was used as the selectable marker to introduce the PmSAD2-1, and an additional copy of PmKASII into the FAD2-1 locus of P. moriformis strain S7740 by homologous recombination using previously described transformation methods (biolistics).


The sequence of the pSZ4768 (D3870) transforming DNA is provided in SEQ ID NO: 85. Relevant restriction sites in pSZ4768 are indicated in lowercase, bold and underlining and are 5′-3′ BspQ 1, Kpn I, SnaBI, BamHI, AvrII, SpeI, AscI, ClaI, EcoRI, SpeI, AscI, ClaI, PacI, SacI BspQ I, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent FAD2-1 5′ genomic DNA that permits targeted integration at FAD2-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the P. moriformis HXT1 promoter driving the expression of the S. carlbergensis MEL1 gene is indicated by boxed text. The initiator ATG and terminator TGA for ScarMEL1 are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis PGK 3′UTR is indicated by lowercase underlined text followed by the PmSAD2-2 promoter indicated by boxed italics text. The Initiator ATG and terminator TGA codons of the PmKASII are indicated by uppercase, bold italics, while the remainder of the coding region is indicated by bold italics. The Chlorella protothecoides S106 stearoyl-ACP desaturase transit peptide is located between initiator ATG and the Asc I site. The Chlorella vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by the PmACP1 promoter driving the expression of PmSAD2-1 gene. The PmACP1 promoter is indicated by boxed italics text. The Initiator


ATG and terminator TGA codons of the PmSAD2-1 are indicated by uppercase, bold italics, while the remainder of the coding region is indicated by bold italics. The C. protothecoides S106 stearoyl-ACP desaturase transit peptide is located between initiator ATG and the Asc I site. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the FAD2-1 3′ genomic region indicated by bold, lowercase text.














Nucleotide sequence of transforming DNA contained in pSZ4768 (D3870):


(SEQ ID NO: 80)




gctcttcg

cgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcgacccagtcg




ctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattggtagcattataattcg




gcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccagctccgggcgaccgggctccgtgt




cgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggcccactgaataccgtgtcttggggccctacatgatggg




ctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctgaatcctccaggcgggtttccccgagaaagaaagggtgccg




atttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgcctatgtagtcaccccccctcacccaattgtcgccagtttgcgcaatcc





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactgg




aacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaag




tacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggcc




acgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgg




gccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagttcggc




acgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccctgtgcaactgggg




ccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgactccc




gctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatggg




ccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgca




cttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggc




gtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccag




ggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaac




acgaccctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcg




tcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacg




gcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacgg





embedded image





actttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaagggtggcacaagatggat




cgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgtccggcgcaatgtgatccagcggc




gtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcccgtcaactcacaagcctactctagctcc




cattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaagcgtcaggaaatcgtctcggcagctggaagcgcatggaatgcg




gagcggagatcgaatcaggatcccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcataca



ccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgaca




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcgttcaatgcccgctgcggcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggcccctccccgtgcgcg

ggcgcgcc

g




ccgccgccgccgacgccaaccccgcccgccccgagcgccgcgtggtgatcaccggccagggcgtggtgacctccctgggccagaccatcg




agcagttctactcctccctgctggagggcgtgtccggcatctcccagatccagaagttcgacaccaccggctacaccaccaccatcgccggc




gagatcaagtccctgcagctggacccctacgtgcccaagcgctgggccaagcgcgtggacgacgtgatcaagtacgtgtacatcgccggc




aagcaggccctggagtccgccggcctgcccatcgaggccgccggcctggccggcgccggcctggaccccgccctgtgcggcgtgctgatc




ggcaccgccatggccggcatgacctccttcgccgccggcgtggaggccctgacccgcggcggcgtgcgcaagatgaaccccttctgcatcc




ccttctccatctccaacatgggcggcgccatgctggccatggacatcggcttcatgggccccaactactccatctccaccgcctgcgccaccg




gcaactactgcatcctgggcgccgccgaccacatccgccgcggcgacgccaacgtgatgctggccggcggcgccgacgccgccatcatcc




cctccggcatcggcggcttcatcgcctgcaaggccctgtccaagcgcaacgacgagcccgagcgcgcctcccgcccctgggacgccgaccg




cgacggcttcgtgatgggcgagggcgccggcgtgctggtgctggaggagctggagcacgccaagcgccgcggcgccaccatcctggccg




agctggtgggcggcgccgccacctccgacgcccaccacatgaccgagcccgacccccagggccgcggcgtgcgcctgtgcctggagcgcg




ccctggagcgcgcccgcctggcccccgagcgcgtgggctacgtgaacgcccacggcacctccacccccgccggcgacgtggccgagtacc




gcgccatccgcgccgtgatcccccaggactccctgcgcatcaactccaccaagtccatgatcggccacctgctgggcggcgccggcgccgt




ggaggccgtggccgccatccaggccctgcgcaccggctggctgcaccccaacctgaacctggagaaccccgcccccggcgtggaccccgt




ggtgctggtgggcccccgcaaggagcgcgccgaggacctggacgtggtgctgtccaactccttcggcttcggcggccacaactcctgcgtg




atcttccgcaagtacgacgagatggactacaaggaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgac




aag
TGA

atcgat
agatctcttaaggcagcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacact




tgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtg




ctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgctcccaaccgcaacttatctacgctgtcctgctatccctcagcgct




gctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctga





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




tcttaaggcagcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaa



tatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacc




cccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcac




tgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtg




ggatgggaacacaaatggaaagcttaattaagagctcctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgca




cgcgcgactccgtcgcttcgcgggtggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccacccacctg




cacctctattattggtattattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttcagctggctcccaccattgtaaattctt




gctaaaatagtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggttttcgtgctgatctcgggcacaaggcgtcgtcga




cgtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcctttactccgcactccaaacgactgtcgctcgtatttttcggat




atctattttttaagagcgagcacagcgccgggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatc




gcggcagtgcaccaggcgcagacggaggaacgcatggtgagtgcgcatcacaagatgcatgtcttgttgtctgtactataatgctagagcatc




accaggggcttagtcatcgcacctgctttggtcattacagaaattgcacaagggcgtcctccgggatgaggagatgtaccagctcaagctgga




gcggcttcgagccaagcaggagcgcggcgcatgacgacctacccacatgcgaagagc










The resulting profiles from representative clones arising from transformations of pSZ4768 (D3870) into S7740 are shown in Table 56. The impact of overexpressing the PmSAD2-1 gene is a clear diminution of C18:0 chain lengths, thereby significantly reduced the level of total saturated fatty acids. Strain S8188 is one of the stable lines from the transformant D3870-21 (Table 56), and it produces ˜4% total saturated fatty acids when evaluated in shake flask experiment. To confirm that S8188 is able to produce oil with lower total saturates, the performance of S8188 was further evaluated in a fermentation experiment. As shown in FIG. 1, strain S8188 produces 2.9-3.0% total saturates in both fermentation runs 140558F22 and 140574F24.









TABLE 56







Fatty acid profile of representative clones arising from transformation


with D3870 (pSZ4768) DNA, into strain S7740.











Sample ID
C16:0
C18:0
C18:1
C18:2





pH 5; S7740; T1089; D3870-20;
2.51
0.88
86.59
7.26


pH 5; S7740; T1089; D3870-13;
2.50
1.09
88.55
5.41


pH 5; S7740; T1089; D3870-21;
2.89
1.25
89.03
4.55


pH 5; S7740; T1089; D3870-24;
2.16
1.67
89.38
4.39


pH 5; S7740; T1089; D3870-8;
2.18
1.74
88.62
5.04


pH 5; S7740; T1089; D3870-17;
2.37
1.75
88.44
4.94


pH 5; S7740;
2.56
5.15
82.59
6.31









Example 10
Expression of LPAAT in High-Erucic Transgenic Microalgae

In the below given example we demonstrate the feasibility of using lysophosphatidic acid acyltransferase (LPAAT) to alter the content and composition of oils in our transgenic algal strains for producing certain very long chain fatty acids (VLCFA). Specifically we show that expression of a heterologous LPAAT gene from Limnanthes douglasii (LimdLPAAT, Uniprot Accession No:Q42870, SEQ ID NO: 82) or Limnanthes alba (LimaLPAAT, Uniprot Accession No: 42868, SEQ ID NO: 83) in transgenic high-erucic strains S7211 and S7708 results in more than 3 fold enhancement in erucic (22:1Δ13) acid content in individual lines over the parents. S7211 and S7708 were generated by expressing either genes encoding Crambe hispanica subsp. abyssinica (also called Crambe abyssinica) (SEQ ID NO: 84) and Lunaria annua (SEQ ID NO: 85) fatty acid elongase (FAE), respectively, as disclosed in co-owned application WO2013/158938 in classically mutagenized derivative of a pool of UTEX 1435 and S3150 (selected for high oil production).


In this example S7211 and S7708 strains, transformed with the construct pSZ5119, were generated which express Sacharomyces carlbergenesis MEL1 gene (allowing for their selection and growth on medium containing melibiose) and L. douglasii LPAAT gene targeted at endogenous PmLPAAT1-1 genomic region. Construct pSZ5119 introduced for expression in S7211 and S7708 can be written as LPAAT1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPAAT-CvNR::LPAAT1-1 3′ flank.


The sequence of the transforming DNA is provided in SEQ ID NO: 104. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, EcoRI, SpeI, AflII, SacI, BspQI, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the PLSC-2/LPAAT1-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 promoter driving the expression of the S. carlbergenesis MEL1 gene (encoding an alpha galactosidase enzyme activity required for catabolic conversion of Meliobise to glucose and galactose, thereby permitting the transformed strain to grow on melibiose) is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for MEL1 are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text followed by an endogenous AMT3 promoter of P. moriformis, indicated by boxed italicized text. The Initiator ATG and terminator TGA codons of the LimdLPAAT are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the S3150 PLSC-2/LPAAT1-1 genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.


Construct Used for the Expression of the Limnanthes douglasii Lysophosphatidic Acid Acyltransferase (LimdLPAAT) in Erucic Strains S7211 and S7708—














Nucleotide sequence of transforming DNA contained in plasmid pSZ5119:


(SEQ ID NO: 104)




gctcttct

gcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcat




tgttagcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcga




cggccaagctgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaa




atgaggacattgatgctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatct




caccaccactcgtccaccttgcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggc




ccaaccacgtgggtgtggccgacctggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagta




ccggccgctgctcctcttccccgaggtgggcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacg




cgcctccggcgcctgtctcgcatccattcgcctctcaaccccatctcaccttttctccatcgccagggcaccacctccaac





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactg




gaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacat




gggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaa




gttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccacctgacggcatgtactcctccgcgggcgag




tacacgtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggacta




cctgaagtacgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccg




acgccctgaacaagacgggccgccccatcactactccctgtgcaactggggccaggacctgaccactactggggctccgg




catcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcga




cgagtacgactgcaagtacgccggcaccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgc




gggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgc




acttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatc




tactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccg




acacggacgagtacggccagggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgct




gaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttcttcgactccaacctgggctccaagaagct




gacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccatcctgggccgcaacaa




gaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtccaagaacgacacccgcctgttcg




gccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggcatcgcgttctaccgcctgcg





embedded image





tgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgc




gcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaac




cgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttgattgggctccg




cctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatgga





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





agacccgcacctcctccctgcgcaaccgccgccagctgaagcccgccgtggccgccaccgccgacgacgacaaggacggc




gtgttcatggtgctgctgtcctgcttcaagatcttcgtgtgcttcgccatcgtgctgatcaccgccgtggcctggggcctgatca




tggtgctgctgctgccctggccctacatgcgcatccgcctgggcaacctgtacggccacatcatcggcggcctggtgatctgg




atctacggcatccccatcaagatccagggctccgagcacaccaagaagcgcgccatctacatctccaaccacgcctccccc




atcgacgccttcttcgtgatgtggctggcccccatcggcaccgtgggcgtggccaagaaggaggtgatctggtaccccctgc




tgggccagctgtacaccctggcccaccacatccgcatcgaccgctccaaccccgccgccgccatccagtccatgaaggagg




ccgtgcgcgtgatcaccgagaagaacctgtccctgatcatgttccccgagggcacccgctcccgcgacggccgcctgctgcc




cttcaagaagggcttcgtgcacctggccctgcagtcccacctgcccatcgtgcccatgatcctgaccggcacccacctggcct




ggcgcaagggcaccttccgcgtgcgccccgtgcccatcaccgtgaagtacctgccccccatcaacaccgacgactggaccg




tggacaagatcgacgactacgtgaagatgatccacgacgtgtacgtgcgcaacctgcccgcctcccagaagcccctgggc





embedded image





tgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgc




gcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaac




cgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttgattgggctccg




cctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatgga



aagcttaattaagagctccgtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaagggg



atgcgccgtcaagatcaggagctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccac




ccttttccccaggggaccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccaccc




ccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttct




cgcgcaagcgtcccccaattcgttacaccacatccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccc




caatgaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgggaaccgtca




aagtttgcttgcgggtgggcggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggacacca




gtcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgt




ttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacc




cccgtcgtcgacca

gaagagc











Constructs Used for the Expression of the LimdLPAAT and LimaLPAAT Genes from Higher Plants in S7211 and S7708.


In addition to the L. douglasii LPAAT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5119), L. douglasii LPAAT targeted at PLSC-2/LPAAT1-2 locus (pSZ5120), L. alba LPAAT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5343) and L. alba LPAAT targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5348) have been constructed for expression in S7211 and S7708. These constructs can be described as:


pSZ5120: PLSC-2/LPAAT1-2 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPAAT-CvNR::PLSC-2/LPAAT1-2 3′ flank


pSZ5343: PLSC-2/LPAAT1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimaLPAAT-CvNR::PLSC-2/LPAAT1-1 3′ flank


pSZ5348: PLSC-2/LPAAT1-2 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimaLPAAT-CvNR::PLSC-2/LPAAT1-2 3′ flank


All these constructs have the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5119, differing only in either the genomic region used for construct targeting and/or the respective LPAAT gene. Relevant restriction sites in these constructs are also the same as in pSZ5119. The sequences immediately below indicate the sequence of PLSC-2/LPAAT1-2 5′ flank, PLSC-2/LPAAT1-2 3′ flank, LimaLPAAT respectively. Relevant restriction sites as bold text are shown 5′-3′ respectively.














Sequence of PLSC-2/LPAAT1-2 5′ flank in pSZ5120 and pSZ5348


PLSC-2/LPAAT1-2 5′ flank:


(SEQ ID NO: 105)




gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcat







tgttagcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcga







cggccaagctgccctttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcga







aggggggcaggcgtaggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcaga







gccagcctggtcatgggatcacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgc







ctctacgtgaaccgcgaccgctcggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacga







ggccgaggggaggaccccgcccgagtaccgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgct







tgaaactgtgggcacgcgtgccccgacgcgcctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctccttt







cctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgccc







gtccagcccgt

ggtacc







Sequence of PLSC-2/LPAAT1-2 3′ flank in pSZ5120 and pSZ5348


PLSC-2/LPAAT1-2 3′ flank:


(SEQ ID NO: 106)




gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgcgctgtca







agttttggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttc







cccagggaaccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgcc







acaaagtgaccgtgatgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtgtttctcgcg







cacgcgtcccccgatgcgctgcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaat







gaggaggaaaaggccgaccccaagctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtt







tgcttgcgggtgggcggggcggctctagcgaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgt







cacccggcgagcaattccgccccctctgtcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgttt







gaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccc







cgtcgtcgacca

gaagagc







Nucleotide sequence of L. alba LPAAT (LimaLPAAT) contained in pSZ5343 and


pSZ5348 - LimaLPAAT:


(SEQ ID NO: 107)




embedded image











To determine their impact on fatty acid profiles, all the constructs described above were transformed independently into either S7211 or S7708. Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0. Strains S7211 and S7708 express a FAE, from C. abyssinica or L. annua respectively, under the control of pH regulated, AMT03 (Ammonium transporter 03) promoter. Thus both parental (S7211 and S7708) and the resulting LPAAT transformed strains require growth at pH 7.0 to allow for maximal fatty acid elongase (FAE) gene expression. The resulting profiles from a set of representative clones arising from transformations with pSZ5119 (D3979), pSZ5120 (D3980), pSZ5343 (D4204), and pSZ5348 (D4209) into S7211 or S7708 are shown in Tables 57-62.


All the transgenic S7211 or S7708 strains expressing LPAAT gene from either L. douglasii or L. alba show 2 fold or more enhanced accumulation of C22:1 fatty acid (see tables 57-62). The enhancement in erucic (C22:1Δ13) acid levels is 4.2 fold in S7708; T1127; D3979-15 over the parent S7708 and 3.7 fold in S7211; T1181; D4204-5; pH7 over the parent S7211. These results clearly demonstrate using LPAAT genes to alter the VLCFA content in transgenic algal strains.









TABLE 57







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5119


(LimdLPAAT at PLSC-2/LPAAT1-1 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1120;
37.01
14.5
1.63
6.95
4.32


D3979-24; pH 7


S7211; T1120;
38.99
13.63
1.54
6.31
3.96


D3979-31; pH 7


S7211; T1120;
44.87
10.84
1.05
4.98
1.99


D3979-2; pH 7


S7211; T1120;
46.10
10.43
1.01
4.69
1.97


D3979-19; pH 7


S7211; T1120;
43.80
10.66
1.05
4.73
1.97


D3979-29; pH 7


S7211A; pH 7
46.80
9.89
0.84
4.40
1.60


S7211B; pH 7
46.80
9.89
0.84
4.37
1.65


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 58







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5120


(LimdLPAAT at PLSC-2/LPAAT1-1 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
C20:1 Sum
C22:1















S7211; T1120;
36.92
14.01
1.93
6.41
4.36


D3980-45; pH 7


S7211; T1120;
35.91
15.31
2.14
6.13
3.55


D3980-48; pH 7


S7211; T1120;
34.38
17.95
2.93
5.44
2.50


D3980-27; pH 7


S7211; T1120;
41.52
12.09
1.12
5.03
2.26


D3980-46; pH 7


S7211; T1120;
43.64
11.25
1.09
5.39
2.25


D3980-14; pH 7


S7211A; pH 7
46.80
9.89
0.84
4.4
1.6


S7211B; pH 7
46.80
9.89
0.84
4.37
1.65


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 59







Unsaturated fatty acid profile in S3150, S7708 and representative


derivative transgenic lines transformed with pSZ5119


(LimdLPAAT at PLSC-2/LPAAT1-2 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7708; T1127;
33.34
14.98
1.95
4.09
6.50


D3979-15; pH 7


S7708; T1127;
43.31
11.28
1.05
4.72
3.89


D3979-32; pH 7


S7708; T1127;
42.76
11.35
1.05
4.65
3.81


D3979-42; pH 7


S7708; T1127;
46.67
10.22
1.07
4.18
3.19


D3979-3; pH 7


S7708; T1127;
46.38
9.96
0.90
4.14
3.00


D3979-40; pH 7


S7708A; pH 7
49.61
8.47
0.69
2.91
1.53


S7708B; pH 7
50.14
8.37
0.70
2.97
1.52


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 60







Unsaturated fatty acid profile in S3150, S7708 and representative


derivative transgenic lines transformed with pSZ5120


(LimdLPAAT at PLSC-2/LPAAT1-2 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7708; T1127;
44.49
12.25
1.41
5.14
3.80


D3980-24; pH 7


S7708; T1127;
46.89
9.97
0.93
4.40
2.66


D3980-42; pH 7


S7708; T1127;
47.77
10.08
0.91
4.21
2.44


D3980-43; pH 7


S7708; T1127;
50.36
8.80
0.68
3.61
2.13


D3980-14; pH 7


S7708; T1127;
47.55
10.49
0.64
3.64
2.13


D3980-17; pH 7


S7708A; pH 7
49.61
8.47
0.69
2.91
1.53


S7708B; pH 7
50.14
8.37
0.7
2.97
1.52


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 61







Unsaturated fatty acid profile in S3150, S7708 and representative


derivative transgenic lines transformed with pSZ5343


(LimaLPAAT at PLSC-2/LPAAT1-1 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1181;
37.27
13.62
1.60
6.64
5.12


D4204-5; pH 7


S7211; T1181;
39.39
12.58
1.78
5.86
3.12


D4204-16; pH 7


S7211; T1181;
42.52
11.53
1.31
4.82
2.01


D4204-6; pH 7


S7211; T1181;
45.97
10.56
0.99
4.73
1.92


D4204-2; pH 7


S7211; T1181;
45.76
10.52
1.00
4.63
1.88


D4204-11; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
57.99
6.62
0.56
0.19
0


S3150; pH 5
57.7
7.08
0.54
0.11
0
















TABLE 62







Unsaturated fatty acid profile in S3150, S7708 and representative


derivative transgenic lines transformed with pSZ5348


(LimaLPAAT at PLSC-2/LPAAT1-2 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1181;
40.46
13.18
1.43
6.59
3.94


D4209-24; pH 7


S7211; T1181;
41.79
12.71
1.29
6.10
3.50


D4209-18; pH 7


S7211; T1181;
43.32
11.65
1.45
5.22
2.79


D4209-3; pH 7


S7211; T1181;
47.41
9.68
1.01
6.01
2.36


D4209-27; pH 7


S7211; T1181;
43.67
12.77
0.99
5.05
2.24


D4209-5; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
57.99
6.62
0.56
0.19
0


S3150; pH 5
57.70
7.08
0.54
0.11
0









Example 11
Expression of LPCAT in a Microalga

Here we demonstrate the feasibility of using higher plant Lysophosphatidylcholine acyltransferase (LPCAT) genes to alter the content and composition of oils in transgenic algal strains for producing oils rich in linoleic acid. We demonstrate that expression of heterologous LPCAT enzymes in P. moriformis strain S7485 results in more than 3 fold enhancement in linoleic (C18:2) acid in individual lines over the parents.


Wildtype Prototheca strains when cultured under low-nitrogen lipid production conditions result in extracted cell oil with around 5-7% C18:2 levels and point towards a functional endogenous LPCAT and downstream DAG-CPT and/or PDCT enzyme in our host. When higher plant LPCATs or DAG-CPTs are used as baits, transcripts for both genes were found the P. moriformis transcriptome. However no hits for a corresponding PDCT like gene were found.


We have identified both alleles of LPCAT in Prototheca moriformis (PmLPCAT1). The overall transcription of both alleles is very low. Transcript levels for both start out at 50-60 transcripts per million and then slowly increase over the course of lipid production. PmLPCAT1-1 reaches around 210 transcripts per million while PmLPCAT1-2 increases to around 150 transcripts per million


Two LPCAT genes from A. thaliana encoding (AtLPCAT1 NP_172724.2 [SEQ ID NO: 86], AtLPCAT2 NP_176493.1[SEQ ID NO: 87]) available in the public databases were used to identify corresponding LPCAT genes from our internally assembled transcriptomes of B. rapa, B. juncea and L. douglasii. 5 full-length sequences were identified and named as BrLPCAT [SEQ ID NO: 99], BjLPCAT1 [SEQ ID NO: 108], BjLPCAT2 [SEQ ID NO: 109], LimdLPCAT1 [SEQ ID NO: 101], and LimdLPCAT2 [SEQ ID NO: 102]. The codon optimized sequences of these enzymes except BjLPCAT1, along with the AtLPCAT genes, were expressed in P. moriformis strain S7485. S7485 is a strain made according to the methods disclosed in co-owned application No. 62/141,167 filed on 31 Mar. 2015. Specifically, S7485 is a cerulenin resistant isolate of Strain K with low C16:0 titer and high C18:1.


Construct Used for the Expression of the B. juncea Lysophosphatidylcholine Acyltransferase-1 (BjLPCAT1) in S7485 [pSZ5298]:


Strain S7485 was transformed with the construct pSZ5298, to express the Sacharomyces carlbergenesis MEL1 gene (allowing for their selection and growth on medium containing melibiose) and B. rapa LPCAT gene targeted at endogenous PmLPAAT1-1 genomic region. Construct pSZ5298 introduced for expression in S7485 can be written as PLSC-2/LPAAT1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BjLPCAT1-CvNR:: PLSC-2/LPAAT1-1 3′ flank.


The sequence of the transforming DNA is provided below as SEQ ID NO: 110. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, EcoRI, SpeI, AflII, SacI, BspQI, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the PLSC-2/LPAAT1-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 promoter driving the expression of the S. carlbergenesis MEL1 gene (encoding an alpha galactosidase enzyme activity required for catabolic conversion of Melibiose to glucose and galactose, thereby permitting the transformed strain to grow on melibiose) is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for MEL1 are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text followed by an endogenous AMTS promoter of P. moriformis, indicated by boxed italicized text. The Initiator ATG and terminator TGA codons of the BjLPCAT1 are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the S3150 PLSC-2/LPAAT1-1 genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ5298:



(SEQ ID NO: 110)





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta








gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc







tgccattatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat







gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt







gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc







tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg







gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct







caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








tgacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctggga







caactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaagga







catgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaag







ttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctgcggggcgagtacac







gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt







acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac







aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg







gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt







acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac







gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttaccatgtgggccatggtgaa







gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca







accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc







cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg







accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc







gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc







tacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacg








embedded image








gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa







acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc







cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg







cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








atggccgcctccatcggcgtgtccgtggccgtgctgcgcttcctgctgtgcttcgtggccaccatccccgtgtccttcgcctggcgcat







cgtgccctcccgcctgggcaagcacatctacgccgccgcctccggcgtgttcctgtcctacctgtccttcggcttctcctccaacctgc







acttcctggtgcccatgaccatcggctacgcctccatggccatgtaccgccccaagtgcggcatcatcaccttcttcctgggcttcgc







ctacctgatcggctgccacgtgttctacatgtccggcgacgcctggaaggagggcggcatcgactccaccggcgccctgatggtg







ctgaccctgaaggtgatctcctgcgccgtgaactacaacgacggcatgctgaaggaggagggcctgcgcgaggcccagaaga







agaaccgcctgatccagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctcccacttcgccggccccgtgtacg







agatgaaggactacctgcagtggaccgagggcaagggcatctgggactcctccgagaagcgcaagcagccctccccctacgg







cgccaccctgcgcgccatcttccaggccggcatctgcatggccctgtacctgtacctggtgccccagttccccctgacccgcttcac







cgagcccgtgtaccaggagtggggcttcctgaagaagttcggctaccagtacatggccggccagaccgcccgctggaagtacta







cttcatctggtccatctccgaggcctccatcatcatctccggcctgggcttctccggctggaccgacgacgacgcctcccccaagcc







caagtgggaccgcgccaagaacgtggacatcctgggcgtggagctggccaagtccgccgtgcagatccccctggtgtggaaca







tccaggtgtccacctggctgcgccactacgtgtacgagcgcctggtgaagtccggcaagaaggccggcttcttccagctgctggcc







acccagaccgtgtccgccgtgtggcacggcctgtaccccggctacatgatgttcttcgtgcagtccgccctgatgatcgccggctcc







cgcgtgatctaccgctggcagcaggccatctcccccaagctggccatgctgcgcaacatcatggtgttcatcaacttcctgtacacc







gtgctggtgctgaactactccgccgtgggcttcatggtgctgtccctgcacgagaccctgaccgcctacggctccgtgtactacatc







ggcaccatcatccccgtgggcctgatcctgctgtcctacgtggtgcccgccaagccctcccgccccaagccccgcaaggaggag








embedded image








tgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgct







atttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcag







cgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcac







tgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccgtcctccactaccacagggta







tggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagctaaaaatggtgccagcgagg







atccagcgctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtggcccacgtgggagacgattccggcca







agtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattc







tggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccacatccctcacaccctcgcccctgacactc







gcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggt







gcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcattggccctcaccgaggcagcac







atcggacaccagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacg







gcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaa







cccccgtcgtcgacca

gaagagc








Constructs Used for the Expression of BrLPCAT, LimdLPCAT1, LimdLPCAT2, AtLPCAT1 and AtLPCAT2 Genes from Higher Plants in S7485.


In addition to the B. juncea LPCAT1 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5298), B. rapa LPCAT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5299), L. douglasii LPCAT1 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5300), L. douglasii LPCAT2 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5301), A. thaliana LPCAT1 targeted at PLSC-2/LPAAT1-2 locus (pSZ5307), A. thaliana LPCAT2 targeted at PLSC-2/LPAAT1-2 locus (pSZ5308), B. rapa LPCAT targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5309) and L. douglasii LPCAT2 targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5310) have been constructed for expression in S7211. These constructs can be described as:

    • pSZ5299: PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BrLPCAT-CvNR::PLSC-2/LPAAT1-1
    • pSZ5300: PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPCAT1-CvNR::PLSC-2/LPAAT1-1
    • pSZ5301: PLSC-2/LPAAT11::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPCAT2-CvNR::PLSC-2/LPAAT1-1
    • pSZ5307: PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtLPCAT1-CvNR::PLSC-2/LPAAT1-2
    • pSZ5308: PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtLPCAT2-CvNR::PLSC-2/LPAAT1-2
    • pSZ5309: PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BrLPCAT-CvNR::PLSC-2/LPAAT1-2
    • pSZ5310: PLSC-2/LPAAT1 2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPCAT2-CvNR::PLSC-2/LPAAT1-2


All these constructs have the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5298, differing only in either the genomic region used for construct targeting and/or the respective LPCAT gene. Relevant restriction sites in these constructs are also the same as in pSZ5298. FIGS. 5-11 indicate the sequence of PLSC-2/LPAAT1-2 5′ flank, PLSC-2/LPAAT1-2 3′ flank, BrLPCAT, LimdLPCAT1, LimdLPCAT2, AtLPCAT1 and AtLPCAT2 respectively. Relevant restriction sites as bold text are shown 5′-3′ respectively.














Sequence of PLSC-2/LPAAT1-2 5′ flank in pSZ5307, pSZ5308, pSZ5309, and


pSZ5310. PLS C-2/LPAAT1 -2 5′ flank:


(SEQ ID NO: 111)




gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta







gcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcgacggccaagc







tgccctttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggggggcaggcg







taggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcagagccagcctggtcatgggat







cacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgcctctacgtgaaccgcgaccgctc







ggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggaggaccccgcccgagt







accgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc







ctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcctttcctccatcgccagggcaccacctccaacggcgacta







cctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

ggtacc







Sequence of PLSC-2/LPAAT1-2 3′ flank in pSZ5307, pSZ5308, pSZ5309, and


pSZ5310. PLS C-2/LPAAT1 -2 3′ flank:


(SEQ ID NO: 112)




gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgcgctgtcaagttt







tggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttccccagggaa







ccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtg







atgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtglltctcgcgcacgcgtcccccgatgcgct







gcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaa







gctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcgggtgggcggggcggctctagc







gaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgtcacccggcgagcaattccgccccctctgtcttctc







gcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaa







gtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







Nucleotide sequence of B. rapa LPCAT (BrLPCAT) contained in pSZ5299 and


pSZ5309. BrLPCAT:


(SEQ ID NO: 112)




embedded image




Nucleotide sequence of L. douglasii LPCATI (LimdLPCAT1) contained in


pSZ5300. LimdLPCAT1:


(SEQ ID NO: 113)




embedded image




Nucleotide sequence of L. douglasii LPCAT2 (LimdLPCAT2) contained in


pSZ5301 and pSZ5310. LimdLPCAT2:


(SEQ ID NO: 114)




embedded image




Nucleotide sequence of A. thaliana LPCAT1 (AtLPCAT1) contained in


pSZ5307. AtLPCAT1:


(SEQ ID NO: 115)




embedded image




Nucleotide sequence of A. thaliana LPCAT 2 (AtLPCAT2) contained in


pSZ5308. AtLPCAT2:


(SEQ ID NO: 116)




embedded image











To determine their impact on fatty acid profiles, all the constructs described above were transformed independently into S7211. Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0. S7211 expresses a FAE, from C. abyssinica under the control of pH regulated, AMT03 (Ammonium transporter 03) promoter. Thus both parental (S7211) and the resulting LPCAT transformed strains require growth at pH 7.0 to allow for maximal fatty acid elongase (FAE) gene expression. The resulting profiles from a set of representative clones arising from transformations with pSZ5298 (D4159), pSZ5299 (D4160), pSZ5300 (D4161), pSZ5301 (D4162), pSZ5307 (D4168), pSZ5308 (D4169), pSZ5309 (D4170) and pSZ5310 (D4171) are shown in tables 63-70 respectively.


Except for L. douglasii LPCAT2, all the tested LPCAT enzymes resulted in 3 fold increase in C18:2 levels over the parent S7485. In the case of lines expressing LimdLPCAT2 increase in C18:2, while significant, was only 2 fold over the parent. The increase in C18:2 in S7211; T1172; D4157-14; pH7, expressing AtLPCAT1 at PLSC-2/LPAAT1-1 locus, was 2.54 fold (over parent S7211). These results strongly suggest that heterologous LPCAT gene expression in our algal host enhances the conversion of C18:1-CoA into C18:1-PC. The PC associated C18:1 is subsequently acted upon by downstream enzymes like FAD2 and converted into C18:2. As discussed above similar results were obtained when LPCAT genes were transformed into erucic strain S7211 (expressing CrhFAE). In S7211, gains in C18:2 levels were also associated with increases in erucic acid content. The combined results from both experiments suggest that most likely the CrhFAE in S7211 uses C18:1-PC rather than C18:1-CoA as a substrate for elongation. In this scenario PmFAD2 and CrhFAE in S7211 would compete for the same substrate resulting in elevated C18:2 as well as VLCFA like C20:1 and C22:1. If our hypothesis is correct then currently it would seem that PmFAD2-1 competes better for the substrate than CrhFAE. One of the approaches currently being pursued to channel more substrate for elongation is to reduce the PmFAD2 activity using RNAi Technology.


This example describes a significant increase in the C18:2 and C22:1 levels in an engineered microalgae.


Identification of LPCAT enzymes to increase conversion of C18:1 to C18:1-PC gives us a much better control over C18:1 phospholipid pool which can then be either directed towards making more polyunsaturated fatty acids or VLCFA by modulating the PmFAD2-1 activity.









TABLE 63







Unsaturated fatty acid profile in S7485 and representative derivative


transgenic lines transformed with pSZ5298 (BjLPCAT2) at PLSC-2/


LPAAT1-1 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3a
















S7485 ctrl; pH 5
.15
7.16
.72
9.63
.91
.56


S7485 ctrl; pH 5
.18
7.24
.74
9.45
.94
.57


S7485; T1208; D4159-1; pH 5
.27
7.48
.87
0.42
3.61
.60


S7485; T1208; D4159-41;
.22
8.43
.41
0.60
3.04
.57


pH 5


S7485; T1208; D4159-24;
.43
0.10
.82
8.98
2.82
.81


pH 5


S7485; T1208; D4159-23;
.73
2.64
.26
7.35
2.41
.94


pH 5


S7485; T1208; D4159-18;
.08
7.47
.66
2.42
2.16
.53


pH 5
















TABLE 64







Unsaturated fatty acid profile in S7485 and representative derivative


transgenic lines transformed with pSZ5299 (BrLPCAT) at PLSC-2/


LPAAT1-1 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3a
















S7485 ctrl; pH 5
.15
7.16
.72
9.63
.91
.56


S7485 ctrl; pH 5
.18
7.24
.74
9.45
.94
.57


S7485; T1208; D4160-44;
.50
0.23
.51
0.06
2.60
.54


pH 5


S7485; T1208; D4160-5; pH 5
.27
8.69
.78
1.45
2.25
.70


S7485; T1208; D4160-35;
.18
7.45
.75
2.79
1.66
.53


pH 5


S7485; T1208; D4160-30;
.20
7.66
.72
2.65
1.60
.54


pH 5


S7485; T1208; D4160-3; pH 5
.12
7.26
.77
3.08
1.59
.55
















TABLE 65







Unsaturated fatty acid profile in S7485 and representative derivative


transgenic lines transformed with pSZ5300 (LimdLPCAT1) at PLSC-2/


LPAAT1-1 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3a
















S7485 ctrl; pH 5
.15
7.14
.72
9.62
.94
.58


S7485 ctrl; pH 5
.17
7.22
.73
9.43
.96
.60


S7485; T1208; D4161-48;
.14
7.07
.74
0.85
3.87
.56


pH 5


S7485; T1208; D4161-25;
.45
9.98
.96
8.09
3.28
.96


pH 5


S7485; T1208; D4161-10;
.07
6.91
.83
2.50
2.45
.53


pH 5


S7485; T1208; D4161-18;
.04
6.49
.79
3.20
2.21
.51


pH 5


S7485; T1208; D4161-47;
.31
8.16
.77
2.42
1.04
.60


pH 5
















TABLE 66







Unsaturated fatty acid profile in S7485 and representative derivative


transgenic lines transformed with pSZ5301 (LimdLPCAT2) at PLSC-2/


LPAAT1-1 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3a
















S7485 ctrl; pH 5
.15
7.14
.72
9.62
.94
.58


S7485 ctrl; pH 5
.17
7.22
.73
9.43
.96
.60


S7485; T1208; D4162-36;
.21
6.64
.76
6.44
.55
.59


pH 5


S7485; T1208; D4162-47;
.38
3.05
.18
1.20
.88
.43


pH 5


S7485; T1208; D4162-38;
.51
0.48
.53
4.94
.34
.59


pH 5


S7485; T1208; D4162-21;
.09
6.70
.75
7.98
.19
.57


pH 5


S7485; T1208; D4162-5; pH 5
.03
5.68
.81
9.08
.16
.48
















TABLE 67







Unsaturated fatty acid profile in S7485 and representative derivative


transgenic lines transformed with pSZ5307 (AtLPCAT1) at PLSC-2/


LPAAT1-2 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3 a
















S7485 ctrl; pH 5
.15
7.14
.72
9.62
.94
.58


S7485 ctrl; pH 5
.17
7.22
.73
9.43
.96
.60


S7485; T1208; D4168-43;
.19
4.43
.77
3.47
3.88
.52


pH 5


S7485; T1208; D4168-18;
.44
7.39
.18
1.73
2.93
.65


pH 5


S7485; T1208; D4168-25;
.19
7.60
.17
1.28
2.74
.89


pH 5


S7485; T1208; D4168-16;
.14
3.48
.00
4.53
2.64
.92


pH 5


S7485; T1208; D4168-23;
.14
7.50
.62
2.58
1.89
.55


pH 5
















TABLE 68







Unsaturated fatty acid profile in S7485 and representative derivative


transgenic lines transformed with pSZ5308 (AtLPCAT2) at PLSC-2/


LPAAT1-2 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3a
















S7485 ctrl; pH 5
.15
7.14
.72
9.62
.94
.58


S7485 ctrl; pH 5
.17
7.22
.73
9.43
.96
.60


S7485; T1208; D4169-26;
.47
9.39
.33
8.33
5.31
.51


pH 5


S7485; T1208; D4169-41;
.24
8.20
.82
9.81
4.20
.64


pH 5


S7485; T1208; D4169-19;
.28
9.52
.98
9.26
2.89
.86


pH 5


S7485; T1208; D4169-38;
.23
7.87
.75
1.25
2.66
.55


pH 5


S7485; T1208; D4169-37;
.19
7.52
.79
1.59
2.62
.56


pH 5
















TABLE 69







Unsaturated fatty acid profile in S7485 and representative derivative


transgenic lines transformed with pSZ5309 (BrLPCAT) at PLSC-2/


LPAAT1-2 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3 a
















S7485; pH 5
.15
7.16
.72
9.63
.91
.56


S7485; pH 5
.18
7.24
.74
9.45
.94
.57


S7485; T1208; D4170-43;
.55
1.35
.19
6.95
4.78
.59


pH 5


S7485; T1208; D4170-46;
.14
7.43
.76
1.94
2.52
.58


pH 5


S7485; T1208; D4170-40;
.16
7.87
.79
1.54
2.42
.56


pH 5


S7485; T1208; D4170-42;
.07
8.06
.74
1.69
2.30
.54


pH 5


S7485; T1208; D4170-4;
.13
7.53
.65
2.27
2.24
.54


pH 5
















TABLE 70







Unsaturated fatty acid profile in S7485 and representative derivative


transgenic lines transformed with pSZ5309 (LimLPCAT2) at PLSC-2/


LPAAT1-2 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3 a
















S7485 ctrl; pH 5
.15
7.16
.72
9.63
.91
.56


S7485 ctrl; pH 5
.18
7.24
.74
9.45
.94
.57


S7485; T1208; D4171-15;
.99
4.46
.81
8.50
.16
.48


pH 5


S7485; T1208; D4171-30;
.14
5.91
.81
7.62
.30
.55


pH 5


S7485; T1208; D4171-34;
.17
6.77
.94
8.09
.81
.55


pH 5


S7485; T1208; D4171-43;
.01
5.75
.88
9.47
.78
.51


pH 5


S7485; T1208; D4171-13;
.04
6.11
.81
9.24
.66
.49


pH 5









Example 12
Expression of LPCAT in a High-Erucic Transgenic Microalga

In this example we demonstrate the use of higher plant Lysophosphatidylcholine acyltransferase (LPCAT) genes to alter the content and composition of oils in transgenic algal strains for producing oils rich in linoleic and/or very long chain fatty acids (VLCFA).


The LPCAT genes from Example 11 herein were expressed in S7211. S7211was. Our results show that expression of heterologous LPCAT enzymes in S7211 results in more than 3 fold enhancement in linoleic (C18:2) and erucic (C22:1) acid content in individual lines over the parents.


Construct Used for the Expression of the A. thaliana Lysophosphatidylcholine Acyltransferase AtLPCAT) in Strain S7211 [pSZ5296]:


In this example, S7211, transformed with the construct pSZ5296, were generated which express Sacharomyces carlbergenesis MEL1 gene (allowing for their selection and growth on medium containing melibiose) and A. thaliana LPCAT gene targeted at endogenous PmLPAAT1-1 genomic region. Construct can be written as PLSC-2/LPAAT1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtLPCAT1-CvNR::PLSC-2/LPAAT1-1 3′ flank.


The sequence of the transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, EcoRI, SpeI, AflII, SacI, BspQI, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the PLSC-2/LPAAT1-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 promoter driving the expression of the S. carlbergenesis MEL1 gene is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for MEL1 are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text followed by PmSAD2-2v2. promoter of P. moriformis, indicated by boxed italicized text. The Initiator ATG and terminator TGA codons of the AtLPCAT1 are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the P. moriformis PLSC-2/LPAAT1-1 genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ5296:



(SEQ ID NO: 117)





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta








gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc







tgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat







gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt







gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc







tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg







gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct







caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccacctg








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








tgacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctggga







caactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaagga







catgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaag







ttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacac







gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt







acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac







aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg







gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt







acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac







gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa







gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca







accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc







cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg







accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc







gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc







tacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacg








embedded image








gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa







acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc







cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg







cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








tccatcggcgtgtccgtggccgtgctgcgcttcctgctgtgcttcgtggccaccatccccgtgtccttcgcctgccgcatcgtgccctcc







cgcctgggcaagcacctgtacgccgccgcctccggcgccttcctgtcctacctgtccttcggcttctcctccaacctgcacttcctggt







gcccatgaccatcggctacgcctccatggccatctaccgccccaagtgcggcatcatcaccttcttcctgggcttcgcctacctgatc







ggctgccacgtgttctacatgtccggcgacgcctggaaggagggcggcatcgactccaccggcgccctgatggtgctgaccctga







aggtgatctcctgctccatgaactacaacgacggcatgctgaaggaggagggcctgcgcgaggcccagaagaagaaccgcct







gatccagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctcccacttcgccggccccgtgtacgagatgaagga







ctacctggagtggaccgagggcaagggcatctgggacaccaccgagaagcgcaagaagccctccccctacggcgccaccatc







cgcgccatcctgcaggccgccatctgcatggccctgtacctgtacctggtgccccagtaccccctgacccgcttcaccgagcccgt







gtaccaggagtggggcttcctgcgcaagttctcctaccagtacatggccggcttcaccgcccgctggaagtactacttcatctggtc







catctccgaggcctccatcatcatctccggcctgggcttctccggctggaccgacgacgcctcccccaagcccaagtgggaccgc







gccaagaacgtggacatcctgggcgtggagctggccaagtccgccgtgcagatccccctggtgtggaacatccaggtgtccacc







tggctgcgccactacgtgtacgagcgcctggtgcagaacggcaagaaggccggcttcttccagctgctggccacccagaccgtgt







ccgccgtgtggcacggcctgtaccccggctacatgatgttcttcgtgcagtccgccctgatgatcgccggctcccgcgtgatctacc







gctggcagcaggccatctcccccaagatggccatgctgcgcaacatcatggtgttcatcaacttcctgtacaccgtgctggtgctga







actactccgccgtgggcttcatggtgctgtccctgcacgagaccctgaccgcctacggctccgtgtactacatcggcaccatcatcc








embedded image








gcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatc







cctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccac







ccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctc







ctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgc







acgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccgtcctccactaccacagggtatggtcgtgtgggg







tcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagctaaaaatggtgccagcgaggatccagcgctctc







actcttgctgccatcgctcccaccctttcccccaggggaccctgtggcccacgtgggagacgattccggccaagtggcacatctt







cctgatgctctgccacccccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattctggatatgacctc







tgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccacatccctcacacctcgcccctgacactcgcagttgcccgt







gtacgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgggaacc







gtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggacaccag







tcgccacccggctttgcatcttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgttttgagg







acaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcga







cca

gaagagc








Constructs Used for the Expression of the AtLPCAT1 and AtLPCAT2, BrLPCAT, BjLPCAT1, BjLPCAT2, LimdLPCAT1 and LimdLPCAT2 Genes from Higher Plants in S7211:


In addition to the A. thaliana LPCAT1 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5296), A. thaliana LPCAT1 targeted at PLSC-2/LPAAT1-2 locus (pSZ5307), A. thaliana LPCAT2 targeted at PLSC-2/LPAAT1-1 locus (pSZ5297), A. thaliana LPCAT2 targeted at PLSC-2/LPAAT1-2 locus (pSZ5308), B. rapa LPCAT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5299), B. rapa LPCAT targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5309), B. juncea LPCAT1 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5346), B. juncea LPCAT1 targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5351), B. juncea LPCAT2 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5298), B. juncea LPCAT2 targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5352), L. douglasii LPCAT1 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5300), L. douglasii LPCAT1 targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5353), L. douglasii LPCAT2 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5301) and L. douglasii LPCAT2 targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5310) have been constructed for expression in S7211. These constructs can be described as:


pSZ5307—PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtLPCAT1-CvNR::PLSC-2/LPAAT1-2


pSZ5297—PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtLPCAT2-CvNR::PLSC-2/LPAAT1-1


pSZ5308—PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtLPCAT2-CvNR::PLSC-2/LPAAT1-2


pSZ5299—PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BrLPCAT-CvNR::PLSC-2/LPAAT1-1


pSZ5309—PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BrLPCAT-CvNR::PLSC-2/LPAAT1-2


pSZ5346—PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BjLPCAT1-CvNR::PLSC-2/LPAAT1-1


pSZ5351—PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BjLPCAT1-CvNR::PLSC-2/LPAAT1-2


pSZ5298—PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BjLPCAT2-CvNR::PLSC-2/LPAAT1-1


pSZ5352—PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BjLPCAT2-CvNR::PLSC-2/LPAAT1-2


pSZ5300—PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPCAT1-CvNR::PLSC-2/LPAAT1-1


pSZ5353—PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPCAT1-CvNR::PLSC-2/LPAAT1-2


pSZ5301—PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPCAT2-CvNR::PLSC-2/LPAAT1-1


pSZ5310—PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-LimdLPCAT2-CvNR::PLSC-2/LPAAT1-2


All these constructs have the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5296, differing only in either the genomic region used for construct targeting and/or the respective LPCAT gene. Relevant restriction sites in these constructs are also the same as in pSZ5296. The sequence of PLSC-2/LPAAT1-2 5′ flank, PLSC-2/LPAAT1-2 3′ flank and AtLPCAT1, AtLPCAT2, BrLPCAT, BjLPCAT1, BjLPCAT2, LimdLPCAT1 and LimdLPCAT2 genes respectively. Relevant restriction sites as bold text are shown 5′-3′ respectively are shown below.














Sequence of PLSC-2/LPAAT1-2 5′ flank in pSZ5307, pSZ5308, pSZ5309,


pSZ5310, pSZ5351, pSZ5352 and pSZ5353. PLSC-2/LPAAT1-2 5′ flank:


(SEQ ID NO: 118)




g
ctc
tt
c

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta







gcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcgacggccaagc







tgccattatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggggggcaggcg







taggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcagagccagcctggtcatgggat







cacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgcctctacgtgaaccgcgaccgctc







ggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggaggaccccgcccgagt







accgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc







ctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcctttcctccatcgccagggcaccacctccaacggcgacta







cctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

gg
tacc







Sequence of PLSC-2/LPAAT1-2 3′ flank in pSZ5307, pSZ5308, pSZ5309,


pSZ5310, pSZ5351, pSZ5352 and pSZ5353. PLSC-2/LPAAT1-2 3′ flank:


(SEQ ID NO: 119)




gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgcgctgtcaagttt







tggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccaccatttccccagggaa







ccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtg







atgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtglltctcgcgcacgcgtcccccgatgcgct







gcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaa







gctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcgggtgggcggggcggctctagc







gaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgtcacccggcgagcaattccgccccctctgtcttctc







gcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaa







gtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







Nucleotide sequence of A. thaliana LPCAT 2 (AtLPCAT2) contained in


pSZ5297 and pSZ5308. AtLPCAT2:


(SEQ ID NO: 120)




embedded image




Nucleotide sequence of B. rapa LPCAT (BrLPCAT) contained in pSZ5299 and


pSZ5309. BrLPCAT:


(SEQ ID NO: 121)




embedded image




Nucleotide sequence of B. juncea LPCAT1 (BjLPCAT1) contained in pSZ5346


and pSZ5351. BjLPCAT1:


(SEQ ID NO: 122)




embedded image




Nucleotide sequence of B. juncea LPCAT2 (BjLPCAT2) contained in pSZ5298


and pSZ5352. BjLPCAT2:


(SEQ ID NO: 123)




embedded image




Nucleotide sequence of L. douglasii LPCAT1 (LimdLPCAT1) contained in


pSZ5300 and pSZ5353. LimdLPCAT1:


(SEQ ID NO: 124)




embedded image




Nucleotide sequence of L. douglasii LPCAT2 (LimdLPCAT2) contained in


pSZ5301 and pSZ5310. LimdLPCAT2:


(SEQ ID NO: 125)




embedded image











To determine their impact on fatty acid profiles, all the constructs described above were transformed independently into S7211. Primary transformants were clonally purified and grown under at pH7.0. S7211 expresses a FAE, from C. abyssinica under the control of pH regulated, AMT03 (Ammonium transporter 03) promoter. Thus both parental (S7211) and the resulting LPCAT transformed strains require growth at pH 7.0 to allow for maximal fatty acid elongase (FAE) gene expression. The resulting profiles from a set of representative clones arising from transformations with pSZ5296 (D4157), pSZ5307 (D4168), pSZ5297 (D4158), pSZ5308 (D4169), pSZ5299 (D4160), pSZ5309 (D4170), pSZ5346 (D4207), pSZ5351 (D4212), pSZ5298 (D4159), pSZ5352 (D4213), pSZ5300 (D4161), pSZ5353 (D4214), pSZ5301 (D4162) and pSZ5310 (D4171) into S7211 are shown in Tables 71-84 respectively.


All the transgenic lines expressing any of the above described LPCAT genes resulted in more than 2 fold increase in C18:2. The increase in C18:2 in S7211; T1172; D4157-14; pH7, expressing AtLPCAT1 at PLSC-2/LPAAT1-1 locus, was 2.54 fold (over parent S7211). These results demonstrate that heterologous LPCAT gene expression in our algal host enhances the conversion of C18:1-CoA into C18:1-PC. The PC associated C18:1 is subsequently acted upon by downstream enzymes like FAD2 and converted into C18:2. Concomitant with increase in C18:2 there was also significant and noticeable increase in C20:1 and C22:1. While the increase in C20:1 level was only 1.5-2 folds over the parent, the increase in C22:1 level was more than 3 fold in the majority of the genes tested at either LPAAT1-1 or LPAAT1-2 locus. In the case of S7211; T1174; D4171-11; pH7 the increase in C22:1 level was 5.3 fold (7.23%) over the parent (1.36%). Similarly in the case of S7211; T1173; D4162-10; pH7 the increase in C22:1 was 3.84 fold (5.23%) over the parent (1.36%). These are some of the highest C22:1 levels that we have obtained thus far in any algal base or transgenic strain. These results suggest that most likely the CrhFAE in S7211 uses C18:1-PC rather than C18:1-CoA as a substrate for elongation. In this scenario PmFAD2 and CrhFAE in S7211 would compete for the same substrate resulting in elevated C18:2 as well as VLCFA like C20:1 and C22:1. It would seem that PmFAD2-1 competes better for the substrate than CrhFAE.


Identification of LPCAT enzymes to increase conversion of C18:1 to C18:1-PC gives us a much better control over C18:1 phospholipid pool which can then be either directed towards making more polyunsaturated fatty acids or VLCFA by modulating the PmFAD2-1 activity.









TABLE 71







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5296


(AtLPCAT1 at PLSC-2/LPAAT1-1 genomic locus) DNA.












Sample ID
18:1
18:2
18:3a
um C20:1
22:1















S7211; T1172; D4157-14; pH 7
3.75
4.59
.72
.30
.17


S7211; T1172; D4157-5; pH 7
2.42
1.22
.47
.99
.04


S7211; T1172; D4157-15; pH 7
3.70
0.99
.38
.94
.88


S7211; T1172; D4157-20; pH 7
2.46
1.19
.41
.87
.78


S7211; T1172; D4157-8; pH 7
2.77
0.88
.41
.86
.72


S7211A; pH 7
8.10
.65
.78
.03
.34


S7211B; pH 7
8.11
.64
.77
.01
.33


S3150; pH 7
7.99
.62
.56
.19
.00


S3150; pH 5
7.70
.08
.54
.11
.00
















TABLE 72







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5307


(AtLPCAT1 at PLSC-2/LPAAT1-2 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1173;
31.13
21.20
1.73
4.96
4.44


D4168-12; pH 7


S7211; T1173;
33.12
20.26
1.52
4.90
4.08


D4168-7; pH 7


S7211; T1173;
32.86
20.82
1.60
4.63
3.79


D4168-15; pH 7


S7211; T1173;
32.34
21.12
1.67
4.77
3.67


D4168-1; pH 7


S7211; T1173;
32.86
20.83
1.54
4.75
3.67


D4168-3; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
58
6.62
0.56
0.19
0.0


S3150; pH 5
57.7
7.08
0.54
0.11
0.0
















TABLE 73







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5297


(AtLPCAT2 at PLSC-2/LPAAT1-1 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1172;
27.68
22.42
1.72
4.60
5.56


D4158-4; pH 7


S7211; T1172;
31.76
21.24
1.38
4.75
4.14


D4158-18; pH 7


S7211; T1172;
22.59
23.56
1.63
4.38
4.09


D4158-5; pH 7


S7211; T1172;
21.74
23.81
1.75
4.35
4.04


D4158-1; pH 7


S7211; T1172;
31.29
21.82
1.45
4.90
3.95


D4158-25; pH 7


S7211A; pH 7
48.23
9.69
0.75
4.02
1.34


S7211B; pH 7
48.24
9.65
0.75
4.01
1.33


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 74







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5308


(AtLPCAT2 at PLSC-2/LPAAT1-2 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1174;
31.32
20.66
1.79
4.95
3.51


D4169-7; pH 7


S7211; T1174;
32.20
20.47
1.78
4.83
3.29


D4169-1; pH 7


S7211; T1174;
39.33
17.63
0.88
4.29
1.79


D4169-2; pH 7


S7211; T1174;
39.99
17.17
0.83
3.91
1.76


D4169-3; pH 7


S7211; T1174;
37.46
17.54
0.97
3.99
1.73


D4169-8; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 75







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5299


(BrLPCAT at PLSC-2/LPAAT1-1 genomic locus) DNA.












Sample ID
C:18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1172;
42.75
15.97
1.87
6.42
4.14


D4160-13; pH 7


S7211; T1172;
31.80
21.32
1.42
4.66
3.58


D4160-10; pH 7


S7211; T1172;
33.68
21.02
1.36
4.52
3.17


D4160-5; pH 7


S7211; T1172;
32.50
21.86
1.37
4.34
3.03


D4160-3; pH 7


S7211; T1172;
31.07
22.48
1.68
3.78
3.02


D4160-12; pH 7


S7211A; pH 7
48.10
9.65
0.78
4.03
1.34


S7211B; pH 7
48.11
9.64
0.77
4.01
1.33


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.7
7.08
0.54
0.11
0.00
















TABLE 76







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5309


(BrLPCAT at PLSC-2/LPAAT1-2 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1174;
31.46
20.98
1.69
4.53
3.33


D4170-9; pH 7


S7211; T1174;
29.68
22.07
1.77
4.29
3.12


D4170-7; pH 7


S7211; T1174;
38.98
17.16
0.92
3.76
1.63


D4170-6; pH 7


S7211; T1174;
34.80
18.50
0.95
3.60
1.51


D4170-3; pH 7


S7211; T1174;
40.55
16.64
0.91
3.68
1.50


D4170-5; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 77







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5346


(BjLPCAT1 at PLSC-2/LPAAT1-1 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1181; D4207-4;
29.69
21.89
1.79
5.04
4.50


pH 7


S7211; T1181; D4207-6;
32.55
20.69
1.56
4.71
3.68


pH 7


S7211; T1181;
36.16
17.75
1.51
3.89
1.83


D4207-12; pH 7


S7211; T1181; D4207-2;
40.69
16.61
0.94
3.74
1.58


pH 7


S7211; T1181;
38.53
17.69
1.15
3.66
1.47


D4207-21; pH 7


S7211; pH 7
47.81
10.21
0.88
4.27
1.54


S7211; pH 7
47.96
10.11
0.90
4.28
1.55


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 78







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5351


(BjLPCAT1 at PLSC-2/LPAAT1-2 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3 a
Sum C20:1
C22:1















S7211; T1181;
32.19
20.59
1.66
4.75
3.13


D4212-19; pH 7


S7211; T1181;
38.65
19.57
1.73
4.41
2.70


D4212-16; pH 7


S7211; T1181;
37.23
17.56
1.12
4.14
2.59


D4212-4; pH 7


S7211; T1181;
40.99
17.16
0.99
3.88
1.74


D4212-7; pH 7


S7211; T1181;
40.35
17.23
1.00
3.82
1.74


D4212-10; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 79







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5298


(BjLPCAT2 at PLSC-2/LPAAT1-1 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1172;
31.41
22.58
1.29
4.65
3.55


D4159-1; pH 7


S7211; T1172;
34.25
19.66
1.34
4.63
3.29


D4159-4; pH 7


S7211; T1172;
33.63
21.08
1.39
4.51
3.00


D4159-2; pH 7


S7211; T1172;
32.92
21.65
1.32
4.29
2.78


D4159-5; pH 7


S7211; T1172;
40.83
16.13
0.80
4.24
1.75


D4159-3; pH 7


S7211A; pH 7
48.10
9.65
0.78
4.03
1.34


S7211B; pH 7
48.11
9.64
0.77
4.01
1.33


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 80







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5352


(BjLPCAT2 at PLSC-2/LPAAT1-2 genomic locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
Sum C20:1
C22:1















S7211; T1181;
42.85
11.60
1.14
4.56
2.43


D4213-8; pH 7


S7211; T1181;
37.35
18.74
1.38
4.04
2.23


D4213-10; pH 7


S7211; T1181;
39.13
17.39
1.06
3.84
2.00


D4213-2; pH 7


S7211; T1181;
40.16
17.18
1.02
3.83
1.77


D4213-4; pH 7


S7211; T1181;
39.01
17.52
1.22
3.86
1.69


D4213-9; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 81







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5300 (LimdLPCAT1 at PLSC-2/LPAAT1-1 genomic


locus) DNA.












Sample ID
C18:1
C18:2
C18:3a
SumC20:1
C22:1















S7211; T1173;
38.70
13.22
1.42
5.92
4.02


D4161-1; pH 7


S7211; T1173;
34.45
19.36
1.46
5.14
3.94


D4161-10; pH 7


S7211; T1173;
39.15
12.89
1.43
5.80
3.90


D4161-2; pH 7


S7211; T1173;
33.94
19.19
1.49
5.00
3.74


D4161-9; pH 7


S7211; T1173;
34.36
19.61
1.48
5.01
3.70


D4161-5; pH 7


S7211A; pH 7
48.23
9.69
0.75
4.02
1.34


S7211B; pH 7
48.24
9.65
0.75
4.01
1.33


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 82







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5353 (LimdLPCAT1 at PLSC-2/LPAAT1-2 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1181;
34.11
19.55
1.70
5.13
3.96


D4214-10; pH 7


S7211; T1181;
34.31
19.37
1.82
5.02
3.76


D4214-24; pH 7


S7211; T1181;
35.81
19.18
1.71
4.77
3.10


D4214-6; pH 7


S7211; T1181;
39.90
17.88
1.02
4.20
1.79


D4214-15; pH 7


S7211; T1181;
42.15
16.56
0.93
4.04
1.72


D4214-9; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 83







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5301 (LimdLPCAT2 at PLSC-2/LPAAT1-1 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3 a
C20:1
C22:1















S7211; T1173;
38.40
17.61
1.86
7.29
5.28


D4162-10; pH 7


S7211; T1173;
37.73
13.94
1.27
6.06
4.41


D4162-1; pH 7


S7211; T1173;
37.27
14.92
1.45
6.33
4.34


D4162-11; pH 7


S7211; T1173;
36.23
15.03
1.55
6.23
4.16


D4162-2; pH 7


S7211; T1173;
37.90
14.29
1.41
6.08
4.16


D4162-9; pH 7


S7211A; pH 7
48.23
9.69
0.75
4.02
1.34


S7211B; pH 7
48.24
9.65
0.75
4.01
1.33


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 84







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5310 (LimdLPCAT2 at PLSC-2/LPAAT1-2 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1174;
26.00
17.76
2.44
6.63
7.23


D4171-11; pH 7


S7211; T1174;
32.30
19.30
0.97
7.56
5.37


D4171-3; pH 7


S7211; T1174;
36.47
14.36
1.30
5.75
3.86


D4171-9; pH 7


S7211; T1174;
37.07
15.14
1.49
5.86
3.75


D4171-12; pH 7


S7211; T1174;
39.18
13.71
1.54
5.68
3.41


D4171-2; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
58.00
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00









Example 13
Expression of Arabidopsis thaliana PDCT in High-Erucic and High-Oleic Transgenic Microalgae

In this example we demonstrate the use of Arabidopsis thaliana Phosphatidylcholine diacylglycerol cholinephosphotransferase (AtPDCT) gene to alter the content and composition of oils in transgenic algal strains for producing oils rich in linoleic and/or very long chain fatty acids (VLCFA).


Fatty acids produced in the plastids are not always immediately available for TAG biosynthesis. Diacylglycerol (DAG) represents an important branch point between non-polar and membrane lipid biosynthesis. DAGs may be converted to PC by CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT), and acyl residues are then further desaturated by fatty acid desaturases. There are at least two possible routes whereby acyl residues from PC are incorporated into TAG. First, the DAG moiety of PC can be liberated (by hydrolysis) by reversible action of DAG-CPT, thus becoming available for TAG assembly by DGAT. The second route involves an enzyme known as phosphatidylcholine:1,2-sn-diacylglycerol choline phosphotransferase (PDCT). Like DAG-CPT, the PDCT mediates a symmetrical inter-conversion between phosphatidylcholine (PC) and diacylglycerol (DAG), thus enriching PC-modified fatty acids—C18:2 and C18:3—in the DAG pool prior to forming TAG.


AtPDCT has been reported as a major pathway for inter-conversion between PC and DAG pools while DAG-CPT plays a minor role. In light of this information we decided to express AtPDCT in our algal host. We express AtPDCT in high erucic strain S7211. We also expressed the AtPDCT in classically mutagenized high oleic base strain S8028 which produces significantly more C18:1 (68%) than our base strain S3150 (57%) but does not produce erucic acid. S8028 is a strain made according to the methods disclosed in co-owned application No. 61/779,708 filed on 13 Mar. 2013. Specifically, S8028 is a cerulenin resistant isolate of Strain K with low C16:0 titer and high C18:1 titer made according to Example 14 of 61/779,708.


The sequence of AtPDCT was codon optimized for expression in our P. moriformis and transformed into S7211 and S8028. Our results show that expression of AtPDCT in both erucic strain S7211 and high oleic base strain S8028 results in more than 3 fold enhancement in linoleic (C18:2) in individual lines. Additionally in S7211 there is a noticeable increase in erucic (C22:1) acid content in individual lines over the parents.


Construct Used for the Expression of the A. thaliana Phosphatidylcholine Diacylglycerol Cholinephosphotransferase (AtPDCT) in S7211 and S8028 [pSZ5344]:


Construct pSZ5344 expresses Sacharomyces carlbergenesis MEL1 gene (allowing for their selection and growth on medium containing melibiose) and A. thaliana LPCAT gene targeted at endogenous PmLPAAT1-1 genomic region. Construct pSZ5344 can be written as PLSC-2/LPAAT1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtLPDCT-CvNR::PLSC-2/LPAAT1-1 3′ flank.


The sequence of the transforming DNA is provided in below. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, EcoRI, SpeI, AflII, SacI, BspQI, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the PLSC-2/LPAAT1-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 promoter driving the expression of the S. carlbergenesis MEL1 gene (encoding an alpha galactosidase enzyme activity required for catabolic conversion of Meliobise to glucose and galactose, thereby permitting the transformed strain to grow on melibiose) is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for MEL1 are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text followed by a PMSAD2-2 promoter of P. moriformis, indicated by boxed italicized text. The Initiator ATG and terminator TGA codons of the AtPDCT are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the S3150 PLSC-2/LPAAT1-1 genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ5344:



(SEQ ID NO: 126)





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta








gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc







tgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat







gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt







gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc







tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg







gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct







caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








tgacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctggga







caactggaacacgttcgcctgcgacgtctccgagcagctgctggacacggccgaccgcatctccgacctgggcctgaagga







catgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaag







ttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacac







gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttatcgcgaacaaccgcgtggactacctgaagt







acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccagaac







aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg







gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt







acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac







gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa







gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca







accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc







cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg







accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc







gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc







tacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacg








embedded image








gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa







acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc







cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg







cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








ggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcg







cttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaac







ttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcc







tggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagag








ctc

cgtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcag







gagctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtgg







cccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggt







taggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccaca







tccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacg







cccaaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattgg







ctcattggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcgcccctttcttctcgcagatggag







gtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaag







cctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc








Construct Used for the Expression of the AtPDCT at PLSC-2/PmLPAAT1-2 Locus in S7211 and S8028:


In addition to the A. thaliana PDCT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5344), A. thaliana PDCT targeted at PLSC-2/LPAAT1-2 locus (pSZ5349), was constructed for expression in both S7211 and S8028. The construct can be described as:


pSZ5349-PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2 v2-AtPDCT-CvNR::PLSC-2/LPAAT1-2


pSZ5439 has the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5344, differing only in the genomic region used for construct targeting Relevant restriction sites in these constructs are also the same as in pSZ5344. The sequences of PLSC-2/LPAAT1-2 5′ flank, PLSC-2/LPAAT1-2 3′ flank used in pSZ5349 are shown below. Relevant restriction sites as bold text are shown 5′-3′ respectively.









PLSC-2/LPAAT1-2 5′ flank in pSZ5349:


(SEQ ID NO: 127)




gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcggg







cgcggaggagggcccccgcccgggcggcattgttagcaaccactgcag







ctacctggacatcctgctgcacatgtccgactccttccccgcctttgt







ggcgcgccagtcgacggccaagctgccctttatcggcatcatcaggtg







cgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggg







gggcaggcgtaggcgtgcagtgtgagcggacattgatgccgtcgtttg







ccggtcaggagagctcgaaatcagagccagcctggtcatgggatcaca







gagctcaccaccactcgtccacctcgccttgccttgcagccaaatcat







gagggcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggc







gtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggagg







accccgcccgagtaccgaccgctgctcctcttccccgaggtgggcttt







cgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcg







cctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcc







tttcctccatcgccagggcaccacctccaacggcgactacctgcttcc







cttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

ggt









acc







PLSC-2/LPAAT1-2 3′ flank in pSZ5349.


(SEQ ID NO: 128)




gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcg







tgttgaagcgcggaaggggatgcgctgtcaagttttggagctgaaaat







ggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgc







tccccaccatttccccagggaaccctgtggcccacgtgggagacgatt







ccggccaagtggcacatcttcctgatgctctgccacccccgccacaaa







gtgaccgtgatgaaggtacgaacaagggtcgggccccgattctggata







tcacgtctggggtgtgtttctcgcgcacgcgtcccccgatgcgctgca







cagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtac







gtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaat







gttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcggg







tgggcggggcggctctagcgaattggcgcattggccctcaccgaggca







gcacatcggacaccaatcgtcacccggcgagcaattccgccccctctg







tcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgt







ttgaggacaagatgcgctacctgaactccctgaagagaaagtacggca







agcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaaga









gc








To determine their impact on fatty acid profiles, both the constructs described above were transformed independently into S7211 and S8028. Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0. As discussed above, S7211 expresses a FAE, from C. abyssinica under the control of pH regulated, PMSAD2V-2(Ammonium transporter 03) promoter. Thus both parental (S7211) and the resulting PDCT transformed strains require growth at pH 7.0 to allow for maximal fatty acid elongase (FAE) gene expression.


S8028 and its derivative lines transformed with AtPDCT were cultured at pH 5.0. The resulting profiles from a set of representative clones arising from transformations with pSZ5344 (D4205) and pSZ5349 (D4210) into S7211 and S8028 are shown in Tables 85-88 respectively.


The expectation with the expression of PDCT into our algal host was somewhat increased C18:2 and/or VLCFA (in S7211) since our host has a moderate LPCAT activity which normally results in 5-7% C18:2 in our base strains. However contrary to our expectation there was more than 2.5 fold increase in C18:2 levels in strains expressing PDCT at either PLSC-2/LPAAT1-1 or PLSC-2/LPAAT1-2 genomic locus in both S7211 and S8028. In the best case scenario the increase in C18:2 level was 2.85 fold in S7211; T1181; D4210-10; pH7 over the parent (27.12 vs 9.53% in parent S7211) and 3.19 fold in S8028; T1226; D4205-1; pH5 (18.76% vs 5.88% in parent S8028). PDCT expression also led to noticeable increase in C22:1 levels in S7211. In the best case scenario C22:1 increased from 1.36% in parent to 5.04% in S7211; T1181; D4210-10; pH7—an increase of 3.7 fold.


The increase in C18:2 in PDCT expressing lines reported herein is even more pronounced than when higher plant LPCAT genes are expressed in S7211 (reported earlier). LPCAT overexpression leads to increased conversion of C18:1-CoA into C18:1-PC which then becomes available for further desaturation and/or elongation by competing FAD2 and FAE enzyme activities respectively. Since PDCT efficiently removes the PC associated polyunsaturated fatty acids for eventual incorporation into DAG pool, our results strongly suggest that the PC to DAG conversion by endogenous DAG-CPT in our host is somewhat inefficient. This inefficiency is removed by transplanting a higher plant PDCT gene into our algal genome. Furthermore once an efficient PC to DAG conversion is set into place by expression of AtPDCT, this likely increases the efficiency of upstream endogenous PmLPCAT enzyme and results in increased conversion of C18:1-CoA to C18:1-PC. At this stage it is unclear whether the elongation by CrhFAE occurs on the C18:1-PC (as opposed to C18:1-CoA) since PmFAD2-1 seems to compete better for the substrate than CrhFAE. Expressing CrhFAE and AtPDCT in a strain with very low FAD2 activity will help to understand the relation between desaturation and elongation in our algal host.


In summary, identification of LPCAT (discussed above) and now AtPDCT enzymes to increase conversion of C18:1 to C18:1-PC gives us a much better control over C18:1 phospholipid pool which can then be either directed towards making more polyunsaturated fatty acids or VLCFA by modulating the PmFAD2-1 activity.









TABLE 85







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5344 (AtPDCT at PLSC-2/LPAAT1-1 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3 a
C20:1
C22:1















S7211; T1181;
30.03
24.05
1.23
4.88
2.44


D4205-9; pH 7


S7211; T1181;
31.20
24.32
1.04
5.04
2.36


D4205-1; pH 7


S7211; T1181;
34.96
22.05
0.86
5.52
2.16


D4205-8; pH 7


S7211; T1181;
31.66
23.97
0.98
5.47
2.15


D4205-6; pH 7


S7211; T1181;
26.92
24.51
0.99
4.61
2.11


D4205-18; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 86







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5349 (AtPDCT at


PLSC-2/LPAAT1-2 genomic locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1181;
23.16
27.15
1.73
6.33
5.04


D4210-10; pH 7


S7211; T1181;
23.81
26.10
1.55
6.01
4.19


D4210-19; pH 7


S7211; T1181;
26.74
26.00
1.47
5.78
3.90


D4210-12; pH 7


S7211; T1181;
31.12
24.49
1.22
4.99
2.59


D4210-11; pH 7


S7211; T1181;
32.16
24.01
1.19
5.07
2.42


D4210-14; pH 7


S7211; pH 7
47.76
9.53
0.74
4.05
1.37


S7211; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 87







Unsaturated fatty acid profile in S8028 and representative


derivative transgenic lines transformed with pSZ5344 (AtPDCT


at PLSC-2/LPAAT1-1 genomic locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S8028; T1226;
54.19
18.76
0.71
0.12
0.00


D4205-1; pH 5


S8028; T1226;
56.14
18.22
0.79
0.19
0.00


D4205-47; pH 5


S8028; T1226;
57.98
16.79
0.56
0.11
0.00


D4205-48; pH 5


S8028; T1226;
57.93
16.78
0.61
0.13
0.00


D4205-5; pH 5


S8028; T1226;
57.39
16.31
0.57
0.15
0.00


D4205-20; pH 5


S8028 (pH 5); pH 5
68.13
5.88
0.54
0.11
0.00


S8028 (pH 5); pH 5
68.08
5.85
0.54
0.15
0.00
















TABLE 88







Unsaturated fatty acid profile in S8028 and representative


derivative transgenic lines transformed with pSZ5349 (AtPDCT


at PLSC-2/LPAAT1-2 genomic locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S8028; T1226;
54.61
17.53
0.85
0.16
0.00


D4210-34; pH 5


S8028; T1226;
58.43
17.43
0.50
0.18
0.00


D4210-7; pH 5


S8028; T1226;
51.95
17.00
0.60
0.11
0.00


D4210-20; pH 5


S8028; T1226;
55.65
16.74
0.77
0.19
0.00


D4210-14; pH 5


S8028; T1226;
56.42
16.72
0.65
0.18
0.00


D4210-3; pH 5


S8028 (pH 5); pH 5
68.13
5.88
0.54
0.11
0.00


S8028 (pH 5); pH 5
68.08
5.85
0.54
0.15
0.00









Example 14
Expression of PDCT in a High-Linolenic Transgenic Microalga

In this example we demonstrate using Arabidopsis thaliana Phosphatidylcholine diacylglycerol cholinephosphotransferase (AtPDCT) gene to alter the content and composition of oils in transgenic algal strains for producing oils rich in linoleic and/or linolenenic acids.


We determined the effect of AtPDCT expression on C18:3 levels in linolenic strain S3709 expressing Linum usitatissimu FADS desaturase. S3709 was prepared according to Example 11 of co-owned application WO2012/106560. The sequence of AtPDCT was codon optimized for expression in our algal host and transformed into S3709.


Our results show that expression of AtPDCT in Solazyme linolenic strain S3709 results in more than 2 fold enhancement in linolenic acid (C18:3) content in individual lines over the parents.


Construct Used for the Expression of the A. thaliana Phosphatidylcholine Diacylglycerol Cholinephosphotransferase (AtPDCT) in Erucic Strain S3709 [pSZ5344]:


S3709, transformed with the construct pSZ5344, were generated which express Sacharomyces carlbergenesis MEL1 gene (allowing for their selection and growth on medium containing melibiose) and A. thaliana PDCT gene targeted at the endogenous PmLPAAT1-1 genomic region. Construct pSZ5344 introduced for expression in S7211 can be written as PLSC-2/LPAAT1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtPDCT-CvNR::PLSC-2/LPAAT1-1 3′ flank.


The sequence of the transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, EcoRI, SpeI, AflII, SacI, BspQI, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the PLSC-2/LPAAT1-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 promoter driving the expression of the S. carlbergenesis MEL1 gene is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for MEL1 are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text followed by a PMSAD2-v2 promoter of P. moriformis, indicated by boxed italicized text. The Initiator ATG and terminator TGA codons of the AtPDCT are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the S3150 PLSC-2/LPAAT1-1 genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.














Nucleotide sequence of transforming DNA contained in plasmid pSZ5344:


(SEQ ID NO: 129)




gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta







gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc







tgccdttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat







gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt







gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc







tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg







gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct







caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg







gccggggtgcccgtccagcccgt

ggtacc
gcggtgagaatcgaaaatgcatcgtttctaggttcggagacggtcaattccctgctcc






ggcgaatctglcgglcaagctggccagtggacaatgltgctatggcagcccgcgcacatgggcctcccgacgcggccatcaggagc





ccaaacagcgtgtcagggtatgtgaaactcaagaggtccctgctgggcactccggccccactccgggggcgggacgccaggcattc





gcggtcggtcccgcgcgacgagcgaaatgatgattcggttacgagaccaggacgtcgtcgaggtcgagaggcagcctcggacacg





tctcgctagggcaacgccccgagtccccgcgagggccgtaaacattgtttctgggtgtcggagtgggcattttgggcccgatccaatc





gcctcatgccgctctcgtctggtcctcacgttcgcgtacggcctggatcccggaaagggcggatgcacgtggtgttgccccgccattg





gcgcccacgtttcaaagtccccggccagaaatgcacaggaccggcccggctcgcacaggccatgctgaacgcccagatttcgaca





gcaacaccatctagaataatcgcaaccatccgcgttttgaacgaaacgaaacggcgctgtttagcatgtttccgacatcgtgggggccg





aagcatgctccggggggaggaaagcgtggcacagcggtagcccattctgtgccacacgccgacgaggaccaatccccggcatca







embedded image





gacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggac







aactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggac







atgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagt







tccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacac







gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt







acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac







aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg







gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt







acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac







gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa







gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca







accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc







cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg







accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc







gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatccrgtacaacgccaccgagcagtcc







tacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacg








embedded image





gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa







acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc







cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg







cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg







atgggaacacaaatggaaagctgtagaattcctggctcgggcctcgtgctggcactccctcccatgccgacaacctttctgctgtcacc






acgacccacgatgcaacgcgacacgacccggtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcatactccaat





cgtatccgtttgatttctgtgaaaactcgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgttttcgtcga





aaggccagcaaccccaaatcgcaggcgatccggagattgggatctgatccgagcttggaccagatcccccacgatgcggcacggg





aactgcatcgactcggcgcggaacccagctttcgtaaatgccagattggtgtccgataccttgatttgccatcagcgaaacaagacttca





gcagcgagcgtatttggcgggcgtgctaccagggttgcatacattgcccatttctgtctggaccgctttaccggcgcagagggtgagtt





gatggggttggcaggcatcgaaacgcgcgtgcatggtgtgtgtgtctgttttcggctgcacaatttcaatagtcggatgggcgacggta





gaattgggtgttgcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcctgctaac







embedded image





ggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcg







cttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaac







ttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcc







tggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagag








ctc

cgtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcag







gagctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtgg







cccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggt







taggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccaca







tccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacg







cccaaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattgg







ctcattggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggag







gtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaag







cctgtgcctaagaaaattgagtgaacccccgtcgtcgatcca

gaagagc











In addition to the A. thaliana PDCT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5344), A. thaliana PDCT targeted at PLSC-2/LPAAT1-2 locus (pSZ5349), was constructed for expression in S7211. These constructs can be described as:


pSZ5349-PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtPDCT-CvNR::PLSC-2/LPAAT1-2


pSZ5439 has the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5344, differing only in the genomic region used for construct targeting Relevant restriction sites in these constructs are also the same as in pSZ5344. The sequence of PLSC-2/LPAAT1-2 5′ flank, PLSC-2/LPAAT1-2 3′ flank used in pSZ5344 are provided below. Relevant restriction sites as bold text are shown 5′-3′ respectively.









PLSC-2/LPAAT1-2 5′ flank in pSZ5349:


(SEQ ID NO: 130)




gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcggg







cgcggaggagggccccgcccgggcggcattgttagcaaccactgcagc







tacctggacatcctgctgcacatgtccgactccttccccgcctttgtg







gcgcgccagtcgacggccaagctgccctttatcggcatcatcaggtgc







gtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaagggg







ggcaggcgtaggcgtgcagtgtgagcggacattgatgccgtcgtttgc







cggtcaggagagctcgaaatcagagccagcctggtcatgggatcacag







agctcaccaccactcgtccacctcgcctgccttgcagccaaatcatga







gctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggcg







tggccgatctggtgaagcagcgcatgcaggacgaggccgaggggagga







ccccgcccgagtaccgaccgctgctcctcttccccgaggtgggctttc







gaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc







ctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcct







ttcctccatcgccagggcaccacctccaacggcgactacctgcttccc







ttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

ggta









cc







PLSC-2/LPAAT1-2 3′ flank in pSZ5349:


(SEQ ID NO: 131)




gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcg







tgttgaagcgcggaaggggatgcgctgtcaagttttggagctgaaaat







ggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgc







tccccacccttttccccagggaaccctgtggcccacgtgggagacgat







tccggccaagtggcacatcttcctgatgctctgccacccccgccacaa







agtgaccgtgatgaaggtacgaacaagggtcgggccccgattctggat







atcacgtctggggtgtgtttctcgcgcacgcgtcccccgatgcgctgc







acagtctccctcacaccctcacccctaacgctcgcagttgcccgtgta







cgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaa







tgttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcgg







gtgggcggggcggctctagcgaattggcgcattggccctcaccgaggc







agcacatcggacaccaatcgtcacccggcgagcaattccgccccctct







gtcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtg







tttgaggacaagatgcgctacctgaactccctgaagagaaagtacggc







aagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaag









agc








To determine their impact on fatty acid profiles, both the constructs described above were transformed independently into S3709. Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0. S3709 expresses a LnFAD3, from Linum usitatissimu under the control of pH regulated, PMSAD2-v2(Ammonium transporter 03) promoter. Thus both parental (S3709) and the resulting PDCT transformed strains require growth at pH 7.0 to allow for maximal fatty acid desaturase (LnFAD3) gene expression. The resulting profiles from a set of representative clones arising from transformations with pSZ5344 (D4205) and pSZ5349 (D4210) into S3709 are shown in Tables 89 and 90, respectively.


Individual transgenic lines expressing AtPDCT genes resulted in more than 2 fold increase in C18:3 (Tables 89 and 90). The increase in C18:3 in S3709; T1228; D4205-36; pH7 12.17 fold (14.51%) while the increase was 1.89 fold in S3709; T1228; D4210-4; pH7 (12.61%) over the parent S3709 (6.66%). As discussed in Example 13 above, enhancing the removal of PC associated polyunsaturated fatty acids by AtPDCT increases the C18:2 content more than just expressing a heterologous PDCT in our host. However, unlike the S3709 parent, not all of the available C18:2 is converted into C18:3. This is most likely due to sub-optimal expression of LnFAD3 in S3709.


Since both LPCAT and PDCT enzymes channel polyunsaturates onto DAG, it would be informative to combine these two activities together and express them in various background strains like S3709 (Linolenic strain), S8028 (High Oleic base strain) or S7211 (Erucic strain).









TABLE 89







Unsaturated fatty acid profile in S3709 and representative derivative


transgenic lines transformed with pSZ5344 (AtPDCT at PLSC-2/


LPAAT1-1 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3 a
















S3709 (pH 7); pH 7
.86
8.85
.54
7.22
.42
.66


S3709 (pH 7); pH 7
.90
9.00
.54
6.89
.45
.81


S3709; T1228; D4205-36;
.62
2.74
.48
8.67
.12
4.51


pH 7


S3709; T1228; D4205-1;
.94
7.62
.57
5.09
.28
1.53


pH 7


S3709; T1228; D4205-4;
.42
9.48
.15
3.03
0.91
0.22


pH 7


S3709; T1228; D4205-44;
.80
8.81
.53
2.84
.18
.20


pH 7


S3709; T1228; D4205-33;
.06
1.79
.75
2.21
.07
.17


pH 7
















TABLE 90







Unsaturated fatty acid profile in S3709 and representative derivative


transgenic lines transformed with pSZ5349 (AtPDCT at PLSC-2/


LPAAT1-2 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3 a
















S3709 (pH 7); pH 7
.86
8.85
.54
7.22
.42
.66


S3709 (pH 7); pH 7
.90
9.00
.54
6.89
.45
.81


S3709; T1228; D4210-4;
.11
6.68
.59
0.05
.00
2.61


pH 7


S3709; T1228; D4210-36;
.97
9.44
.85
5.40
.67
1.93


pH 7


S3709; T1228; D4210-11;
.92
7.35
.53
8.82
.19
0.98


pH 7


S3709; T1228; D4210-38;
.18
9.20
.36
5.08
.82
.25


pH 7


S3709; T1228; D4210-43;
.97
8.81
.47
6.38
.57
.21


pH 7









Example 15
Expression of DAG-CPT in a High-Erucic Transgenic Microalga

In this example we demonstrate using higher plant CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT) gene to alter the content and composition of oils in transgenic algal strains for producing oils rich in linoleic and/or very long chain fatty acids (VLCFA).


We used A. thaliana AtDAG-CPT (NP_172813) available in the public databases to identify corresponding DAG-CPT genes from our internally assembled transcriptomes of B. rapa, and B. juncea. The codon optimized sequences of all the internally identified genes (BrDAG-CPT and BjDAG-CPT), along with AtDAG-CPT genes, were expressed in strain S7211. The preparation of S7211 is discussed above.


Our results show that expression of DAG-CPT genes in Solazyme erucic strain S7211 results in enhancement in linoleic (C18:2) and erucic (C22:1) acid content in individual lines over the parents.


Construct Used for the Expression of the A. thaliana Phosphatidylcholine Diacylglycerol Cholinephosphotransferase (AtDAG-CPT) in Erucic Strain S7211 [pSZ5295]:


In this example, transgenic lines from S7211, transformed with the construct pSZ5295, were generated. These lines express Sacharomyces carlbergenesis MEL1 gene and A. thaliana DAG-CPT gene targeted at endogenous PmLPAAT1-1 genomic region. Construct pSZ5295 introduced for expression in S7211 can be written as PLSC-2/LPAAT1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtDAG-CPT-CvNR::PLSC-2/LPAAT1-1 3′ flank.


The sequence of the transforming DNA is provided in below. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, EcoRI, SpeI, AflII, SacI, BspQI, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the PLSC-2/LPAAT1-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 promoter driving the expression of the S. carlbergenesis MEL1 gene is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for MEL1 are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text followed by a PMSAD2-v2 promoter of P. moriformis, indicated by boxed italicized text. The Initiator ATG and terminator TGA codons of the AtDAG-CPT are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the S3150 PLSC-2/LPAAT1-1 genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ5295:



(SEQ ID NO: 132)





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta








gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc







tgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat







gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt







gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc







tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg







gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct







caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg







gccggggtgcccgtccagcccgt

ggtacc
gcggtgagaatcgaaaatgcatcgtactaggacggagacggtcaattccctgctcc






ggcgaatctgtcggtcaagctggccagtggacaatgttgctatggcagcccgcgcacatgggcctcccgacgcggccatcaggagc





ccaaacagcgtgtcagggtatgtgaaactcaagaggtccctgctgggcactccggccccactccgggggcgggacgccaggcattc





gcggtcggtcccgcgcgacgagcgaaatgatgattcggttacgagaccaggacgtcgtcgaggtcgagaggcagcctcggacacg





tctcgctagggcaacgccccgagtccccgcgagggccgtaaacattgtttctgggtgtcggagtgggcattttgggcccgatccaatc





gcctcatgccgctctcgtctggtcctcacgttcgcgtacggcctggatcccggaaagggcggatgcacgtggtgttgccccgccattg





gcgcccacgtttcaaagtccccggccagaaatgcacaggaccggcccggctcgcacaggccatgctgaacgcccagatttcgaca





gcaacaccatctagaataatcgcaaccatccgcgttttgaacgaaacgaaacggcgctgtttagcatgtttccgacatcgtgggggccg





aagcatgctccggggggaggaaagcgtggcacagcggtagcccattctgtgccacacgccgacgaggaccaatccccggcatca







embedded image





gacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggac







aactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggac







atgggctacaagtacatcatcctggacgactgcggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagt







tccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacac







gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt







acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac







aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg







gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt







acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac







gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa







gtcccccctgatcatcggcgcgaacgtgaacaacctggaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca







accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc







cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg







accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc







gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc







tacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacg








embedded image





gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa







acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc







cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg







cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg







atgggaacacaaatggaaagctgtagaattcctggctcgggcctcgtgctggcactccctcccatgccgacaacctttctgctgtcacc






acgacccacgatgcaacgcgacacgacccggtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcatactccaat





cgtatccgtttgatttctgtgaaaactcgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgtttcgtcga





aaggccagcaaccccaaatcgcaggcgatccggagattgggatctgatccgagcttggaccagatcccccacgatgcggcacggg





aactgcatcgactcggcgcggaacccagctttcgtaaatgccagattggtgtccgataccttgatttgccatcagcgaaacaagacttca





gcagcgagcgtatttggcgggcgtgctaccagggttgcatacattgcccatttctgtctggaccgctttaccggcgcagagggtgagtt





gatggggttggcaggcatcgaaacgcgcgtgcatggtgtgtgtgtctgttttcggctgcacaatttcaatagtcggatgggcgacggta





gaattgggtgttgcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcctgctaac







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttg







cgagagctagctgcagtgctatttgcgaataccacccccagcatccccaccctcgatcatatcgcagcatcccaaccgcaacttatct







acgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggta







ctgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccg







tcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagct







aaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccaccatttccccaggggaccctgtggcccac







gtgggagacgattccggccaagtggcacatcttcctgatgactgccacccccgccacaaagtgaccgtgatgaaggttagga







caagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccacatccctc







acaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagagtacgcccaa







aacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcatt







ggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcgccccattcttctcgcagatggaggtcgc







cgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgt







gcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc








Constructs Used for the Expression of the AtDAG-CPT, BjDAG-CPT and BrDAG-CPT at PLSC-2/PmLPAAT1-1 or PLSC-2/PmLPAAT1-2 loci in S7211:


In addition to the A. thaliana DAG-CPT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5295), A. thaliana DAG-CPT targeted at PLSC-2/LPAAT1-2 locus (pSZ5305), BrDAG-CPT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5345), BrDAG-CPT targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5350), BjDAG-CPT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5347) and BjDAG-CPT targeted at PLSC-2/PmLPAAT1-2 locus (pSZ5306), have been constructed for expression in S7211. These constructs can be described as:


pSZ5305 PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2 v2-AtDAG-CPT-CvNR::PLSC-2/LPAAT1-2


pSZ5345 PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2 v2-BrDAG-CPT-CvNR::PLSC-2/LPAAT1-1


pSZ5306 PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2 v2-BjDAG-CPT-CvNR::PLSC-2/LPAAT1-2


pSZ5347 PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2 v2-BjDAG-CPT-CvNR::PLSC-2/LPAAT1-1


pSZ5350 PLSC-2/LPAAT1-2::PmHXT1-ScarMEL1-CvNR:PmSAD2-2 v2-BrDAG-CPT-CvNR::PLSC-2/LPAAT1-2


All these constructs have same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5295, differing only in the genomic region used for construct targeting and/or the relevant DAG-CPT gene. Relevant restriction sites in these constructs are also same as in pSZ5295. FIGS. 3-6 indicate the sequence of PLSC-2/LPAAT1-2 5′ flank, PLSC-2/LPAAT1-2 3′ flank and BrDAG-CPT and BjDAG-CPT genes respectively. Relevant restriction sites as bold text are shown 5′-3′ respectively.










PLSC-2/LPAAT1-2 5′ flank in pSZ5305, pSZ5306 and pSZ5350:



(SEQ ID NO: 133)





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta








gcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcgacggccaagc







tgccctttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggggggcaggcg







taggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcagagccagcctggtcatgggat







cacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgcctctacgtgaaccgcgaccgctc







ggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggaggaccccgcccgagt







accgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc







ctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcctttcctccatcgccagggcaccacctccaacggcgacta







cctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

ggtacc







PLSC-2/LPAAT1-2 3′ flank in pSZ5305, pSZ5306 and pSZ5350:


(SEQ ID NO: 134)





gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgcgctgtcaagttt








tggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttccccagggaa







ccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtg







atgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtgtttctcgcgcacgcgtcccccgatgcgct







gcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaa







gctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcgggtgggcggggcggctctagc






gaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgtcacccggcgagcaattccgccccctagtcttctc






gcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaa







gtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







Sequence of BrDAG-CPT in pSZ5345 and pSZ5350:


(SEQ ID NO: 135)





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




Sequence of BjDAG-CPT in pSZ5306 and pSZ5347:


(SEQ ID NO: 136)





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image








To determine their impact on fatty acid profiles, all the constructs described above were transformed independently into S7211. Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0. The resulting fatty acid profiles from a set of representative clones arising from transformations with pSZ5295 (D4156), pSZ5305 (D4166), pSZ5345 (D4206), pSZ5350 (D4211), pSZ5347 (D4208) and pSZ5306 (D4167) into S7211 sorted by C22:1 levels are shown in Tables 91-96, respectively.


The expectation was that the expression of DAG-CPTs into our algal host might enhance the removal of DAG-acyl-CoAs from PC and lead increase in polyunsaturated fatty and/or VLCFA in TAG since our host has a moderate LPCAT activity which normally results in 5-7% C18:2 in our base strains. We got noticeable and sustained increase in C18:2 and VLCFA levels in strains expression DAG-CPTs at either PLSC-2/LPAAT1-1 or PLSC-2/LPAAT1-2 genomic locus.


These results suggest that PC to DAG conversion by endogenous DAG-CPT in our host is somewhat inefficient and can be augmented by transplanting a corresponding higher plant homolog gene into our algal genome. Furthermore once an efficient PC to DAG conversion is set into place, this likely increases the efficiency of upstream endogenous PmLPCAT enzyme and results in increased conversion of C18:1-CoA to C18:1-PC.


In summary, identification of earlier discussed LPCAT and PDCT and DAG-CPT enzymes to increase conversion of C18:1 to C18:1-PC and their eventual removal from PC for incorporation into DAG gives us a much better control over C18:1 phospholipid pool which can then be either directed towards making more polyunsaturated fatty acids or VLCFA by modulating the PmFAD2-1 activity.









TABLE 91







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5295 (AtDAG-CPT at PLSC-2/LPAAT1-1 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1172;
37.45
15.68
1.26
6.18
4.16


D4156-5; pH 7


S7211; T1172;
39.25
15.00
1.20
5.77
3.47


D4156-14; pH 7


S7211; T1172;
41.78
13.04
1.29
5.80
3.43


D4156-4; pH 7


S7211; T1172;
38.61
15.68
1.40
6.02
3.30


D4156-3; pH 7


S7211; T1172;
39.80
14.61
1.16
5.61
3.27


D4156-12; pH 7


S7211; pH 7
48.10
9.65
0.78
4.03
1.34


S7211; pH 7
48.11
9.64
0.77
4.01
1.33


S3150; pH 7
58
6.62
0.56
0.19
0


S3150; pH 5
57.7
7.08
0.54
0.11
0
















TABLE 92







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5305 (AtDAG-CPT at PLSC-2/LPAAT1-2 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1173;
38.33
15.16
1.53
5.64
3.33


D4166-4; pH 7


S7211; T1173;
37.99
16.12
1.32
5.53
3.19


D4166-8; pH 7


S7211; T1173;
39.17
14.89
1.41
5.54
3.07


D4166-6; pH 7


S7211; T1173;
38.71
15.11
1.38
5.45
2.99


D4166-5; pH 7


S7211; T1173;
39.75
14.34
1.37
5.36
2.99


D4166-7; pH 7


S7211A; pH 7
48.23
9.69
0.75
4.02
1.34


S7211B; pH 7
48.24
9.65
0.75
4.01
1.33


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 93







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5345 (BrDAG-CPT at PLSC-2/LPAAT1-1 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1181;
47.43
11.53
0.85
4.63
1.76


D4206-13; pH 7


S7211; T1181;
45.60
12.37
0.85
4.49
1.71


D4206-15; pH 7


S7211; T1181;
47.66
11.26
0.89
4.36
1.66


D4206-12; pH 7


S7211; T1181;
46.38
11.51
0.91
4.44
1.65


D4206-5; pH 7


S7211; T1181;
46.22
12.73
0.58
4.43
1.65


D4206-7; pH 7


S7211A; pH 7
47.76
9.53
0.74
4.05
1.37


S7211B; pH 7
47.73
9.53
0.79
4.02
1.36


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 94







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5350 (BrDAG-CPT at PLSC-2/LPAAT1-2 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1181;
36.84
15.57
1.69
6.21
4.09


D4211-20; pH 7


S7211; T1181;
37.87
14.56
1.90
6.14
3.92


D4211-8; pH 7


S7211; T1181;
38.49
14.39
1.58
5.86
3.67


D4211-18; pH 7


S7211; T1181;
40.12
14.08
1.65
5.93
3.57


D4211-2; pH 7


S7211; T1181;
38.45
15.17
1.36
5.52
2.94


D4211-3; pH 7


S7211; pH 7
47.81
10.21
0.88
4.27
1.54


S7211; pH 7
47.96
10.11
0.90
4.28
1.55


S3150; pH 7
57.99
6.62
0.56
0.19
0


S3150; pH 5
57.7
7.08
0.54
0.11
0
















TABLE 95







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ5306 (BjDAG-CPT at PLSC-2/LPAAT1-1 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1173;
35.10
14.35
1.18
5.64
4.43


D4167-4; pH 7


S7211; T1173;
41.05
13.35
1.48
5.68
3.41


D4167-1; pH 7


S7211; T1173;
41.72
13.18
1.48
5.49
3.00


D4167-7; pH 7


S7211; T1173;
43.95
12.31
1.19
5.14
2.62


D4167-5; pH 7


S7211; T1173;
45.19
11.65
1.09
4.78
2.32


D4167-10; pH 7


S7211A; pH 7
48.23
9.69
0.75
4.02
1.34


S7211B; pH 7
48.24
9.65
0.75
4.01
1.33


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00
















TABLE 96







Unsaturated fatty acid profile in S3150, S7211 and


representative derivative transgenic lines transformed


with pSZ55347 (BjDAG-CPT at PLSC-2/LPAAT1-2 genomic


locus) DNA.
















Sum



Sample ID
C18:1
C18:2
C18:3a
C20:1
C22:1















S7211; T1181;
38.61
13.92
1.50
6.21
4.38


D4208-11; pH 7


S7211; T1181;
37.66
14.22
0.98
6.04
3.67


D4208-15; pH 7


S7211; T1181;
40.69
13.04
1.46
5.55
3.45


D4208-5; pH 7


S7211; T1181;
40.27
13.43
1.51
5.94
3.41


D4208-10; pH 7


S7211; T1181;
39.83
13.84
1.33
5.13
2.29


D4208-20; pH 7


S7211; pH 7
47.81
10.21
0.88
4.27
1.54


S7211; pH 7
47.96
10.11
0.90
4.28
1.55


S3150; pH 7
57.99
6.62
0.56
0.19
0.00


S3150; pH 5
57.70
7.08
0.54
0.11
0.00









Example 16
Expression of LPCAT in a High-Linolenic Transgenic Microalga

In this example we demonstrate using higher plant Lysophosphatidylcholine acyltransferase (LPCAT) genes to alter the content and composition of oils in transgenic algal strains for producing oils rich in linoleic and/or linolenic acids. A. thaliana LPCAT2 (AtLPCAT2 NP_176493.1) and B. rapa LPCAT (BrLPCAT) nucleic acid sequences were discussed herein in Examples 11 and 12. The sequences of both AtLPCAT1 and BrLPCAT were codon optimized for expression in our host and expressed in S3709. S3709 is described in Example 14. Our results show that expression of heterologous LPCAT enzymes S3709 more than doubles the C18:3 content in individual lines over the parents.


Construct Used for the Expression of the A. thaliana Lysophosphatidylcholine Acyltransferase-2 (AtLPCAT2) in Linolenic Strain S3709 [pSZ5297]:


In this example, transgenic lines from S3709, transformed with the construct pSZ5297, were generated which express Sacharomyces carlbergenesis MEL1 gene (allowing for their selection and growth on medium containing melibiose) and A. thaliana LPCAT2 (AtLPCAT2) gene targeted at endogenous PmLPAAT1-1 genomic region. Construct pSZ5297 introduced for expression in S3709 can be written as PLSC-2/LPAAT1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-AtLPCAT2-CvNR::PLSC-2/LPAAT1-1 3′ flank.


The sequence of the transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ BspQI, KpnI, SpeI, SnaBI, EcoRI, SpeI, AflII, SacI, BspQI, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the PLSC-2/LPAAT1-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 promoter driving the expression of the S. carlbergenesis MEL1 gene (encoding an alpha galactosidase enzyme activity required for catabolic conversion of Meliobise to glucose and galactose, thereby permitting the transformed strain to grow on melibiose) is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for MEL1 are indicated by uppercase italics, while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (NR) gene 3′ UTR is indicated by lowercase underlined text followed by an endogenous PMSAD2-v2 promoter of P. moriformis, indicated by boxed italicized text. The Initiator ATG and terminator TGA codons of the AtLPCAT2 are indicated by uppercase, bold italics, while the remainder of the gene is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is again indicated by lowercase underlined text followed by the S1920 PLSC-2/LPAAT1-1 genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ5297:



(SEQ ID NO: 137)





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta








gcaaccactgcagctacctggacatcctgctgcacatgtccgattccaccccgcctttgtggcgcgccagtcgacggccaagc







tgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat







gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt







gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc







tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg







gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct







caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg







gccggggtgcccgtccagcccgt

ggtacc
gcggtgagaatcgaaaatgcatcgtttctaggttcggagacggtcaattccctgctcc






ggcgaatctgtcggtcaagctggccagtggacaatgttgctatggcagcccgcgcacatgggcctcccgacgcggccatcaggagc





ccaaacagcgtgtcagggtatgtgaaactcaagaggtccctgctgggcactccggccccactccgggggcgggacgccaggcattc





gcggtcggtcccgcgcgacgagcgaaatgatgattcggttacgagaccaggacgtcgtcgaggtcgagaggcagcctcggacacg





tctcgctagggcaacgccccgagtccccgcgagggccgtaaacattgtttctgggtgtcggagtgggcattttgggcccgatccaatc





gcctcatgccgctctcgtctggtcctcacgttcgcgtacggcctggatcccggaaagggcggatgcacgtggtgttgccccgccattg





gcgcccacgtttcaaagtccccggccagaaatgcacaggaccggcccggctcgcacaggccatgctgaacgcccagatttcgaca





gcaacaccatctagaataatcgcaaccatccgcgttttgaacgaaacgaaacggcgctgtttagcatgtttccgacatcgtgggggccg





aagcatgctccggggggaggaaagcgtggcacagcggtagcccattctgtgccacacgccgacgaggaccaatccccggcatca







embedded image





gacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggac







aactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggac







atgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagt







tccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacac







gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt







acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac







aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg







gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgtgcccctgcgacggcgacgagtacgactgcaagt







acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac







gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa







gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca







accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc







cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg







accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc







gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc







tacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacg








embedded image





gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa







acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc







cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg







cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg







atgggaacacaaatggaaagctgtagaattcctggctcgggcctcgtgctggcactccctcccatgccgacaacctttctgctgtcacc






acgacccacgatgcaacgcgacacgacccggtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcatactccaat





cgtatccgtttgatttctgtgaaaactcgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgtttcgtcga





aaggccagcaaccccaaatcgcaggcgatccggagattgggatctgatccgagcttggaccagatcccccacgatgcggcacggg





aactgcatcgactcggcgcggaacccagcatcgtaaatgccagattggtgtccgataccttgatttgccatcagcgaaacaagacttca





gcagcgagcgtataggcgggcgtgctaccagggagcatacattgcccatactgtctggaccgcataccggcgcagagggtgagtt





gatggggaggcaggcatcgaaacgcgcgtgcatggtgtgtgtgtctgattcggctgcacaatttcaatagtcggatgggcgacggta





gaattgggtgagcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcctgctaac







embedded image





tggccgcctccatcggcgtgtccgtggccgtgctgcgcttcctgctgtgcttcgtggccaccatccccatctccttcctgtggcgcttca







tcccctcccgcctgggcaagcacatctactccgccgcctccggcgccttcctgtcctacctgtccttcggcttctcctccaacctgcac







ttcctggtgcccatgaccatcggctacgcctccatggccatctaccgccccctgtccggcttcatcaccttcttcctgggcttcgcctac







ctgatcggctgccacgtgttctacatgtccggcgacgcctggaaggagggcggcatcgactccaccggcgccctgatggtgctga







ccctgaaggtgatctcctgctccatcaactacaacgacggcatgctgaaggaggagggcctgcgcgaggcccagaagaagaa







ccgcctgatccagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctcccacttcgccggccccgtgacgagatg







aaggactacctggagtggaccgaggagaagggcatctgggccgtgtccgagaagggcaagcgcccctccccctacggcgcca







tgatccgcgccgtgaccaggccgccatctgcatggccctgtacctgtacctggtgccccagttccccctgacccgcttcaccgagc







ccgtgtaccaggagtggggcttcctgaagcgcttcggctaccagtacatggccggcttcaccgcccgctggaagtactacttcatct







ggtccatctccgaggcctccatcatcatctccggcctgggcttctccggctggaccgacgagacccagaccaaggccaagtggg







accgcgccaagaacgtggacatcctgggcgtggagctggccaagtccgccgtgcagatccccctgttctggaacatccaggtgtc







cacctggctgcgccactacgtgtacgagcgcatcgtgaagcccggcaagaaggccggcttatccagctgctggccacccagac







cgtgtccgccgtgtggcacggcctgtaccccggctacatcatcttcttcgtgcagtccgccctgatgatcgacggctccaaggccat







ctaccgctggcagcaggccatcccccccaagatggccatgctgcgcaacgtgctggtgctgatcaacttcctgtacaccgtggtgg







tgctgaactactcctccgtgggcttcatggtgctgtccctgcacgagaccctggtggccttcaagtccgtgtactacatcggcaccgt








embedded image






aggcagcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgagccgccacacttgctgccttgacctgtg








aatatccctgccgcattatcaaacagcctcagtgtgatgatcagtgtgtacgcgcattgcgagagctagctgcttgtgctatttgcgaat







accacccccagcatccccaccctcgatcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcc







tgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgct







gatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccgtcctccactaccacagggtatggtcgtgt







ggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagctaaaaatggtgccagcgaggatccagcg







ctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtggcccacgtgggagacgattccggccaagtggcac







atcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattctggatatg







acctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccacatccctcacaccctcgcccctgacactcgcagttg







cccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgg







gaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggac







accagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgtt







tgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccccgtc







gtcgacca

gaagagc








Constructs Used for the Expression of the BrLPCAT in S3709:


In addition to the A. thaliana LPCAT2 targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5297), B. rapa LPCAT targeted at PLSC-2/PmLPAAT1-1 locus (pSZ5299) was also constructed for expression in S3709. The construct can be described as:


pSZ5299 PLSC-2/LPAAT1-1::PmHXT1-ScarMEL1-CvNR:PmSAD2-2v2-BrLPCAT-CvNR::PLSC-2/LPAAT1-1


pSZ5299 has the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5297, differing only in the respective LPCAT gene. Relevant restriction sites in these constructs are also the same as in pSZ5296. FIGS. 5-4 indicate the sequence of PLSC-2/LPAAT1-2 5′ flank, PLSC-2/LPAAT1-2 3′ flank and AtLPCAT1, AtLPCAT2, BrLPCAT, BjLPCAT1, BjLPCAT2, LimdLPCAT1 and LimdLPCAT2 genes respectively. Relevant restriction sites as bold text are shown 5′-3′ respectively. The BrLPCAT sequence is shown below.










Nucleotide sequence of B.rapa LPCAT (BrLPCAT) contained in pSZ5299:



(SEQ ID NO: 138)





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image








To determine their impact on fatty acid profiles, both constructs described above were transformed independently into S3709. Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0. The resulting fatty acid profiles from a set of representative clones arising from transformations with pSZ5297 (D4158) and pSZ5299 (D4160) into S3709 are shown in Tables 97 and 98, respectively.


All the transgenic lines expressing any of the above described LPCAT genes resulted in significant increase in C18:3. The increase in C18:3 in S3709; T1228; D4158-10; pH7 was 1.8 fold (12%) while the increase was 1.76 fold in S3709; T1228; D4160-17; pH7 (11.75%) over the parent S3709 (6.66%). However, unlike S3709 parent, not all of the available C18:2 was converted into C18:3 most likely due to sub-optimal expression of BnFAD3 in S3709. The conversion could be further enhanced by either optimizing the B. napus FAD3 activity in S3709 or expressing a better FAD3 enzyme activity from another higher plant like Flax.









TABLE 97







Unsaturated fatty acid profile in S3709 and representative derivative


transgenic lines transformed with pSZ5297 (AtLPCAT2 at PLSC-2/


LPAAT1-1 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3 a
















S3709; pH 7
.86
8.85
.54
7.22
.42
.66


S3709; pH 7
.90
9.00
.54
6.89
.45
.81


S3709; T1228; D4158-10;
.12
1.92
.97
6.70
.78
2.00


pH 7


S3709; T1228; D4158-1;
.91
8.78
.67
9.68
.04
1.94


pH 7


S3709; T1228; D4158-19;
.21
8.62
.05
6.28
.46
1.47


pH 7


S3709; T1228; D4158-20;
.68
9.79
.09
7.92
.23
1.34


pH 7


S3709; T1228; D4158-11;
.63
0.32
.10
7.74
.19
0.95


pH 7
















TABLE 98







Unsaturated fatty acid profile in S3150, S7211 and representative


derivative transgenic lines transformed with pSZ5299 (BrLPCAT


at PLSC-2/LPAAT1-1 genomic locus) DNA.













Sample ID
14:0
16:0
18:0
18:1
18:2
18:3 a
















S3709; pH 7
.86
8.85
.54
7.22
.42
.66


S3709; pH 7
.90
9.00
.54
6.89
.45
.81


S3709; T1228; D4160-17;
.98
9.37
.74
9.80
.19
1.75


pH 7


S3709; T1228; D4160-40;
.41
8.90
.03
8.67
.62
1.54


pH 7


S3709; T1228; D4160-26;
.64
9.94
.11
8.14
.88
1.53


pH 7


S3709; T1228; D4160-18;
.57
0.03
.06
7.99
.47
1.26


pH 7


S3709; T1228; D4160-4;
.03
1.42
.92
7.43
.95
0.89


pH 7









The described embodiments of the invention are intended to be merely exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention. For example, where a knockout of a gene is called for, an equivalent result may be reached using knockdown techniques including mutation and expression of inhibitory substances such as RNAi or antisense.


Example 17
Algal Strain and Oil with Less than 4% Saturated Fat, Less than 1% C18:2, and Greater than 90% C18:1

In this example, we describe strains where we have modified the fatty acid profile to maximize the accumulation of oleic acid, and minimize the total saturates and polyunsaturates, by down-regulating endogenous FATA or FAD2 activity, over-expression of KASII or SAD2 genes. The resulting strains, including S8695, produce oils with >94% C18:1, <4% total saturates, and <1% C18:2. S8696, a clonal isolate prepared in the same manner as S8695 had essentially identical fatty acid profiles.


The strain, S8695 was created by three successive transformations. The high oleic base strain S7505 was first transformed with pSZ4769 (FAD2 5′1-PmHXT1V2-ScarMEL1-PmPGK-PmSAD2-2p-PmKASII-CvNR-PmSAD2-2P-PmSAD2-1-CvNR-FAD2 3′), in which a construct that disrupts a single copy of the FAD2 allele while simultaneously overexpressing the P. moriformis KASII and PmSAD2-1. The resulting strain S8045 produces 87.3% C18:1 with total saturates 7.3%, under same condition; S7505 produces 18.9% total saturates (Table 99).


S8045 was subsequently transformed with pSZ5173 (FATA1 3′::CrTUB2-ScSUC2-CvNR:CrTUB2-HpFAD2-CvNR::FATA1 5′), a construct disrupts FATA allele1 to further reduce C16:0, and express a hairpin FAD2 to reduce C18:2. One of the resulting strains, S8197, produces 0.5% C18:2 and the total saturates level drop to 4.9%, due to the reduction of C16:0 fatty acid. We also observed that although S8197 is stable for sucrose invertase marker, the sucrose hydrolysis activity of this strain is less than ideal.


Strain S8197 was then transformed with pSZ5563 (6SA::PmLDH1-AtThic-PmHSP90: CrTUB2-ScSUC2-PmPGH-CvNR:PmSAD2-2V2-OeSAD-CvNR::6SB), a construct to over express one more stearoyl-ACP desaturase gene from Olea europaea. Goal of this transformation is to further reduce total saturates level. To increase sucrose hydrolysis activity in strain S8197, we also introduced an additional copy of sucrose invertase gene in pSZ5563. The resulting strain S8695 produces 1.6% C18:0, as oppose to 2.1% in S8197, therefore, the saturates level in S8695 is around 0.5% less than its parental strain S8197.









TABLE 99







Comparison of fatty acid profiles between strains S7505,


S8045, S8197 and S8695 in shake-flask experiment.










Fatty Acids Area %













Strains
C16:0
C18:0
C18:1
C18:2
Total saturates %















S7505
12.5
5.6
75.5
4.8
18.9


S8045
4.3
2.1
87.3
3.9
7.3


S8197
2.3
2.1
92.3
0.6
4.9


S8695
2.4
1.6
92.7
0.5
4.5


S8695
1.5
1.5
94.1
0.4
3.6









Generation of Strain S8045:


Strain S8045 is one of the transformants generated from pSZ4769 (FAD2 5′1-PmHXT1V2-ScarMEL1-PmPGK-PmSAD2-2p-PmKASII-CvNR-PmSAD2-2P-PmSAD2-1-CvNR-FAD2 3′) transforming high oleic base strain S7505. The sequence of the pSZ4769 transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold and underlining and are 5′-3′ BspQ 1, Kpn I, Spe I, SnaBI, BamHI, AvrII, SpeI, ClaI, BamHI, SpeI, ClaI, Pad, BspQ I, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent FAD2-1 5′ genomic DNA that permit targeted integration at Fad2-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the P. moriformis HXT1 promoter driving the expression of the Saccharomyces carlbergensis MEL1 gene is indicated by boxed text. The initiator ATG and terminator TGA for MEL1 gene are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis PGK 3′ UTR is indicated by lowercase underlined text followed by the P. moriformis SAD2-2 promoter, indicated by boxed italics text. The Initiator ATG and terminator TGA codons of the PmKASII are indicated by uppercase, bold italics, while the remainder of the coding region is indicated by bold italics. The Chlorella protothecoides S106 stearoyl-ACP desaturase transit peptide is located between initiator ATG and the Asc I site. The Chlorella vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by another P. moriformis SAD2-2 promoter, indicated by boxed italics text. The Initiator ATG and terminator TGA codons of the PmSAD2-1 are indicated by uppercase, bold italics, while the remainder of the coding region is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by the FAD2-1 3′ genomic region indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ4769:



(SEQ ID NO: 139)





gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcgacccagt








cgctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattggtagcattata







attcggcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccagctccgggcgaccggg







ctccgtgtcgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggcccactgaataccgtgtcttggggccc







tacatgatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctgaatcctccaggcgggtttccccgaga







aagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgcctatgtagtcaccccccctcacccaattgtc







gccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaagaacacctctggggtttgctcacccgcgaggtcgac








embedded image









embedded image









embedded image









embedded image









embedded image








gcgttctacttcctgacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctg







ggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatg







ggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggatcctggtcgccgacgagcagaagttccccaacggc







atgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggc







tccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagt







tcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcuctactccctgtgcaact







ggggccaggacctgaccuctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgac







tcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggatccactgctccatcatgaacatcctgaacaaggccgcccccat







gggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggc







gcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccag







gcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggcca







gggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaac







acgaccctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtc







gacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggc







ctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggcat








embedded image








tactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaagggtggcacaagatggatcgcgaat







gtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgtccggcgcaatgtgatccagcggcgtgactctc







gcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcccgtcaactcacaagcctactctagctcccattgcgcact







cgggcgcccggctcgatcaatgttctgagcggagggcgaagcgtcaggaaatcgtctcggcagctggaagcgcatggaatgcggagcggagat








embedded image







acctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgcaacgttggcgaggtggcaggtgacaatgatcggtgga







embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








ctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa







acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttc







atatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgg







gctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggagaattc








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








cacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgt







ttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatcccccttccctcgtttcatatcgcttgcatccc







aaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattct







cctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctcctc







actcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgcacgcgcgactccgtcgcttcgcgggtggcacccccatt







gaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccacccacctgcacctctattattggtattattgacgcgggagcgg







gcgttgtactctacaacgtagcgtctctggttttcagctggctcccaccattgtaaattcttgctaaaatagtgcgtggttatgtgagaggtat







ggtgtaacagggcgtcagtcatgttggttttcgtgctgatctcgggcacaaggcgtcgtcgacgtgacgtgcccgtgatgagagcaatacc







gcgctcaaagccgacgcatggcctttactccgcactccaaacgactgtcgctcgtatttttcggatatctattttttaagagcgagcacagcg







ccgggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcaga







cggaggaacgcatggtgagtgcgcatcacaagatgcatgtcttgttgtctgtactataatgctagagcatcaccaggggcttagtcatcgca







cctgctttggtcattacagaaattgcacaagggcgtcctccgggatgaggagatgtaccagctcaagctggagcggcttcgagccaagca







ggagcgcggcgcatgacgacctacccacatgc

gaagagc








Generation of Strain S8197:


Strain S8197 is one of the transformants generated from pSZ5173 (FATA1 3′::CrTUB2-ScSUC2-CvNR:CrTUB2-HpFAD2-CvNR::FATA1 5′) transforming strain S8045. The sequence of the pSZ5173 transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold and underlining and are 5′-3′ BspQ I, Kpn I, AscI, MfeI, SpeI, SacI, BspQ I, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent FATA1 3′ genomic DNA that permit targeted integration at FATA1 locus via homologous recombination.


Proceeding in the 5′ to 3′ direction, the C. reinhardtii β-tubulin promoter driving the expression of the yeast sucrose invertase gene is indicated by boxed text. The initiator ATG and terminator TGA for invertase are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The C. vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by another C. reinhardtii β-tubulin promoter, indicated by boxed italics text. The hairpin FAD2 cassette is indicated by bold italics. The C. vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by the FATA1 5′ genomic region indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ5173:



(SEQ ID NO: 140)





gctcttc

acccaactcagataataccaatacccctccttctcctcctcatccattcagtacccccccccttctcttcccaaagcagcaagcgcg








tggcttacagaagaacaatcggcttccgccaaagtcgccgagcactgcccgacggcggcgcgcccagcagcccgcttggccacacaggc







aacgaatacattcaatagggggcctcgcagaatggaaggagcggtaaagggtacaggagcactgcgcacaaggggcctgtgcaggag







tgactgactgggcgggcagacggcgcaccgcgggcgcaggcaagcagggaagattgaagcggcagggaggaggatgctgattgagg







ggggcatcgcagtctctcttggacccgggataaggaagcaaatattcggccggttgggttgtgtgtgtgcacgttttcttcttcagagtcgtg








embedded image









embedded image









embedded image









embedded image









embedded image








acgagacgtccgaccgccccctggtgcatcttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacg







ccaagtggcacctgtacttccagtacaacccgaacgacaccgtctgggggacgcccttgttctggggccacgccacgtccgacgacctgacc







aactgggaggaccagcccatcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacct







ccggctcttcaacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcc







tacagcctggacggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtctt







ctggtacgagccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcct







ggaagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggaccc







cagcaagtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctcctcaaccagtacttcgtcggcagcttcaacggc







acccacttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgacccgacc







tacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccctggcgctcctccatgtccctcgtgc







gcaagttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagcgatcctgaacatcagcaacg







ccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgtccaacagcaccggcaccctgg







agttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctctggttcaagggcctggaggaccc







cgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggagaaccc







ctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaacgacctgtcctactacaaggtgtacggcttgctggaccaga







acatcctggagctgtacttcaacgacggcgacgtcgtgtccacaccaacacctacttcatgaccaccgggaacgccctgggctccgtgaacatga








embedded image








acactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgttt







gatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatccca







accgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctc







ctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaggatcccgcgtctcgaacaga






gcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttggttcttcgtcca





ttagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacgttcacagcctagg







embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








atagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagc







ctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcg







cttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccg







cctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagctgtagagc








tc
ttgttttccagaaggagttgctccttgagcctttcattctcagcctcgataacctccaaagccgctctaattgtggagggggacgaaccgaatgctg







cgtgaacgggaaggaggaggagaaagagtgagcagggagggattcagaaatgagaaatgagaggtgaaggaacgcatccctatgcc







cttgcaatggacagtgtttctggccaccgccaccaagacttcgtgtcctctgatcatcatgcgattgattacgttgaatgcgacggccggtca







gccccggacctccacgcaccggtgctcctccaggaagatgcgcttgtcctccgccatcttgcagggctcaagctgctcccaaaactcttggg







cgggttccggacggacggctaccgcgggtgcggccctgaccgccactgttcggaagcagcggcgctgcatgggcagcggccgctgcggt







gcgccacggaccgcatgatccaccggaaaagcgcacgcgctggagcgcgcagaggaccacagagaagcggaagagacgccagtact







ggcaagcaggctggtcggtgccatggcgcgctactaccctcgctatgactcgggtcctcggccggctggcggtgctgacaattcgtttagtg







gagcagcgactccattcagctaccagtcgaactcagtggcacagtgactcc

gctcttc








Generation of Strain S8695:


Strain S8695 is one of the transformants generated from pSZ5563 (6SA::PmLDH1-AtThic-PmHSP90: CrTUB2-ScSUC2-PmPGH-CvNR:PmSAD2-2V2-OeSAD-CvNR::6SB) transforming strain S8197. The sequence of the pSZ5563 transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, bold and underlining and are 5′-3′ BspQ I, SpeI, KpnI, AscI, MfeI, AvrII, EcoRV, SpeI, AscI, ClaI, SacI, BspQ I, respectively. BspQI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent 6SA genomic DNA that permits targeted integration at 6S locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the P. moriformis LDH1 promoter driving the expression of the Arabidopsis thaliana THIC gene is indicated by boxed text. The initiator ATG and terminator TGA for THIC gene are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis HSP90 3′ UTR is indicated by lowercase underlined text followed by C. reinhardtii β-tubulin promoter, indicated by boxed italics text. The initiator ATG and terminator TGA for invertase are indicated by uppercase, bold italics while the coding region is indicated in lowercase italics. The P. moriformis PGH 3′ UTR is indicated by lowercase underlined text followed by a C. vulgaris nitrate reductase 3′ UTR, indicated by lowercase underlined text. The P. moriformis SAD2-2 promoter, indicated by boxed italics text, is utilized to drive the expression of O. europaea SAD gene. The Initiator ATG and terminator TGA codons of the OeSAD are indicated by uppercase, bold italics, while the remainder of the coding region is indicated by bold italics. The C. protothecoides S106 stearoyl-ACP desaturase transit peptide is located between initiator ATG and the Asc I site. The C. vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by the 6SB genomic region indicated by bold, lowercase text.










Nucleotide sequence of transforming DNA contained in pSZ5563:



(SEQ ID NO: 141)





gctcttc

gccgccgccactcctgctcgagcgcgcccgcgcgtgcgccgccagcgccttggccttttcgccgcgctcgtgcgcgtcgctgatgt








ccatcaccaggtccatgaggtctgccttgcgccggctgagccactgcttcgtccgggcggccaagaggagcatgagggaggactcctggt







ccagggtcctgacgtggtcgcggctctgggagcgggccagcatcatctggctctgccgcaccgaggccgcctccaactggtcctccagca







gccgcagtcgccgccgaccctggcagaggaagacaggtgaggggggtatgaattgtacagaacaaccacgagccttgtctaggcagaa







tccctaccagtcatggctttacctggatgacggcctgcgaacagctgtccagcgaccctcgctgccgccgcttctcccgcacgcttctttcca







gcaccgtgatggcgcgagccagcgccgcacgctggcgctgcgcttcgccgatctgaggacagtcggggaactctgatcagtctaaacccc








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








caacaacaagaaccactccgcccgccccaagctgcccaactcctccctgctgcccggcttcgacgtggtggtccaggccgcggccacccgct







tcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaactccgagcgcgccaagcagcgcaagcacac







catcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttccccaagtccacgaaggagcacaaggaggtggtgcacga







ggagtccggccacgtcctgaaggtgcccttccgccgcgtgcacctgtccggcggcgagcccgccttcgacaactacgacacgtccggccccc







agaacgtcaacgcccacatcggcctggcgaagctgcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcag







atgtactacgcgaagcagggcatcatcacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgagg







tcgcgcggggccgcgccatcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaa







cgcgaacatcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacaccatc







atggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtccccatctacca







ggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgagcaggccgagcagggcgtgg







actacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcctgacgggcatcgtgtcccgcggcggctccatcc







acgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactgggacgacatcctggacatctgcaaccagtacgacgtcgc







cctgtccatcggcgacggcctgcgccccggctccatctacgacgccaacgacacggcccagttcgccgagctgctgacccagggcgagctg







acgcgccgcgcgtgggagaaggacgtgcaggtgatgaacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcaga







agcagctggagtggtgcaacgaggcgcccttctacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgc







catcggcgcggccaacatcggcgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacga







cgtgaaggcgggcgtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacg







cgctgtccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgagacgct







gcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggacatccgcaagtacg







ccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgaggagttcaacatcgccaagaagacg








embedded image








taa
cagacgaccttggcaggcgtcgggtagggaggtggtggtgatggcgtctcgatgccatcgcacgcatccaacgaccgtatacgcatcgtcca







atgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgcatcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctct







cttgcgcctctgtggtactggaaaatatcatcgaggcccgtttttttgctcccatttcctttccgctacatcttgaaagcaaacgacaaacgaagcagca







agcaaagagcacgaggacggtgaacaagtctgtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcagagtcagc








embedded image









embedded image









embedded image









embedded image








caagatcagcgcctccatgacgaacgagacgtccgaccgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacgg







cctgtggtacgacgagaaggacgccaagtggcacctgtacttccagtacaacccgaacgacaccgtctgggggacgccatgttctggggcc







acgccacgtccgacgacctgaccaactgggaggaccagcccatcgccatcgccccgaagcgcaacgactccggcgccuctccggctccat







ggtggtggactacaacaacacctccggcttcttcaacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccgg







agtccgaggagcagtacatctcctacagcctggacggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccac







ccagttccgcgacccgaaggtcttctggtacgagccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatct







actcctccgacgacctgaagtcctggaagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcg







aggtccccaccgagcaggaccccagcaagtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctcatcaaccagt







acttcgtcggcagcttcaacggcacccacttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcaga







ccttcttcaacaccgacccgacctacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccct







ggcgctcctccatgtccctcgtgcgcaagttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgag







ccgatcctgaacatcagcaacgccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgt







ccaacagcaccggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctct







ggttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaacagcaag







gtgaagttcgtgaaggagaacccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaacgacctgtcctactaca







aggtgtacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatgaccaccggga








embedded image








cgcccgcgcggcgcacctgacctgttctctcgagggcgcctgttctgccttgcgaaacaagcccctggagcatgcgtgcatgatcgtctctggcgc







cccgccgcgcggtttgtcgccctcgcgggcgccgcggccgcgggggcgcattgaaattgttgcaaaccccacctgacagattgagggcccagg







caggaaggcgttgagatggaggtacaggagtcaagtaactgaaagtttttatgataactaacaacaaagggtcgtttctggccagcgaatgacaag







aacaagattccacatttccgtgtagaggcttgccatcgaatgtgagcgggcgggccgcggacccgacaaaacccttacgacgtggtaagaaaaac







gtggcgggcactgtccctgtagcctgaagaccagcaggagacgatcggaagcatcacagcacaggatcccgcgtctcgaacagagcgcgcag






aggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaag





cgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacgttcacagcctagggcagcagc






agctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatc







aaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtt







tcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttg







ggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagct








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








ggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcga







gttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgc







tatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagca







ctgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctc
ttgttttccagaaggagttgctccttgagc







ctttcattctcagcctcgataacctccaaagccgctctaattgtggagggggttcgaatttaaaagcttggaatgttggttcgtgcgtctggaa







caagcccagacttgttgctcactgggaaaaggaccatcagctccaaaaaacttgccgctcaaaccgcgtacctctgctttcgcgcaatctg







ccctgttgaaatcgccaccacattcatattgtgacgcttgagcagtctgtaattgcctcagaatgtggaatcatctgccccctgtgcgagccc







atgccaggcatgtcgcgggcgaggacacccgccactcgtacagcagaccattatgctacctcacaatagttcataacagtgaccatatttc







tcgaagctccccaacgagcacctccatgctctgagtggccaccccccggccctggtgcttgcggagggcaggtcaaccggcatggggcta







ccgaaatccccgaccggatcccaccacccccgcgatgggaagaatctctccccgggatgtgggcccaccaccagcacaacctgctggcc







caggcgagcgtcaaaccataccacacaaatatccttggcatcggccctgaattccttctgccgctctgctacccggtgcttctgtccgaagc







aggggttgctagggatcgctccgagtccgcaaacccttgtcgcgtggcggggcttgttcgagctt

gaagagc

.







Example 18
Expression of Ketoacyl-CoA Reductase (KCR), Hydroxyacyl-CoA Hydratase (HACD) and Enoyl-CoA Reductase (ECR)

In this example, the outcome of expression of Ketoacyl-CoA Reductase (KCR), Hydroxyacyl-CoA Dehydratase (HACD) and Enoyl-CoA Reductase (ECR), enzymes involved in very long chain fatty acid biosynthesis, in P. moriformis (UTEX 1435) is disclosed. Specifically, we demonstrate that expression of heterologous ECR, HACD or KCR genes from our internally assembled Crambe abyssinica transcriptome in Solazyme erucic strains S7211 and S7708 (discussed above) results in increases in both eicosenoic (C20:1) and erucic (C22:1) acids. The preparation of S7211 and S7708 are discussed in the Examples above.


Higher plants and most other eukaryotes have a highly specialized elongation system for extension of fatty acids beyond C18. Each elongation reaction condenses two carbons at a time from malonyl-CoA to an acyl group, followed by reduction, dehydration and a final reduction reaction. FAE (or KCS), a membrane bound protein localized in the cytosol, catalyzes the condensation of malonyl-CoA with an acyl group. Additional components of the elongation system have not been characterized in greater detail in higher plants. Having previously demonstrated the function of a heterologous FAE in P. moroformis (WO2013/158908, incorporated by reference), this example discloses the expression of heterologous KCR, HACD and ECR enzyme activities in strains already expressing a functional FAE gene. Arabidopsis KCR, HACD and ECR protein sequences were used as baits to mine the corresponding full-length genes from P. moriformis as well as our internally assembled Crambe abbysinica, Alliaria petiolata, Erysimum allioni, Crambe cordifolia and Erysimum golden gem transcriptomes. KCR, HACD and ECR genes identified from the P. moriformis transcriptome were found to be fairly divergent from their higher plant homologs. The sequence alignment of P. moriformis and higher plant KCR, HACD and ECR protein sequences are shown in FIGS. 3-5. Previously, we identified Crambe abyssinica FAE (KCS) as one of the best heterologous FAEs in our host, and thus we decided to codon optimize and synthesize the KCR, HACD and ECR genes from C. abyssinica and express them in S7211 (Crambe abyssinica FAE strain) and S7708 (Lunaria annua FAE strain). The sequence identities between P. moriformis KCR, HACD and ECR and the respective plant sequences are shown in Tables 100-102 below.

















TABLE 100









A thaliana










A petiolata E . . .

ECR

C abyssinica . . .


C cordofolia . . .


E allioni ECR


P moriformis . . .


P moriformis . . .

























A petiolata ECR


96.1%
97.4%
97.7%
97.4%
47.6%
47.6%



A thaliana ECR

96.1%

96.8%
97.1%
97.4%
47.3%
47.3%



C abyssinica ECR

97.4%
96.8%

99.7%
98.1%
46.9%
46.9%



C cordofolia ECR

97.7%
97.1%
99.7%

98.4%
47.3%
47.3%



E allioni ECR

97.4%
97.4%
98.1%
98.4%

48.6%
48.6%



P moriformis ECR1

47.6%
47.3%
46.9%
47.3%
48.6%

97.0%



P moriformis ECR2

47.6%
47.3%
46.9%
47.3%
48.6%
97.0%

























TABLE 101








A


A


C


C


E allioni

E






petiolata H . . .


thaliana H . . .


abyssinica . . .


cordofolia . . .

HACD
golden ge . . .

E helvetium . . .


P moriformis . . .


























A petiolata


97.3%
94.6%
94.1%
99.1%
99.1%
 100%
40.3%


HACD



A thaliana

97.3%

94.6%
94.1%
96.4%
96.4%
97.3%
40.1%


HACD



C abyssinica

94.6%
94.6%

98.6%
93.7%
93.7%
94.6%
40.8%


HACD



C cordofolia

94.1%
94.1%
98.6%

93.2%
93.2%
94.1%
40.8%


HACD



E allioni

99.1%
96.4%
93.7%
93.2%

99.1%
99.1%
40.3%


HACD


E golden gem
99.1%
96.4%
93.7%
93.2%
99.1%

99.1%
39.9%


HACD



E helvetium

 100%
97.3%
94.6%
94.1%
99.1%
99.1%

40.3%


HACD



P moriformis

40.3%
40.1%
40.8%
40.8%
40.3%
39.9%
40.3%


HACD1


























TABLE 102








A petiolata


A thaliana


B napus


B napus


C


C


E allioni


P


Z mays




K . . .
KCR
KCR1
KCR2

abyssinica . . .


cordofolia . . .

KCR

moriformis . . .

KCR


























A petiolata


92.1%
86.2%
85.0%
85.6%
85.6%
88.4%
39.9%
54.3%


KCR



A thaliana

92.1%

89.3%
86.1%
89.4%
86.7%
91.9%
41.0%
53.9%


KCR



B napus

86.2%
89.3%

97.2%
89.7%
90.6%
89.7%
42.4%
55.3%


KCR1



B napus

85.0%
88.1%
97.2%

89.0%
89.7%
87.0%
42.2%
56.2%


KCR2



C abyssinica

85.6%
88.4%
89.7%
89.0%

96.6%
90.6%
41.5%
55.3%


KCR



C cordofolia

85.6%
68.7%
90.6%
89.7%
96.6%

91.5%
41.8%
55.9%


KCR1



E allioni

88.4%
91.5%
89.7%
87.0%
90.6%
91.5%

42.7%
55.0%


KCR



P moriformis

39.9%
41.0%
42.4%
42.7%
41.5%
41.8%
42.7%

41.2%


KCR1-1



Z mays

54.3%
53.9%
55.3%
56.2%
55.3%
55.9%
55.0%
41.2%


KCR










Construct Used for the Expression of the Crambe abyssinica Enoyl-CoA Reductase (CrhECR) in Erucic Strains S7211 and S7708—[pSZ5907]


Strains S7211 and S7708, transformed with the construct pSZ5907, were generated, which express Sacharomyces carlbergenesis MEL1 gene (allowing for their selection and growth on medium containing melibiose) and C. abyssinica ECR gene targeted at endogenous PmFAD2-1 genomic region. Construct pSZ5907 introduced for expression in S7211 and S7708 can be written as:

    • pSZ5907: FAD2-1-1 5′ flank::PmHXT1-ScarMEL1-CvNR:Buffer DNA:PmSAD2-2v2-CrhECR-CvNR::FAD2-1 3′ flank.


The sequence of the transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ NdeI, KpnI, SpeI, SnaBI, EcoRI, SpeI, XhoI, SacI and XbaI, respectively. NdeI and XbaI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the FAD2-1 locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 v2 promoter driving the expression of the S. carlbergenesis MEL1 gene (encoding an alpha galactosidase enzyme activity required for catabolic conversion of Melibise to glucose and galactose, thereby permitting the transformed strain to grow on melibiose) is indicated by lowercase, boxed text. Uppercase italics indicate the initiator ATG and terminator TGA for MEL1, while the coding region is indicated with lowercase italics. The P. moriformis Phosphoglucokinase (PGK) gene 3′ UTR is indicated by lowercase underlined text followed by buffer/spacer DNA sequence indicated by lowercase bold italic text Immediately following the buffer DNA is an endogenous SAD2-2 promoter of P. moriformis, indicated by boxed italicized text. Uppercase, bold italics indicate the Initiator ATG and terminator TGA codons of the CrhECR, while the lowercase italics indicate the remainder of the gene. The C. vulgaris nitrate reductase 3′ UTR is indicated by lowercase underlined text followed by the S3150 FAD2-1 genomic region indicated by bold, lowercase text. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ5907:



(SEQ ID NO: 142).





catatg
cggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgccattcgccattcaggctgcgcaactgttgg







gagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaaggggatgtgctgcaaggcgattaagttgggtaacgcc





agggttttcccagtcacgacgttgtaaaacgacggccagtgaattgatgatgctcttcgcgaaggtcattttccagaacaacgacca






tggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcgacccagtcgctcgcaggagaacgcggcaactgcc







gagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattggtagcattataattcggcttccgcgctgtttat







gggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccagctccgggcgaccgggctccgtgtcgccg







ggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggcccactgaataccgtgtcttggggccctacat







gatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctgaatcctccaggcgggtttccccga







gaaagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgcctatgtagtcaccccccctc







acccaattgtcgccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaagaacacctctggggtttg








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcg







cctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtaca







tcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatggg







ccacgtcgccgaccacctgcacaacaactcttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccg







gctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaac







aagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccat







cttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgt







cacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctc







catcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggag







gtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggc







gcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggca







tccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccc







tggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcttctt







cgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggc







gtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagagtcctacaaggacggcctgtcca







agaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggc








embedded image





tctttcagactttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaagggtggc







acaagatggatcgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgtccggc







gcaatgtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcccgt







caactcacaagcctactctagctcccattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaagcgtcaggaa








embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gtccggcagggaggtgctcaaggcccccctggacctgccggactccgccacggtgcgctgacctccaggaggccttccacaagc







gcgcgaagaagttttatcccagccgccagcggctgaccctgccggtggcccccggctccaaggacaagccggtggtgctgaact







cgaagaagagcctcaaggagtactgcgacggtaacaccgactcgctcacggtggtgtttaaggacttgggcgcgcaggtctcct







accgcaccctgttcttcttcgagtaactgggccccctgctgatctaccccgtcttctactacttccctgtctataagtacctgggctacgg







cgaggaccgcgtcatccacccggtgcagacgtatgccatgtactactggtgcttccactacttttaagcgattatggagacgttcttc







gtgcaccgcttcagccacgccacctcgcccatcggtaacgtcttccgcaactgcgcctactactggacgttcggcgcctacatcgct







tactacgtgaaccaccccctgtacaccccctgtgagcgacttgcagatgaagatcggcttcgggttcggcctcgtgtttcaggtggcg







aacttctactgccacatcctgctgaagaatctgcgcgacccgaacggcagcggcggttaccagatcccgcgcggcttcctgttcaa







catcgtcacgtgcgcgaactacaccacggagatctaccagtggctcggctttaacatcgccacgcagaccatcgccggctacgtg







ttcctcgcggtggccgccctgattatgaccaactgggccctcggcaagcactcgcggctccggaagatcttcgacggcaaggacg








embedded image





cacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcc







tcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgttt







catatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagc







cttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatggga







acacaaatggaagctgtagagctcctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgcacgc







gcgactccgtcgcttcgcgggtggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccac







ccacctgcacctctattattggtattattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttcagctggctc







ccaccattgtaaattcttgctaaaatagtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggttttgtgc







tgatctcgggcacaaggcgtcgtcgacgtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcctttac







tccgcactccaaacgactgtcgctcgtatttttcggatatctattttttaagagcgagcacagcgccgggcatgggcctgaaagg







cctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgagacggaggaacgcat







ggtgagtgcgcatcacaagatgcatgtcttgttgtctgtactataatgctagagcatcaccaggggcttagtcatcgcacctgct







ttggtcattacagaaattgcacaagggcgtcctccgggatgaggagatgtaccagctcaagctggagcggcttcgagccaag







caggagcgcggcgcatgacgacctacccacatgcgaagagcctctaga








Constructs Used for the Expression of the Crambe abyssinica Hydroxyacyl-CoA Hydratase (HACD) and Ketoacyl-CoA Reductase (KCR) Genes in S7211 and S7708


In addition to the C. abyssinica KCR targeted at FAD2-1 locus (pSZ5909), C. abyssinica ECR targeted at FAD2-1 locus (pSZ5907) and C. abyssinica HACD targeted at FAD2-1 locus (pSZ5908) have been constructed for expression in S7211 and S7708. These constructs can be described as:

    • pSZ5908—FAD2-1-1 5′::PmHXT1-ScarMEL1-CvNR:Buffer DNA:PmSAD2-2v2-CrhHACD-CvNR::FAD2-1 3′
    • pSZ5909—FAD2-1-1 5 ‘::PmHXT1-ScarMEL1-CvNR:Buffer DNA:PmSAD2-2v2-CrhKCR-CvNR::FAD2-1 3’


Both of these constructs have the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5907, except that CrhECR was replaced with CrHACD or CrKCR, respectively. Relevant restriction sites in these constructs are also the same as in pSZ5907. The nucleotide sequences of CrhHACD and CrhKCR are shown below. Relevant restriction sites, as bold text, are shown 5′-3′ respectively.










CrhHACD gene in pSZ5908:



(SEQ ID NO: 143)





embedded image





ctgtactttgccgtcaagacgctcaaggagtccggccacgagaacgtgtacgacgccgtggagaagcccctccagctggcgcaaac





cgccgcggtcctggagatcctccacggcctggtcggcctcgtcaggagcccggtctcggccaccctgccgcagatcgggagccgc





ctctttctgacctggggcattctgtattccttcccggaggtccagagccactttctggtgacctccctcgtgatcagctggtcgatcacgg





aaatcatccgctacagcttcttcggcctgaaggaggcgctgggcttcgcgcccagctggcacctgtggctccgctattcgagctttctg





gtgctctaccccaccggcatcacctccgaggtcggcctcatctacctggccctgccgcacatcaagacgtcggagatgtactccgtcc





gcatgcccaacaccttgaacttttccttcgactttttctacgccacgattctcgtcctcgcgatctacgtccccggttcgccccacatgtacc







embedded image




CrhKCR gene in pSZ5909:


(SEQ ID NO: 144)





embedded image





cgacgttctccctcctgaagagcctgtacatctacttcctgcgccccggcaagaacctccgccgctacgggtcctgggccattatcacc





ggcccgaccgacggcatcggcaaggcctttgcgttccagctggcccacaagggcctgaacctggtgctggtggcgcgcaacccgg





acaagctgaaggacgtctccgacagcatcaggtccaagcatagcaacgtgcagatcaagacggtgatcatggactttagcggcgac





gttgacgacggcgtccgccgcatcaaggagaccatcgaggggctggaggtgggcatcctgatcaacaatgccggcatgtcctaccc





gtacgcgaagtactttcacgaggtcgacgaggagctcgtcaacggcctcatcaaaatcaacgtcgagggcacgaccaaggtgaccc





aggccgtgctgccgggcatgctggagcgcaagcgcggcgccatcgtcaacatgggcagcggcgcggccgccctgatcccgtcgt





accccactacagcgtgtatgccggcgcgaagacgtacgtggaccagttcacccggtgcctgcacgtcgagtacaagaagagcggc





attgacgtccagtgccaggtcccgctctacgtggccacgaagatgacgaagatccgccgcgcctccacctggtcgcctcccccgag





ggctacgccaaggccgccctgcggttcgtggggtacgaggcccggtgcaccccctactggccgcacgccctgatgggctacgtcgt





ctccgccctgccccagtccgtgacgagtcatcaacatcaagcgctgcctgcagatccgcaagaagggcatgctgaaggattcgcgg







embedded image









Expression of CrhKCR Gene in pSZ5909


To determine their impact on fatty acid profiles, all the three constructs described above were transformed independently into either S7211 or S7708. Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0. Strains S7211 and S7708 express a FAE, from C. abyssinica or L. annua respectively, under the control of pH regulated, AMT03 (Ammonium transporter 03) promoter. Thus, both parental (S7211 and S7708) and the resulting KCR, ECR and HACD transformed strains require growth at pH 7.0 to allow for maximal fatty acid elongase (FAE) gene expression. The resulting profiles from a set of representative clones arising from transformations with pSZ5907 (D4905), pSZ5908 (D4906) and pSZ5909 (D4907) into S7708 and S7211 are shown in Tables 103-105, respectively. In both S7708 and S7211, expression of CrhECR, CrhHACD or CrhKCR leads to an increase in both C20:1 and C22:1 content.









TABLE 103







Fatty acid profiles of S7708 and S7211 strains transformed


with D4905 (CrhECR).












Sample ID
C18:1
C18:2
C18:3α
C20:1
C22:1















S7708; pH 7
49.41
8.89
0.64
2.90
1.53


S7211; pH 7
46.64
11.16
0.79
4.76
1.84


S7708; T1379;
43.04
11.15
1.00
3.50
2.71


D4905-9; pH 7


S7708; T1379;
52.86
8.21
0.73
3.34
1.95


D4905-35; pH 7


S7708; T1379;
52.75
8.19
0.74
3.31
1.93


D4905-31; pH 7


S7708; T1379;
52.72
8.18
0.73
3.31
1.89


D4905-25; pH 7


S7708; T1379;
47.35
9.45
0.74
3.06
1.83


D4905-10; pH 7


S7211; T1380;
47.28
9.20
0.78
5.26
2.06


D4905-4; pH 7


S7211; T1380;
47.53
10.42
0.76
4.97
1.91


D4905-3; pH 7


S7211; T1380;
48.36
8.75
0.74
5.01
1.83


D4905-5; pH 7


S7211; T1380;
47.43
8.52
0.77
4.88
1.75


D4905-1; pH 7
















TABLE 104







Fatty acid profiles of S7708 and S7211 strains transformed


with D4906 (CrhHACD)












Sample ID
C18:1
C18:2
C18:3α
C20:1
C22:1















S7708; pH 7
49.41
8.89
0.64
2.90
1.53


S7211; pH 7
46.64
11.16
0.79
4.76
1.84


S7708; T1379;
46.83
8.68
0.65
3.87
2.20


D4906-2; pH 7


S7708; T1379;
50.82
6.78
0.60
3.82
2.00


D4906-7; pH 7


S7708; T1379;
47.88
8.64
0.61
3.56
1.99


D4906-4; pH 7


S7708; T1379;
49.99
6.97
0.64
3.70
1.97


D4906-8; pH 7


S7708; T1379;
49.83
6.96
0.62
3.62
1.91


D4906-11; pH 7


S7211; T1380;
45.58
8.95
0.81
5.87
2.40


D4906-2; pH 7


S7211; T1380;
45.73
8.90
0.80
5.72
2.28


D4906-1; pH 7


S7211; T1380;
46.91
10.22
0.80
5.02
1.90


D4906-3; pH 7


S7211; T1380;
46.68
10.61
0.77
4.77
1.77


D4906-4; pH 7
















TABLE 105







Fatty acid profiles of S7708 and S7211 strains transformed


with D4907 (CrhKCR).












Sample ID
C18:1
C18:2
C18:3α
C20:1
C22:1















S7708; pH 7
49.41
8.89
0.64
2.90
1.53


S7211; pH 7
46.64
11.16
0.79
4.76
1.84


S7708; T1379;
46.11
9.62
0.62
3.93
2.86


D4907-7; pH 7


S7708; T1379;
47.52
9.09
0.62
4.07
2.60


D4907-6; pH 7


S7708; T1379;
49.27
6.82
0.62
4.15
2.57


D4907-2; pH 7


S7708; T1379;
49.45
6.75
0.59
4.08
2.47


D4907-4; pH 7


S7708; T1379;
48.05
8.99
0.62
3.81
2.32


D4907-9; pH 7


S7211; T1380;
45.61
8.94
0.85
5.91
2.66


D4907-7; pH 7


S7211; T1380;
46.73
8.71
0.79
5.90
2.46


D4907-6; pH 7


S7211; T1380;
44.94
10.98
0.81
5.49
2.44


D4907-3; pH 7


S7211; T1380;
47.54
8.73
0.75
5.85
2.42


D4907-2; pH 7


S7211; T1380;
46.58
9.11
0.76
5.76
2.41


D4907-4; pH 7









Example 19
Expression of Acetyl-CoA Carboxylase (ACCase)

In this example, we demonstrate that upregulating cytosolic homomeric Acetyl-CoA carboxylase (ACCase) in erucic strains S7708 and S8414 results in a three or more fold increase in C22:1 content in the resulting transgenic strains. S7708 is a strain that expresses a Lunaria annua fatty acid elongase as discussed above and prepared according to co-owned WO2013/158938. Strain S8414 is an isolate that expresses a Crambe hispanica fatty acid elongase/3-ketoacyl-CoA synthase (FAE/KCS) and is recombinantly identical to S7211 (Example 10). Extension of fatty acids beyond C18, in microalgae, requires the coordinated action of four key cytosolic/ER enzymes—a Ketoacyl Co-A synthase (KCS aka fatty acid elongase, FAE), a Ketoacyl-CoA Reductase (KCR), a Hydroxyacyl-CoA Hydratase (HACD) and an Enoyl-CoA Reductase (ECR). Each elongation reaction condenses two carbons at a time from malonyl-CoA to an acyl group, followed by reduction, dehydration and a final reduction reaction. KCS (or FAE) catalyzes the condensation of malonyl-CoA with an acyl primer. Malonyl-CoA is generated through irreversible carboxylation of cytosolic acetyl-CoA by the action of multidomain cytosolic homomeric ACCase. For efficient and sustained fatty acid elongation, unavailability of ample malonyl-CoA can become a bottleneck. In the microalgal cell, malonyl-CoA is also used for the production of falvonoids, anthocyanins, malonated D-aminoacids and malonyl-amino cyclopropane-carboxylic acid, which further decreases its availability for fatty acid elongation. Using a bioinformatics approach we identified both alleles for ACCase in P. moriformis. PmACCase1-1 encodes a 2250 amino acid protein while PmACCase1-2 encodes a 2540 amino acid protein. The pairwise protein alignment of PmACCase1-1 and PmACCase1-2 is shown in FIGS. 6A and 6B. Given the large size of the protein we decided to hijack the endogenous ACCAse promoter with our strong pH regulatable Ammonia transport 3 (PmAMT03) promoter in S7708 and S8414. The “promoter hijack” was accomplished by inserting the AMT03 promoter between the endogenous PmACCCase1-1 or PmACCase 1-2 promoter and the initiation codon of the PmACCase1-1 or PmACCase1-2 protein in both S7708 and S8414, thus disrupting the endogenous promoter and replacing it with the Prototheca moriformis AMT03 promoter. This results in the expression the P. moriformis ACCase driven by the AMT03 promoter rather than the endogenous promoter. In S7708 transgenics both the LaFAE and the hijacked ACCase are driven by AMT03 promoter. The AMT03 promoter is a promoter that drives expression at pH 7 and at pH 5 expression is minimal. In S8414 the CrhFAE is driven by the PmSAD2-2v2 promoter, which is not a pH regulated promoter, and thus the effect of PmACCase can be easily monitored by running the lipid assays at either pH7. The amino acid alignment of P. moriformis ACCase1-1 and P. moriformis ACCase 1-2 is shown in FIGS. 6A and 6B. The sequence identity between P. moriformis ACCase 1-1 and a-2 is 92.3%.


Construct Used for the Upregulation of P. Moriformis Acetyl-CoA Carboxylase (PmACCase) in Erucic Strain and S7708 is pSZ5391.


Strain S7708, transformed with the construct pSZ5391, was generated, which expresses Sacharomyces carlbergenesis MEL1 gene (allowing for their selection and growth on medium containing melibiose) and upregulated P. morformis ACCase driven by a PmAMT03 promoter. Construct pSZ5391 introduced for expression in S7708 can be written as:


PmACCase1-1::PmHXT1v2-ScarMEL1-PmPGK:BDNA:PmAMT03::PmACCase1-1.


The sequence of the transforming DNA is provided below. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ BsaBI, KpnI, SpeI, SnaBI, BamHI, EcoRI, SpeI and SbfI respectively. BasBI and SbfI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the ACCase locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis Hexose Transporter 1 v2 promoter driving the expression of the S. carlbergenesis MEL1 gene (encoding an alpha galactosidase enzyme activity required for catabolic conversion of Meliobise to glucose and galactose, thereby permitting the transformed strain to grow on melibiose) is indicated by lowercase, boxed text. Uppercase italics indicate the initiator ATG and terminator TGA for MEL1, while the coding region is indicated with lowercase italics. The P. moriformis Phosphoglucokinase (PGK) gene 3′ UTR is indicated by lowercase underlined text followed by buffer/spacer DNA sequence indicated by lowercase bold italic text. Immediately following the buffer DNA is an endogenous AMT03 promoter of P. moriformis, indicated by boxed lowercase text followed by the PmACCCase1-1 genomic region indicated by bold, lowercase text. Uppercase, bold italics indicate the Initiator ATG of the endogenous PmACCase1-1 gene targeted for upregulation by preceding PmAMT03 promoter. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ5391



transformed into S7708:


(SEQ ID NO: 145)





gatttctatc

atcaagtttctcatatgtttcacgcgttgctcacaacaccggcaaatgcgttgttgttccctgtttttacaccttgcc





agagcctggtcaaagcttgacagtttgaccaaattcaggtggcctcatctctctcgcactgatagacattgcagatttggaaga




cccagtcagtacactacatgcacagccgtttgctcctgcgccatgaacttgccacttttgtgcgccggtcgggggtgatagctcg




gcagccgccgatcccaaaggtcccgcggcccaggggcacgagaacccccgacacgattaaatagccaaaatcagttagaac




ggcacctccaccctacccgaatctgacagggtcatcaagcgcgcgaaacaacggcgagggtgcgttcgggaagcgcgcgta




gttgacgcaagaagcctgggtcaggctgggagggccgcgagaagatcgcttcctgccgagtctgcacccacgcctcgagcgc




accgtccgcgaacaaccaacccctttgcgcgagccctgacattctttcaattgccaaggatgcacatgtgacacgtatagccat




tcggctttgtttgtgcctgcttgactcgcgtcatttaattgatttgtgccggtgagccgggagtcggccactcgtctccgagccgc




agtcccggcgccagtcccccggcctctgatctgggtccggaagggttggtataggagcggtctcggctatctgaagcccattac





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ATG
ttcgcgttctacttcctgacggcctgcatctccctgaagggcgtgtttggcgtctccccctcctacaacggcctgggcctgacg




ccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctcc




gacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctgg




tcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactc




ctccgcgggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaacc




gcgtggactacctgaagtacgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggcc




atgtccgacgccagaacaagacgggccgccccatatctactccctgtgcaactggggccaggacctgaccttctactggggctc




cggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcga




cgagtacgactgcaagtacgccggcttccactgaccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgg




gcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctc




catgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccagg




cgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtaggcgctactacgtgtccgacacggacgagt




acggccagggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtg




tcccgccccatgaacacgaccaggaggagatcttatcgactccaacctgggctccaagaagagacctccacctgggacatct




acgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtac




aacgccaccgagcagtcctacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccc





embedded image





ttctgaccggcgctgatgtggcgcggacgccgtcgtactcatcagacatactcttgaggaattgaaccatctcgcttgctggcatgta




aacattggcgcaattaattgtgtgatgaagaaagggtggcacaagatggatcgcgaatgtacgagatcgacaacgatggtgattgttat




gaggggccaaacctggctcaatcttgtcgcatgtccggcgcaatgtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgca




ccgggtcgctttgattaaaactgatcgcattgccatcccgtcaactcacaagcctactctagctcccattgcgcactcgggcgcccggct




cgatcaatgttctgagcggagggcgaagcgtcaggaaatcgtctcggcagctggaagcgcatggaatgcggagcggagatcgaat





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ccccggaagccccgttcgacagcgagggttcctcgctggcgcccgacaatgggtccagcaagcccaccaagctgagctccac




ccggtccttgctgtccatctcctaccgggagctctcgcgttccaagtgcgtgcaggggcgggggcaccttttgttggtgttgtttg




ggcgggcctcagcactggggtggaggaagaatgcgtgagtgtgcttgcacacctcggcggtttaagatgtaatgcgccaattt




cttgctgatgcattcctagacacaaagagtctctcattcgagtctcatcgcggttgtgcgctcctcactccgtgcagccagcagtc




gcggtcgttcacttcgcggggggtgccagggaggacggacgtttcggatgagctggagcgccgcatcctcgagtggcagggc




gatcgcgccatccacaggtcggttgggtgggaaagggggggcgttggggtcaggtcagaagtcgtgaagttacaggcctgca




tttgcacatcctgcgcgcgcctctggccgcttgtcttaagacccttgcactcgcttcctcatgaacccccatgaactccctcctgc




accccacagcgtgctggtggccaacaacggtctggcggcggtcaagttcatccggtcgatccggtcgtggtcgtacaagacgt




ttgggaacgagcgtgcggtgaagctgatcgcgatggcgacgcccgaggacatgcgcgcggacgcggagcacatccgcatgg




cggaccagtttgtggaggtccccggcggcaagaacgtgcagaactacgccaacgtgggcctgatcacctcggtggcggtgcg




caccggggtggacgcggtg

cctgcagg

.







In addition to pSZ5931 described above, constructs hijacking PmACCase1-2 promoter with PmAMT03 for transformation into S7708 or S8414 have also been constructed. These constructs are described as:


pSZ5932—PmACCase1-2::PmHXT1v2-ScarMEL1-PmPGK-BDNA:BDNA:PmAMT03::PmACCase1-2


pSZ6106—PmACCase1-1::PmLDH1v2p-AtTHIC(L337M)-PmHSP90-BDNA:PmAMT03::PmACCase1-1


pSZ6107—PmACCase1-2::PmLDH1v2p-AtTHIC(L337M)-PmHSP90-BDNA:PmAMT03::PmACCase1-2


pSZ5932 has the same vector backbone; selectable marker, promoters, and 3′ utr as pSZ5931, differing only in PmACCase flanks used for integration. While pSZ5931 is targeted to PmACCase1-1, pSZ5932 is targeted to PmACCase1-2 genomic locus. Nucleotide sequences of PmACCase1-2 5′ flank and PmACCase1-2 3′ flank and are shown below. Relevant restriction sites as underlined bold text are shown 5′-3′ respectively.









Nucleotide sequence of PmACCase 5′ flank contained


in plasmid pSZ5392 and pSZ6107 transformed into


S7708 and S8414, respectively:


(SEQ ID NO: 146)



Gattcatatcatcaaatttcgcatatgtttcacgagttgctcacaacatc






ggcaaatgcgttgttgttccctgtttttacaccttgccagggcctggtca





aagcttgacagtttgaccaaattcaggtggcctcatctctttcgcactga





tagacattgcagatttggaagacccagccagtacattacatgcacagcca





tttgctcctgcaccatgaacttgccacttttgtgcgccggtcgggggtga





tagctcggcagccgccgatcccaaaggtcccgcggcccaggggcacgaga





ccccccgacacgattaaatagccaaaatcagtcagaacggcacctccacc





ctacccgaatctgacaaggtcatcaaacgcgcgaaacaacggcgagggtg





cgttcgggaagcgcgcgtagttgacgcaagaagcctgggtcaggctggag





ggccgcgagaagatcgcttcctgccgagtctgcacccacgcctcgagcgc





accgtccgcgaacaaccaaccccttttcgcgagccctggcattctttcaa





ttgccaaggatgcacatgtgacacgtatagccattcggctttgtttgtgc





ctgcttgactcgcgccatttaattgttttgtgccggtgagccgggagtcg





gccactcgtctccgagccgcagtcccggcgccagtcccccggcctctgat





ctgggtccggaagggttggtataggagcagtctcggctatctgaagcccg





ttaccagacactttggccggctgattccaggcagccgtgtactcttgcgc





agtcggtacc.





Nucleotide sequence of PmACCase 3′ flank contained


in plasmid pSZ5392 and pSZ6107 transformed into


S7708 and S8414, respectively:


(SEQ ID NO: 147)



actagt
ATGacggtggccaatcccccggaagccccgttcgacagcgaggg






ttcctcgctggcgcccgacaatgggtccagcaagcccaccaagctgagct





ccacccggtccctgctgtccatctcctaccgggagctctcgcgttccaag





tgcgtacaggggcgagggcaccttttgttggtgttgtttgggcgggcctc





ggtactgggaggaggaggaatgcgtgcacacctctgcggttttagatgca





atgcgacaagtgcctgctgatgcattttctagacatgaagcatctcgtat





tcgagtctcaacgcgggtgtgcgctcctcactccgtgcagccagcagtcg





cggtcgttcacttcgcggggggtgccagggaggacggacgtttcggatga





gctggagcgccgcatcctcgagtggcagggcgatcgcgccatccacaggt





cggttgggtgggaaagggggagtaccggggtcaggtcagaagtcgtgcat





ttacaggcatgcatctgcacatcgtgcgcacgcgcacgtctttggccgct





tgtctcaagactcttgcactcgtttcctcatgcaccataatcaattccct





cccccctcgcaaactcacagcgtgctggtggccaacaacggtctggcggc





ggtcaagttcatccggtcgatccggtcgtggtcgtacaagacgtttggga





acgagcgcgcggtgaagctgattgcgatggcgacgcccgagggcatgcgc





gcggacgcggagcacatccgcatggcggaccagtttgtggaggtccccgg





cggcaagaacgtgcagaactacgccaacgtgggcctgatcacctcggtgg





cggtgcgcaccggggtggacgcggtgcctgcagg.






pSZ6106 is identical to pSZ5931, while pSZ6107 is identical to pSZ5932 except for the selectable marker module. While both pSZ5931 and pSZ5932 use S. carlbergensis MEL1 driven by PmHXT1v2 promoter and PmPGK as 3′ UTR as a selectable marker module, pSZ5073 and pSZ5074 uses Arabidopsis thaliana THiC driven by pmLDH1 promoter and PmHSP90 3′ UTR instead. Nucleotide sequence of the PmLDH1 promoter, AtThiC gene and PmHSP90 3′ UTR contained in pSZ6106 and pSZ6107 is shown below.










Nucleotide sequence of PmLDH1 promoter (boxed lowercase text), CpSAD transit



peptide (underlined lowercase text) and AtThiC-L337M (lowercase italic text) gene with and


PmHSP90 3' UTR (lowercase text) contained in pSZ6106 and pSZ6107 transformed into


S8414. Rcstriction sites in 5′ -3′ direction shown in bold underlined text are KpnI, NheI,


AscI, SnaBI and BamHI, respectively:


(SEQ ID NO: 148)





embedded image







embedded image






embedded image






embedded image






embedded image









ctccgggccccggcgcccagcgaggcccctccccgtgcgcg
ggcgcgcc

gtccaggccgcggccacccgcttcaagaaggag




acgacgaccacccgcgccacgctgacgttcgacccccccacgaccaactccgagcgcgccaagcagcgcaagcacaccatc




gacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttccccaagtccacgaaggagcacaaggaggtggtgc




acgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcacctgtccggcggcgagcccgccttcgacaactacgaca




cgtccggcccccagaacgtcaacgcccacatcggcctggcgaagctgcgcaaggagtggatcgaccgccgcgagaagctggg




cacgccccgctacacgcagatgtactacgcgaagcagggcatcatcacggaggagatgctactgcgcgacgcgcgagaag




ctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgccatcatcccctccaacaagaagcacctggagctggagcc




catgatcgtgggccgcaagttcctggtgaaggtgaacgcgaacatcggcaactccgccgtggcctcctccatcgaggaggaggt




ctacaaggtgcagtgggccaccatgtggggcgccgacaccatcatggacctgtccacgggccgccacatccacgagacgcgcg




agtggatcctgcgcaactccgcggtccccgtgggcaccgtccccatctaccaggcgctggagaaggtggacggcatcgcggag




aacctgaactgggaggtgttccgcgagacgctgatcgagcaggccgagcagggcgtggactacttcacgatccacgcgggcgt




gctgctgcgctacatccccctgaccgccaagcgcatgacgggcatcgtgtcccgcggcggctccatccacgcgaagtggtgcctg




gcctaccacaaggagaacttcgcctacgagcactgggacgacatcctggacatctgcaaccagtacgacgtcgccctgtccatc




ggcgacggcctgcgccccggctccatctacgacgccaacgacacggcccagttcgccgagctgctgacccagggcgagctgac




gcgccgcgcgtgggagaaggacgtgcaggtgatgaacgagggccccggccacgtgcccatgcacaagatccccgagaacat




gcagaagcagctggagtggtgcaacgaggcgcccttctacaccctgggccccctgacgaccgacatcgcgcccggctacgacc




acatcacctccgccatcggcgcggccaacatcggcgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgg




gcctgcccaaccgcgacgacgtgaaggcgggcgtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagca




cccccacgcccaggcgtgggacgacgcgctgtccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggac




cccatgacggcgatgtccttccacgacgagacgctgcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggcccc




aagttctgctccatgaagatcacggaggacatccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatcc




gccagggcatggacgccatgtccgaggagttcaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcg





embedded image




ggtagggaggtggtggtgatggcgtctcgatgccatcgcacgcatccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctc


tctgcctccgttttgtgagatgtctcaggcttggtgcatcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctc


tgtggtactggaaaatatcatcgaggcccgatattgctcccataccatccgctacatcttgaaagcaaacgacaaacgaagcagcaa


gcaaagagcacgaggacggtgaacaagtctgtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcag


agtcagctgccttacgtgacggatcc.






To determine their impact on fatty acid profiles, the constructs described above were transformed independently into S7708 (pSZ5391; D4383 and pSZ5392; D4384) or S8414 (pSZ6106; D5073 and pSZ6107; D5074). Primary transformants were clonally purified and grown under standard lipid production conditions at pH7.0. pH 7 was chosen to allow for maximal expression of PmACCase1-1 or PmACCase1-2 genes being upregulated by our pH regulated AMT03 (Ammonium transporter 03) promoter. The resulting profiles from a set of representative clones arising from transformations with pSZ5391 (D4383), pSZ5392 (D4384), pSZ6106 (D5073) and pSZ6107 (D5074) and shown in Tables 106-110 below.









TABLE 106







Fatty acid profiles of representative S7708 and strains transformed


with D4383 (pSZ5391 - PmAccase1-1 upregulation).









Fatty acid profile













Sample ID
C18:0
C18:1
C18:2
C18:3α
C20:1
C22:1
















S7708; pH 7
1.77
50.47
7.93
0.67
2.97
1.53


S7708; T1215;
1.02
32.85
14.68
1.87
4.44
7.61


D4383-1;


pH 7


S7708; T1215;
1.64
51.32
8.34
0.73
3.01
1.70


D4383-10;


pH 7


S7708; T1215;
1.47
41.77
9.57
1.10
2.48
1.46


D4383-6;


pH 7


S7708; T1215;
1.61
51.17
8.01
0.70
2.43
1.35


D4383-3;


pH 7


S7708; T1215;
1.61
50.99
8.33
0.65
2.36
1.33


D4383-2;


pH 7
















TABLE 107







Primary Fatty acid profiles of representative S7708 and strains


transformed with D4383 (pSZ5392 - PmAccase1-2 upregulation)









Fatty acid profile













Sample ID
C18:0
C18:1
C18:2
C18:3α
C20:1
C22:1
















S7708; pH 7
1.74
50.39
7.93
0.68
3.02
1.54


S7708; T1215;
1.08
34.60
14.27
1.69
4.28
6.71


D4384-1;


pH 7


S7708; T1215;
1.60
51.06
8.15
0.67
3.02
1.70


D4384-7;


pH 7


S7708; T1215;
1.59
50.49
8.33
0.67
3.02
1.60


D4384-2;


pH 7


S7708; T1215;
1.72
51.48
7.96
0.70
2.78
1.51


D4384-4;


pH 7


S7708; T1215;
1.63
51.56
7.98
0.64
2.95
1.50


D4384-5;


pH 7









D4383-1 (7.61% C22:1) and D4384-1 (6.71% C22:1) showed more than a 3 fold increase in C22:1 levels over the parent S7708. Both the strains were subsequently found to have stable phenotypes. D5073-45 (13.61% C22:1) and D5074-15 (9.62% C22:1) showed 2.95 and 2.11 fold increases in C22:1 levels over the parent S8414 (4.60% C22:1). Selected S8414 lines transformed with either D5073 or D5074 were run at pH5 and pH7 to regulate the PmAMT03 driven PmACCase1-1 or PmACCase1-2 gene expression (table 110). Shutting down the PmACCAse1-1 or PmACCase1-2 at pH5.0 led to near parental levels of C22:1 in all the selected lines, confirming the positive impact of PmACCase upregulation on very long chain fatty acid biosynthesis in our host. These results conclusively demonstrate that increasing the Malonyl-CoA via upregulation of PmACCase1-1 or PmACCase1-2 results in significant increase in the very long chain fatty acid biosynthesis in P. moriformis expressing a heterologous fatty acid elongase. pH5/pH7 experiments cannot be performed on S7708 derived transformants since the heterologous LaFAE in parent S7708 is also driven by PmAMT03 and running the lines at pH5.0 would lead to shutting off of the elongase as well.









TABLE 108







Fatty acid profiles of representative S8414 and strains transformed


with D5073 (pSZ6106 - PmAccase1-1 upregulation).









Fatty acid profile













Sample ID
C18:0
C18:1
C18:2
C18:3α
C20:1
C22:1
















S8414
1.36
38.95
11.90
0.88
7.50
4.60


S8414; T1435;
1.16
24.00
13.24
2.09
8.42
13.61


D5073-45


S8414; T1435;
0.90
29.65
16.64
1.05
9.09
9.63


D5073-8


S8414; T1435;
0.83
29.14
15.64
1.42
7.25
9.48


D5073-24


S8414; T1435;
0.88
35.26
16.57
0.47
11.02
9.26


D5073-44


S8414; T1435;
1.02
35.12
13.82
1.06
7.97
7.31


D5073-21
















TABLE 109







Fatty acid profiles of representative S8414 and strains transformed


with D5074 (pSZ6107 - PmAccase1-2 upregulation).









Fatty acid profile













Sample ID
C18:0
C18:1
C18:2
C18:3α
C20:1
C22:1
















S8414
1.36
38.95
11.90
0.88
7.50
4.60


S8414; T1435;
1.22
36.19
12.60
0.86
9.56
9.62


D5074-15


S8414; T1435;
1.11
33.08
13.33
1.11
8.51
8.12


D5074-1


S8414; T1435;
1.06
32.72
13.40
1.16
7.84
7.75


D5074-9


S8414; T1435;
1.12
34.13
13.01
1.01
8.49
7.53


D5074-2


S8414; T1435;
0.86
31.63
13.51
0.80
5.90
6.95


D5074-10
















TABLE 110







Fatty acid profiles of selected S8414 strains transformed


with D5073 and D5074 run at pH 5 and pH 7.









Fatty acid profile













Sample ID
C18:0
C18:1
C18:2
C18:3 a
C20:1
C22:1
















S7485; pH 5
3.84
50.91
5.41
0.49
0.07
0.00


S7485; pH 7
4.24
45.95
5.56
0.61
0.05
0.00


S8414; pH 5
1.62
47.70
9.36
0.59
6.36
2.57


S8414; pH 7
1.40
38.78
11.50
0.84
7.79
4.75


S8414; T1435;
0.93
43.04
13.65
0.97
6.33
3.18


D5073-8;


pH 5


S8414; T1435;
0.90
30.19
16.45
1.10
9.11
9.46


D5073-8;


pH 7


S8414; T1435;
1.32
34.54
10.86
1.44
8.74
6.36


D5073-45;


pH 5


S8414; T1435;
1.22
25.44
12.81
1.99
9.02
13.08


D5073-45;


pH 7


S8414; T1435;
1.37
44.32
10.57
0.76
7.40
3.76


D5074-1;


pH 5


S8414; T1435;
1.16
34.05
12.92
1.09
8.56
7.19


D5074-1;


pH 7


S8414; T1435;
1.32
46.03
9.79
0.62
8.68
4.34


D5074-15;


pH 5


S8414; T1435;
1.25
36.95
12.58
0.88
9.58
8.95


D5074-15;


pH 7









Example 20
Expression of 3-Ketoacyl-CoA Reductase (KCR), Enoyl-CoA Reductase (ECR), Hydroxyacyl-CoA Hydratase (HACD), and Acetyl-CoA Carboxylase (ACCase)

In this example, we report the outcome of co-expression of Ketoacyl-CoA Reductase (KCR) and Enoyl-CoA Reductase (ECR) or Hydroxyacyl-CoA Dehydratase (HACD) enzymes involved in very long chain fatty acid biosynthesis, in P. moriformis (UTEX 1435). Simultaneously we also upregulated the endogenous cytosolic homomeric Acetyl-CoA carboxylase (ACCase) by hijacking the promoter of either PmACCase1-1 or PmACCase1-2 and replacing it with PmAMT03 promoter. Our results demonstrate that combining the heterologous KCR and ECR or HACD activities with up-regulated endogenous ACCase activity in S8414 and S8242 results in a significant increase (more than 4-fold) in C22:1 levels in the resulting transgenic lines. S8414 is described above. S8242 was generated by expressing Limnanthes douglasii LPAAT in S7708 as discussed in Example 10.



Crambe abyssinica fatty acid elongase (CrhFAE) is a very active FAE in Prototheca. We codon optimized and synthesized nucleic acids encoding CrhKCR, CrhHACD and CrhECR and expressed them in S7211 (CrhFAE strain) and S7708 (Lunaria annua FAE strain). The codon-optimized genes were cloned into appropriate expression vectors and transformed into both S7708 and S7211. Expression of each of the partner genes in both S7708 and S7211 resulted in improved VLCFA biosynthesis. The increase in C22:1 was between 1.2 to 1.9 fold over the parent strains. Further, we disclosed above that we increased the availability of malonyl-CoA by upregulation of endogenous PmACCase and this led to significant increases the long chain fatty acid biosynthesis in a strain already expressing a FAE (3 or more fold increase in C22:1 in S7708 and S8414 backgrounds). To further increase VLCFA biosynthesis we performed the following: Combine KCR, ECR and HACD activities with upregulated PmACCase in a strain already expressing a FAE (S8414) to maximize the VLCFA biosynthesis; and Expression of above activities in a strain like S8242 further increased VLCFA biosynthesis since in addition to a FAE activity, S8242 also expresses an erucic acid preferring LPAAT from Limnanthes douglasii (LimdLPAAT).


We made constructs to co-express CrhKCR (driven by either PmACPP1 or PmG3PDH promoter) along with CrhECR or CrhHACD (driven by PmG3PDH or PmACPP1 promoters) in S8414 (3.3% C22:1; PmSAD2-2v2-CrhFAE-PmHSP90) and S8242 (5-7% C22:1; PmAMT03-LaFAE-CvNR and PmSAD2-2v2-LimdLPAAT-CvNR) strains. The constructs were targeted to PmACCase1-1 or PmACCase1-2 loci while simultaneously hijacking the promoter of the endogenous PmACCase1-1 or PmACCAse1-2 with the pH regulatable Ammonia transport 3 (PmAMT03) promoter. The “promoter hijack” was accomplished by inserting the PmAMT03 promoter between the endogenous PmACCCase1-1 or PmACCase 1-2 promoter and the initiation codon of the PmACCase1-1 or PmACCase1-2 gene in both S8414 and S8242.


Construct Used for the Coexpression of ECR and KCR while Simultaneously Up Regulating P. Moriformis Acetyl-CoA Carboxylase (PmACCase) in Erucic Strains S8414 and S8242—[pSZpSZ6114)


S8414 and S8242 strains were transformed with the construct pSZ6114, which expresses a mutant version (L337M) of Arabidopsis thaliana ThiC gene driven by PmLDH1v2 promoter (allowing for their selection and growth on medium without thiamine), CrhECR driven by PmACPP1 promoter, CrhKCR driven by PmG3PDH promoter and endogenous P. morformis ACCase driven by PmAMT03 promoter (promoter hijack). Construct pSZ5391 is described above. Construct pSZ6114 for expression in S8414 and S8242 can be written as:

    • PmACCase 1-1 PmLDH1v2p-AtTHIC(L337M):PmHSP90:BDNA:PmACPP1-CrhECR-CvNR:PmG3 PDH-CrhKCRCvNR:PmAMT03::PmACCase1-1.


The sequence of transforming DNA (pSZ6114) is provided below. Relevant restriction sites in the construct are indicated in lowercase, underlined bold, and are from 5′-3′ NdeI, KpnI, NcoI, SnaBI, BamHI, EcoRI, SpeI, XhoI, XbaI, SpeI, XhoI, EcoRV, SpeI and SbfI respectively. NdeI and AseI sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences represent genomic DNA from S3150 that permit targeted integration at the ACCase locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the endogenous P. moriformis lactate dehydrogenase (LDH) promoter driving the expression of the Arabidopsis thaliana THiC is indicated by lowercase, boxed text. Uppercase italics indicate the initiator ATG and terminator TGA for AtThiC, while the coding region is indicated with lowercase italics. The P. moriformis heat shock protein 90 (HSP90) gene 3′ UTR is indicated by lowercase underlined text followed by buffer/spacer DNA sequence indicated by lowercase bold italic text Immediately following the buffer DNA is an endogenous Acyl Carrier protein (ACPP1) promoter of P. moriformis, indicated by boxed lowercase text. Uppercase italics indicate the initiator ATG and terminator TGA for C. abyssinica enoyl-CoA reductase (CrhECR) gene while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (CvNR) gene 3′ UTR is indicated by lowercase underlined text immediately followed by endogenous G3PDH promoter indicated by lower case boxed text. Uppercase italics indicate the initiator ATG and terminator TGA for C. abyssinica Ketoacyl-CoA reductase (CrhKCR) gene while the coding region is indicated with lowercase italics. The Chlorella vulgaris nitrate reductase (CvNR) gene 3′ UTR is indicated by lowercase underlined text Immediately following the CvNR 3 UTR is an endogenous AMT03 promoter of P. moriformis, indicated by boxed lowercase text followed by the PmACCCase1-1 genomic region indicated by bold, lowercase text. Uppercase, bold italics indicate the Initiator ATG of the endogenous PmACCase1-1 gene targeted for upregulation by preceding PmAMT03 promoter. The final construct was sequenced to ensure correct reading frames and targeting sequences.










Nucleotide sequence of transforming DNA contained in plasmid pSZ6114



transformed into S8414 and S8242:


(SEQ ID NO: 149)





catatg

tttcacgcgttgctcacaacaccggcaaatgcgttgttgttccctgtttttacaccttgccagagcctggtcaaagcttg





acagtttgaccaaattcaggtggcctcatctctctcgcactgatagacattgcagatttggaagacccagtcagtacactacatg




cacagccgtttgctcctgcgccatgaacttgccacttttgtgcgccggtcgggggtgatagctcggcagccgccgatcccaaag




gtcccgcggcccaggggcacgagaacccccgacacgattaaatagccaaaatcagttagaacggcacctccaccctacccg




aatctgacagggtcatcaagcgcgcgaaacaacggcgagggtgcgttcgggaagcgcgcgtagttgacgcaagaagcctgg




gtcaggctgggagggccgcgagaagatcgcttcctgccgagtctgcacccacgcctcgagcgcaccgtccgcgaacaacca




acccctttgcgcgagccctgacattctttcaattgccaaggatgcacatgtgacacgtatagccattcggctttgtttgtgcctgct




tgactcgcgtcatttaattgatttgtgccggtgagccgggagtcggccactcgtctccgagccgcagtcccggcgccagtcccc




cggcctctgatctgggtccggaagggttggtataggagcggtctcggctatctgaagcccattacccgacactttggccggctg





embedded image






embedded image






embedded image






embedded image






embedded image





ccgctgcggcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccgtcc




aggccgcggccacccgcttcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaactccga




gcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttccccaag




tccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcacctgtccgg




cggcgagcccgccttcgacaactacgacacgtccggcccccagaacgtcaacgcccacatcggcctggcgaagctgcgcaag




gagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgtactacgcgaagcagggcatcatcacggagg




agatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgccatcatcccct




ccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaacgcgaacatcggcaactcc




gccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacaccatcatggacctgtcc




acgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtccccatctaccaggc




gctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgagcaggccgagcaggg




cgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcatgacgggcatcgtgtcccgc




ggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactgggacgacatcctggacatc




tgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggctccatctacgacgccaacgacacggcccagttc




gccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaaggacgtgcaggtgatgaacgagggccccggccac




gtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgcaacgaggcgccatctacaccctgggccccct




gacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcggccaacatcggcgccctgggcaccgccctgc




tgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgtgaaggcgggcgtcatcgcctacaagatcgcc




gcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacgcgctgtccaaggcgcgcttcgagttcc




gctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgagacgctgcccgcggacggcgcga




aggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggacatccgcaagtacgccgaggaga




acggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgaggagttcaacatcgccaagaagacgat





embedded image




attacgtaacagacgaccaggcaggcgtcgggtagggaggtggtggtgatggcgtctcgatgccatcgcacgcatccaacgaccg



tatacgcatcgtccaatgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgcatcctcgggtggccagccacg




ttgcgcgtcgtgctgcttgcctctcttgcgcctctgtggtactggaaaatatcatcgaggcccgtttttttgctcccatttcctttccgctacat




cttgaaagcaaacgacaaacgaagcagcaagcaaagagcacgaggacggtgaacaagtctgtcacctgtatacatctatttccccgc




gggtgcacctactctctctcctgccccggcagagtcagctgccttacgtgacggatcc
cgcgtctcgaacagagcgcgcagagga




acgctgaaggtdcgcctagtcgcacctcagcmgcatacaccacaataaccacctgacgaatgcgcttggttcttcgtcca




ttagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cggtggtgagcaggtccggcagggaggtgacaaggcccccaggacctgccggactccgccacggtcgctgacctccaggag




gccttccacaagcgcgaagaagttttatcccagccgccagcggctgaccagccggtggcccccggaccaaggacaagcc




ggtggtgctgaactcgaagaagagcctcaaggagtactgcgacggtaacaccgactcgctcacggtggtgtttaaggacttggg




cgcgcaggtacctaccgcaccagttcttatcgagtacctgggccccctgctgatctaccccgtatctactacttccagtctataag




tacctgggctacggcgaggaccgcgtcatccacccggtgcagacgtatgccatgtactactggtgatccactactttaagcgcatt




atggagacgttcttcgtgcaccgatcagccacgccacctcgcccatcggtaacgtatccgcaactmcctactactggacgttc




ggcgcctacatcgcttactacgtgaaccaccccctgtacacccccgtgagcgacttgcagatgaagatcggcttcgggttcggcct




cgtgtttcaggtggcgaacttctactgccacatcctgctgaagaatctgcgcgacccgaacggcagcggcggttaccagatcccg




cgcggcttcctgttcaacatcgtcacgtgcgcgaactacaccacggagatctaccagtggctcggattaacatcgccacgcagac




catcgccggctacgtgttcctcgcggtggccgccagattatgaccaactgggccacggcaagcactcgcggaccggaagatct





embedded image





agctcggatagtatcgacacactctggacgctggtcgtgtgatggactgagccgccacacttgctgccttgacctgtgaatatccctgc



cgcattatcaaacagcctcagtgtgatgatcagtgtgtacgcgcattgcgagagctagctgcttgtgctatttgcgaataccaccccca



gcatcccatccctcgatcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctc




actgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacggg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gacgttctccctcctgaagagcctgtacatctacttcctgcgccccggcaagaacctccgccgctacgggtcctgggccattatcac




cggcccgaccgacggcatcggcaaggcctttgcgttccagaggcccacaagggcctgaacctggtgctggtggcgcgcaaccc




ggacaagagaaggacgtaccgacagcatcaggtccaagcatagcaacgtgcagatcaagacggtgatcatggactttagcg




gcgacgttgacgacggcgtccgccgcatcaaggagaccatcgaggggctggaggtgggcatcctgatcaacaatgccggcatg




tcctacccgtacgcgaagtactttcacgaggtcgacgaggagctcgtcaacggcctcatcaaaatcaacgtcgagggcacgacc




aaggtgacccaggccgtgctgccgggcatgctggagcgcaagcgcggcgccatcgtcaacatgggcagcggcgcggccgccc




tgatcccgtcgtaccccttctacagcgtgtatgccggcgcgaagacgtacgtggaccagttcacccggtgcctgcacgtcgagtac




aagaagagcggcattgacgtccagtgccaggtcccgctctacgtggccacgaagatgacgaagatccgccgcgcctccttcctg




gtcgcctcccccgagggctacgccaaggccgccctgcggttcgtggggtacgaggcccggtgcaccccctactggccgcacgcc




ctgatgggctacgtcgtctccgccctgccccagtccgtgttcgagtccttcaacatcaagcgctgcctgcagatccgcaagaaggg





embedded image





cgtgtgatggactgagccgccacacagctgccagacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgatgatcagtg




tgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatccca




accgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccaggtagggctccgcc




tgtaactcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggagatatc





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




ccgctcacaaaccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaat.






In addition to C. abyssinica ECR and C. abyssinica KCR genes targeted at PmACCase1-1 locus while simultaneously upregulating the endogenous PmACCase1-1 gene (pSZ6114), several other constructs were designed for transformation into S8414 and S8242. These constructs can be described as:

    • pSZ6115-PmACCase1-1::PmLDH1 v2p-AtTHIC(L337M)-PmHSP90:BDNA::PmACPP1-CrhHACD-CvNR:PmG3PDH-CrhKCR-CvNR: PmAMT03::PmACCase1-1
    • pSZ6116-PmACCase1-1::PmLDH1 v2p-AtTHIC(L337M)-PmHSP90;BDNA::PmG3PDH-CrhECR-CvNR:PmACPP1-CrhKCR-CvNR:PmAMT03::PmACCase1-1
    • pSZ6117-PmACCase1-1::PmLDH1 v2p-AtTHIC(L337M)-PmHSP90:BDNA::PmG3PDH-CrhHACD-CvNR: PmACPP1-CrhKCR-CvNR: PmAMT03::PmACCase1-1
    • pSZ6118-PmACCase1-2::PmLDH1 v2p-AtTHIC(L337M):PmHSP90:BDNA:PmACPP1-CrhECR-CvNR:PmG3PDH-CrhKCR-CvNR: PmAMT03::PmACCase1-2
    • pSZ6119-PmACCase1-2::PmLDH1 v2p-AtTHIC(L337M)-PmHSP90:BDNA::PmACPP1-CrhHACD-CvNR: PmG3PDH-CrhKCR-CvNR: PmAMT03::PmACCase1-2
    • pSZ6120-PmACCase1-2::PmLDH1 v2p-AtTHIC(L337M)-PmHSP90:BDNA::PmG3PDH-CrhHACD-CvNR: PmACPP1 CrhKCR-CvNR: PmAMT03::PmACCase1-2


pSZ6115 is similar to pSZ6114 in every respect except the gene driven by PmACPP1 promoter. In pSZ6115 PmACPP1 promoter drives the expression of CrhHACD gene while in pSZ6114 it drives the expression of CrhECR. The nucleotide sequence of CrhHACD is shown below. pSZ6116 differs from pSZ6114 in that CrhECR is driven by PmG3PDH and CrhKCR is driven by PmACPP1 promoters while it is the opposite in pSZ6114 Similarly pSZ6118 is similar to pSZ6116 except that CrhHACD is driven by PmG3PDH and CrhKCR is driven by pmACPP1 promoters while it is opposite in pSZ6115. pSZ6118, pSZ6119 and pSZ6120 are same as pSZ6114, pSZ6115 and pSZ6117 respectively except that the former constructs are targeted to PmACCase1-2 locus while the latter ones are targeted to PmACCase1-1 locus. The PmACCase1-2 5 flank and PmACCAse1-2 3′ flank sequences used for targeting in pSZ6118, pSZ6119 and pSZ6120 are shown below. The initiator ATG of the endogenous PmACCase1-2 being upregulated by PmAMT03 is indicated in capital bold and italic letters. Relevant restriction sites as underlined bold text are shown 5′-3′ respectively.










Nucleotide sequence of CrhHACD gene in pSS6115, pSZ6117, pSZ6119 and



pSZ61120:


(SEQ ID NO: 150)





embedded image





ctgtactttgccgtcaagacgctcaaggagtccggccacgagaacgtgtacgacgccgtggagaagcccctccagctggcgcaaac





cgccgcggtcctggagatcctccacggcctggtcggcctcgtcaggagcccggtctcggccaccctgccgcagatcgggagccgc





ctctttctgacctggggcattctgtattccttcccggaggtccagagccactcctggtgacctccctcgtgatcagctggtcgatcacgg





aaatcatccgctacagcttcttcggcctgaaggaggcgctgggcttcgcgcccagctggcacctgtggctccgctattcgagattctg





gtgctctaccccaccggcatcacctccgaggtcggcctcatctacctggccctgccgcacatcaagacgtcggagatgtactccgtcc





gcatgcccaacaccttgaaccttccccgactttttctacgccacgattctcgtcctcgcgatctacgtccccggttcgccccacatgtacc







embedded image




Nucleotide sequence of PmACCase 5′ flank contained in plasmids pSZ6118,


pSZ6119 and pSZ6120 respectively:


(SEQ ID NO: 151)





Gattcatatc

atcaaatttcgcatatgtttcacgagttgctcacaacatcggcaaatgcgttgttgttccctgtttttacaccttgc








cagggcctggtcaaagcttgacagtttgaccaaattcaggtggcctcatctattcgcactgatagacattgcagatttggaaga







cccagccagtacattacatgcacagccatttgctcctgcaccatgaacttgccacttttgtgcgccggtcgggggtgatagctcg







gcagccgccgatcccaaaggtcccgcggcccaggggcacgagaccccccgacacgattaaatagccaaaatcagtcagaa







cggcacctccaccctacccgaatctgacaaggtcatcaaacgcgcgaaacaacggcgagggtgcgttcgggaagcgcgcgt







agttgacgcaagaagcctgggtcaggctggagggccgcgagaagatcgcttcctgccgagtctgcacccacgcctcgagcgc







accgtccgcgaacaaccaaccccttttcgcgagccctggcattctttcaattgccaaggatgcacatgtgacacgtatagccatt







cggctttgtttgtgcctgcttgactcgcgccatttaattgttttgtgccggtgagccgggagtcggccactcgtctccgagccgca







gtcccggcgccagtcccccggcctctgatctgggtccggaagggttggtataggagcagtctcggctatctgaagcccgttacc







agacactttggccggctgctttccaggcagccgtgtactcttgcgcagtc

ggtacc

.






Nucleotide sequence of PmACCase 3′ flank contained in plasmids pSZ6118,


pSZ6119 and pSZ6120:


(SEQ ID NO: 152)





embedded image






aagcccaccaagctgagctccacccggtccctgctgtccatctcctaccgggagctctcgcgttccaagtgcgtacaggggcg







agggcaccttttgttggtgttgtttgggcgggcctcggtactgggaggaggaggaatgcgtgcacacctctgcggttttagatgc







aatgcgacaagtgcctgctgatgcattttctagacatgaagcatctcgtattcgagtctcaacgcgggtgtgcgctcctcactcc







gtgcagccagcagtcgcggtcgttcacttcgcggggggtgccagggaggacggacgtttcggatgagctggagcgccgcatc







ctcgagtggcagggcgatcgcgccatccacaggtcggttgggtgggaaagggggagtaccggggtcaggtcagaagtcgtg







catttacaggcatgcatctgcacatcgtgcgcacgcgcacgtattggccgcttgtctcaagactcttgcactcgtttcctcatgc







accataatcaattccctcccccctcgcaaactcacagcgtgctggtggccaacaacggtctggcggcggtcaagttcatccggt







cgatccggtcgtggtcgtacaagacgtttgggaacgagcgcgcggtgaagctgattgcgatggcgacgcccgagggcatgcg







cgcggacgcggagcacatccgcatggcggaccagtttgtggaggtccccggcggcaagaacgtgcagaactacgccaacgt







gggcctgatcacctcggtggcggtgcgcaccggggtggacgcggt

gcctgcagg

.







To determine their impact on fatty acid profiles, the constructs described above were transformed independently into S8414 and S8242. Primary transformants were clonally purified and grown under standard lipid production conditions at pH 7.0. pH 7 was chosen to allow for maximal expression of PmACCase1-1 or PmACCase1-2 genes being upregulated by our pH regulated AMT03 (Ammonium transporter 03) promoter. The resulting profiles from a set of representative clones arising from transformations with pSZ6114 (D5062), pSZ6115 (D5063), pSZ6116 (D5064), pSZ6117 (D5065), pSZ6118 (D5066), pSZ6119 (D5067) and pSZ6120 (D5068) into S8414 and S8242 tables 111-117. In all the transgenic lines either expressing a combination of CrhECR and CrhKCR or CrhHACD and CrkKCR with upregulated PmACCase 1-1 or PmACCase1-2, in both S8414 and S8242 backgrounds, there was a significant increase in C22:1 levels. In S8414 background, the lines S8414; T1435; D5062-6 (18.92%), S8414; T1435; D5063-5 (18.36%), S8414, T1439, D5065-4 (19.15%), the increase in C22:1 levels is 4.03, 3.91 and 4.08 fold over the parent S8414 (4.69%) respectively. The same is true for S8242, T1439; D5063-7 (20.47%) and S8242, T1439; D5065-2 (18.21%) where the increase in C22:1 is 4.06 and 3.62 fold over the parent S8242 (5.03%) respectively. Selected S8414 lines transformed with either D5062, D5063, D5064, D5065, D5066, D5067 or D5068 were run at pH5 and pH7 to regulate the PmAMT03 driven PmACCase1-1 or PmACCase1-2 gene expression (table 118). Decreasing the expression of PmACCase1-1 or PmACCase1-2 by cultivating at pH5.0 led to significant reduction (2.5 or more fold reduction) in C22:1 in all the selected lines confirming the contribution of PmACCase upregulation on very long chain fatty acid biosynthesis (VLCFA) in our host. The reduced C22:1 levels were nevertheless more than the levels in the parent S8414 in almost all the lines thereby demonstrating the positive influence of heterologous KCR and ECR or HACD in VLCFA biosynthesis in P. moriformis (consistent with our results in S7708 background—earlier IP example).


The results disclosed herein demonstrate that increasing the available Malonyl-CoA via upregulation of PmACCase1-1 or PmACCase1-2 along with combined expression of heterologous KCR and ECR or HACD enzyme activities results in significant increase in the VLCFA biosynthesis in P. moriformis strains already expressing a heterologous fatty acid elongase.









TABLE 111







Fatty acid profiles of representative S8414 and


S8242 strains transformed with D5062 (pSZ6114).









Fatty acid profile

















C18:3




Sample ID
C18:0
C18:1
C18:2

C20:1
C22:1
















S8414
1.31
38.57
11.70
0.90
7.67
4.69


S8414; T1435;
0.75
23.73
13.11
1.37
8.91
18.92


D5062-6


S8414; T1435;
1.05
28.54
12.63
1.42
8.35
13.73


D5062-1


S8414; T1435;
1.13
33.45
11.65
1.00
10.13
12.15


D5062-4


S8414; T1435;
1.10
30.86
12.41
1.32
8.50
10.63


D5062-7


S8414; T1435;
1.20
40.52
11.06
0.50
9.20
6.25


D5062-5


S8242
1.77
41.06
12.69
1.17
5.85
5.03


S8242, T1439;
1.41
32.14
12.41
1.36
7.48
14.30


D5062-3


S8242, T1439;
1.38
32.46
12.39
1.28
7.33
14.27


D5062-4


S8242, T1439;
1.43
33.50
12.02
1.11
7.58
12.79


D5062-1


S8242, T1439;
1.49
33.46
12.05
1.24
7.35
12.70


D5062-2
















TABLE 112







Primary 3-day Fatty acid profiles of representative S8414


and S8242 strains transformed with D5063 (pSZ6115).









Fatty acid profile

















C18:3




Sample ID
C18:0
C18:1
C18:2

C20:1
C22:1
















S8414
1.29
38.57
11.81
0.92
7.63
4.56


S8414; T1435;
0.95
29.36
10.91
0.72
10.88
18.36


D5063-5


S8414; T1435;
0.98
28.73
12.04
1.08
9.98
13.53


D5063-3


S8414; T1435;
0.91
26.31
13.57
1.07
8.30
13.38


D5063-7


S8414; T1435;
1.04
28.94
12.73
1.35
9.23
13.18


D5063-9


S8414; T1435;
1.01
32.62
11.71
1.05
8.47
10.81


D5063-1


S8242
1.75
40.66
12.63
1.16
5.79
4.81


S8242, T1439;
1.24
27.24
11.84
1.51
8.25
20.47


D5063-7


S8242, T1439;
1.30
28.70
11.71
1.46
8.29
18.74


D5063-10


S8242, T1439;
1.28
29.14
11.81
1.45
8.29
18.30


D5063-3


S8242, T1439;
1.40
29.92
11.98
1.32
8.12
17.02


D5063-8


S8242, T1439;
1.30
30.29
12.24
1.42
8.20
16.87


D5063-9
















TABLE 113







Primary 3-day Fatty acid profiles of representative S8414


and S8242 strains transformed with D5064 (pSZ6116).









Fatty acid profile

















C18:3




Sample ID
C18:0
C18:1
C18:2

C20:1
C22:1
















S8414
1.29
38.57
11.81
0.92
7.63
4.56


S8414; T1435;
1.27
31.25
12.36
1.31
10.71
14.48


D5064-13


S8414; T1435;
1.27
31.34
12.46
1.29
10.59
14.21


D5064-11


S8414; T1435;
1.32
32.45
12.43
1.28
10.55
13.36


D5064-15


S8414; T1435;
1.13
29.77
11.96
1.12
8.99
12.97


D5064-5


S8414; T1435;
1.01
31.26
13.13
1.30
9.18
11.24


D5064-1


S8242
1.75
40.66
12.63
1.16
5.79
4.81


S8242, T1439;
1.34
30.06
12.30
1.43
7.59
16.46


D5064-3


S8242, T1439;
3.44
41.31
10.11
1.03
6.15
3.51


D5064-1


S8242, T1439;
2.88
43.14
10.50
1.10
4.90
1.92


D5064-2
















TABLE 114







Primary 3-day Fatty acid profiles of representative S8414


and S8242 strains transformed with D5065 (pSZ6117).









Fatty acid profile

















C18:3




Sample ID
C18:0
C18:1
C18:2

C20:1
C22:1
















S8414
1.29
38.57
11.81
0.92
7.63
4.56


S8414; T1435;
0.79
25.39
11.77
1.02
9.70
19.15


D5065-4


S8414; T1435;
0.83
27.00
12.44
1.15
10.13
16.34


D5065-5


S8414; T1435;
0.85
27.72
11.43
0.99
9.33
15.45


D5065-10


S8414; T1435;
0.94
27.09
12.72
1.24
9.33
14.68


D5065-8


S8414; T1435;
0.87
27.62
13.83
1.88
8.97
14.42


D5065-3


S8242
1.75
40.66
12.63
1.16
5.79
4.81


S8242, T1439;
1.30
29.17
12.04
1.51
8.36
18.21


D5065-2


S8242, T1439;
1.34
28.69
11.77
1.26
7.91
17.52


D5065-6


S8242, T1439;
1.40
30.48
12.01
1.38
8.25
16.95


D5065-4


S8242, T1439;
1.50
32.68
11.95
1.26
7.95
13.75


D5065-5


S8242, T1439;
1.55
33.26
11.87
1.20
7.80
12.81


D5065-7
















TABLE 115







Primary 3-day Fatty acid profiles of representative S8414


and S8242 strains transformed with D5066 (pSZ6118).









Fatty acid profile

















C18:3




Sample ID
C18:0
C18:1
C18:2

C20:1
C22:1
















S8414
1.29
38.57
11.81
0.92
7.63
4.56


S8414; T1435;
0.80
22.41
15.23
1.52
9.12
17.54


D5066-5


S8414; T1435;
1.40
38.24
11.83
1.05
7.55
6.89


D5066-2


S8414; T1435;
1.27
39.55
11.88
0.83
8.60
6.55


D5066-11


S8414; T1435;
1.23
38.53
12.07
0.84
9.10
6.43


D5066-9


S8414; T1435;
1.21
39.28
12.14
0.88
8.42
6.26


D5066-8


S8242
1.75
40.66
12.63
1.16
5.79
4.81


S8242, T1439;
1.48
33.72
12.52
1.36
7.51
12.63


D5066-6


S8242, T1439;
1.46
33.55
12.83
1.34
7.55
11.89


D5066-3


S8242, T1439;
1.55
34.33
12.58
1.33
7.39
11.78


D5066-1


S8242, T1439;
1.72
37.79
12.62
1.31
6.82
8.54


D5066-4


S8242, T1439;
1.63
37.39
12.70
1.29
6.96
8.28


D5066-7
















TABLE 116







Primary 3-day Fatty acid profiles of representative S8414


and S8242 strains transformed with D5067 (pSZ6119).









Fatty acid profile

















C18:3




Sample ID
C18:0
C18:1
C18:2

C20:1
C22:1
















S8414
1.29
38.57
11.81
0.92
7.63
4.56


S8414; T1435;
1.05
31.85
11.64
0.94
9.94
13.46


D5067-8


S8414; T1435;
1.05
33.66
12.72
1.13
8.81
9.01


D5067-1


S8414; T1435;
1.00
32.15
13.99
1.56
9.06
8.89


D5067-14


S8414; T1435;
1.02
36.16
12.37
1.04
9.43
8.24


D5067-2


S8414; T1435;
1.06
40.21
11.99
0.82
10.41
7.86


D5067-3


S8242
1.75
40.66
12.63
1.16
5.79
4.81


S8242, T1439;
1.26
32.50
11.80
1.28
8.13
15.84


D5067-1
















TABLE 117







Primary 3-day Fatty acid profiles of representative S8414


and S8242 strains transformed with D5068 (pSZ6120).









Fatty acid profile

















C18:3




Sample ID
C18:0
C18:1
C18:2

C20:1
C22:1
















S8414
1.29
38.57
11.81
0.92
7.63
4.56


S8414; T1435;
0.91
28.90
12.68
1.10
9.83
13.56


D5068-19


S8414; T1435;
0.89
27.90
13.13
1.39
8.99
13.56


D5068-3


S8414; T1435;
1.02
35.58
15.04
0.91
11.37
12.78


D5068-11


S8414; T1435;
1.03
33.71
13.14
1.23
8.92
8.83


D5068-2


S8414; T1435;
1.11
33.86
11.93
1.07
9.11
8.65


D5068-18


S8242
1.75
40.66
12.63
1.16
5.79
4.81


S8242, T1439;
1.27
30.29
12.73
1.52
8.18
16.18


D5068-6


S8242, T1439;
1.49
31.77
13.37
1.45
7.97
12.10


D5068-5


S8242, T1439;
1.56
34.75
12.21
1.23
7.90
11.99


D5068-1


S8242, T1439;
1.86
39.96
12.64
1.27
6.77
6.61


D5068-2


S8242, T1439;
1.70
39.32
13.11
1.25
6.04
5.89


D5068-3
















TABLE 118







3-day fatty acid profiles of selected S8414 strains


transformed with D5062-D5068 run at pH 5 and pH 7.









Fatty acid profile













Sample ID
C18:0
C18:1
C18:2
C18:3 a
C20:1
C22:1
















S7485; pH 5
3.84
50.91
5.41
0.49
0.07
0.00


S7485; pH 7
4.24
45.95
5.56
0.61
0.05
0.00


S8414; pH 5
1.62
47.70
9.36
0.59
6.36
2.57


S8414; pH 7
1.40
38.78
11.50
0.84
7.79
4.75


S8414; T1435;
1.42
41.89
11.40
1.19
6.15
3.46


D5062-1;


pH 5


S8414; T1435;
1.29
32.49
11.93
1.39
8.01
10.68


D5062-1;


pH 7


S8414; T1435;
0.95
34.40
13.89
1.66
7.78
6.57


D5062-6;


pH 5


S8414; T1435;
0.78
23.80
13.07
1.41
8.73
19.28


D5062-6;


pH 7


S8414; T1435;
1.26
44.55
10.32
0.74
7.59
3.78


D5063-3;


pH 5


S8414; T1435;
1.08
29.92
11.69
1.07
9.98
13.25


D5063-3;


pH 7


S8414; T1435;
1.25
43.54
9.96
0.65
9.17
5.49


D5063-5;


pH 5


S8414; T1435;
1.01
30.05
10.79
0.73
10.94
18.25


D5063-5;


pH 7


S8414; T1435;
1.86
48.14
10.94
0.91
8.31
3.93


D5064-11;


pH 5


S8414; T1435;
1.40
32.79
11.97
1.20
10.75
13.92


D5064-11;


pH 7


S8414; T1435;
1.80
47.75
11.06
0.96
8.43
4.07


D5064-13;


pH 5


S8414; T1435;
1.36
32.26
12.13
1.21
10.88
14.26


D5064-13;


pH 7


S8414; T1435;
0.99
39.35
10.84
0.81
8.95
6.79


D5065-4;


pH 5


S8414; T1435;
0.88
26.65
11.74
1.00
9.88
17.90


D5065-4;


pH 7


S8414; T1435;
1.14
42.90
10.80
0.79
8.08
4.58


D5065-5;


pH 5


S8414; T1435;
0.98
28.01
12.04
1.13
10.06
15.53


D5065-5;


pH 7


S8414; T1435;
1.71
47.24
9.94
0.82
5.95
2.93


D5066-2;


pH 5


S8414; T1435;
1.74
39.55
11.02
0.95
7.04
6.61


D5066-2;


pH 7


S8414; T1435;
1.01
34.20
15.15
1.35
8.58
7.12


D5066-5;


pH 5


S8414; T1435;
0.81
22.84
15.16
1.65
9.34
18.13


D5066-5;


pH 7


S8414; T1435;
1.27
44.50
10.40
0.73
7.52
4.00


D5067-8;


pH 5


S8414; T1435;
1.11
30.78
11.82
1.04
9.66
12.96


D5067-8;


pH 7


S8414; T1435;
1.18
39.69
10.23
1.05
9.48
6.67


D5067-14;


pH 5


S8414; T1435;
1.08
32.21
13.71
1.57
9.38
9.40


D5067-14;


pH 7


S8414; T1435;
1.37
51.76
13.81
0.81
6.90
2.65


D5068-11;


pH 5


S8414; T1435;
1.07
35.67
15.27
0.88
11.13
12.50


D5068-11;


pH 7


S8414; T1435;
1.15
42.32
10.69
0.79
8.36
5.01


D5068-19;


pH 5


S8414; T1435;
1.03
30.35
12.71
1.10
9.79
12.52


D5068-19;


pH 7

















SEQUENCES



6S 5′ genomic donor sequence


SEQ ID NO: 1



GCTCTTCGCCGCCGCCACTCCTGCTCGAGCGCGCCCGCGCGTGCGCCGCCAGCGCCTTGGCCTTTTCG



CCGCGCTCGTGCGCGTCGCTGATGTCCATCACCAGGTCCATGAGGTCTGCCTTGCGCCGGCTGAGCCA


CTGCTTCGTCCGGGCGGCCAAGAGGAGCATGAGGGAGGACTCCTGGTCCAGGGTCCTGACGTGGTCGC


GGCTCTGGGAGCGGGCCAGCATCATCTGGCTCTGCCGCACCGAGGCCGCCTCCAACTGGTCCTCCAGC


AGCCGCAGTCGCCGCCGACCCTGGCAGAGGAAGACAGGTGAGGGGGGTATGAATTGTACAGAACAACC


ACGAGCCTTGTCTAGGCAGAATCCCTACCAGTCATGGCTTTACCTGGATGACGGCCTGCGAACAGCTG


TCCAGCGACCCTCGCTGCCGCCGCTTCTCCCGCACGCTTCTTTCCAGCACCGTGATGGCGCGAGCCAG


CGCCGCACGCTGGCGCTGCGCTTCGCCGATCTGAGGACAGTCGGGGAACTCTGATCAGTCTAAACCCC


CTTGCGCGTTAGTGTTGCCATCCTTTGCAGACCGGTGAGAGCCGACTTGTTGTGCGCCACCCCCCACA


CCACCTCCTCCCAGACCAATTCTGTCACCTTTTTGGCGAAGGCATCGGCCTCGGCCTGCAGAGAGGAC


AGCAGTGCCCAGCCGCTGGGGGTTGGCGGATGCACGCTCAGGTACC





6S 3′ genomic donor sequence


SEQ ID NO: 2



GAGCTCCTTGTTTTCCAGAAGGAGTTGCTCCTTGAGCCTTTCATTCTCAGCCTCGATAACCTCCAAAG



CCGCTCTAATTGTGGAGGGGGTTCGAATTTAAAAGCTTGGAATGTTGGTTCGTGCGTCTGGAACAAGC


CCAGACTTGTTGCTCACTGGGAAAAGGACCATCAGCTCCAAAAAACTTGCCGCTCAAACCGCGTACCT


CTGCTTTCGCGCAATCTGCCCTGTTGAAATCGCCACCACATTCATATTGTGACGCTTGAGCAGTCTGT


AATTGCCTCAGAATGTGGAATCATCTGCCCCCTGTGCGAGCCCATGCCAGGCATGTCGCGGGCGAGGA


CACCCGCCACTCGTACAGCAGACCATTATGCTACCTCACAATAGTTCATAACAGTGACCATATTTCTC


GAAGCTCCCCAACGAGCACCTCCATGCTCTGAGTGGCCACCCCCCGGCCCTGGTGCTTGCGGAGGGCA


GGTCAACCGGCATGGGGCTACCGAAATCCCCGACCGGATCCCACCACCCCCGCGATGGGAAGAATCTC


TCCCCGGGATGTGGGCCCACCACCAGCACAACCTGCTGGCCCAGGCGAGCGTCAAACCATACCACACA


AATATCCTTGGCATCGGCCCTGAATTCCTTCTGCCGCTCTGCTACCCGGTGCTTCTGTCCGAAGCAGG


GGTTGCTAGGGATCGCTCCGAGTCCGCAAACCCTTGTCGCGTGGCGGGGCTTGTTCGAGCTTGAAGAG


C






S. cereviseae invertase protein sequence



SEQ ID NO: 3



MLLQAFLFLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQYNPNDTVW



GTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDTIDPRQRCVAIWTYNTP


ESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPSQKWIMTAAKSQDYKIEIYSSDDLK


SWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSYWVMFISINPGAPAGGSFNQYFVGSFNGTHFEA


FDNQSRVVDFGKDYYALQTFFNTDPTYGSALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQA


NPETELINLKAEPILNISNAGPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVF


ADLSLWFKGLEDPEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKV


YGLLDQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK





S. cereviseae invertase protein coding sequence codon optimized for


expression in P. moriformis (UTEX 1435)


SEQ ID NO: 4



ATGctgctgcaggccttcctgttcctgctggccggcttcgccgccaagatcagcgcctccatgacgaa



cgagacgtccgaccgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacggcc


tgtggtacgacgagaaggacgccaagtggcacctgtacttccagtacaacccgaacgacaccgtctgg


gggacgcccttgttctggggccacgccacgtccgacgacctgaccaactgggaggaccagcccatcgc


catcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacct


ccggcttcttcaacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccg


gagtccgaggagcagtacatctcctacagcctggacggcggctacaccttcaccgagtaccagaagaa


ccccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctggtacgagccctcccaga


agtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaag


tcctggaagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcct


gatcgaggtccccaccgagcaggaccccagcaagtcctactgggtgatgttcatctccatcaaccccg


gcgccccggccggcggctccttcaaccagtacttcgtcggcagcttcaacggcacccacttcgaggcc


ttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaacac


cgacccgacctacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgc


ccaccaacccctggcgctcctccatgtccctcgtgcgcaagttctccctcaacaccgagtaccaggcc


aacccggagacggagctgatcaacctgaaggccgagccgatcctgaacatcagcaacgccggcccctg


gagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgtccaacagca


ccggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttc


gcggacctctccctctggttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggt


gtccgcgtcctccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggagaacccctact


tcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaacgacctgtcctactacaaggtg


tacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacac


ctacttcatgaccaccgggaacgccctgggctccgtgaacatgacgacgggggtggacaacctgttct


acatcgacaagttccaggtgcgcgaggtcaagTGA



Chlamydomonas reinhardtii TUB2 (B-tub) promoter/5′ UTR



SEQ ID NO: 5



CTTTCTTGCGCTATGACACTTCCAGCAAAAGGTAGGGCGGGCTGCGAGACGGCTTCCCGGCGCTGCAT



GCAACACCGATGATGCTTCGACCCCCCGAAGCTCCTTCGGGGCTGCATGGGCGCTCCGATGCCGCTCC


AGGGCGAGCGCTGTTTAAATAGCCAGGCCCCCGATTGCAAAGACATTATAGCGAGCTACCAAAGCCAT


ATTCAAACACCTAGATCACTACCACTTCTACACAGGCCACTCGAGCTTGTGATCGCACTCCGCTAAGG


GGGCGCCTCTTCCTCTTCGTTTCAGTCACAACCCGCAAAC






Chlorella vulgaris nitrate reductase 3′ UTR



SEQ ID NO: 6



GCAGCAGCAGCTCGGATAGTATCGACACACTCTGGACGCTGGTCGTGTGATGGACTGTTGCCGCCACA



CTTGCTGCCTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGCCTCAGTGTGTTTGATCTTGTG


TGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTGCGAATACCACCCCCAGCATCCCCTTCC


CTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCTACGCTGTCCTGCTATCCCTCAGCGCTGCT


CCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGCCTGTATTCTCCTGGTACTGCA


ACCTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGGGATGGGAACACAAATGGAAAGCTT





Nucleotidc sequence of thc codon-optimized expression cassette of S.



cerevisiae suc2 gene with C. reinhardtii β-tubulin promoter/5′ UTR



and C. vulgaris nitrate reductase 3′ UTR


SEQ ID NO: 7



CTTTCTTGCGCTATGACACTTCCAGCAAAAGGTAGGGCGGGCTGCGAGACGGCTTCCCGGCGCTGCAT



GCAACACCGATGATGCTTCGACCCCCCGAAGCTCCTTCGGGGCTGCATGGGCGCTCCGATGCCGCTCC


AGGGCGAGCGCTGTTTAAATAGCCAGGCCCCCGATTGCAAAGACATTATAGCGAGCTACCAAAGCCAT


ATTCAAACACCTAGATCACTACCACTTCTACACAGGCCACTCGAGCTTGTGATCGCACTCCGCTAAGG


GGGCGCCTCTTCCTCTTCGTTTCAGTCACAACCCGCAAACGGCGCGCCATGCTGCTGCAGGCCTTCCT


GTTCCTGCTGGCCGGCTTCGCCGCCAAGATCAGCGCCTCCATGACGAACGAGACGTCCGACCGCCCCC


TGGTGCACTTCACCCCCAACAAGGGCTGGATGAACGACCCCAACGGCCTGTGGTACGACGAGAAGGAC


GCCAAGTGGCACCTGTACTTCCAGTACAACCCGAACGACACCGTCTGGGGGACGCCCTTGTTCTGGGG


CCACGCCACGTCCGACGACCTGACCAACTGGGAGGACCAGCCCATCGCCATCGCCCCGAAGCGCAACG


ACTCCGGCGCCTTCTCCGGCTCCATGGTGGTGGACTACAACAACACCTCCGGCTTCTTCAACGACACC


ATCGACCCGCGCCAGCGCTGCGTGGCCATCTGGACCTACAACACCCCGGAGTCCGAGGAGCAGTACAT


CTCCTACAGCCTGGACGGCGGCTACACCTTCACCGAGTACCAGAAGAACCCCGTGCTGGCCGCCAACT


CCACCCAGTTCCGCGACCCGAAGGTCTTCTGGTACGAGCCCTCCCAGAAGTGGATCATGACCGCGGCC


AAGTCCCAGGACTACAAGATCGAGATCTACTCCTCCGACGACCTGAAGTCCTGGAAGCTGGAGTCCGC


GTTCGCCAACGAGGGCTTCCTCGGCTACCAGTACGAGTGCCCCGGCCTGATCGAGGTCCCCACCGAGC


AGGACCCCAGCAAGTCCTACTGGGTGATGTTCATCTCCATCAACCCCGGCGCCCCGGCCGGCGGCTCC


TTCAACCAGTACTTCGTCGGCAGCTTCAACGGCACCCACTTCGAGGCCTTCGACAACCAGTCCCGCGT


GGTGGACTTCGGCAAGGACTACTACGCCCTGCAGACCTTCTTCAACACCGACCCGACCTACGGGAGCG


CCCTGGGCATCGCGTGGGCCTCCAACTGGGAGTACTCCGCCTTCGTGCCCACCAACCCCTGGCGCTCC


TCCATGTCCCTCGTGCGCAAGTTCTCCCTCAACACCGAGTACCAGGCCAACCCGGAGACGGAGCTGAT


CAACCTGAAGGCCGAGCCGATCCTGAACATCAGCAACGCCGGCCCCTGGAGCCGGTTCGCCACCAACA


CCACGTTGACGAAGGCCAACAGCTACAACGTCGACCTGTCCAACAGCACCGGCACCCTGGAGTTCGAG


CTGGTGTACGCCGTCAACACCACCCAGACGATCTCCAAGTCCGTGTTCGCGGACCTCTCCCTCTGGTT


CAAGGGCCTGGAGGACCCCGAGGAGTACCTCCGCATGGGCTTCGAGGTGTCCGCGTCCTCCTTCTTCC


TGGACCGCGGGAACAGCAAGGTGAAGTTCGTGAAGGAGAACCCCTACTTCACCAACCGCATGAGCGTG


AACAACCAGCCCTTCAAGAGCGAGAACGACCTGTCCTACTACAAGGTGTACGGCTTGCTGGACCAGAA


CATCCTGGAGCTGTACTTCAACGACGGCGACGTCGTGTCCACCAACACCTACTTCATGACCACCGGGA


ACGCCCTGGGCTCCGTGAACATGACGACGGGGGTGGACAACCTGTTCTACATCGACAAGTTCCAGGTG


CGCGAGGTCAAGTGACAATTGGCAGCAGCAGCTCGGATAGTATCGACACACTCTGGACGCTGGTCGTG


TGATGGACTGTTGCCGCCACACTTGCTGCCTTGACCTGTGAATATCCCTGCCGCTTTTATCAAACAGC


CTCAGTGTGTTTGATCTTGTGTGTACGCGCTTTTGCGAGTTGCTAGCTGCTTGTGCTATTTGCGAATA


CCACCCCCAGCATCCCCTTCCCTCGTTTCATATCGCTTGCATCCCAACCGCAACTTATCTACGCTGTC


CTGCTATCCCTCAGCGCTGCTCCTGCTCCTGCTCACTGCCCCTCGCACAGCCTTGGTTTGGGCTCCGC


CTGTATTCTCCTGGTACTGCAACCTGTAAACCAGCACTGCAATGCTGATGCACGGGAAGTAGTGGGAT


GGGAACACAAATGGAGGATCC






Prototheca moriformis (UTEX 1435) Amt03 promoter



SEQ ID NO: 8



GGCCGACAGGACGCGCGTCAAAGGTGCTGGTCGTGTATGCCCTGGCCGGCAGGTCGTTGCTGCTGCTG



GTTAGTGATTCCGCAACCCTGATTTTGGCGTCTTATTTTGGCGTGGCAAACGCTGGCGCCCGCGAGCC


GGGCCGGCGGCGATGCGGTGCCCCACGGCTGCCGGAATCCAAGGGAGGCAAGAGCGCCCGGGTCAGTT


GAAGGGCTTTACGCGCAAGGTACAGCCGCTCCTGCAAGGCTGCGTGGTGGAATTGGACGTGCAGGTCC


TGCTGAAGTTCCTCCACCGCCTCACCAGCGGACAAAGCACCGGTGTATCAGGTCCGTGTCATCCACTC


TAAAGAGCTCGACTACGACCTACTGATGGCCCTAGATTCTTCATCAAAAACGCCTGAGACACTTGCCC


AGGATTGAAACTCCCTGAAGGGACCACCAGGGGCCCTGAGTTGTTCCTTCCCCCCGTGGCGAGCTGCC


AGCCAGGCTGTACCTGTGATCGAGGCTGGCGGGAAAATAGGCTTCGTGTGCTCAGGTCATGGGAGGTG


CAGGACAGCTCATGAAACGCCAACAATCGCACAATTCATGTCAAGCTAATCAGCTATTTCCTCTTCAC


GAGCTGTAATTGTCCCAAAATTCTGGTCTACCGGGGGTGATCCTTCGTGTACGGGCCCTTCCCTCAAC


CCTAGGTATGCGCGCATGCGGTCGCCGCGCAACTCGCGCGAGGGCCGAGGGTTTGGGACGGGCCGTCC


CGAAATGCAGTTGCACCCGGATGCGTGGCACCTTTTTTGCGATAATTTATGCAATGGACTGCTCTGCA


AAATTCTGGCTCTGTCGCCAACCCTAGGATCAGCGGCGTAGGATTTCGTAATCATTCGTCCTGATGGG


GAGCTACCGACTACCCTAATATCAGCCCGACTGCCTGACGCCAGCGTCCACTTTTGTGCACACATTCC


ATTCGTGCCCAAGACATTTCATTGTGGTGCGAAGCGTCCCCAGTTACGCTCACCTGTTTCCCGACCTC


CTTACTGTTCTGTCGACAGAGCGGGCCCACAGGCCGGTCGCAGCC






Chlorella protothecoides (UTEX 250) stearoyl ACP desaturase transit



peptide cDNA sequence codon optimized for expression in P.



moriformis.



SEQ ID NO: 9



ACTAGTATGGCCACCGCATCCACTTTCTCGGCGTTCAATGCCCGCTGCGGCGACCTGCGTCGCTCGGC



GGGCTCCGGGCCCCGGCGCCCAGCGAGGCCCCTCCCCGTGCGCGGGCGCGCC






Cuphea wrightii FatB2 thioesterase nucleic acid sequence; Gen Bank



Accession No. U56104


SEQ ID NO: 10



ATGGTGGTGGCCGCCGCCGCCAGCAGCGCCTTCTTCCCCGTGCCCGCCCCCCGCCCCACCCCCAAGCC



CGGCAAGTTCGGCAACTGGCCCAGCAGCCTGAGCCAGCCCTTCAAGCCCAAGAGCAACCCCAACGGCC


GCTTCCAGGTGAAGGCCAACGTGAGCCCCCACGGGCGCGCCCCCAAGGCCAACGGCAGCGCCGTGAGC


CTGAAGTCCGGCAGCCTGAACACCCTGGAGGACCCCCCCAGCAGCCCCCCCCCCCGCACCTTCCTGAA


CCAGCTGCCCGACTGGAGCCGCCTGCGCACCGCCATCACCACCGTGTTCGTGGCCGCCGAGAAGCAGT


TCACCCGCCTGGACCGCAAGAGCAAGCGCCCCGACATGCTGGTGGACTGGTTCGGCAGCGAGACCATC


GTGCAGGACGGCCTGGTGTTCCGCGAGCGCTTCAGCATCCGCAGCTACGAGATCGGCGCCGACCGCAC


CGCCAGCATCGAGACCCTGATGAACCACCTGCAGGACACCAGCCTGAACCACTGCAAGAGCGTGGGCC


TGCTGAACGACGGCTTCGGCCGCACCCCCGAGATGTGCACCCGCGACCTGATCTGGGTGCTGACCAAG


ATGCAGATCGTGGTGAACCGCTACCCCACCTGGGGCGACACCGTGGAGATCAACAGCTGGTTCAGCCA


GAGCGGCAAGATCGGCATGGGCCGCGAGTGGCTGATCAGCGACTGCAACACCGGCGAGATCCTGGTGC


GCGCCACCAGCGCCTGGGCCATGATGAACCAGAAGACCCGCCGCTTCAGCAAGCTGCCCTGCGAGGTG


CGCCAGGAGATCGCCCCCCACTTCGTGGACGCCCCCCCCGTGATCGAGGACAACGACCGCAAGCTGCA


CAAGTTCGACGTGAAGACCGGCGACAGCATCTGCAAGGGCCTGACCCCCGGCTGGAACGACTTCGACG


TGAACCAGCACGTGAGCAACGTGAAGTACATCGGCTGGATTCTGGAGAGCATGCCCACCGAGGTGCTG


GAGACCCAGGAGCTGTGCAGCCTGACCCTGGAGTACCGCCGCGAGTGCGGCCGCGAGAGCGTGGTGGA


GAGCGTGACCAGCATGAACCCCAGCAAGGTGGGCGACCGCAGCCAGTACCAGCACCTGCTGCGCCTGG


AGGACGGCGCCGACATCATGAAGGGCCGCACCGAGTGGCGCCCCAAGAACGCCGGCACCAACCGCGCC


ATCAGCACCTGA






Cuphea wrightii FatB2 thioesterase amino acid sequence; Gen Bank



Accession No. U56104


SEQ ID NO: 11




MVVAAAASSAFFPVPAPRPTPKPGKFGNWPSSLSQPFKPKSNPNGRFQVKANVSPHPKANGSAVSLKS




GSLNTLEDPPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQFTRLDRKSKRPDMLVDWFGSETIVQD


GLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCKSVGLLNDGFGRTPEMCTRDLIWVLTKMQI


VVNRYPTWGDTVEINSWFSQSGKIGMGREWLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQE


IAPHFVDAPPVIEDNDRKLHKFDVKTGDSICKGLTPGWNDFDVNQHVSNVKYIGWILESMPTEVLETQ


ELCSLTLEYRRECGRESVVESVTSMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNRAIST





Codon-optimized coding region of Cocus nucifera C12:0-preferring


LPAAT from pSZ2046


SEQ ID NO: 12



ATGGACGCCTCCGGCGCCTCCTCCTTCCTGCGCGGCCGCTGCCTGGAGTCCTGCTTCAAGGCCTCCTT



CGGCTACGTAATGTCCCAGCCCAAGGACGCCGCCGGCCAGCCCTCCCGCCGCCCCGCCGACGCCGACG


ACTTCGTGGACGACGACCGCTGGATCACCGTGATCCTGTCCGTGGTGCGCATCGCCGCCTGCTTCCTG


TCCATGATGGTGACCACCATCGTGTGGAACATGATCATGCTGATCCTGCTGCCCTGGCCCTACGCCCG


CATCCGCCAGGGCAACCTGTACGGCCACGTGACCGGCCGCATGCTGATGTGGATTCTGGGCAACCCCA


TCACCATCGAGGGCTCCGAGTTCTCCAACACCCGCGCCATCTACATCTGCAACCACGCCTCCCTGGTG


GACATCTTCCTGATCATGTGGCTGATCCCCAAGGGCACCGTGACCATCGCCAAGAAGGAGATCATCTG


GTATCCCCTGTTCGGCCAGCTGTACGTGCTGGCCAACCACCAGCGCATCGACCGCTCCAACCCCTCCG


CCGCCATCGAGTCCATCAAGGAGGTGGCCCGCGCCGTGGTGAAGAAGAACCTGTCCCTGATCATCTTC


CCCGAGGGCACCCGCTCCAAGACCGGCCGCCTGCTGCCCTTCAAGAAGGGCTTCATCCACATCGCCCT


CCAGACCCGCCTGCCCATCGTGCCGATGGTGCTGACCGGCACCCACCTGGCCTGGCGCAAGAACTCCC


TGCGCGTGCGCCCCGCCCCCATCACCGTGAAGTACTTCTCCCCCATCAAGACCGACGACTGGGAGGAG


GAGAAGATCAACCACTACGTGGAGATGATCCACGCCCTGTACGTGGACCACCTGCCCGAGTCCCAGAA


GCCCCTGGTGTCCAAGGGCCGCGACGCCTCCGGCCGCTCCAACTCCTGA





pLoop 5′ genomic donor sequence


SEQ ID NO: 13




gctcttcgctaacggaggtctgtcaccaaatggaccccgtctattgcgggaaaccacggcgatggcac




gtttcaaaacttgatgaaatacaatattcagtatgtcgcgggcggcgacggcggggagctgatgtcgc


gctgggtattgcttaatcgccagcttcgcccccgtcttggcgcgaggcgtgaacaagccgaccgatgt


gcacgagcaaatcctgacactagaagggctgactcgcccggcacggctgaattacacaggcttgcaaa


aataccagaatttgcacgcaccgtattcgcggtattttgttggacagtgaatagcgatgcggcaatgg


cttgtggcgttagaaggtgcgacgaaggtggtgccaccactgtgccagccagtcctggcggctcccag


ggccccgatcaagagccaggacatccaaactacccacagcatcaacgccccggcctatactcgaaccc


cacttgcactctgcaatggtatgggaaccacggggcagtcttgtgtgggtcgcgcctatcgcggtcgg


cgaagaccgggaaggtacc





pLoop 3′ genomic donor sequence


SEQ ID NO: 14




gagctcagcggcgacggtcctgctaccgtacgacgttgggcacgcccatgaaagtttgtataccgagc




ttgttgagcgaactgcaagcgcggctcaaggatacttgaactcctggattgatatcggtccaataatg


gatggaaaatccgaacctcgtgcaagaactgagcaaacctcgttacatggatgcacagtcgccagtcc


aatgaacattgaagtgagcgaactgttcgcttcggtggcagtactactcaaagaatgagctgctgtta


aaaatgcactctcgttctctcaagtgagtggcagatgagtgctcacgccttgcacttcgctgcccgtg


tcatgccctgcgccccaaaatttgaaaaaagggatgagattattgggcaatggacgacgtcgtcgctc


cgggagtcaggaccggcggaaaataagaggcaacacactccgcttcttagctcttcc





NeoR expression cassette including C. reinhardtii β-tubulin


promoter/5′UTR and C. vulgaris nitrate reductase 3′ UTR


SEQ ID NO: 15





embedded image







embedded image






embedded image






embedded image






embedded image





gcctccacgccggctcccccgccgcctgggtggagcgcctgttcggctacgactgggcccagcagacc




atcggctgctccgacgccgccgtgttccgcctgtccgcccagggccgccccgtgctgttcgtgaagac




cgacctgtccggcgccctgaacgagctgcaggacgaggccgcccgcctgtcctggctggccaccaccg




gcgtgccctgcgccgccgtgctggacgtggtgaccgaggccggccgcgactggctgctgctgggcgag




gtgcccggccaggacctgctgtcctcccacctggcccccgccgagaaggtgtccatcatggccgacgc




catgcgccgcctgcacaccctggaccccgccacctgccccttcgaccaccaggccaagcaccgcatcg




agcgcgcccgcacccgcatggaggccggcctggtggaccaggacgacctggacgaggagcaccagggc




ctggcccccgccgagctgttcgcccgcctgaaggcccgcatgcccgacggcgaggacctggtggtgac




ccacggcgacgcctgcctgcccaacatcatggtggagaacggccgcttctccggcttcatcgactgcg




gccgcctgggcgtggccgaccgctaccaggacatcgccctggccacccgcgacatcgccgaggagctg




ggcggcgagtgggccgaccgcttcctggtgctgtacggcatcgccgcccccgactcccagcgcatcgc




cttctaccgcctgctggacgagttcttcTGA
caattggcagcagcagctcggatagtatcgacacact




ctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgcc




gcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgctt




gtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgca




acttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagcc




ttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgca




cgggaagtagtgggatgggaacacaaatggaggatcc







Cocos nucifera 1-acyl-sn-glycerol-3-phosphatc acyltransferase



(LPAAT)


SEQ ID NO: 16



MDASGASSFLRGRCLESCFKASFGYVMSQPKDAAGQPSRRPADADDFVDDDRWITVILSV



VRIAACFLSMMVITIVWNMIMLILLPWPYARIRQGNLYGHVTGRMLMWILGNPITIEGSE


FSNTRAIYICNHASLVDIFLIMWLIPKGIVTIAKKEIIWYPLFGQLYVLANHQRIDRSNP


SAAIESIKEVARAVVKKNLSLIIFPEGIRSKTGRLLPFKKGFIHIALQTRLPIVPMVLIG


THLAWRKNSLRVRPAPITVKYFSPIKTDDWEEEKINHYVEMIHALYVDHLPESQKPLVSK


GRDASGRSNS





PmKASII (Prototheca moriformis KASII) comprising a C. protothecoides


S106 stearoyl-ACP desaturase transit peptide


SEQ ID NO: 17



ATGgccaccgcatccactttctcggcgttcaatgcccgctgcggcgacctgcgtcgctcggcgggctc



cgggccccggcgcccagcgaggcccctccccgtgcgcgggcgcgccgccgccgccgccgacgccaacc


ccgcccgccccgagcgccgcgtggtgatcaccggccagggcgtggtgacctccctgggccagaccatc


gagcagttctactcctccctgctggagggcgtgtccggcatctcccagatccagaagttcgacaccac


cggctacaccaccaccatcgccggcgagatcaagtccctgcagctggacccctacgtgcccaagcgct


gggccaagcgcgtggacgacgtgatcaagtacgtgtacatcgccggcaagcaggccctggagtccgcc


ggcctgcccatcgaggccgccggcctggccggcgccggcctggaccccgccctgtgcggcgtgctgat


cggcaccgccatggccggcatgacctccttcgccgccggcgtggaggccctgacccgcggcggcgtgc


gcaagatgaaccccttctgcatccccttctccatctccaacatgggcggcgccatgctggccatggac


atcggcttcatgggccccaactactccatctccaccgcctgcgccaccggcaactactgcatcctggg


cgccgccgaccacatccgccgcggcgacgccaacgtgatgctggccggcggcgccgacgccgccatca


tcccctccggcatcggcggcttcatcgcctgcaaggccctgtccaagcgcaacgacgagcccgagcgc


gcctcccgcccctgggacgccgaccgcgacggcttcgtgatgggcgagggcgccggcgtgctggtgct


ggaggagctggagcacgccaagcgccgcggcgccaccatcctggccgagctggtgggcggcgccgcca


cctccgacgcccaccacatgaccgagcccgacccccagggccgcggcgtgcgcctgtgcctggagcgc


gccctggagcgcgcccgcctggcccccgagcgcgtgggctacgtgaacgcccacggcacctccacccc


cgccggcgacgtggccgagtaccgcgccatccgcgccgtgatcccccaggactccctgcgcatcaact


ccaccaagtccatgatcggccacctgctgggcggcgccggcgccgtggaggccgtggccgccatccag


gccctgcgcaccggctggctgcaccccaacctgaacctggagaaccccgcccccggcgtggaccccgt


ggtgctggtgggcccccgcaaggagcgcgccgaggacctggacgtggtgctgtccaactccttcggct


tcggcggccacaactcctgcgtgatcttccgcaagtacgacgagatggactacaaggaccacgacggc


gactacaaggaccacgacatcgactacaaggacgacgacgacaagTGA





PmKASII (Prototheca moriformis KASII) comprising a C. protothecoides


S106 stearoylACP desaturase transit peptide


SEQ ID NO: 18



MATASTFSAFNARCGDLRRSAGSGPRRPARPLPVRGRAAAAADANPARPERRVVITGQGVVISLGQTI



EQFYSSLLEGVSGISQIQKFDTTGYITTIAGEIKSLQLDPYVPKRWAKRVDDVIKYVYIAGKQALESA


GLPIEAAGLAGAGLDPALCGVLIGTAMAGMTSFAAGVEALTRGGVRKMNPFCIPFSISNMGGAMLAMD


IGFMGPNYSISTACAIGNYCILGAADHIRRGDANVMLAGGADAAIIPSGIGGFIACKALSKRNDEPER


ASRPWDADRDGFVMGEGAGVLVLEELEHAKRRGATILAELVGGAATSDAHHMTEPDPQGRGVRLCLER


ALERARLAPERVGYVNAHGTSTPAGDVAEYRAIRAVIPQDSLRINSTKSMIGHLLGGAGAVEAVAAIQ


ALRIGWLHPNLNLENPAPGVDPVVLVGPRKERAEDLDVVLSNSFGFGGHNSCVIFRKYDEMDYKDHDG


DYKDHDIDYKDDDDK





Codon optimized M. polymorpha FAE3 (GenBank Accession No. AAP74370)


SEQ ID NO: 19




ATGgactcccgcgcccagaaccgcgacggcggcgaggacgtgaagcaggagctgctgtccgccggcga




cgacggcaaggtgccctgccccaccgtggccatcggcatccgccagcgcctgcccgacttcctgcagt


ccgtgaacatgaagtacgtgaagctgggctaccactacctgatcacccacgccatgttcctgctgacc


ctgcccgccttcttcctggtggccgccgagatcggccgcctgggccacgagcgcatctaccgcgagct


gtggacccacctgcacctgaacctggtgtccatcatggcctgctcctccgccctggtggccggcgcca


ccctgtacttcatgtcccgcccccgccccgtgtacctggtggagttcgcctgctaccgccccgacgag


cgcctgaaggtgtccaaggacttcttcctggacatgtcccgccgcaccggcctgttctcctcctcctc


catggacttccagaccaagatcacccagcgctccggcctgggcgacgagacctacctgccccccgcca


tcctggcctccccccccaacccctgcatgcgcgaggcccgcgaggaggccgccatggtgatgttcggc


gccctggacgagctgttcgagcagaccggcgtgaagcccaaggagatcggcgtgctggtggtgaactg


ctccctgttcaaccccaccccctccatgtccgccatgatcgtgaaccactaccacatgcgcggcaaca


tcaagtccctgaacctgggcggcatgggctgctccgccggcctgatctccatcgacctggcccgcgac


ctgctgcaggtgcacggcaacacctacgccgtggtggtgtccaccgagaacatcaccctgaactggta


cttcggcgacgaccgctccaagctgatgtccaactgcatcttccgcatgggcggcgccgccgtgctgc


tgtccaacaagcgccgcgagcgccgccgcgccaagtacgagctgctgcacaccgtgcgcacccacaag


ggcgccgacgacaagtgcttccgctgcgtgtaccaggaggaggactccaccggctccctgggcgtgtc


cctgtcccgcgagctgatggccgtggccggcaacgccctgaaggccaacatcaccaccctgggccccc


tggtgctgcccctgtccgagcagatcctgttcttcgcctccctggtggcccgcaagttcctgaacatg


aagatgaagccctacatccccgacttcaagctggccttcgagcacttctgcatccacgccggcggccg


cgccgtgctggacgagctggagaagaacctggacctgaccgagtggcacatggagccctcccgcatga


ccctgtaccgcttcggcaacacctcctcctcctccctgtggtacgagctggcctacaccgaggcccag


ggccgcgtgaagcgcggcgaccgcctgtggcagatcgccttcggctccggcttcaagtgcaactccgc


cgtgtggcgcgcgctgcgcaccgtgaagccccccgtgaacaacgcctggtccgacgtgatcgaccgct


tccccgtgaagctgccccagttcTGA






M. polymorpha FAE3 (GenBank Accession No. AAP74370)



SEQ ID NO: 20



MDSRAQNRDGGEDVKQELLSAGDDGKVPCPTVAIGIRQRLPDFLQSVNMKYVKLGYHYLITHAMFLLT



LPAFFLVAAEIGRLGHERIYRELWTHLHLNLVSIMACSSALVAGATLYFMSRPRPVYLVEFACYRPDE


RLKVSKDFFLDMSRRTGLFSSSSMDFQTKITQRSGLGDETYLPPAILASPPNPCMREAREEAAMVMFG


ALDELFEQTGVKPKEIGVLVVNCSLFNPIPSMSAMIVNHYHMRGNIKSLNLGGMGCSAGLISIDLARD


LLQVHGNIYAVVVSTENITLNWYFGDDRSKLMSNCIFRMGGAAVLLSNKRRERRRAKYELLHIVRTHK


GADDKCFRCVYQEEDSIGSLGVSLSRELMAVAGNALKANITTLGPLVLPLSEQILFFASLVARKFLNM


KMKPYIPDFKLAFEHFCIHAGGRAVLDELEKNLDLTEWHMEPSRMTLYRFGNISSSSLWYELAYTEAQ


GRVKRGDRLWQIAFGSGFKCNSAVWRALRIVKPPVNNAWSDVIDRFPVKLPQF






Trypanosoma brucei ELO3 (GenBank Accession No. AAX70673)



SEQ ID NO: 21





embedded image






gtggatgctggaccacccctccgtgccctacatcgccggcgtgatgtacctgatcctggtgctgtacg




tgcccaagtccatcatggcctcccagccccccctgaacctgcgcgccgccaacatcgtgtggaacctg




ttcctgaccctgttctccatgtgcggcgcctactacaccgtgccctacctggtgaaggccttcatgaa




ccccgagatcgtgatggccgcctccggcatcaagctggacgccaacacctcccccatcatcacccact




ccggcttctacaccaccacctgcgccctggccgactccttctacttcaacggcgacgtgggcttctgg




gtggccctgttcgccctgtccaagatccccgagatgatcgacaccgccttcctggtgttccagaagaa




gcccgtgatcttcctgcactggtaccaccacctgaccgtgatgctgttctgctggttcgcctacgtgc




agaagatctcctccggcctgtggttcgcctccatgaactactccgtgcactccatcatgtacctgtac




tacttcgtgtgcgcctgcggccaccgccgcctggtgcgccccttcgcccccatcatcaccttcgtgca




gatcttccagatggtggtgggcaccatcgtggtgtgctacacctacaccgtgaagcacgtgctgggcc




gctcctgcaccgtgaccgacttctccctgcacaccggcctggtgatgtacgtgtcctacctgctgctg




ttctcccagctgttctaccgctcctacctgtccccccgcgacaaggcctccatcccccacgtggccgc





embedded image








Trypanosoma brucei ELO3 (GenBank Accession No. AAX70673)



SEQ ID NO: 22



MYPTHRDLILNNYSDIYRSPTCHYHTWHILIHTPINELLFPNLPRECDFGYDIPYFRGQIDVFDGWSM



IHFISSNWCIPITVCLCYIMMIAGLKKYMGPRDGGRAPIQAKNYIIAWNLFLSFFSFAGVYYTVPYHL


FDPENGLFAQGFYSTVCNNGAYYGNGNVGFFVWLFIYSKIFELVDIFFLLIRKNPVIFLHWYHHLTVL


LYCWHAYSVRIGIGIWFATMNYSVHSVMYLYFAMTQYGPSTKKFAKKFSKFITTIQILQMVVGIIVTF


AAMLYVTFDVPCYTSLANSVLGLMMYASYFVLFVQLYVSHYVSPKHVKQE





Codon optimized Saccharomyces cerevisiae ELO1 (GenBank Accession No.


P39540)


SEQ ID NO: 23





embedded image






cttcttcaacatctacctgtgggactacttcaaccgcgccgtgggctgggccaccgccggccgcttcc




agcccaaggacttcgagttcaccgtgggcaagcagcccctgtccgagccccgccccgtgctgctgttc




atcgccatgtactacgtggtgatcttcggcggccgctccctggtgaagtcctgcaagcccctgaagct




gcgcttcatctcccaggtgcacaacctgatgctgacctccgtgtccttcctgtggctgatcctgatgg




tggagcagatgctgcccatcgtgtaccgccacggcctgtacttcgccgtgtgcaacgtggagtcctgg




acccagcccatggagaccctgtactacctgaactacatgaccaagttcgtggagttcgccgacaccgt




gctgatggtgctgaagcaccgcaagctgaccttcctgcacacctaccaccacggcgccaccgccctgc




tgtgctacaaccagctggtgggctacaccgccgtgacctgggtgcccgtgaccctgaacctggccgtg




cacgtgctgatgtactggtactacttcctgtccgcctccggcatccgcgtgtggtggaaggcctgggt




gacccgcctgcagatcgtgcagttcatgctggacctgatcgtggtgtactacgtgctgtaccagaaga




tcgtggccgcctacttcaagaacgcctgcaccccccagtgcgaggactgcctgggctccatgaccgcc




atcgccgccggcgccgccatcctgacctcctacctgttcctgttcatctccttctacatcgaggtgta





embedded image








Saccharomyces cerevisiae ELO1 (GenBank Accession No. P39540)



SEQ ID NO: 24



MVSDWKNFCLEKASRFRPTIDRPFFNIYLWDYFNRAVGWATAGRFQPKDFEFTVGKQPLSEPRPVLLF



IAMYYVVIFGGRSLVKSCKPLKLRFISQVHNLMLTSVSFLWLILMVEQMLPIVYRHGLYFAVCNVESW


TQPMETLYYLNYMTKFVEFADTVLMVLKHRKLTFLHTYHHGATALLCYNQLVGYTAVTWVPVTLNLAV


HVLMYWYYFLSASGIRVWWKAWVTRLQIVQFMLDLIVVYYVLYQKIVAAYFKNACTPQCEDCLGSMTA


IAAGAAILTSYLFLFISFYIEVYKRGSASGKKKINKNN





23S rRNA for UTEX 1439, UTEX 1441, UTEX 1435, UTEX 1437 Prototheca



moriformis



SEQ ID NO: 25



TGTTGAAGAATGAGCCGGCGACTTAAAATAAATGGCAGGCTAAGAGAATTAATAACTCGAAACCTAAG



CGAAAGCAAGTCTTAATAGGGCGCTAATTTAACAAAACATTAAATAAAATCTAAAGTCATTTATTTTA


GACCCGAACCTGAGTGATCTAACCATGGTCAGGATGAAACTTGGGTGACACCAAGTGGAAGTCCGAAC


CGACCGATGTTGAAAAATCGGCGGATGAACTGTGGTTAGTGGTGAAATACCAGTCGAACTCAGAGCTA


GCTGGTTCTCCCCGAAATGCGTTGAGGCGCAGCAATATATCTCGTCTATCTAGGGGTAAAGCACTGTT


TCGGTGCGGGCTATGAAAATGGTACCAAATCGTGGCAAACTCTGAATACTAGAAATGACGATATATTA


GTGAGACTATGGGGGATAAGCTCCATAGTCGAGAGGGAAACAGCCCAGACCACCAGTTAAGGCCCCAA


AATGATAATGAAGTGGTAAAGGAGGTGAAAATGCAAATACAACCAGGAGGTTGGCTTAGAAGCAGCCA


TCCTTTAAAGAGTGCGTAATAGCTCACTG





Cu PSR23 LPAAT2-1


SEQ ID NO: 26



MAIAAAAVIFLFGLIFFASGLIINLFQALCFVLIRPLSKNAYRRINRVFAELLLSELLCLFDWWAGAK



LKLFTDPETFRLMGKEHALVIINHMTELDWMVGWVMGQHFGCLGSIISVAKKSTKFLPVLGWSMWFSE


YLYLERSWAKDKSTLKSHIERLIDYPLPFWLVIFVEGTRFTRTKLLAAQQYAVSSGLPVPRNVLIPRT


KGFVSCVSHMRSFVPAVYDVTVAFPKTSPPPTLLNLFEGQSIMLHVHIKRHAMKDLPESDDAVAEWCR


DKFVEKDALLDKHNAEDTFSGQEVCHSGSRQLKSLLVVISWVVVTTFGALKFLQWSSWKGKAFSAIGL


GIVTLLMHVLILSSQAERSNPAEVAQAKLKTGLSISKKVTDKEN





CuPSR23 LPAAT3-1


SEQ ID NO: 27



MAIAAAAVIVPLSLLFFVSGLIVNLVQAVCFVLIRPLSKNTYRRINRVVAELLWLELVWLIDWWAGVK



IKVFTDHETFHLMGKEHALVICNHKSDIDWLVGWVLGQRSGCLGSTLAVMKKSSKFLPVLGWSMWFSE


YLFLERSWAKDEITLKSGLNRLKDYPLPFWLALFVEGTRFTRAKLLAAQQYAASSGLPVPRNVLIPRT


KGFVSSVSHMRSFVPAIYDVTVAIPKTSPPPTLIRMFKGQSSVLHVHLKRHLMKDLPESDDAVAQWCR


DIFVEKDALLDKHNAEDTFSGQELQETGRPIKSLLVVISWAVLEVFGAVKFLQWSSLLSSWKGLAFSG


IGLGVITLLMHILILFSQSERSTPAKVAPAKPKNEGESSKTEMEKEK





Amino acid sequence for CuPSR23 LPPATx


SEQ ID NO: 28



MEIPPHCLCSPSPAPSQLYYKKKKHAILQTQTPYRYRVSPTCFAPPRLRKQHPYPLPVLCYPKLLHFS



QPRYPLVRSHLAEAGVAYRPGYELLGKIRGVCFYAVTAAVALLLFQCMLLLHPFVLLFDPFPRKAHHT


IAKLWSICSVSLFYKIHIKGLENLPPPHSPAVYVSNHQSFLDIYTLLTLGRTFKFISKTEIFLYPIIG


WAMYMLGTIPLKRLDSRSQLDTLKRCMDLIKKGASVFFFPEGTRSKDGKLGAFKKGAFSIAAKSKVPV


VPITLIGTGKIMPPGSELTVNPGTVQVIIHKPIEGSDAEAMCNEARATISHSLDD





cDNA sequence for CuPSR23 LPAATx coding region


SEQ ID NO: 29



ATGGAGATCCCGCCTCACTGTCTCTGTTCGCCTTCGCCTGCGCCTTCGCAATTGTATTACAAGAAGAA



GAAGCATGCCATTCTCCAAACTCAAACTCCCTATAGATATAGAGTTTCCCCGACATGCTTTGCCCCCC


CCCGATTGAGGAAGCAGCATCCTTACCCTCTCCCTGTCCTCTGCTATCCAAAACTCCTCCACTTCAGC


CAGCCTAGGTACCCTCTGGTTAGATCTCATTTGGCTGAAGCTGGTGTTGCTTATCGTCCAGGATACGA


ATTATTAGGAAAAATAAGGGGAGTGTGTTTCTATGCTGTCACTGCTGCCGTTGCCTTGCTTCTATTTC


AGTGCATGCTCCTCCTCCATCCCTTTGTGCTCCTCTTCGATCCATTTCCAAGAAAGGCTCACCATACC


ATCGCCAAACTCTGGTCTATCTGCTCTGTTTCTCTTTTTTACAAGATTCACATCAAGGGTTTGGAAAA


TCTTCCCCCACCCCACTCTCCTGCCGTCTATGTCTCTAATCATCAGAGTTTTCTCGACATCTATACTC


TCCTCACTCTCGGTAGAACCTTCAAGTTCATCAGCAAGACTGAGATCTTTCTCTATCCAATTATCGGT


TGGGCCATGTATATGTTGGGTACCATTCCTCTCAAGCGGTTGGACAGCAGAAGCCAATTGGACACTCT


TAAGCGATGTATGGATCTCATCAAGAAGGGAGCATCCGTCTTTTTCTTCCCAGAGGGAACACGAAGTA


AAGATGGGAAACTGGGTGCTTTCAAGAAAGGTGCATTCAGCATCGCAGCAAAAAGCAAGGTTCCTGTT


GTGCCGATCACCCTTATTGGAACTGGCAAGATTATGCCACCTGGGAGCGAACTTACTGTCAATCCAGG


AACTGTGCAAGTAATCATACATAAACCTATCGAAGGAAGTGATGCAGAAGCAATGTGCAATGAAGCTA


GAGCCACGATTTCTCACTCACTTGATGATTAA





cDNA sequence for CuPSR23 LPAAT 2-1 coding region


SEQ ID NO: 30



ATGGCGATTGCAGCGGCAGCTGTCATCTTCCTCTTCGGCCTTATCTTCTTCGCCTCCGGCCTCATAAT



CAATCTCTTCCAGGCGCTTTGCTTTGTCCTTATTCGGCCTCTTTCGAAAAACGCCTACMGGAGAATAA


ACAGAGTTTTTGCAGAATTGTTGTTGTCGGAGCTTTTATGCCTATTCGATTGGTGGGCTGGTGCTAAG


CTCAAATTATTTACCGACCCTGAAACCTTTCGCCTTATGGGCAAGGAACATGCTCTTGTCATAATTAA


TCACATGACTGAACTTGACTGGATGGTTGGATGGGTTATGGGTCAGCATTTTGGTTGCCTTGGGAGCA


TAATATCTGTTGCGAAGAAATCAACAAAATTTCTTCCGGTATTGGGGTGGTCAATGTGGTTTTCAGAG


TACCTATATCTTGAGAGAAGCTGGGCCAAGGATAAAAGTACATTAAAGTCACATATCGAGAGGCTGAT


AGACTACCCCCTGCCCTTCTGGTTGGTAATTTTTGTGGAAGGAACTCGGTTTACTCGGACAAAACTCT


TGGCAGCCCAGCAGTATGCTGTCTCATCTGGGCTACCAGTGCCGAGAAATGTTTTGATCCCACGTACT


AAGGGTTTTGTTTCATGTGTAAGTCACATGCGATCATTTGTTCCAGCAGTATATGATGTCACAGTGGC


ATTCCCTAAGACTTCACCTCCACCAACGTTGCTAAATCTTTTCGAGGGTCAGTCCATAATGCTTCACG


TTCACATCAAGCGACATGCAATGAAAGATTTACCAGAATCCGATGATGCAGTAGCAGAGTGGTGTAGA


GACAAATTTGTGGAAAAGGATGCTTTGTTGGACAAGCATAATGCTGAGGACACTTTCAGTGGTCAAGA


AGTTTGTCATAGCGGCAGCCGCCAGTTAAAGTCTCTTCTGGTGGTAATATCTTGGGTGGTTGTAACAA


CATTTGGGGCTCTAAAGTTCCTTCAGTGGTCATCATGGAAGGGGAAAGCATTTTCAGCTATCGGGCTG


GGCATCGTCACTCTACTTATGCACGTATTGATTCTATCCTCACAAGCAGAGCGGTCTAACCCTGCGGA


GGTGGCACAGGCAAAGCTAAAGACCGGGTTGTCGATCTCAAAGAAGGTAACGGACAAGGAAAACTAG





cDNA sequence for CuPSR23 LPAAx 3-1 coding region


SEQ ID NO: 31



ATGGCGATTGCTGCGGCAGCTGTCATCGTCCCGCTCAGCCTCCTCTTCTTCGTCTCCGGCCTCATCGT



CAATCTCGTACAGGCAGTTTGCTTTGTACTGATTAGGCCTCTGTCGAAAAACACTTACAGAAGAATAA


ACAGAGTGGTTGCAGAATTGTTGTGGTTGGAGTTGGTATGGCTGATTGATTGGTGGGCTGGTGTCAAG


ATAAAAGTATTCACGGATCATGAAACCTTTCACCTTATGGGCAAAGAACATGCTCTTGTCATTTGTAA


TCACAAGAGTGACATAGACTGGCTGGTTGGGTGGGTTCTGGGACAGCGGTCAGGTTGCCTTGGAAGCA


CATTAGCTGTTATGAAGAAATCATCAAAGTTTCTCCCGGTATTAGGGTGGTCAATGTGGTTCTCAGAG


TATCTATTCCTTGAAAGAAGCTGGGCCAAGGATGAAATTACATTAAAGTCAGGTTTGAATAGGCTGAA


AGACTATCCCTTACCCTTCTGGTTGGCACTTTTTGTGGAAGGAACTCGGTTCACTCGAGCAAAACTCT


TGGCAGCCCAGCAGTATGCTGCCTCTTCGGGGCTACCTGTGCCGAGAAATGTTCTGATCCCGCGTACT


AAGGGTTTTGTTTCTTCTGTGAGTCACATGCGATCATTTGTTCCAGCCATATATGATGTTACAGTGGC


AATCCCAAAGACGTCACCTCCACCAACATTGATAAGAATGTTCAAGGGACAGTCCTCAGTGCTTCACG


TCCACCTCAAGCGACACCTAATGAAAGATTTACCTGAATCAGATGATGCTGTTGCTCAGTGGTGCAGA


GATATATTCGTCGAGAAGGATGCTTTGTTGGATAAGCATAATGCTGAGGACACTTTCAGTGGCCAAGA


ACTTCAAGAAACTGGCCGCCCAATAAAGTCTCTTCTGGTTGTAATCTCTTGGGCGGTGTTGGAGGTAT


TTGGAGCTGTGAAGTTTCTTCAATGGTCATCGCTGTTATCATCATGGAAGGGACTTGCATTTTCGGGA


ATAGGACTGGGTGTCATCACGCTACTCATGCACATACTGATTTTATTCTCACAATCCGAGCGGTCTAC


CCCTGCAAAAGTGGCACCAGCAAAGCCAAAGAATGAGGGAGAGTCCTCCAAGACGGAAATGGAAAAGG


AAAAGTAG





cDNA sequence for CuPSR23 LPAATx coding region codon optimized for



Prototheca moriformis



SEQ ID NO: 32



ATGgagatccccccccactgcctgtgctccccctcccccgccccctcccagctgtactacaagaagaa



gaagcacgccatcctgcagacccagaccccctaccgctaccgcgtgtcccccacctgcttcgcccccc


cccgcctgcgcaagcagcacccctaccccctgcccgtgctgtgctaccccaagctgctgcacttctcc


cagccccgctaccccctggtgcgctcccacctggccgaggccggcgtggcctaccgccccggctacga


gctgctgggcaagatccgcggcgtgtgcttctacgccgtgaccgccgccgtggccctgctgctgttcc


agtgcatgctgctgctgcaccccttcgtgctgctgttcgaccccttcccccgcaaggcccaccacacc


atcgccaagctgtggtccatctgctccgtgtccctgttctacaagatccacatcaagggcctggagaa


cctgccccccccccactcccccgccgtgtacgtgtccaaccaccagtccttcctggacatctacaccc


tgctgaccctgggccgcaccttcaagttcatctccaagaccgagatcttcctgtaccccatcatcggc


tgggccatgtacatgctgggcaccatccccctgaagcgcctggactcccgctcccagctggacaccct


gaagcgctgcatggacctgatcaagaagggcgcctccgtgttcttcttccccgagggcacccgctcca


aggacggcaagctgggcgccttcaagaagggcgccttctccatcgccgccaagtccaaggtgcccgtg


gtgcccatcaccctgatcggcaccggcaagatcatgccccccggctccgagctgaccgtgaaccccgg


caccgtgcaggtgatcatccacaagcccatcgagggctccgacgccgaggccatgtgcaacgaggccc


gcgccaccatctcccactccctggacgacTGA





cDNA sequence for CuPSR23 LPAAT 2-1 coding region codon optimized


for Prototheca moriformis


SEQ ID NO: 33



ATGgcgatcgcggccgcggcggtgatcttcctgttcggcctgatcttcttcgcctccggcctgatcat



caacctgttccaggcgctgtgcttcgtcctgatccgccccctgtccaagaacgcctaccgccgcatca


accgcgtgttcgcggagctgctgctgtccgagctgctgtgcctgttcgactggtgggcgggcgcgaag


ctgaagctgttcaccgaccccgagacgttccgcctgatgggcaaggagcacgccctggtcatcatcaa


ccacatgaccgagctggactggatggtgggctgggtgatgggccagcacttcggctgcctgggctcca


tcatctccgtcgccaagaagtccacgaagttcctgcccgtgctgggctggtccatgtggttctccgag


tacctgtacctggagcgctcctgggccaaggacaagtccaccctgaagtcccacatcgagcgcctgat


cgactaccccctgcccttctggctggtcatcttcgtcgagggcacccgcttcacgcgcacgaagctgc


tggcggcccagcagtacgcggtctcctccggcctgcccgtcccccgcaacgtcctgatcccccgcacg


aagggcttcgtctcctgcgtgtcccacatgcgctccttcgtccccgcggtgtacgacgtcacggtggc


gttccccaagacgtcccccccccccacgctgctgaacctgttcgagggccagtccatcatgctgcacg


tgcacatcaagcgccacgccatgaaggacctgcccgagtccgacgacgccgtcgcggagtggtgccgc


gacaagttcgtcgagaaggacgccctgctggacaagcacaacgcggaggacacgttctccggccagga


ggtgtgccactccggctcccgccagctgaagtccctgctggtcgtgatctcctgggtcgtggtgacga


cgttcggcgccctgaagttcctgcagtggtcctcctggaagggcaaggcgttctccgccatcggcctg


ggcatcgtcaccctgctgatgcacgtgctgatcctgtcctcccaggccgagcgctccaaccccgccga


ggtggcccaggccaagctgaagaccggcctgtccatctccaagaaggtgacggacaaggagaacTGA





cDNA sequence for CuPSR23 LPAAx 3-1 coding region codon optimized


for Prototheca moriformis


SEQ ID NO: 34



ATGgccatcgcggcggccgcggtgatcgtgcccctgtccctgctgttcttcgtgtccggcctgatcgt



caacctggtgcaggccgtctgcttcgtcctgatccgccccctgtccaagaacacgtaccgccgcatca


accgcgtggtcgcggagctgctgtggctggagctggtgtggctgatcgactggtgggcgggcgtgaag


atcaaggtcttcacggaccacgagacgttccacctgatgggcaaggagcacgccctggtcatctgcaa


ccacaagtccgacatcgactggctggtcggctgggtcctgggccagcgctccggctgcctgggctcca


ccctggcggtcatgaagaagtcctccaagttcctgcccgtcctgggctggtccatgtggttctccgag


tacctgttcctggagcgctcctgggccaaggacgagatcacgctgaagtccggcctgaaccgcctgaa


ggactaccccctgcccttctggctggcgctgttcgtggagggcacgcgcttcacccgcgcgaagctgc


tggcggcgcagcagtacgccgcgtcctccggcctgcccgtgccccgcaacgtgctgatcccccgcacg


aagggcttcgtgtcctccgtgtcccacatgcgctccttcgtgcccgcgatctacgacgtcaccgtggc


catccccaagacgtcccccccccccacgctgatccgcatgttcaagggccagtcctccgtgctgcacg


tgcacctgaagcgccacctgatgaaggacctgcccgagtccgacgacgccgtcgcgcagtggtgccgc


gacatcttcgtggagaaggacgcgctgctggacaagcacaacgccgaggacaccttctccggccagga


gctgcaggagaccggccgccccatcaagtccctgctggtcgtcatctcctgggccgtcctggaggtgt


tcggcgccgtcaagttcctgcagtggtcctccctgctgtcctcctggaagggcctggcgttctccggc


atcggcctgggcgtgatcaccctgctgatgcacatcctgatcctgttctcccagtccgagcgctccac


ccccgccaaggtggcccccgcgaagcccaagaacgagggcgagtcctccaagaccgagatggagaagg


agaagTGA





SEQ ID NO: 35










gctcttcgcc gccgccactc ctgctcgagc gcgcccgcgc gtgcgccgcc agcgccttgg
  60



ccttttcgcc gcgctcgtgc gcgtcgctga tgtccatcac caggtccatg aggtctgcct
 120


tgcgccggct gagccactgc ttcgtccggg cggccaagag gagcatgagg gaggactcct
 180


ggtccagggt cctgacgtgg tcgcggctct gggagcgggc cagcatcatc tggctctgcc
 240


gcaccgaggc cgcctccaac tggtcctcca gcagccgcag ccgccgccga ccctggcaga
 300  


ggaagacagg tgaggggggt atgaattgta cagaacaacc acgagccttg tctaggcaga
 360


atccctacca gtcatggctt tacctggatg acggcctgcg aacagctgtc cagcgaccct
 420


cgctgccgcc gcttctcccg cacgcttctt tccagcaccg tgatggcgcg agccagcgcc
 480


gcacgctggc gctgcgcttc gccgatctga ggacagtcgg ggaactctga tcagtctaaa 
 540


cccccttgcg cgttagtgtt gccatccttt gcagaccggt gagagccgac ttgttgtgcg
 600


ccacccccca caccacctcc tcccagacca attctgtcac ctttttggcg aaggcatcgg 
 660


cctcggcctg cagagaggac agcagtgccc agccgctggg ggttggcgga tgcacgctca
 720


ggtacccttt cttgcgctat gacacttcca gcaaaaggta gggcgggctg cgagacggct 
 780


tcccggcgct gcatgcaaca ccgatgatgc ttcgaccccc cgaagctcct tcggggctgc
 840


atgggcgctc cgatgccgct ccagggcgag cgctgtttaa atagccaggc ccccgattgc 
 900


aaagacatta tagcgagcta ccaaagccat attcaaacac ctagatcact accacttcta
 960


cacaggccac tcgagcttgt gatcgcactc cgctaagggg gcgcctcttc ctcttcgttt 
1020


cagtcacaac ccgcaaactc tagaatatca atgctgctgc aggccttcct gttcctgctg
1080


gccggcttcg ccgccaagat cagcgcctcc atgacgaacg agacgtccga ccgccccctg 
1140


gtgcacttca cccccaacaa gggctggatg aacgacccca acggcctgtg gtacgacgag
1200


aaggacgcca agtggcacct gtacttccag tacaacccga acgacaccgt ctgggggacg 
1260


cccttgttct ggggccacgc cacgtccgac gacctgacca actgggagga ccagcccatc
1320


aacaacacct ccggcttctt caacgacacc atcgacccgc gccagcgctg cgtggccatc 
1440


tggacctaca acaccccgga gtccgaggag cagtacatct cctacagcct ggacggcggc
1500


tacaccttca ccgagtacca gaagaacccc gtgctggccg ccaactccac ccagttccgc 
1560


gacccgaagg tcttctggta cgagccctcc cagaagtgga tcatgaccgc ggccaagtcc
1620


caggactaca agatcgagat ctactcctcc gacgacctga agtcctggaa gctggagtcc 
1680


gcgttcgcca acgagggctt cctcggctac cagtacgagt gccccggcct gatcgaggtc
1740


cccaccgagc aggaccccag caagtcctac tgggtgatgt tcatctccat caaccccggc 
1800


gccccggccg gcggctcctt caaccagtac ttcgtcggca gcttcaacgg cacccacttc
1860


gaggccttcg acaaccagtc ccgcgtggtg gacttcggca aggactacta cgccctgcag 
1920


accttcttca acaccgaccc gacctacggg agcgccctgg gcatcgcgtg ggcctccaac
1980


tgggagtact ccgccttcgt gcccaccaac ccctggcgct cctccatgtc cctcgtgcgc 
2040


aagttctccc tcaacaccga gtaccaggcc aacccggaga cggagctgat caacctgaag
2100


gccgagccga tcctgaacat cagcaacgcc ggcccctgga gccggttcgc caccaacacc 
2160


acgttgacga aggccaacag ctacaacgtc gacctgtcca acagcaccgg caccctggag
2220


ttcgagctgg tgtacgccgt caacaccacc cagacgatct ccaagtccgt gttcgcggac 
2280


ctctccctct ggttcaaggg cctggaggac cccgaggagt acctccgcat gggcttcgag
2340


gtgtccgcgt cctccttctt cctggaccgc gggaacagca aggtgaagtt cgtgaaggag 
2400


aacccctact tcaccaaccg catgagcgtg aacaaccagc ccttcaagag cgagaacgac
2460


ctgtcctact acaaggtgta cggcttgctg gaccagaaca tcctggagct gtacttcaac 
2520


gacggcgacg tcgtgtccac caacacctac ttcatgacca ccgggaacgc cctgggctcc
2580


gtgaacatga cgacgggggt ggacaacctg ttctacatcg acaagttcca ggtgcgcgag 
2640


gtcaagtgac aattggcagc agcagctcgg atagtatcga cacactctgg acgctggtcg
2700


tgtgatggac tgttgccgcc acacttgctg ccttgacctg tgaatatccc tgccgctttt 
2760


atcaaacagc ctcagtgtgt ttgatcttgt gtgtacgcgc ttttgcgagt tgctagctgc
2820


ttgtgctatt tgcgaatacc acccccagca tccccttccc tcgtttcata tcgcttgcat 
2880


cccaaccgca acttatctac gctgtcctgc tatccctcag cgctgctcct gctcctgctc
2940


actgcccctc gcacagcctt ggtttgggct ccgcctgtat tctcctggta ctgcaacctg 
3000


taaaccagca ctgcaatgct gatgcacggg aagtagtggg atgggaacac aaatggagga
3060


tcccgcgtct cgaacagagc gcgcagagga acgctgaagg tctcgcctct gtcgcacctc 
3120


agcgcggcat acaccacaat aaccacctga cgaatgcgct tggttcttcg tccattagcg
3180


aagcgtccgg ttcacacacg tgccacgttg gcgaggtggc aggtgacaat gatcggtgga 
3240


gctgatggtc gaaacgttca cagcctaggg atatcgaatt cggccgacag gacgcgcgtc
3300


aaaggtgctg gtcgtgtatg ccctggccgg caggtcgttg ctgctgctgg ttagtgattc 
3360


cgcaaccctg attttggcgt cttattttgg cgtggcaaac gctggcgccc gcgagccggg
3420


ccggcggcga tgcggtgccc cacggctgcc ggaatccaag ggaggcaaga gcgcccgggt 
3480


cagttgaagg gctttacgcg caaggtacag ccgctcctgc aaggctgcgt ggtggaattg
3540


gacgtgcagg tcctgctgaa gttcctccac cgcctcacca gcggacaaag caccggtgta 
3600


tcaggtccgt gtcatccact ctaaagaact cgactacgac ctactgatgg ccctagattc
3660


ttcatcaaaa acgcctgaga cacttgccca ggattgaaac tccctgaagg gaccaccagg 
3720


ggccctgagt tgttccttcc ccccgtggcg agctgccagc caggctgtac ctgtgatcga
3780


ggctggcggg aaaataggct tcgtgtgctc aggtcatggg aggtgcagga cagctcatga 
3840


aacgccaaca atcgcacaat tcatgtcaag ctaatcagct atttcctctt cacgagctgt
3900


aattgtccca aaattctggt ctaccggggg tgatccttcg tgtacgggcc cttccctcaa 
3960


ccctaggtat gcgcgcatgc ggtcgccgcg caactcgcgc gagggccgag ggtttgggac
4020


gggccgtccc gaaatgcagt tgcacccgga tgcgtggcac cttttttgcg ataatttatg 
4080


caatggactg ctctgcaaaa ttctggctct gtcgccaacc ctaggatcag cggcgtagga
4140


tttcgtaatc attcgtcctg atggggagct accgactacc ctaatatcag cccgactgcc 
4200


tgacgccagc gtccactttt gtgcacacat tccattcgtg cccaagacat ttcattgtgg
4260


tgcgaagcgt ccccagttac gctcacctgt ttcccgacct ccttactgtt ctgtcgacag 
4320


agcgggccca caggccggtc gcagccacta gtatgacctc catcaacgtg aagctgctgt
4380


accactacgt gatcaccaac ctgttcaacc tgtgcttctt ccccctgacc gccatcgtgg 
4440


ccggcaaggc ctcccgcctg accatcgacg acctgcacca cctgtactac tcctacctgc
4500


agcacaacgt gatcaccatc gcccccctgt tcgccttcac cgtgttcggc tccatcctgt 
4560


acatcgtgac ccgccccaag cccgtgtacc tggtggagta ctcctgctac ctgcccccca
4620


cccagtgccg ctcctccatc tccaaggtga tggacatctt ctaccaggtg cgcaaggccg 
4680


accccttccg caacggcacc tgcgacgact cctcctggct ggacttcctg cgcaagatcc
4740


aggagcgctc cggcctgggc gacgagaccc acggccccga gggcctgctg caggtgcccc 
4800


cccgcaagac cttcgccgcc gcccgcgagg agaccgagca ggtgatcgtg ggcgccctga
4860


agaacctgtt cgagaacacc aaggtgaacc ccaaggacat cggcatcctg gtggtgaact 
4920


cctccatgtt caaccccacc ccctccctgt ccgccatggt ggtgaacacc ttcaagctgc
4980


gctccaacgt gcgctccttc aacctgggcg gcatgggctg ctccgccggc gtgatcgcca 
5040


tcgacctggc caaggacctg ctgcacgtgc acaagaacac ctacgccctg gtggtgtcca
5100


ccgagaacat cacctacaac atctacgccg gcgacaaccg ctccatgatg gtgtccaact 
5160


gcctgttccg cgtgggcggc gccgccatcc tgctgtccaa caagccccgc gaccgccgcc
5220


gctccaagta cgagctggtg cacaccgtgc gcacccacac cggcgccgac gacaagtcct 
5280


tccgctgcgt gcagcagggc gacgacgaga acggcaagac cggcgtgtcc ctgtccaagg
5340


acatcaccga ggtggccggc cgcaccgtga agaagaacat cgccaccctg ggccccctga 
5400


tcctgcccct gtccgagaag ctgctgttct tcgtgacctt catggccaag aagctgttca
5460


aggacaaggt gaagcactac tacgtgcccg acttcaagct ggccatcgac cacttctgca 
5520


tccacgccgg cggccgcgcc gtgatcgacg tgctggagaa gaacctgggc ctggccccca
5580


tcgacgtgga ggcctcccgc tccaccctgc accgcttcgg caacacctcc tcctcctcca 
5640


tctggtacga gctggcctac atcgaggcca agggccgcat gaagaagggc aacaaggtgt
5700


ggcagatcgc cctgggctcc ggcttcaagt gcaactccgc cgtgtgggtg gccctgtcca 
5760


acgtgaaggc ctccaccaac tccccctggg agcactgcat cgaccgctac cccgtgaaga
5820


tcgactccga ctccgccaag tccgagaccc gcgcccagaa cggccgctcc tgacttaagg 
5880


cagcagcagc tcggatagta tcgacacact ctggacgctg gtcgtgtgat ggactgttgc
5940


cgccacactt gctgccttga cctgtgaata tccctgccgc ttttatcaaa cagcctcagt 
6000


gtgtttgatc ttgtgtgtac gcgcttttgc gagttgctag ctgcttgtgc tatttgcgaa
6060


taccaccccc agcatcccct tccctcgttt catatcgctt gcatcccaac cgcaacttat 
6120


ctacgctgtc ctgctatccc tcagcgctgc tcctgctcct gctcactgcc cctcgcacag
6180


ccttggtttg ggctccgcct gtattctcct ggtactgcaa cctgtaaacc agcactgcaa 
6240


tgctgatgca cgggaagtag tgggatggga acacaaatgg aaagcttaat taagagctct
6300


tgttttccag aaggagttgc tccttgagcc tttcattctc agcctcgata acctccaaag 
6360


ccgctctaat tgtggagggg gttcgaattt aaaagcttgg aatgttggtt cgtgcgtctg
6420


gaacaagccc agacttgttg ctcactggga aaaggaccat cagctccaaa aaacttgccg 
6480


ctcaaaccgc gtacctctgc tttcgcgcaa tctgccctgt tgaaatcgcc accacattca
6540


tattgtgacg cttgagcagt ctgtaattgc ctcagaatgt ggaatcatct gccccctgtg 
6600


cgagcccatg ccaggcatgt cgcgggcgag gacacccgcc actcgtacag cagaccatta
6660


tgctacctca caatagttca taacagtgac catatttctc gaagctcccc aacgagcacc 
6720


tccatgctct gagtggccac cccccggccc tggtgcttgc ggagggcagg tcaaccggca
6780


tggggctacc gaaatccccg accggatccc accacccccg cgatgggaag aatctctccc 
6840


cgggatgtgg gcccaccacc agcacaacct gctggcccag gcgagcgtca aaccatacca
6900


cacaaatatc cttggcatcg gccctgaatt ccttctgccg ctctgctacc cggtgcttct 
6960


gtccgaagca ggggttgcta gggatcgctc cgagtccgca aacccttgtc gcgtggcggg
7020


gcttgttcga gcttgaagag c 
7041











SEQ ID NO: 36










actagtatga cctccatcaa cgtgaagctg ctgtaccact acgtgatcac caacttcttc 
  60



aacctgtgct tcttccccct gaccgccatc ctggccggca aggcctcccg cctgaccacc
 120


aacgacctgc accacttcta ctcctacctg cagcacaacc tgatcaccct gaccctgctg 
 180


ttcgccttca ccgtgttcgg ctccgtgctg tacttcgtga cccgccccaa gcccgtgtac
 240


ctggtggact actcctgcta cctgcccccc cagcacctgt ccgccggcat ctccaagacc 
 300


atggagatct tctaccagat ccgcaagtcc gaccccctgc gcaacgtggc cctggacgac
 360


tcctcctccc tggacttcct gcgcaagatc caggagcgct ccggcctggg cgacgagacc 
 420


tacggccccg agggcctgtt cgagatcccc ccccgcaaga acctggcctc cgcccgcgag
 480


gagaccgagc aggtgatcaa cggcgccctg aagaacctgt tcgagaacac caaggtgaac 
 540


cccaaggaga tcggcatcct ggtggtgaac tcctccatgt tcaaccccac cccctccctg
 600


tccgccatgg tggtgaacac cttcaagctg cgctccaaca tcaagtcctt caacctgggc 
 660


ggcatgggct gctccgccgg cgtgatcgcc atcgacctgg ccaaggacct gctgcacgtg
 720


cacaagaaca cctacgccct ggtggtgtcc accgagaaca tcacccagaa catctacacc 
 780


ggcgacaacc gctccatgat ggtgtccaac tgcctgttcc gcgtgggcgg cgccgccatc
 840


ctgctgtcca acaagcccgg cgaccgccgc cgctccaagt accgcctggc ccacaccgtg 
 900


cgcacccaca ccggcgccga cgacaagtcc ttcggctgcg tgcgccagga ggaggacgac
 960


tccggcaaga ccggcgtgtc cctgtccaag gacatcaccg gcgtggccgg catcaccgtg 
1020


cagaagaaca tcaccaccct gggccccctg gtgctgcccc tgtccgagaa gatcctgttc
1080


gtggtgacct tcgtggccaa gaagctgctg aaggacaaga tcaagcacta ctacgtgccc 
1140


gacttcaagc tggccgtgga ccacttctgc atccacgccg gcggccgcgc cgtgatcgac
1200


gtgctggaga agaacctggg cctgtccccc atcgacgtgg aggcctcccg ctccaccctg 
1260


caccgcttcg gcaacacctc ctcctcctcc atctggtacg agctggccta catcgaggcc
1320


aagggccgca tgaagaaggg caacaaggcc tggcagatcg ccgtgggctc cggcttcaag 
1380


tgcaactccg ccgtgtgggt ggccctgcgc aacgtgaagg cctccgccaa ctccccctgg
1440


gagcactgca tccacaagta ccccgtgcag atgtactccg gctcctccaa gtccgagacc 
1500


cgcgcccaga acggccgctc ctgacttaag 
1530











SEQ ID NO: 37 










actagtatga cctccatcaa cgtgaagctg ctgtaccact acgtgctgac caacttcttc
  60



aacctgtgcc tgttccccct gaccgccttc cccgccggca aggcctccca gctgaccacc 
 120


aacgacctgc accacctgta ctcctacctg caccacaacc tgatcaccgt gaccctgctg
 180


ttcgccttca ccgtgttcgg ctccatcctg tacatcgtga cccgccccaa gcccgtgtac 
 240


ctggtggact actcctgcta cctgcccccc cgccacctgt cctgcggcat ctcccgcgtg
 300


atggagatct tctacgagat ccgcaagtcc gacccctccc gcgaggtgcc cttcgacgac 
 360


ccctcctccc tggagttcct gcgcaagatc caggagcgct ccggcctggg cgacgagacc
 420


tacggccccc agggcctggt gcacgacatg cccctgcgca tgaacttcgc cgccgcccgc 
 480


gaggagaccg agcaggtgat caacggcgcc ctggagaagc tgttcgagaa caccaaggtg
 540


aacccccgcg agatcggcat cctggtggtg aactcctcca tgttcaaccc caccccctcc 
 600


ctgtccgcca tggtggtgaa caccttcaag ctgcgctcca acatcaagtc cttctccctg
 660


ggcggcatgg gctgctccgc cggcatcatc gccatcgacc tggccaagga cctgctgcac 
 720


gtgcacaaga acacctacgc cctggtggtg tccaccgaga acatcaccca ctccacctac
 780


accggcgaca accgctccat gatggtgtcc aactgcctgt tccgcatggg cggcgccgcc 
 840


atcctgctgt ccaacaaggc cggcgaccgc cgccgctcca agtacaagct ggcccacacc
 900


gtgcgcaccc acaccggcgc cgacgaccag tccttccgct gcgtgcgcca ggaggacgac 
 960


gaccgcggca agatcggcgt gtgcctgtcc aaggacatca ccgccgtggc cggcaagacc
1020


gtgaccaaga acatcgccac cctgggcccc ctggtgctgc ccctgtccga gaagttcctg 
1080


tacgtggtgt ccctgatggc caagaagctg ttcaagaaca agatcaagca cacctacgtg
1140


cccgacttca agctggccat cgaccacttc tgcatccacg ccggcggccg cgccgtgatc 
1200


gacgtgctgg agaagaacct ggccctgtcc cccgtggacg tggaggcctc ccgctccacc
1260


ctgcaccgct tcggcaacac ctcctcctcc tccatctggt acgagctggc ctacatcgag 
1320


gccaagggcc gcatgaagaa gggcaacaag gtgtggcaga tcgccatcgg ctccggcttc
1380


aagtgcaact ccgccgtgtg ggtggccctg tgcaacgtga agccctccgt gaactccccc 
1440


tgggagcact gcatcgaccg ctaccccgtg gagatcaact acggctcctc caagtccgag
1500


acccgcgccc agaacggccg ctcctgactt aag  
1533











SEQ ID NO: 38










actagtatgt ccggcaccaa ggccacctcc gtgtccgtgc ccctgcccga cttcaagcag 
  60



tccgtgaacc tgaagtacgt gaagctgggc taccactact ccatcaccca cgccatgtac
 120


ctgttcctga cccccctgct gctgatcatg tccgcccaga tctccacctt ctccatccag 
 180


gacttccacc acctgtacaa ccacctgatc ctgcacaacc tgtcctccct gatcctgtgc
 240


atcgccctgc tgctgttcgt gctgaccctg tacttcctga cccgccccac ccccgtgtac 
 300


ctgctgaact tctcctgcta caagcccgac gccatccaca agtgcgaccg ccgccgcttc
 360


acggacacca tccgcggcat gggcacctac accgaggaga acatcgagtt ccagcgcaag 
 420


gtgctggagc gctccggcat cggcgagtcc tcctacctgc cccccaccgt gttcaagatc
 480


cccccccgcg tgtacgacgc cgaggagcgc gccgaggccg agatgctgat gttcggcgcc 
 540


gtggacggcc tgttcgagaa gatctccgtg aagcccaacc agatcggcgt gctggtggtg
 600


aactgcggcc tgttcaaccc catcccctcc ctgtcctcca tgatcgtgaa ccgctacaag 
 660


atgcgcggca acgtgttctc ctacaacctg ggcggcatgg gctgctccgc cggcgtgatc
 720


tccatcgacc tggccaagga cctgctgcag gtgcgcccca actcctacgc cctggtggtg 
 780


tccctggagt gcatctccaa gaacctgtac ctgggcgagc agcgctccat gctggtgtcc
 840


aactgcctgt tccgcatggg cggcgccgcc atcctgctgt ccaacaagat gtccgaccgc 
 900


tggcgctcca agtaccgcct ggtgcacacc gtgcgcaccc acaagggcac cgaggacaac
 960


tgcttctcct gcgtgacccg caaggaggac tccgacggca agatcggcat ctccctgtcc 
1020


aagaacctga tggccgtggc cggcgacgcc ctgaagacca acatcaccac cctgggcccc
1080


ctggtgctgc ccatgtccga gcagctgctg ttcttcgcca ccctggtggg caagaaggtg 
1140


ttcaagatga agctgcagcc ctacatcccc gacttcaagc tggccttcga gcacttctgc
1200


atccacgccg gcggccgcgc cgtgctggac gagctggaga agaacctgaa gctgtcctcc 
1260


tggcacatgg agccctcccg catgtccctg taccgcttcg gcaacacctc ctcctcctcc
1320


ctgtggtacg agctggccta ctccgaggcc aagggccgca tcaagaaggg cgaccgcgtg 
1380


tggcagatcg ccttcggctc cggcttcaag tgcaactccg ccgtgtggaa ggccctgcgc
1440


aacgtgaacc ccgccgagga gaagaacccc tggatggacg agatccacct gttccccgtg 
1500


gaggtgcccc tgaactgact taag 
1524











SEQ ID NO: 39 










actagtatga cctccatcaa cgtgaagctg ctgtaccact acgtgatcac caacctgttc
  60



aacctgtgct tcttccccct gaccgccatc gtggccggca aggcctacct gaccatcgac 
 120


gacctgcacc acctgtacta ctcctacctg cagcacaacc tgatcaccat cgcccccctg
 180


ctggccttca ccgtgttcgg ctccgtgctg tacatcgcca cccgccccaa gcccgtgtac 
 240


ctggtggagt actcctgcta cctgcccccc acccactgcc gctcctccat ctccaaggtg
 300


atggacatct tcttccaggt gcgcaaggcc gacccctccc gcaacggcac ctgcgacgac 
 360


tcctcctggc tggacttcct gcgcaagatc caggagcgct ccggcctggg cgacgagacc
 420


cacggccccg agggcctgct gcaggtgccc ccccgcaaga ccttcgcccg cgcccgcgag 
 480


gagaccgagc aggtgatcat cggcgccctg gagaacctgt tcaagaacac caacgtgaac
 540


cccaaggaca tcggcatcct ggtggtgaac tcctccatgt tcaaccccac cccctccctg 
 600


tccgccatgg tggtgaacac cttcaagctg cgctccaacg tgcgctcctt caacctgggc
 660


ggcatgggct gctccgccgg cgtgatcgcc atcgacctgg ccaaggacct gctgcacgtg 
 720


cacaagaaca cctacgccct ggtggtgtcc accgagaaca tcacctacaa catctacgcc
 780


ggcgacaacc gctccatgat ggtgtccaac tgcctgttcc gcgtgggcgg cgccgccatc 
 840


ctgctgtcca acaagccccg cgaccgccgc cgctccaagt acgagctggt gcacaccgtg
 900


cgcacccaca ccggcgccga cgacaagtcc ttccgctgcg tgcagcaggg cgacgacgag 
 960


aacggccaga ccggcgtgtc cctgtccaag gacatcaccg acgtggccgg ccgcaccgtg
1020


aagaagaaca tcgccaccct gggccccctg atcctgcccc tgtccgagaa gctgctgttc 
1080


ttcgtgacct tcatgggcaa gaagctgttc aaggacgaga tcaagcacta ctacgtgccc
1140


gacttcaagc tggccatcga ccacttctgc atccacgccg gcggcaaggc cgtgatcgac 
1200


gtgctggaga agaacctggg cctggccccc atcgacgtgg aggcctcccg ctccaccctg
1260


caccgcttcg gcaacacctc ctcctcctcc atctggtacg agctggccta catcgagccc 
1320


aagggccgca tgaagaaggg caacaaggtg tggcagatcg ccctgggctc cggcttcaag
1380


tgcaactccg ccgtgtgggt ggccctgaac aacgtgaagg cctccaccaa ctccccctgg 
1440


gagcactgca tcgaccgcta ccccgtgaag atcgactccg actccggcaa gtccgagacc
1500


cgcgtgccca acggccgctc ctgacttaag  
1530











SEQ ID NO: 40










actagtatgg agcgcaccaa ctccatcgag atggaccagg agcgcctgac cgccgagatg 
  60



gccttcaagg actcctcctc cgccgtgatc cgcatccgcc gccgcctgcc cgacttcctg
 120


acctccgtga agctgaagta cgtgaagctg ggcctgcaca actccttcaa cttcaccacc 
 180


ttcctgttcc tgctgatcat cctgcccctg accggcaccg tgctggtgca gctgaccggc
 240


ctgaccttcg agaccttctc cgagctgtgg tacaaccacg ccgcccagct ggacggcgtg 
 300


acccgcctgg cctgcctggt gtccctgtgc ttcgtgctga tcatctacgt gaccaaccgc
 360


tccaagcccg tgtacctggt ggacttctcc tgctacaagc ccgaggacga gcgcaagatg 
 420


tccgtggact ccttcctgaa gatgaccgag cagaacggcg ccttcaccga cgacaccgtg
 480


cagttccagc agcgcatctc caaccgcgcc ggcctgggcg acgagaccta cctgccccgc 
 540


ggcatcacct ccaccccccc caagctgaac atgtccgagg cccgcgccga ggccgaggcc
 600


gtgatgttcg gcgccctgga ctccctgttc gagaagaccg gcatcaagcc cgccgaggtg 
 660


ggcatcctga tcgtgtcctg ctccctgttc aaccccaccc cctccctgtc cgccatgatc
 720


gtgaaccact acaagatgcg cgaggacatc aagtcctaca acctgggcgg catgggctgc 
 780


tccgccggcc tgatctccat cgacctggcc aacaacctgc tgaaggccaa ccccaactcc
 840


tacgccgtgg tggtgtccac cgagaacatc accctgaact ggtacttcgg caacgaccgc 
 900


tccatgctgc tgtgcaactg catcttccgc atgggcggcg ccgccatcct gctgtccaac
 960


cgccgccagg accgctccaa gtccaagtac gagctggtga acgtggtgcg cacccacaag 
1020


ggctccgacg acaagaacta caactgcgtg taccagaagg aggacgagcg cggcaccatc
1080


ggcgtgtccc tggcccgcga gctgatgtcc gtggccggcg acgccctgaa gaccaacatc 
1140


accaccctgg gccccatggt gctgcccctg tccggccagc tgatgttctc cgtgtccctg
1200


gtgaagcgca agctgctgaa gctgaaggtg aagccctaca tccccgactt caagctggcc 
1260


ttcgagcact tctgcatcca cgccggcggc cgcgccgtgc tggacgaggt gcagaagaac
1320


ctggacctgg aggactggca catggagccc tcccgcatga ccctgcaccg cttcggcaac 
1380


acctcctcct cctccctgtg gtacgagatg gcctacaccg aggccaaggg ccgcgtgaag
1440


gccggcgacc gcctgtggca gatcgccttc ggctccggct tcaagtgcaa ctccgccgtg 
1500


tggaaggccc tgcgcgtggt gtccaccgag gagctgaccg gcaacgcctg ggccggctcc
1560


atcgagaact accccgtgaa gatcgtgcag tgacttaag  
1599











SEQ ID NO: 41










gctcttcgga gtcactgtgc cactgagttc gactggtagc tgaatggagt cgctgctcca 
  60



ctaaacgaat tgtcagcacc gccagccggc cgaggacccg agtcatagcg agggtagtag
 120


cgcgccatgg caccgaccag cctgcttgcc agtactggcg tctcttccgc ttctctgtgg 
 180


tcctctgcgc gctccagcgc gtgcgctttt ccggtggatc atgcggtccg tggcgcaccg
 240


cagcggccgc tgcccatgca gcgccgctgc ttccgaacag tggcggtcag ggccgcaccc 
 300


gcggtagccg tccgtccgga acccgcccaa gagttttggg agcagcttga gccctgcaag
 360


atggcggagg acaagcgcat cttcctggag gagcaccggt gcgtggaggt ccggggctga 
 420


ccggccgtcg cattcaacgt aatcaatcgc atgatgatca gaggacacga agtcttggtg
 480


gcggtggcca gaaacactgt ccattgcaag ggcataggga tgcgttcctt cacctctcat 
 540


ttctcatttc tgaatccctc cctgctcact ctttctcctc ctccttcccg ttcacgcagc
 600


attcggggta ccgcggtgag aatcgaaaat gcatcgtttc taggttcgga gacggtcaat 
 660


tccctgctcc ggcgaatctg tcggtcaagc tggccagtgg acaatgttgc tatggcagcc
 720


cgcgcacatg ggcctcccga cgcggccatc aggagcccaa acagcgtgtc agggtatgtg 
 780


aaactcaaga ggtccctgct gggcactccg gccccactcc gggggcggga cgccaggcat
 840


tcgcggtcgg tcccgcgcga cgagcgaaat gatgattcgg ttacgagacc aggacgtcgt 
 900


cgaggtcgag aggcagcctc ggacacgtct cgctagggca acgccccgag tccccgcgag
 960


ggccgtaaac attgtttctg ggtgtcggag tgggcatttt gggcccgatc caatcgcctc 
1020


atgccgctct cgtctggtcc tcacgttcgc gtacggcctg gatcccggaa agggcggatg
1080


cacgtggtgt tgccccgcca ttggcgccca cgtttcaaag tccccggcca gaaatgcaca 
1140


ggaccggccc ggctcgcaca ggccatgctg aacgcccaga tttcgacagc aacaccatct
1200


agaataatcg caaccatccg cgttttgaac gaaacgaaac ggcgctgttt agcatgtttc 
1260


cgacatcgtg ggggccgaag catgctccgg ggggaggaaa gcgtggcaca gcggtagccc
1320


attctgtgcc acacgccgac gaggaccaat ccccggcatc agccttcatc gacggctgcg 
1380


ccgcacatat aaagccggac gcctaaccgg tttcgtggtt atgactagta tgttcgcgtt
1440


ctacttcctg acggcctgca tctccctgaa gggcgtgttc ggcgtctccc cctcctacaa 
1500


cggcctgggc ctgacgcccc agatgggctg ggacaactgg aacacgttcg cctgcgacgt
1560


ctccgagcag ctgctgctgg acacggccga ccgcatctcc gacctgggcc tgaaggacat 
1620


gggctacaag tacatcatcc tggacgactg ctggtcctcc ggccgcgact ccgacggctt
1680


cctggtcgcc gacgagcaga agttccccaa cggcatgggc cacgtcgccg accacctgca 
1740


caacaactcc ttcctgttcg gcatgtactc ctccgcgggc gagtacacgt gcgccggcta
1800


ccccggctcc ctgggccgcg aggaggagga cgcccagttc ttcgcgaaca accgcgtgga 
1860


ctacctgaag tacgacaact gctacaacaa gggccagttc ggcacgcccg agatctccta
1920


ccaccgctac aaggccatgt ccgacgccct gaacaagacg ggccgcccca tcttctactc 
1980


cctgtgcaac tggggccagg acctgacctt ctactggggc tccggcatcg cgaactcctg
2040


gcgcatgtcc ggcgacgtca cggcggagtt cacgcgcccc gactcccgct gcccctgcga 
2100


cggcgacgag tacgactgca agtacgccgg cttccactgc tccatcatga acatcctgaa
2160


caaggccgcc cccatgggcc agaacgcggg cgtcggcggc tggaacgacc tggacaacct 
2220


ggaggtcggc gtcggcaacc tgacggacga cgaggagaag gcgcacttct ccatgtgggc
2280


catggtgaag tcccccctga tcatcggcgc gaacgtgaac aacctgaagg cctcctccta 
2340


ctccatctac tcccaggcgt ccgtcatcgc catcaaccag gactccaacg gcatccccgc
2400


cacgcgcgtc tggcgctact acgtgtccga cacggacgag tacggccagg gcgagatcca 
2460


gatgtggtcc ggccccctgg acaacggcga ccaggtcgtg gcgctgctga acggcggctc
2520


cgtgtcccgc cccatgaaca cgaccctgga ggagatcttc ttcgactcca acctgggctc 
2580


caagaagctg acctccacct gggacatcta cgacctgtgg gcgaaccgcg tcgacaactc
2640


cacggcgtcc gccatcctgg gccgcaacaa gaccgccacc ggcatcctgt acaacgccac 
2700


cgagcagtcc tacaaggacg gcctgtccaa gaacgacacc cgcctgttcg gccagaagat
2760


cggctccctg tcccccaacg cgatcctgaa cacgaccgtc cccgcccacg gcatcgcgtt 
2820


ctaccgcctg cgcccctcct cctgatacgt agcagcagca gctcggatag tatcgacaca
2880


ctctggacgc tggtcgtgtg atggactgtt gccgccacac ttgctgcctt gacctgtgaa 
2940


tatccctgcc gcttttatca aacagcctca gtgtgtttga tcttgtgtgt acgcgctttt
3000


gcgagttgct agctgcttgt gctatttgcg aataccaccc ccagcatccc cttccctcgt 
3060


ttcatatcgc ttgcatccca accgcaactt atctacgctg tcctgctatc cctcagcgct
3120


gctcctgctc ctgctcactg cccctcgcac agccttggtt tgggctccgc ctgtattctc 
3180


ctggtactgc aacctgtaaa ccagcactgc aatgctgatg cacgggaagt agtgggatgg
3240


gaacacaaat ggagatatcg cgaggggtct gcctgggcca gccgctccct ctaaacacgg 
3300


gacgcgtggt ccaattcggg cttcgggacc ctttggcggt ttgaacgcca gggatggggc
3360


gcccgcgagc ctggggaccc cggcaacggc ttccccagag cctgccttgc aatctcgcgc 
3420


gtcctctccc tcagcacgtg gcggttccac gtgtggtcgg gcttcccgga ctagctcgcg
3480


tcgtgaccta gcttaatgaa cccagccggg cctgtagcac cgcctaagag gttttgatta 
3540


tttcattata ccaatctatt cgccactagt atggccatca agaccaaccg ccagcccgtg
3600


gagaagcccc ccttcaccat cggcaccctg cgcaaggcca tccccgccca ctgcttcgag 
3660


cgctccgccc tgcgctcctc catgtacctg gccttcgaca tcgccgtgat gtccctgctg
3720


tacgtggcct ccacctacat cgaccccgcc cccgtgccca cctgggtgaa gtacggcgtg 
3780


atgtggcccc tgtactggtt cttccagggc gccttcggca ccggcgtgtg ggtgtgcgcc
3840


cacgagtgcg gccaccaggc cttctcctcc tcccaggcca tcaacgacgg cgtgggcctg 
3900


gtgttccact ccctgctgct ggtgccctac tactcctgga agcactccca ccgccgccac
3960


cactccaaca ccggctgcct ggacaaggac gaggtgttcg tgccccccca ccgcgccgtg 
4020


gcccacgagg gcctggagtg ggaggagtgg ctgcccatcc gcatgggcaa ggtgctggtg
4080


accctgaccc tgggctggcc cctgtacctg atgttcaacg tggcctcccg cccctacccc 
4140


cgcttcgcca accacttcga cccctggtcc cccatcttct ccaagcgcga gcgcatcgag
4200


gtggtgatct ccgacctggc cctggtggcc gtgctgtccg gcctgtccgt gctgggccgc 
4260


accatgggct gggcctggct ggtgaagacc tacgtggtgc cctacctgat cgtgaacatg
4320


tggctggtgc tgatcaccct gctgcagcac acccaccccg ccctgcccca ctacttcgag 
4380


aaggactggg actggctgcg cggcgccatg gccaccgtgg accgctccat gggccccccc
4440


ttcatggaca acatcctgca ccacatctcc gacacccacg tgctgcacca cctgttctcc 
4500


accatccccc actaccacgc cgaggaggcc tccgccgcca tccgccccat cctgggcaag
4560


tactaccagt ccgactcccg ctgggtgggc cgcgccctgt gggaggactg gcgcgactgc 
4620


cgctacgtgg tgcccgacgc ccccgaggac gactccgccc tgtggttcca caagtagatc
4680


gatcttaagg cagcagcagc tcggatagta tcgacacact ctggacgctg gtcgtgtgat 
4740


ggactgttgc cgccacactt gctgccttga cctgtgaata tccctgccgc ttttatcaaa
4800


cagcctcagt gtgtttgatc ttgtgtgtac gcgcttttgc gagttgctag ctgcttgtgc 
4860


tatttgcgaa taccaccccc agcatcccct tccctcgttt catatcgctt gcatcccaac
4920


cgcaacttat ctacgctgtc ctgctatccc tcagcgctgc tcctgctcct gctcactgcc 
4980


cctcgcacag ccttggtttg ggctccgcct gtattctcct ggtactgcaa cctgtaaacc
5040


agcactgcaa tgctgatgca cgggaagtag tgggatggga acacaaatgg aaagcttaat 
5100


taagagctct tgttttccag aaggagttgc tccttgagcc tttcattctc agcctcgata
5160


acctccaaag ccgctctaat tgtggagggg gttcgaattt aaaagcttgg aatgttggtt 
5220


cgtgcgtctg gaacaagccc agacttgttg ctcactggga aaaggaccat cagctccaaa
5280


aaacttgccg ctcaaaccgc gtacctctgc tttcgcgcaa tctgccctgt tgaaatcgcc 
5340


accacattca tattgtgacg cttgagcagt ctgtaattgc ctcagaatgt ggaatcatct
5400


gccccctgtg cgagcccatg ccaggcatgt cgcgggcgag gacacccgcc actcgtacag 
5460


cagaccatta tgctacctca caatagttca taacagtgac catatttctc gaagctcccc
5520


aacgagcacc tccatgctct gagtggccac cccccggccc tggtgcttgc ggagggcagg 
5580


tcaaccggca tggggctacc gaaatccccg accggatccc accacccccg cgatgggaag
5640


aatctctccc cgggatgtgg gcccaccacc agcacaacct gctggcccag gcgagcgtca 
5700


aaccatacca cacaaatatc cttggcatcg gccctgaatt ccttctgccg ctctgctacc
5760


cggtgcttct gtccgaagca ggggttgcta gggatcgctc cgagtccgca aacccttgtc 
5820


gcgtggcggg gcttgttcga gcttgaagag c 
5851











SEQ ID NO: 42










tacaacttat tacgtaacgg agcgtcgtgc gggagggagt gtgccgagcg gggagtcccg
  60



gtctgtgcga ggcccggcag ctgacgctgg cgagccgtac gccccgaggg tccccctccc 
 120


ctgcaccctc ttccccttcc ctctgacggc cgcgcctgtt cttgcatgtt cagcgacgag
 180


gatatc  
 186








SEQ ID NO: 43










gcgaggggtc tgcctgggcc agccgctccc tctgaacacg ggacgcgtgg tccaattcgg 
  60



gcttcgggac cctttggcgg tttgaacgcc tgggagaggg cgcccgcgag cctggggacc
 120


ccggcaacgg cttccccaga gcctgccttg caatctcgcg cgtcctctcc ctcagcacgt 
 180


ggcggttcca cgtgtggtcg ggcgtcccgg actagctcac gtcgtgacct agcttaatga
 240


acccagccgg gcctgcagca ccaccttaga ggttttgatt atttgattag accaatctat 
 300


tcacc 
 305











SEQ ID NO: 44










ggcgaataga ttggtataat gaaataatca aaacctctta ggcggtgcta caggcccggc
  60



tgggttcatt aagctaggtc acgacgcgag ctagtccggg aagcccgacc acacgtggaa 
 120


ccgccacgtg cugagggaga ggacgcgcga gattgcaagg caggctctgg ggaagccgtt
 180


gccggggtcc ccaggctcgc gggcgcccca tccctggcgt tcaaaccgcc aaagggtccc 
 240


gaagcccgaa ttggaccacg cgtcccgtgt ttagagggag cggctggccc aggcagaccc
 300


ctcgc  
 305











SEQ ID NO: 45










ggtgaataga ttggtctaat caaataatca aaacctctaa ggtggtgctg caggcccggc 
  60



tgggttcatt aagctaggtc acgacgtgag ctagtccggg acgcccgacc acacgtggaa
 120


ccgccacgtg ctgagggaga ggacgcgcga gattgcaagg caggctctgg ggaagccgtt 
 180


gccggggtcc ccaggctcgc gggcgccctc tcccaggcgt tcaaaccgcc aaagggtccc
 240


gaagcccgaa ttggaccacg cgtcccgtgt tcagagggag cggctggccc aggcagaccc 
 300


ctcgc 
 305











SEQ ID NO: 46










gtgatgggtt ctttagacga tccagcccag gatcatgtgt tgcccacatg gagcctatcc
  60



acgctggcct agaaggcaag cacatttcaa ggtgaaccca cgtccatgga gcgatggcgc 
 120


caatatctcg cctctagacc aagcggttct caccccaact gcgtcatttg tatgtatggc
 180


tgcaaagttg tcggtacgat agaggccgcc aacctggcgg cgagggcgag gagctggttg 
 240


ccgatctgtg cccaagcatg tgtcggagct cggctgtctc ggcagcgagc tcctgtgcaa
 300


ggggcttgca tcgagaatgt caggcgatag acactgcacg ttggggacac ggaggtgccc 
 360


ctgtggcgtg tcctggatgc cctcgggtcc gtcgcgagaa gctctggcga ccagcacccg
 420


gccacaaccg cagcaggcgt tcacccacaa gaatcttcca gatcgtgatg cgcatgtatc 
 480


gtgacacgat tggcgaggtc cgcaggacgc acacggactc gtccactcat cagaactggt
 540


cagggcaccc atctgcgtcc cttttcagga accacccacc gctgccaggc accttcgcca 
 600


gcggcggact ccacacagag aatgccttgc tgtgagagac catggccggc aagtgctgtc
 660


ggatctgccc gcatacggtc agtccccagc acaaggaagc caagagtaca ggctgttggt 
 720


gtcgatggag gagtggccgt tcccacaagt agtgagcggc agctgctcaa cggcttcccc
 780


ctgttcatct tggcaaagcc agtgacttcc tacaagtatg tgatgcagat cggcactgca 
 840


atctgtcggc atgcgtacag aacatcggct cgccagggca gcgttgctcg ctctggatga
 900


gctgcttggg aggaatcatc ggcacacgcc cgtgccgtgc ccgcgccccg cgcccgtcgg 
 960


gaaaggcccc cggttaggac actgccgcgt cagccagtcg tgggatcgat cggacgtggc
1020


gaatcctcgc ccggacaccc tcatcacacc ccacatttcc ctgcaagcaa tcttgccgac 
1080


aaaatagtca agatccattg ggtttaggga acacgtgcga gactgggcag ctgtatctgt
1140


ccttgccccg cgtcaaattc ctgggcgtga cgcagtcaca ggagaatcta ttagaccctg 
1200


gacttgcagc tcagtcatgg gcgtgagtgg ctaaagcacc taggtcaggc gagtaccgcc
1260


ccttccccag gattcactct tctgcgattg acgttgagcc tgcatcgggc tgcttcgtca 
1320


cc
1322











SEQ ID NO: 47










tcggagctaa agcagagact ggacaagact tgcgttcgca tactggtgac acagaatagc
  60



tcccatctat tcatacgcct ttgggaaaag gaacgagcct tgtggcctct gcattgctgc
 120


ctgctttgag gccgaggacg gtgcgggacg ctcagatcca tcagcgatcg ccccaccctc
 180


agagcacctc cgatccaagg caatactatc aggcaaagtt tccaaattca aacattccaa
 240


aatcacgcca gggactggat cacacacgca gatcagcgcc gttttgctct ttgcctacgg
 300


gcgactgtgc cacttgtcga cccctggtga cgggagggac cacgcctgcg gttggcatcc
 360


acttcgacgg acccagggac ggtttctcat gccaaacctg agatttgagc acccagatga
 420


gcacattatg cgttttagga tgcctgagca gcgggcgtgc aggaatctgg tctcgccaga
 480


ttcaccgaag atgcgcccat cggagcgagg cgagggcttt gtgaccacgc aaggcagtgt
 540


gaggcaaaca catagggaca cctgcgtctt tcaatgcaca gacatctatg gtgcccatgt
 600


atataaaatg ggctacttct gagtcaaacc aacgcaaact gcgctatggc aaggccggcc
 660


aaggttggaa tcccggtctg tctggatttg agtttgtggg ggctatcacg tgacaatccc
 720


tgggattggg cggcagcagc gcacggcctg ggtggcaatg gcgcactaat actgctgaaa
 780


gcacggctct gcatcccttt ctcttgacct gcgattggtc cttttcgcaa gcgtgatcat
 840


c
 841











SEQ ID NO:48










tcggagctaa agcagaaact gaacaagact tgcgttcgca tacttgtgac actgaatagg
  60



ttcaatctat tcatacgcct ttgggaaact gaacgagcct tgtggcctct gcattgctgc
 120


ctgctttgag gccgaggacg gcgcggaacg cacagatcca tcagcgatcg ccccaccctc
 180


agagtacatc cgatccaagg caatactatc aggcaaagtt tccaaattca aacattccaa
 240


aattacgtca gggactggat cacacacgca gatcagcgcc gttttgctct ttgcctacgg
 300


gcgactgtgc cacttgtcga cgcctggtga cgggagggac cacgcctgcg gttggcatcc
 360


acttcgacgg acccagggac ggtctcacat gccaaacctg agatttgagc accaagatga
 420


gcacattatg cgtttttgga tgcctgagca gcgggcgtgc aggaatctgg tctcgccaga
 480


ttcaccgaag atgcggccat cggagcgagg cgagggctgt gtggccacgc caggcagtgt
 540


gaggcaaaca cacagggaca tctgcttctt tcgatgcaca gacatctatg ttgcccgtgc
 600


atataaaatg ggctacttct gaatcaaacc aacgcaaact tcgctatggc aaggccggcc
 660


aaggttggaa tcccggtctg tctggatttg agtttgtggg ggctatcacg tgacaatccc
 720


tgggattggg cggcagcagc gcacggcctg gatggcaatg gcgcactaat actgctgaaa
 780


gcacggctct gcatcccttt ctcttgacct gcgattggtc cttttcgcaa gcgtgatcat
 840


c
 841











SEQ ID NO: 49










caccgatcac tccgtcgccg cccaagagaa atcaacctcg atggagggcg aggtggatca
  60



gaggtattgg ttatcgttcg ttcttagtct caatcaatcg tacaccttgc agttgcccga
 120


gtttctccac acatacagca cctcccgctc ccagcccatt cgagcgaccc aatccgggcg
 180


atcccagcga tcgtcgtcgc ttcagtgctg accggtggaa agcaggagat ctcgggcgag
 240


caggaccaca tccagcccag gatcttcgac tggctcagag ctgaccctca cgcggcacag
 300


caaaagtagc acgcacgcgt tatgcaaact ggttacaacc tgtccaacag tgttgcgacg
 360


ttgactggct acattgtctg tctgtcgcga gtgcgcctgg gcccttacgg tgggacactg
 420


gaactccgcc ccgagtcgaa cacctagggc gacgcccgca gcttggcatg acagctctcc
 480


ttgtgttcta aataccttgc gcgtgtggga ga
 512











SEQ ID NO: 50










atccaccgat cactccgtcg ccgcccaaga gaattcaacc tcgatggagg gcaaggtgga
  60



tcagaggtat tggttatcgt tcgctattag tctcaatcaa tcgtgcacct tgcagttgct
 120


cgagtttctc cacacataca gcacctcccg ctcccagccc attcgagcga cccaatccgg
 180


gcgatcccag cgatcgtcgt cgcttcagtg ctgaccggtg gaaagcagga gatctcgggc
 240


gagcaggacc acatccagca caggatcttc gactggctca gagctgaccc tcacgcggca
 300


cagcaaaagt agcccgcacg cgttatgcaa acaggttaca acctgtccaa cactgttgcg
 360


acgttgactg gctacattgt ctgtctgtcg cgagtacgcc tggaccctta cggtgggaca
 420


ctggaactcc gccccgagtc gaacacctag ggcgacgccc gcagcttggc atgacagctc
 480


tccttgtatt ctaaatacct cgcgcgtgtg ggagaa
 516











SEQ ID NO: 51










atgatgcgcg tgtacgacta tcaaggaaga aagaggactt aatttcttac cttctaacca
  60



ccatattctt tttgctggat gcttgctcgt ctcgatgaca attgtgaacc tcttgtgtga
 120


ccctgaccct gctgcaaggc tctccgaccg cacgcaaggc gcagccggcg cgtccggagg
 180


cgatcggatc caatccagtc gtcctcccgc agcccgggca cgtttgccca tgcaggccct
 240


tccacaccgc tcaagagact cccgaacacc gcccactcgg cactcgcttc ggctgccgag
 300


tgcgcgtttg agtttgccct gccacagaag acacc
 335











SEQ ID NO: 52










atgatgcgcg tgtacgacta tcaaggaaga aagaggactt aatttcttac cttctaacca
  60



ccatattctt tttgctggat gcttgctcgt ctcgatgaca attgtgaacc tcttgtgtga
 120


ccctgaccct gctgcaaggc tctccgaccg cacgcaaggc gcagccggcg cgtccggagg
 180


cgatcggatc caatccagtc gtcctcccgc agcccgggca cgtttgccca tgcaggccct
 240


tccacaccgc tcaagagact cccgaacacc gcccactcgg cactcgcttc ggctgccgag
 300


tgcgcgtttg agtttgccct gccacaggag acatc
 335











SEQ ID NO: 53










cccgggcgag ctgtacgcct acggagcgag gcctggtgtg accgttgcga tctcgccagc
  60



agacgtcgcg gagcctcgtc ccaaaggccc tttctgatcg agcttgtcgt ccactggacg
 120


ctttaagttg cgcgcgcgat gggataaccg agctgatctg cactcagatt ttggtttgtt
 180


ttcgcgcatg gtgcagcgag gggaggtact acgctggggt acgagatcct ccggattccc
 240


agaccgtgtt gccggcattt acccggtcat cgccagcgat tcgggacgac aaggccttat
 300


cctgtgctga gacgctcgag cacgtttata aaattgtggg taccgcggta tgcacagcgt
 360


tcaacacgcg ccacgccgaa attggttggt gggggagcac gtatgggact gacgtatggc
 420


cagcagcgaa cactcaccga acaagtgcca atgtatacct tgcatcaatg atgctccggc
 480


agcttcgatt gactgtctcg aaaaagtgtg agcaagcaga tcatgtggcc gctctgtcgc
 540


gcagcacctg acgcattcga cacccacggc aatgcccagg ccagggaata gagagtaaga
 600


caactcccat tgttcagcaa aacattgcac tgcagtgcct tcacaactat acaatgaatg
 660


ggagggaata tgggctctgc atgggacagc ttagctggga cattcggcta ctgaacaaga
 720


aaaccccacg agaaccaatt ggcgaaacct gccgggagga ggtgatcgtt tctgtaaatg
 780


gcttacgcat tcccccccgg cggctcacga ggggtgtggt gaaccctgcc agctgatcaa
 840


gtgcttgctg acgtcggcca gggaggtgta tgtgattggg ccgtggggcg tgagttatcc
 900


taccgccgga cccgcgaagt cacatgacga atggccgtgc gggatgacga gagcacgact
 960


cgctctttct tcgccggccc ggcttcatgg aggacaataa taaagggtgg ccaccggcaa
1020


cagccctcca tacctgaacc gattccagac ccaaacctct tgaattttga gggatccagt
1080


tcaccggtat agtcacg
1097











SEQ ID NO: 54










atccccgggc gagctgtacg cctacggagc gaggcctggt gtgaccgttg cgatctcgcc
  60



agcagacgtc gcggagcctc gtcccaaagg ccctttctga tcgagcttgt cgtccactgg
 120


acgctttaag ttgcgcgcgc gatgggataa ccgagctgat ctgcactcag attttggttt
 180


gttttcgcgc atggtgcagc gaggggaggt actacgctgg ggtacgagat cctccggatt
 240


cccagaccgt gttgccggca tttacccggt catcgccagc gattcgggac gacaaggcct
 300


tatcctgtgc tgagacgctc gagcacgttt ataaaattgt ggtcaccgtg gtacgcacag
 360


cgtccaacac gcgccacgcc gaaattcgtt ggtgggggag cacgtatcgg actgacgtat
 420


ggccagcagc gaacactcac caaacaggtg ccaatgtata gcttgcatca atgatgctct
 480


ggcagcttcg attgactgtc tcgaaaaagt gtgtgcaaac agattatgtg gccgctctgt
 540


ggccgcgcag cacctgacgc actcgacacc cacggcaatg cccaggccaa ggaacagaga
 600


gtaagacaac tcccattgtt cagtaaaaca ttgcactgca gtgccttcac aaacatacaa
 660


cgaacgggag ggaatatggg cttcgaatgg gacagcttag ctgggacatt cggttactga
 720


acaagaaaac cccacgagaa ccaactggcg aaacctgccg ggaggaggtg atcgtttttg
 780


taaatggctt acgcattccc cccccggcgg ctcacggggg gtgtggtgaa ccctgccagc
 840


tgatcaagtg cttgctgacg tcggccaggg aggtgtatgt gatttggccg tggggcgtga
 900


gttatcctac cgccggaccc gcgaagtcac atgacgaatg gccgtgcggg atgacgagag
 960


cagggctcgc tctttcttcg ccggcccggc ttcatggagg acaataataa agggtggcca
1020


ccggcaacag ccctccatac ctgaaccgat tccagaccca aacctcttga attttgaggg
1080


atccagttca ccggtatagt cacga
1105











SEQ ID NO: 55










gcgagtggtt ttgctgccgg gaagggagtg gggagcgtcg agcgagggac gcggcgctcg
  60



aggcgcacgt cgtctgtcaa cgcgcgcggc cctcgcggcc cgcggcccca cccagctcta
 120


atcatcgaaa actaagaggc tccacacgcc tgtcgtagaa tgcatgggat tcgccagtag
 180


accacgatct gcgccgaaga agctggtcta cccgacgttt tttgttgctc ctttattctg
 240


aatgatatga agatagtgtg cgcagtgcca cgcataggca tcaggagcaa gggaggacgg
 300


gtcaacttga aagaaccaaa ccatccatcc gagaaatgcg catcatcttt gtagtaccat
 360


caaacgcctt ggccaatgtc ttctgcatgg acaacacaac ctgctcctgg ccacacggtc
 420


gacttggagc gccccatgcg cccaggtcgc cacgacccgc ggcccagcgc gcggcgattc
 480


gcctcacgag atcccggcgg acccggcacg cccgcgggcc gacggtgcgc ttggcgatgc
 540


tgctcattaa cccacggccg tcacccgatc cacatgctct ttttcaacac atccacattg
 600


gaatagagct ctaccagggt gagtactgca ttctttgggg ctgggaggac cccactcgac
 660


acctggtcct tcatcggccg aaagcccgaa cctgagcgct tccccgcccc gttcctcatc
 720


cccgactttc cgatggccca ttgcagtttc aaac
 754











SEQ ID NO: 56










atctgggtgg aggactggga gtaagatgta aggatattaa ttaaacattc tagtttgttg
  60



atggcacaac agtcaatgca tttcagtcgt cttgctcctt ataacctatg cgtgtgccat
 120


cgccggccat gcacctgtgg cgtggtaccg accatcgggg agaggcccga gattcggagg
 180


tacctcccgc cctgggcgag cccttcacgt gacggcacaa gtcccttgca tcggcccgcg
 240


agcacggaat acagagcccc gtgcccccca cgggccctca catcatccac tccattgttc
 300


ttgccacacc gatcagca
 318











SEQ ID NO: 57










tgggtggagg actgggaaga agatgtaagg atatcaattt aacattctag tttgttgatg
  60



gcacaacagt cactgaatac cgggcgtctg gctgctaaaa tagccggage gtgtgccatc
 120


gccggccatg catctgtggc gtggtaccga ccatcaggga gaggcccgag attcggaggt
 180


acctcccgcc ccgggcgagc ccttcacgtg acggcacaag tcccttgcat cggcccgcga
 240


gcacggaata cagagccccg tgctccccac gggccctcac atcatccact ccattgttct
 300


tgccacaccg atcagc
 316











SEQ ID NO: 58










ataacgaggc acaatgatcg atatttctat cgaacaactg tatttagccc tgtacgtacc
  60



ccgctcttgg gccagcccgt ccgtgcttgc cttcggaaaa ttgcatggcg cctcatgcaa
 120


actcgcgctc tcacagcaga tctcgcccag ctcccgggag agcaatcgcg ggtggggccc
 180


ggggcgaatc caggacgcgc cccgcggggc cgctccactc gccagggcca atgggcggct
 240


tatagtcctg gcatgggctc tgcatgcaca gtatcgcagt ttgggcgagg tgttgccccc
 300


gcgatttcga atacgcgacg cccggtactc gtgcgagaac agggttcttg 
 350











SEQ ID NO: 59










atcgcgatgg tgcgcactcg tgcgcaatga atatggggtc acgcggtgga cgaacgcgga
  60



gggggcctgg ccgaatctat gcttgcattc ctcagatcac tttctgccgg cggtccgggg
 120


tttgcgcgtc gcgcaacgct ccgtctccct agccgctgcg caccgcgcgt gcgacgcgaa
 180


ggtcattttc cagaacaacg accatggctt gtcttagcga tcgctcgaat gactgctagt
 240


gagtcgtacg ctcgacccag tcgctcgcag gagaacgcgg caactgccga gcttcggctt
 300


gccagtcgtg actcgtatgt gatcaggaat cattggcatt ggtagcatta taattcggct
 360


tccgcgctgt ttatgggcat ggcaatgtct catgcagtcg accttagtca accaattctg
 420


ggtggccagc tccgggcgac cgggctccgt gtcgccgggc accacctcct gccatgagta
 480


acagggccgc cctctcctcc cgacgttggc ccactgaata ccgtgtcttg gggccctaca
 540


tgatgggctg cctagtcggg cgggacgcgc aactgcccgc gcaatctggg acgtggtctg
 600


aatcctccag gcgggtttcc ccgagaaaga aagggtgccg atttcaaagc agagccatgt
 660


gccgggccct gtggcctgtg ttggcgccta tgtagtcacc ccccctcacc caattgtcgc
 720


cagtttgcgc aatccataaa ctcaaaactg cagcttctga gctgcgctgt tcaagaacac
 780


ctctggggtt tgctcacccg cgaggtcgac gcccagca
 818








SEQ ID NO: 60










atcacgatgg tgcgcattcg tgcaaagtga atatggggtc acgcggtgga cgaacgcgga
  60



gggggcatga ccgaatctag gctcgcattc ctcagatcac ttcatgccgg cggtccgggg
 120


tttgcgcgtc gcgcaaggct acgtctccct agccgctgcg caccacgcgt gcgacgcgga
 180


ggccatcttc cggagcaacg accatggatt gtcttagcga tcgcacgaat gagtgctagt
 240


gagtcgtacg ctcgacccag tcgctcgcag gagaaggcgg cagctgccga gcttcggctt
 300


accagtcgtg actcgtatgt gatcaggaat cattggcatt ggtagcatta taattcggct
 360


tccgcgctgc gtatgggcat ggcaatgtct catgcagtcg atcttagtca accaattttg
 420


ggtggccagg tccgggcgac cgggctccgt gtcgccgggc accacctcct gccaggagta
 480


gcagggccgc cctctcgtcc cgacgttggc ccactgaata ccgtggcttc gagccctaca
 540


tgatgggctg cctagtcggg cgggacgcgc aactgcccgc gcgatctggg ggctggtctg
 600


aatccttcag gcgggtgtta cccgagaaag aaagggtgcc gatttcaaag cagacccatg
 660


tgccgggccc tgtggcctgt gttggcgcct atgtagtcac cccccctcac ccaattgtcg
 720


ccagtttgcg cactccataa actcaaaaca gcagcttctg agctgcgctg ttcaagaaca
 780


cctctggggt ttgctcaccc gcgaggtcga cgcccagca
 819











SEQ ID NO: 61










gctcttcgcc gccgccactc ctgctcgagc gcgcccgcgc gtgcgccgcc agcgccttgg
  60



ccttttcgcc gcgctcgtgc gcgtcgctga tgtccatcac caggtccatg aggtctgcct
 120


tgcgccggct gagccactgc ttcgtccggg cggccaagag gagcatgagg gaggactcct
 180


ggtccagggt cctgacgtgg tcgcggctct gggagcgggc cagcatcatc tggctctgcc
 240


gcaccgaggc cgcctccaac tggtcctcca gcagccgcag tcgccgccga ccctggcaga
 300


ggaagacagg tgaggggggt atgaattgta cagaacaacc acgagccttg tctaggcaga
 360


atccctacca gtcatggctt tacctggatg acggcctgcg aacagctgtc cagcgaccct
 420


cgctgccgcc gcttctcccg cacgcttctt tccagcaccg tgatggcgcg agccagcgcc
 480


gcacgctggc gctgcgcttc gccgatctga ggacagtcgg ggaactctga tcagtctaaa
 540


cccccttgcg cgttagtgtt gccatccttt gcagaccggt gagagccgac ttgttgtgcg
 600


ccacccccca caccacctcc tcccagacca attctgtcac ctttttggcg aaggcatcgg
 660


cctcggcctg cagagaggac agcagtgccc agccgctggg ggttggcgga tgcacgctca
 720


ggtacccttt cttgcgctat gacacttcca gcaaaaggta gggcgggctg cgagacggct
 780


tcccggcgct gcatgcaaca ccgatgatgc ttcgaccccc cgaagctcct tcggggctgc
 840


atgggcgctc cgatgccgct ccagggcgag cgctgtttaa atagccaggc ccccgattgc
 900


aaagacatta tagcgagcta ccaaagccat attcaaacac ctagatcact accacttcta
 960


cacaggccac tcgagcttgt gatcgcactc cgctaagggg gcgcctcttc ctcttcgttt
1020


cagtcacaac ccgcaaactc tagaatatca atgctgctgc aggccttcct gttcctgctg
1080


gccggcttcg ccgccaagat cagcgcctcc atgacgaacg agacgtccga ccgccccctg
1140


gtgcacttca cccccaacaa gggctggatg aacgacccca acggcctgtg gtacgacgag
1200


aaggacgcca agtggcacct gtacttccag tacaacccga acgacaccgt ctgggggacg
1260


cccttgttct ggggccacgc cacgtccgac gacctgacca actgggagga ccagcccatc
1320


gccatcgccc cgaagcgcaa cgactccggc gccttctccg gctccatggt ggtggactac
1380


aacaacacct ccggcttctt caacgacacc atcgacccgc gccagcgctg cgtggccatc
1440


tggacctaca acaccccgga gtccgaggag cagtacatct cctacagcct ggacggcggc
1500


tacaccttca ccgagtacca gaagaacccc gtgctggccg ccaactccac ccagttccgc
1560


gacccgaagg tcttctggta cgagccctcc cagaagtgga tcatgaccgc ggccaagtcc
1620


caggactaca agatcgagat ctactcctcc gacgacctga agtcctggaa gctggagtcc
1680


gcgttcgcca acgagggctt cctcggctac cagtacgagt gccccggcct gatcgaggtc
1740


cccaccgagc aggaccccag caagtcctac tgggtgatgt tcatctccat caaccccggc
1800


gccccggccg gcggctcctt caaccagtac ttcgtcggca gcttcaacgg cacccacttc
1860


gaggccttcg acaaccagtc ccgcgtggtg gacttcggca aggactacta cgccctgcag
1920


accttcttca acaccgaccc gacctacggg agcgccctgg gcatcgcgtg ggcctccaac
1980


tgggagtact ccgccttcgt gcccaccaac ccctggcgct cctccatgtc cctcgtgcgc
2040


aagttctccc tcaacaccga gtaccaggcc aacccggaga cggagctgat caacctgaag
2100


gccgagccga tcctgaacat cagcaacgcc ggcccctgga gccggttcgc caccaacacc
2160


acgttgacga aggccaacag ctacaacgtc gacctgtcca acagcaccgg caccctggag
2220


ttcgagctgg tgtacgccgt caacaccacc cagacgatct ccaagtccgt gttcgcggac
2280


ctctccctct ggttcaaggg cctggaggac cccgaggagt acctccgcat gggcttcgag
2340


gtgtccgcgt cctccttctt cctggaccgc gggaacagca aggtgaagtt cgtgaaggag
2400


aacccctact tcaccaaccg catgagcgtg aacaaccagc ccttcaagag cgagaacgac
2460


ctgtcctact acaaggtgta cggcttgctg gaccagaaca tcctggagct gtacttcaac
2520


gacggcgacg tcgtgtccac caacacctac ttcatgacca ccgggaacgc cctgggctcc
2580


gtgaacatga cgacgggggt ggacaacctg ttctacatcg acaagttcca ggtgcgcgag
2640


gtcaagtgac aattggcagc agcagctcgg atagtatcga cacactctgg acgctggtcg
2700


tgtgatggac tgttgccgcc acacttgctg ccttgacctg tgaatatccc tgccgctttt
2760


atcaaacagc ctcagtgtgt ttgatcttgt gtgtacgcgc ttttgcgagt tgctagctgc
2820


ttgtgctatt tgcgaatacc acccccagca tccccttccc tcgtttcata tcgcttgcat
2880


cccaaccgca acttatctac gctgtcctgc tatccctcag cgctgctcct gctcctgctc
2940


actgcccctc gcacagcctt ggtttgggct ccgcctgtat tctcctggta ctgcaacctg
3000


taaaccagca ctgcaatgct gatgcacggg aagtagtggg atgggaacac aaatggagga
3060


tcccgcgtct cgaacagagc gcgcagagga acgctgaagg tctcgcctct gtcgcacctc
3120


agcgcggcat acaccacaat aaccacctga cgaatgcgct tggttcttcg tccattagcg
3180


aagcgtccgg ttcacacacg tgccacgttg gcgaggtggc aggtgacaat gatcggtgga
3240


gctgatggtc gaaacgttca cagcctaggg atatcctgaa gaatgggagg caggtgttgt
3300


tgattatgag tgtgtaaaag aaaggggtag agagccgtcc tcagatccga ctactatgca
3360


tgattatgag tgtgtaaaag aaaggggtag agagccgtcc tcagatccga ctactatgca
3360


ggtagccgct cgcccatgcc cgcctggctg aatattgatg catgcccatc aaggcaggca
3420


ggcatttctg tgcacgcacc aagcccacaa tcttccacaa cacacagcat gtaccaacgc
3480


acgcgtaaaa gttggggtgc tgccagtgcg tcatgccagg catgatgtgc tcctgcacat
3540


ccgccatgat ctcctccatc gtctcgggtg tttccggcgc ctggtccggg agccgttccg
3600


ccagataccc agacgccacc tccgacctca cggggtactt ttcgagcgtc tgccggtagt
3660


cgacgatcgc gtccaccatg gagtagccga ggcgccggaa ctggcgtgac ggagggagga
3720


gagggaggag agagaggggg gggggggggg gggatgatta cacgccagtc tcacaacgca
3780


tgcaagaccc gtttgattat gagtacaatc atgcactact agatggatga gcgccaggca
3840


taaggcacac cgacgttgat ggcatgagca actcccgcat catatttcct attgtcctca
3900


cgccaagccg gtcaccatcc gcatgctcat attacagcgc acgcaccgct tcgtgatcca
3960


ccgggtgaac gtagtcctcg acggaaacat ctggctcggg cctcgtgctg gcactccctc
4020


ccatgccgac aacctttctg ctgtcaccac gacccacgat gcaacgcgac acgacccggt
4080


gggactgatc ggttcactgc acctgcatgc aattgtcaca agcgcatact ccaatcgtat
4140


ccgtttgatt tctgtgaaaa ctcgctcgac cgcccgcgtc ccgcaggcag cgatgacgtg
4200


tgcgtgacct gggtgtttcg tcgaaaggcc agcaacccca aatcgcaggc gatccggaga
4260


ttgggatctg atccgagctt ggaccagatc ccccacgatg cggcacggga actgcatcga
4320


ctcggcgcgg aacccagctt tcgtaaatgc cagattggtg tccgatacct tgatttgcca
4380


tcagcgaaac aagacttcag cagcgagcgt atttggcggg cgtgctacca gggttgcata
4440


cattgcccat ttctgtctgg accgctttac cggcgcagag ggtgagttga tggggttggc
4500


aggcatcgaa acgcgcgtgc atggtgtgtg tgtctgtttt cggctgcaca atttcaatag
4560


tcggatgggc gacggtagaa ttgggtgttg cgctcgcgtg catgcctcgc cccgtcgggt
4620


gtcatgaccg ggactggaat cccccctcgc gaccctcctg ctaacgctcc cgactctccc
4680


gcccgcgcgc aggatagact ctagttcaac caatcgacaa ctagtatggc caccgcatcc
4740


actttctcgg cgttcaatgc ccgctgcggc gacctgcgtc gctcggcggg ctccgggccc
4800


cggcgcccag cgaggcccct ccccgtgcgc gggcgcgcca tccccccccg catcatcgtg
4860


gtgtcctcct cctcctccaa ggtgaacccc ctgaagaccg aggccgtggt gtcctccggc
4920


ctggccgacc gcctgcgcct gggctccctg accgaggacg gcctgtccta caaggagaag
4980


ttcatcgtgc gctgctacga ggtgggcatc aacaagaccg ccaccgtgga gaccatcgcc
5040


aacctgctgc aggaggtggg ctgcaaccac gcccagtccg tgggctactc caccggcggc
5100


ttctccacca cccccaccat gcgcaagctg cgcctgatct gggtgaccgc ccgcatgcac
5160


atcgagatct acaagtaccc cgcctggtcc gacgtggtgg agatcgagtc ctggggccag
5220


ggcgagggca agatcggcac ccgccgcgac tggatcctgc gcgactacgc caccggccag
5280


gtgatcggcc gcgccacctc caagtgggtg atgatgaacc aggacacccg ccgcctgcag
5340


aaggtggacg tggacgtgcg cgacgagtac ctggtgcact gcccccgcga gctgcgcctg
5400


gccttccccg aggagaacaa ctcctccctg aagaagatct ccaagctgga ggacccctcc
5460


cagtactcca agctgggcct ggtgccccgc cgcgccgacc tggacatgaa ccagcacgtg
5520


aacaacgtga cctacatcgg ctgggtgctg gagtccatgc cccaggagat catcgacacc
5580


cacgagctgc agaccatcac cctggactac cgccgcgagt gccagcacga cgacgtggtg
5640


gactccctga cctcccccga gccctccgag gacgccgagg ccgtgttcaa ccacaacggc
5700


accaacggct ccgccaacgt gtccgccaac gaccacggct gccgcaactt cctgcacctg
5760


ctgcgcctgt ccggcaacgg cctggagatc aaccgcggcc gcaccgagtg gcgcaagaag
5820


cccacccgca tggactacaa ggaccacgac ggcgactaca aggaccacga catcgactac
5880


aaggacgacg acgacaagtg aatcgataga tctcttaagg cagcagcagc tcggatagta
5940


tcgacacact ctggacgctg gtcgtgcgat ggactgttgc cgccacactt gctgccttga
6000


cctgtgaata tccctgccgc ttttatcaaa cagcctcagt gtgtttgatc ttgtgtgtac
6060


gcgcttttgc gagttgctag ctgcttgtgc tatttgcgaa taccaccccc agcatcccct
6120


tccctcgttt catatcgctt gcatcccaac cgcaacttat ctacgctgtc ctgctatccc
6180


tcagcgctgc tcctgctcct gctcactgcc cctcgcacag ccttggtttg ggctccgcct
6240


gtattctcct ggtactgcaa cctgtaaacc agcactgcaa tgctgatgca cgggaagtag
6300


tgggatggga acacaaatgg aaagcttaat taagagctct tgttttccag aaggagttgc
6360


tccttgagcc tttcattctc agcctcgata acctccaaag ccgctctaat tgtggagggg
6420


gttcgaattt aaaagcttgg aatgttggtt cgtgcgtctg gaacaagccc agacttgttg
6480


ctcactggga aaaggaccat cagctccaaa aaacttgccg ctcaaaccgc gtacctctgc
6540


tttcgcgcaa tctgccctgt tgaaatcgcc accacattca tattgtgacg cttgagcagt
6600


ctgtaattgc ctcagaatgt ggaatcatct gccccctgtg cgagcccatg ccaggcatgt
6660


cgcgggcgag gacacccgcc actcgtacag cagaccatta tgctacctca caatagttca
6720


taacagtgac catatttctc gaagctcccc aacgagcacc tccatgctct gagtggccac
6780


cccccggccc tggtgcttgc ggagggcagg tcaaccggca tggggctacc gaaatccccg
6840


accggatccc accacccccg cgatgggaag aatctctccc cgggatgtgg gcccaccacc
6900


agcacaacct gctggcccag gcgagcgtca aaccatacca cacaaatatc cttggcatcg
6960


gccctgaatt ccttctgccg ctctgctacc cggtgcttct gtccgaagca ggggttgcta
7020


gggatcgctc cgagtccgca aacccttgtc gcgtggcggg gcttgttcga gcttgaagag
7080


c
7081











SEQ ID NO: 62










gctcttccca actcagataa taccaatacc cctccttctc ctcctcatcc attcagtacc
  60



cccccccttc tcttcccaaa gcagcaagcg cgtggcttac agaagaacaa tcggcttccg
 120


ccaaagtcgc cgagcactgc ccgacggcgg cgcgcccagc agcccgcttg gccacacagg
 180


caacgaatac attcaatagg gggcctcgca gaatggaagg agcggtaaag ggtacaggag
 240


cactgcgcac aaggggcctg tgcaggagtg actgactggg cgggcagacg gcgcaccgcg
 300


ggcgcaggca agcagggaag attgaagcgg cagggaggag gatgctgatt gaggggggca
 360


tcgcagtctc tcttggaccc gggataagga agcaaatatt cggccggttg ggttgtgtgt
 420


gtgcacgttt tcttcttcag agtcgtgggt gtgcttccag ggaggatata agcagcagga
 480


tcgaatcccg cgaccagcgt ttccccatcc agccaaccac cctgtcggta ccgcggtgag
 540


aatcgaaaat gcatcgtttc taggttcgga gacggtcaat tccctgctcc ggcgaatctg
 600


tcggtcaagc tggccagtgg acaatgttgc tatggcagcc cgcgcacatg ggcctcccga
 660


cgcggccatc aggagcccaa acagcgtgtc agggtatgtg aaactcaaga ggtccctgct
 720


gggcactccg gccccactcc gggggcggga cgccaggcat tcgcggtcgg tcccgcgcga
 780


cgagcgaaat gatgattcgg ttacgagacc aggacgtcgt cgaggtcgag aggcagcctc
 840


ggacacgtct cgctagggca acgccccgag tccccgcgag ggccgtaaac attgtttctg
 900


ggtgtcggag tgggcatttt gggcccgatc caatcgcctc atgccgctct cgtctggtcc
 960


tcacgttcgc gtacggcctg gatcccggaa agggcggatg cacgtggtgt tgccccgcca
1020


ttggcgccca cgtttcaaag tccccggcca gaaatgcaca ggaccggccc ggctcgcaca
1080


ggccatgctg aacgcccaga tttcgacagc aacaccatct agaataatcg caaccatccg
1140


cgttttgaac gaaacgaaac ggcgctgttt agcatgtttc cgacatcgcg ggggccgaag
1200


catgctccgg ggggaggaaa gcgtggcaca gcggtagccc attctgtgcc acacgccgac
1260


gaggaccaat ccccggcatc agccttcatc gacggctgcg ccgcacatat aaagccggac
1320


gcctaaccgg tttcgtggtt atgactagta tgttcgcgtt ctacttcctg acggcctgca
1380


tctccctgaa gggcgtgttc ggcgtctccc cctcctacaa cggcctgggc ctgacgcccc
1440


agatgggctg ggacaactgg aacacgttcg cctgcgacgt ctccgagcag ctgctgctgg
1500


acacggccga ccgcatctcc gacctgggcc tgaaggacat gggctacaag tacatcatcc
1560


tggacgactg ctggtcctcc ggccgcgact ccgacggctt cctggtcgcc gacgagcaga
1620


agttccccaa cggcatgggc cacgtcgccg accacctgca caacaactcc ttcctgttcg
1680


gcatgtactc ctccgcgggc gagtacacgt gcgccggcta ccccggctcc ctgggccgcg
1740


aggaggagga cgcccagttc ttcgcgaaca accgcgtgga ctacctgaag tacgacaact
1800


gctacaacaa gggccagttc ggcacgcccg agatctccta ccaccgctac aaggccatgt
1860


ccgacgccct gaacaagacg ggccgcccca tcttctactc cctgtgcaac tggggccagg
1920


acctgacctt ctactggggc tccggcatcg cgaactcctg gcgcatgtcc ggcgacgtca
1980


cggcggagtt cacgcgcccc gactcccgct gcccctgcga cggcgacgag tacgactgca
2040


agtacgccgg cttccactgc tccatcatga acatcctgaa caaggccgcc cccatgggcc
2100


agaacgcggg cgtcggcggc tggaacgacc tggacaacct ggaggtcggc gtcggcaacc
2160


tgacggacga cgaggagaag gcgcacttct ccatgtgggc catggtgaag tcccccctga
2220


tcatcggcgc gaacgtgaac aacctgaagg cctcctccta ctccatctac tcccaggcgt
2280


ccgtcatcgc catcaaccag gactccaacg gcatccccgc cacgcgcgtc tggcgctact
2340


acgtgtccga cacggacgag tacggccagg gcgagatcca gatgtggtcc ggccccctgg
2400


acaacggcga ccaggtcgtg gcgctgctga acggcggctc cgtgtcccgc cccatgaaca
2460


cgaccctgga ggagatcttc ttcgactcca acctgggctc caagaagctg acctccacct
2520


gggacatcta cgacctgtgg gcgaaccgcg tcgacaactc cacggcgtcc gccatcctgg
2580


gccgcaacaa gaccgccacc ggcatcctgt acaacgccac cgagcagtcc tacaaggacg
2640


gcctgtccaa gaacgacacc cgcctgttcg gccagaagat cggctccctg tcccccaacg
2700


cgatcctgaa cacgaccgtc cccgcccacg gcatcgcgtt ctaccgcctg cgcccctcct
2760


cctgatacaa cttattacgt attctgaccg gcgctgatgt ggcgcggacg ccgtcgtact
2820


ctttcagact ttactcttga ggaattgaac ctttctcgct tgctggcatg taaacattgg
2880


cgcaattaat tgtgtgatga agaaagggtg gcacaagatg gatcgcgaat gtacgagatc
2940


gacaacgatg gtgattgtta tgaggggcca aacctggctc aatcttgtcg catgtccggc
3000


gcaatgtgat ccagcggcgt gactctcgca acctggtagt gtgtgcgcac cgggtcgctt
3060


tgattaaaac tgatcgcatt gccatcccgt caactcacaa gcctactcta gctcccattg
3120


cgcactcggg cgcccggctc gatcaatgtt ctgagcggag ggcgaagcgt caggaaatcg
3180


tctcggcagc tggaagcgca tggaatgcgg agcggagatc gaatcaggat cccgcgtctc
3240


gaacagagcg cgcagaggaa cgctgaaggt ctcgcctctg tcgcacctca gcgcggcata
3300


caccacaata accacctgac gaatgcgctt ggttcttcgt ccattagcga agcgtccggt
3360


tcacacacgt gccacgttgg cgaggtggca ggtgacaatg atcggtggag ctgatggtcg
3420


aaacgttcac agcctagcat agcgactgct accccccgac catgtgccga ggcagaaatt
3480


atatacaaga agcagatcgc aattaggcac atcgctttgc attatccaca cactattcat
3540


cgctgctgcg gcaaggctgc agagtgtatt tttgtggccc aggagctgag tccgaagtcg
3600


acgcgacgag cggcgcagga tccgacccct agacgagctc tgtcattttc caagcacgca
3660


gctaaatgcg ctgagaccgg gtctaaatca tccgaaaagt gtcaaaatgg ccgattgggt
3720


tcgcctagga caatgcgctg cggattcgct cgagtccgct gccggccaaa aggcggtggt
3780


acaggaaggc gcacggggcc aaccctgcga agccgggggc ccgaacgccg accgccggcc
3840


ttcgatctcg ggtgtccccc tcgtcaattt cctctctcgg gtgcagccac gaaagtcgtg
3900


acgcaggtca cgaaatccgg ttacgaaaaa cgcaggtctt cgcaaaaacg tgagggtttc
3960


gcgtctcgcc ctagctattc gtatcgccgg gtcagaccca cgtgcagaaa agcccttgaa
4020


taacccggga ccgtggttac cgcgccgcct gcaccagggg gcttatataa gcccacacca
4080


cacctgtctc accacgcatt tctccaactc gcgacttttc ggaagaaatt gttatccacc
4140


tagtatagac tgccacctgc aggaccttgt gtcttgcagt ttgtattggt cccggccgtc
4200


gagctcgaca gatctgggct agggttggcc tggccgctcg gcactcccct ttagccgcgc
4260


gcatccgcgt tccagaggtg cgattcggtg tgtggagcat tgtcatgcgc ttgtgggggt
4320


cgttccgtgc gcggcgggtc cgccatgggc gccgacctgg gccctagggt ttgttttcgg
4380


gccaagcgag cccctctcac ctcgtcgccc ccccgcattc cctctctctt gcagcccata
4440


tggccatggc cgccgccgtg atcgtgcccc tgggcatcct gttcttcatc tccggcctgg
4500


tggtgaacct gctgcaggcc atctgctacg tgctgatccg ccccctgtcc aagaacacct
4560


accgcaagat caaccgcgtg gtggccgaga ccctgtggct ggagctggtg tggatcgtgg
4620


actggtgggc cggcgtgaag atccaggtgt tcgccgacaa cgagaccttc aaccgcatgg
4680


gcaaggagca cgccctggtg gtgtgcaacc accgctccga catcgactgg ctggtgggct
4740


ggatcctggc ccagcgctcc ggctgcctgg gctccgccct ggccgtgatg aagaagtcct
4800


ccaagttcct gcccgtgatc ggctggtcca tgtggttctc cgagtacctg ttcctggagc
4860


gcaactgggc caaggacgag tccaccctga agtccggcct gcagcgcctg aacgacttcc
4920


cccgcccctt ctggctggcc ctgttcgtgg agggcacccg cttcaccgag gccaagctga
4980


aggccgccca ggagtacgcc gcctcctccg agctgcccgt gccccgcaac gtgctgatcc
5040


cccgcaccaa gggcttcgtg tccgccgtgt ccaacatgcg ctccttcgtg cccgccatct
5100


acgacatgac cgtggccatc cccaagacct cccccccccc caccatgctg cgcctgttca
5160


agggccagcc ctccgtggtg cacgtgcaca tcaagtgcca ctccatgaag gacctgcccg
5220


agtccgacga cgccatcgcc cagtggtgcc gcgaccagtt cgtggccaag gacgccctgc
5280


tggacaagca catcgccgcc gacaccttcc ccggccagca ggagcagaac atcggccgcc
5340


ccatcaagtc cctggccgtg gtgctgtcct ggtcctgcct gctgatcctg ggcgccatga
5400


agttcctgca ctggtccaac ctgttctcct cctggaaggg catcgccttc tccgccctgg
5460


gcctgggcat catcaccctg tgcatgcaga tcctgatccg ctcctcccag tccgagcgct
5520


ccacccccgc caaggtggtg cccgccaagc ccaaggacaa ccacaacgac tccggctcct
5580


cctcccagac cgaggtggag aagcagaagt gaatgcatgc agcagcagct cggatagtat
5640


cgacacactc tggacgctgg tcgtgtgatg gactgttgcc gccacacttg ctgccttgac
5700


ctgtgaatat ccctgccgct tttatcaaac agcctcagtg tgtttgatct tgtgtgtacg
5760


cgcttttgcg agttgctagc tgcttgtgct atttgcgaat accaccccca gcatcccctt
5820


ccctcgtttc atatcgcttg catcccaacc gcaacttatc tacgctgtcc tgctatccct
5880


cagcgctgct cctgctcctg ctcactgccc ctcgcacagc cttggtttgg gctccgcctg
5940


tattctcctg gtactgcaac ctgtaaacca gcactgcaat gctgatgcac gggaagtagt
6000


gggaugggaa cacaaatgga cttaaggatc taagtaagat tcgaagcgct cgaccgtgcc
6060


ggacggactg cagccccatg tcgtagtgac cgccaatgta agtgggctgg cgtttccctg
6120


tacgtgagtc aacgtcactg cacgcgcacc accctctcga ccggcaggac caggcatcgc
6180


gagatacagc gcgagccaga cacggagtgc cgagctatgc gcacgctcca actagatatc
6240


atgtggatga tgagcatgaa ttcctttctt gcgctatgac acttccagca aaaggtaggg
6300


cgggctgcga gacggcttcc cggcgctgca tgcaacaccg atgatgcttc gaccccccga
6360


agctccttcg gggctgcatg ggcgctccga tgccgctcca gggcgagcgc tgtttaaata
6420


gccaggcccc cgattgcaaa gacattatag cgagctacca aagccatatt caaacaccta
6480


gatcactacc acttctacac aggccactcg agcttgtgat cgcactccgc taagggggcg
6540


cctcttcctc ttcgtttcag tcacaacccg caaacactag tatggctatc aagacgaaca
6600


ggcagcctgt ggagaagcct ccgttcacga tcgggacgct gcgcaaggcc atccccgcgc
6660


actgtttcga gcgctcggcg cttcgtagca gcatgtacct ggcctttgac atcgcggtca
6720


tgtccctgct ctacgtcgcg tcgacgtaca tcgaccctgc accggtgcct acgtgggtca
6780


agtacggcat catgtggccg ctctactggt tcttccaggt gtgtttgagg gttttggttg
6840


cccgtattga ggtcctggtg gcgcgcatgg aggagaaggc gcctgtcccg ctgacccccc
6900


cggctaccct cccggcacct tccagggcgc gtacgggaag aaccagtaga gcggccacat
6960


gatgccgtac ttgacccacg taggcaccgg tgcagggtcg atgtacgtcg acgcgacgta
7020


gagcagggac atgaccgcga tgtcaaaggc caggtacatg ctgctacgaa gcgccgagcg
7080


ctcgaaacag tgcgcgggga tggccttgcg cagcgtcccg atcgtgaacg gaggcttctc
7140


cacaggctgc ctgttcgtct tgatagccat ctcgaggcag cagcagctcg gatagtatcg
7200


acacactctg gacgctggtc gtgtgatgga ctgttgccgc cacacttgct gccttgacct
7260


gtgaatatcc ctgccgcttt tatcaaacag cctcagtgtg tttgatcttg tgtgtacgcg
7320


cttttgcgag ttgctagctg cttgtgctat ttgcgaatac cacccccagc atccccttcc
7380


ctcgtttcat atcgcttgca tcccaaccgc aacttatcta cgctgtcctg ctatccctca
7440


gcgctgctcc tgctcctgct cactgcccct cgcacagcct tggtttgggc tccgcctgta
7500


ttctcctggt actgcaacct gtaaaccagc actgcaatgc tgatgcacgg gaagtagtgg
7560


gatgggaaca caaatggaaa gctgtagagc tcttgttttc cagaaggagt tgctccttga
7620


gcctttcatt ctcagcctcg ataacctcca aagccgctct aattgtggag ggggttcgaa
7680


ccgaatgctg cgtgaacggg aaggaggagg agaaagagtg agcagggagg gattcagaaa
7740


tgagaaatga gaggtgaagg aacgcatccc tatgcccttg caatggacag tgtttctggc
7800


caccgccacc aagacttcgt gtcctctgat catcatgcga ttgattacgt tgaatgcgac
7860


ggccggtcag ccccggacct ccacgcaccg gtgctcctcc aggaagatgc gcttgtcctc
7920


cgccatcttg cagggctcaa gctgctccca aaactcttgg gcgggttccg gacggacggc
7980


taccgcgggt gcggccctga ccgccactgt tcggaagcag cggcgctgca tgggcagcgg
8040


ccgctgcggt gcgccacgga ccgcatgatc caccggaaaa gcgcacgcgc tggagcgcgc
8100


agaggaccac agagaagcgg aagagacgcc agtactggca agcaggctgg tcggtgccat
8160


ggcgcgctac taccctcgct atgactcggg tcctcggccg gctggcggtg ctgacaattc
8220


gtttagtgga gcagcgactc cattcagcta ccagtcgaac tcagtggcac agtgactccg
8280


ctcttc
8286












Brassic napus LPAAT CDS




SEQ ID NO: 63



MAMAAAVIVPLGILFFISGLVVNLLQAVCYVLVRPMSKNTYRKINRVVAETLWLELVWIVDWWAGVKIQV



FADDETFNRMGKEHALVVCNHRSDIDWLVGWILAQRSGCLGSALAVMKKSSKFLPVIGWSMWFSEYLFLE


RNWAKDESTLQSGLQRLNDFPRPFWLALFVEGTRFTEAKLKAAQEYAASSELPVPRNVLIPRTKGFVSAV


SNMRSFVPAIYDMTVAIPKTSPPPTMLRLFKGQPSVVHVHIKCHSMKDLPEPEDEIAQWCRDQFVAKDAL


LDKHIAADTFPGQKEQNIGRPIKSLAVVVSWACLLTLGAMKFLHWSNLFSSWKGIALSAFGLGIITLCMQ


ILIRSSQSERSTPAKVAPAKPKDNHQSGPSSQTEVEEKQK





Mature native Protheca moriformis KASII amino acid sequence


SEQ ID NO: 64



AAAAADANPARPERRVVITGQGVVTSLGQTIEQFYSSLLEGVSGISQIQKFDTTGYTTTIAGEIKSLQ



LDPYVPKRWAKRVDDVIKYVYIAGKQALESAGLPIEAAGLAGAGLDPALCGVLIGTAMAGMTSFAAGV


EALTRGGVRKMNPFCIPFSISNMGGAMLAMDIGFMGPNYSISTACATGNYCILGAADHIRRGDANVML


AGGADAAIIPSGIGGFIACKALSKRNDEPERASRPWDADRDGFVMGEGAGVLVLEELEHAKRRGATIL


AELVGGAATSDAHHMTEPDPQGRGVRLCLERALERARLAPERVGYVNAHGTSTPAGDVAEYRAIRAVI


PQDSLRINSTKSMIGHLLGGAGAVEAVAAIQALRTGWLHPNLNLENPAPGVDPVVLVGPRKERAEDLD


VVLSNSFGFGGHNSCVIFRKYDE





Mature Prototheca moriformis Stearoyl Acyl-ACP desaturase (SAD2-1)


SEQ ID NO: 65



GAVAAPGRRAASRPLVVHAVASEAPLGVPPSVQRPSPVVYSKLDKQHRLTPERLELVQSMGQFAEERV



LPVLHPVDKLWQPQDFLPDPESPDFEDQVAELRARAKDLPDEYFVVLVGDMITEEALPTYMAMLNTLD


GVRDDTGAADHPWARWTRQWVAEENRHGDLLNKYCWLTGRVNMRAVEVTINNLIKSGMNPQTDNNPYL


GFVYTSFQERATKYSHGNTARLAAEHGDKGLSKICGLIASDEGRHEIAYTRIVDEFFRLDPEGAVAAY


ANMMRKQITMPAHLMDDMGHGEANPGRNLFADFSAVAEKIDVYDAEDYCRILEHLNARWKVDERQVSG


QAAADQEYVLGLPQRFRKLAEKTAAKRKRVARRPVAFSWISGREIMV





Nucleotide sequence of transforming DNA contained in pSZ3870


SEQ ID NO: 66





gctcttc

acccaactcagataataccaatacccctccttctcctcctcatccattcagtacccccccccttctcttcccaaagcagcaagcgcgtg





gcttacagaagaacaatcggcttccgccaaagtcgccgagcactgcccgacggcggcgcgcccagcagcccgcttggccacacaggcaacga




atacattcaatagggggcctcgcagaatggaaggagcggtaaagggtacaggagcactgcgcacaaggggcctgtgcaggagtgactgact




gggcgggcagacggcgcaccgcgggcgcaggcaagcagggaagattgaagcggcagggaggaggatgctgattgaggggggcatcgcagt




ctctcttggacccgggataaggaagcaaatattcggccggttgggttgtgtgtgtgcacgttttcttcttcagagtcgtgggtgtgcttccaggga





embedded image






embedded image






embedded image






embedded image






embedded image





cgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgccaagtggcacct




gtacttccagtacaacccgaacgacaccgtctgggggacgcccttgttctggggccacgccacgtccgacgacctgaccaactgggagga




ccagcccatcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacctccggcttcttca




acgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcctacagcctgg




acggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctggtacga




gccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcctggaagct




ggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggaccccagcaa




gtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttcaacggcaccca




cttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgacccgacctacg




ggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccctggcgctcctccatgtccctcgtgcgca




agttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagccgatcctgaacatcagcaacgcc




ggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgtccaacagcaccggcaccctgga




gttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctctggttcaagggcctggaggacc




ccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggaga




acccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaacgacctgtcctactacaaggtgtacggcttgctgga



ccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatgaccaccgggaacgccctgggctccgtg




embedded image





agtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacag




cctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcat




atcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgg




gctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaggat




cccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaa



tgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtc




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgcc




gcttttatcaaacagcctcagtRtRtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatcc




ccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgc




acagccttggtttgggrtccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaa




cacaaatggaaagcttaattaagagctcttgttttccagaaggagttgctccttgagcctttcattctcagcctcgataacctccaaagccgctct




aattgtggagggggttcgaaccgaatgctgcgtgaacgggaaggaggaggagaaagagtgagcagggagggattcagaaatgagaaatg




agaggtgaaggaacgcatccctatgcccttgcaatggacagtgtttctggccaccgccaccaagacttcgtgtcctctgatcatcatgcgattga




ttacgttgaatgcgacggccggtcagccccggacctccacgcaccggtgctcctccaggaagatgcgcttgtcctccgccatcttgcagggctca




agctgctcccaaaactcttgggcgggttccggacggacggctaccgcgggtgcggccctgaccgccactgttcggaagcagcggcgctgcatg




ggcagcggccgctgcggtgcgccacggaccgcatgatccaccggaaaagcgcacgcgctggagcgcgcagaggaccacagagaagcggaa




gagacgccagtactggcaagcaggctggtcggtgccatggcgcgctactaccctcgctatgactcgggtcctcggccggctggcggtgctgaca




attcgtttagtggagcagcgactccattcagctaccagtcgaactcagtggcacagtgactccgctcttc






Nucleotide sequence of PmUAPA1 promoter contained in pSZ2533


SEQ ID NO: 67





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmHXT1 promoter contained in pSZ3869


SEQ ID NO: 68





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmSOD promoter contained in pSZ3935


SEQ ID NO: 69





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmATPB1 promoter contained in pSZ3936


SEQ ID NO: 70





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmEf1-1 promoter contained in pSZ3937


SEQ ID NO: 71





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmEf1-2 promoter contained in pSZ3938


SEQ ID NO: 72





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmACP1 promoter contained in pSZ3939


SEQ ID NO: 73





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmACP2 promoter contained in pSZ3940


SEQ ID NO: 74





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmC1LYR1 promoter contained in pSZ3941


SEQ ID NO: 75





embedded image







embedded image






embedded image






embedded image







Nucleotide sequence of PmAMT1-1 promoter contained in pSZ3942


SEQ ID NO: 76





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmAMT1-2 promoter contained in pSZ3943


SEQ ID NO: 77





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmAMT3-1 promoter contained in pSZ3944


SEQ ID NO: 78





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of PmAMT3-2 promoter contained in pSZ3945


SEQ ID NO: 79





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







Nucleotide sequence of transforming DNA contained in pSZ4768 (D3870)


SEQ ID NO: 80





gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcgacccagtcg





ctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattggtagcattataattcg




gcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccagctccgggcgaccgggctccgtgt




cgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggcccactgaataccgtgtcttggggccctacatgatggg




ctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctgaatcctccaggcgggtttccccgagaaagaaagggtgccg




atttcaaagcagagccatgtgccgggccctgtggcctgtgttggcgcctatgtagtcaccccccctcacccaattgtcgccagtttgcgcaatcc





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactgg




aacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaag




tacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggcc




acgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgg




gccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagttcggc




acgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccctgtgcaactgggg




ccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgactccc




gctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatggg




ccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgca




cttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggc




gtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccag




ggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaac




acgaccctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcg




tcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacg




gcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacgg





embedded image





actttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaagggtggcacaagatggat




cgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgtccggcgcaatgtgatccagcggc




gtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcccgtcaactcacaagcctactctagctcc




cattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaagcgtcaggaaatcgtctcggcagctggaagcgcatggaatgcg




gagcggagatcgaatcaggatcccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcataca



ccacaataaccacctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgaca




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcgttcaatgcccgctgcggcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggcccctccccgtgcgcg

ggcgcgcc

g




ccgccgccgccgacgccaaccccgcccgccccgagcgccgcgtggtgatcaccggccagggcgtggtgacctccctgggccagaccatcg




agcagttctactcctccctgctggagggcgtgtccggcatctcccagatccagaagttcgacaccaccggctacaccaccaccatcgccggc




gagatcaagtccctgcagctggacccctacgtgcccaagcgctgggccaagcgcgtggacgacgtgatcaagtacgtgtacatcgccggc




aagcaggccctggagtccgccggcctgcccatcgaggccgccggcctggccggcgccggcctggaccccgccctgtgcggcgtgctgatc




ggcaccgccatggccggcatgacctccttcgccgccggcgtggaggccctgacccgcggcggcgtgcgcaagatgaaccccttctgcatcc




ccttctccatctccaacatgggcggcgccatgctggccatggacatcggcttcatgggccccaactactccatctccaccgcctgcgccaccg




gcaactactgcatcctgggcgccgccgaccacatccgccgcggcgacgccaacgtgatgctggccggcggcgccgacgccgccatcatcc




cctccggcatcggcggcttcatcgcctgcaaggccctgtccaagcgcaacgacgagcccgagcgcgcctcccgcccctgggacgccgaccg




cgacggcttcgtgatgggcgagggcgccggcgtgctggtgctggaggagctggagcacgccaagcgccgcggcgccaccatcctggccg




agctggtgggcggcgccgccacctccgacgcccaccacatgaccgagcccgacccccagggccgcggcgtgcgcctgtgcctggagcgcg




ccctggagcgcgcccgcctggcccccgagcgcgtgggctacgtgaacgcccacggcacctccacccccgccggcgacgtggccgagtacc




gcgccatccgcgccgtgatcccccaggactccctgcgcatcaactccaccaagtccatgatcggccacctgctgggcggcgccggcgccgt




ggaggccgtggccgccatccaggccctgcgcaccggctggctgcaccccaacctgaacctggagaaccccgcccccggcgtggaccccgt




ggtgctggtgggcccccgcaaggagcgcgccgaggacctggacgtggtgctgtccaactccttcggcttcggcggccacaactcctgcgtg




atcttccgcaagtacgacgagatggactacaaggaccacgacggcgactacaaggaccacgacatcgactacaaggacgacgacgac





embedded image





tgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtg




ctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgct




gctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctga





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




tcttaaggcagcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaa



tatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacc




cccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcac




tgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtg




ggatgggaacacaaatggaaagcttaattaagagctcctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgca




cgcgcgactccgtcgcttcgcgggtggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccacccacctg




cacctctattattggtattattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttcagctggctcccaccattgtaaattctt




gctaaaatagtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggttttcgtgctgatctcgggcacaaggcgtcgtcga




cgtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcctttactccgcactccaaacgactgtcgctcgtatttttcggat




atctattttttaagagcgagcacagcgccgggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatc




gcggcagtgcaccaggcgcagacggaggaacgcatggtgagtgcgcatcacaagatgcatgtcttgttgtctgtactataatgctagagcatc




accaggggcttagtcatcgcacctgctttggtcattacagaaattgcacaagggcgtcctccgggatgaggagatgtaccagctcaagctgga




gcggcttcgagccaagcaggagcgcggcgcatgacgacctacccacatgc

gaagagc








Prothcca moriformis SAD2-2v3 promoter



SEQ ID NO: 81



GTGAAAACTCGCTCGACCGCCCGCGTCCCGCAGGCAGCGATGACGTGTGCGTGACCTGGGTGTTTCGT



CGAAAGGCCAGCAACCCCAAATCGCAGGCGATCCGGAGATTGGGATCTGATCCGAGCTTGGACCAGAT


CCCCCACGATGCGGCACGGGAACTGCATCGACTCGGCGCGGAACCCAGCTTTCGTAAATGCCAGATTG


GTGTCCGATACCTTGATTTGCCATCAGCGAAACAAGACTTCAGCAGCGAGCGTATTTGGCGGGCGTGC


TACCAGGGTTGCATACATTGCCCATTTCTGTCTGGACCGCTTTACCGGCGCAGAGGGTGAGTTGATGG


GGTTGGCAGGCATCGAAACGCGCGTGCATGGTGTGTGTGTCTGTTTTCGGCTGCACAATTTCAATAGT


CGGATGGGCGACGGTAGAATTGGGTGTTGCGCTCGCGTGCATGCCTCGCCCCGTCGGGTGTCATGACC


GGGACTGGAATCCCCCCTCGCGACCCTCCTGCTAACGCTCCCGACTCTCCCGCCCGCGCGCAGGATAG


ACTCTAGTTCAACCAATCGACA






Limnanthes douglasii (LimdLPAAT, Uniprot Accession No: Q42870)



SEQ ID NO: 82



MAKTRTSSLRNRRQLKPAVAATADDDKDGVFMVLLSCFKIFVCFAIVLITAVAWGLIMVL



LLPWPYMRIRLGNLYGHIIGGLVIWIYGIPIKIQGSEHTKKRAIYISNHASPIDAFFVMW


LAPIGTVGVAKKEVIWYPLLGQLYTLAHHIRIDRSNPAAAIQSMKEAVRVITEKNLSLIM


FPEGTRSRDGRLLPFKKGFVHLALQSHLPIVPMILTGTHLAWRKGTFRVRPVPITVKYLP


PINTDDWTVDKIDDYVKMIHDVYVRNLPASQKPLGSTNRSN






Limnanthes alba (LimaLPAAT, Unirprot Accession No: Q42868)



SEQ ID NO: 83



MAKTRTSSLRNRRQLKTAVAATADDDKDGIFMVLLSCFKIFVCFAIVLITAVAWGLIMVL



LLPWPYMRIRLGNLYGHIIGGLVIWLYGIPIEIQGSEHTKKRAIYISNHASPIDAFFVMW


LAPIGTVGVAKKEVIWYPLLGQLYTLAHHIRIDRSNPAAAIQSMKEAVRVITEKNLSLIM


FPEGTRSGDGRLLPFKKGFVHLALQSHLPIVPMILTGTHLAWRKGTFRVRPVPITVKYLP


PINTDDWTVDKIDDYVKMIHDIYVRNLPASQKPLGSTNRSK






Crambe hispanica subsp. abyssinica FAE GenBank Accession No: AY793549



SEQ ID NO: 84



MTSINVKLLYHYVITNLFNLCFFPLTAIVAGKASRLTIDDLHHLYYSYLQHNVITIAPLFAFTVFGSILY



IVTRPKPVYLVEYSCYLPPTQCRSSISKVMDIFYQVRKADPFRNGTCDDSSWLDFLRKIQERSGLGDETH


GPEGLLQVPPRKTFAAAREETEQVIVGALKNLFENTKVNPKDIGILVVNSSMFNPTPSLSAMVVNTFKLR


SNVRSFNLGGMGCSAGVIAIDLAKDLLHVHKNTYALVVSTENITYNIYAGDNRSMMVSNCLFRVGGAAIL


LSNKPRDRRRSKYELVHTVRTHTGADDKSFRCVQQGDDENGKTGVSLSKDITEVAGRTVKKNIATLGPLI


LPLSEKLLFFVTFMAKKLFKDKVKHYYVPDFKLAIDHFCIHAGGRAVIDVLEKNLGLAPIDVEASRSTLH


RFGNTSSSSIWYELAYIEAKGRMKKGNKVWQIALGSGFKCNSAVWVALSNVKASTNSPWEHCIDRYPVKI


DSDSAKSETRAQNGRS






Lunaria annua FAE GenBank Accession No: ACJ61777



SEQ ID NO: 85



MTSINVKLLYHYVITNFFNLCFFPLTAILAGKASRLTTNDLHHFYSYLQHNLITLTLLFAFTVFGSVLYF



VTRPKPVYLVDYSCYLPPQHLSAGISKTMEIFYQIRKSDPLRNVALDDSSSLDFLRKIQERSGLGDETYG


PEGLFEIPPRKNLASAREETEQVINGALKNLFENTKVNPKEIGILVVNSSMFNPTPSLSAMVVNTFKLRS


NIKSFNLGGMGCSAGVIAIDLAKDLLHVHKNTYALVVSTENITQNIYTGDNRSMMVSNCLFRVGGAAILL


SNKPGDRRRSKYRLAHTVRTHTGADDKSFGCVRQEEDDSGKTGVSLSKDITGVAGITVQKNITTLGPLVL


PLSEKILFVVTRVAKKLLKDKIKHYYVPDFKLAVDHFCIHAGGRAVIDVLEKNLGLSPIDVEASRSTLHR


FGNTSSSSIWYELAYIEAKGRMKKGNKAWQIAVGSGFKCNSAVWVALRNVKASANSPWEHCIHKYPVQMY


SGSSKSETRAQNGRS





AtLPCAT1 NP_172724.2


SEQ ID NO: 86



MDMSSMAGSIGVSVAVLRFLLCFVATIPVSFACRIVPSRLGKHLYAAASGAFLSYLSFGFSSNLHF



LVPMTIGYASMAIYRPKCGIITFFLGFAYLIGCHVFYMSGDAWKEGGIDSTGALMVLTLKVISCSM


NYNDGMLKEEGLREAQKKNRLIQMPSLIEYFGYCLCCGSHFAGPVYEMKDYLEWTEGKGIWDTT


EKRKKPSPYGATIRAILQAAICMALYLYLVPQYPLTRFTEPVYQEWGFLRKFSYQYMAGFTARWK


YYFIWSISEASIIISGLGFSGWTDDASPKPKWDRAKNIVDILGVELAKSAVQIPLVWNIQVSTWLRH


YVYERLVQNGICKAGFFQLLATQTVSAVWHGLYPGYMMFFVQSALMIAGSRVIYRWQQAISPKM


AMLRNIMVFINFLYTVLVLNYSAVGFMVLSLHETLTAYGSVYYIGTIIPVGLILLSYVVPAKPSRPK


PRKEE





AtLPCAT2 NP_176493.1


SEQ ID NO: 87



MELLDMNSMAASIGVSVAVLRFLLCFVATIPISFLWRFIPSRLGKHIYSAASGAFLSYLSFGFSSNL



HFLVPMTIGYASMAMYRPKCGIITFFLGFAYLIGCHVFYMSGDAWKEGGIDSTGALMVLTLKVISC


SINYNDGMLKEEGLREAQKKNRLIQMPSLIEYFGYCLCCGSHFAGPVFEMKDYLEWTEEKGIWA


VSLEKGKRPSPYGAMIRAVFQAAICMALYLYLVPQFPLTRFTEPVYQEWGFLKRFGYQYMAGFTA


RWKYYFIWSISEASIIISGLGFSGWTDETQTKAKWDRAKNVDILGVELAKSAVQIPLFWNIQVSTW


LRHYVYERIVKPGKKAGFFQLLATQTVSAVWHGLYFGYIIFFVQSALMIDGSKAIYRWQQAIPPK


MAMLRNVLVLINFLYTVVVLNYSSVGFMVLSLHETLVAFKSVYYIGTVIPIAVLLLSYLVPVKPVR


PKTRKEE





BrLPCAT S16_Br_Trinity_38655 - ORF 1 (frame 2)


SEQ ID NO: 88



MISMDMDSMAASIGVSVAVLRFLLCFVATIPVSFFWRIVPSRLGKHVYAAASGVFLSYLSFGFSSN



LHFLVPMTIGYASMAMYRPKCGIITFFLGFAYLIGCHVFYMSGDAWKEGGIDSTGALMVLTLKVI


SCAVNYNDGMLKEEGLREAQKKNRLIEMPSLIEYFGYCLCCGSHFAGPVYEMKDYLQWTEGTGI


WDSSEKRKQPSPYLATLRAIFQAGICMALYLYLVPQFPLTRFTEPVYQEWGFWKKFGYQYMAGQ


TARWKYYFIWSISEASIIISGLGFSGWTDDEASPKPKWDRAKNVDILGVELAKSAVQIPLVWNIQV


STWLRHYVYERLVKSGKKAGFFQLLATQTVSAVWHGLYPGYMMFFVQSALMIAGSRVIYRWQQ


AISPKLGVLRSMMVFINFLYTVLVLNYSAVGFMVLSLHETLTAYGSVYYIGTIIPVGLILLSYVVPA


KPYRAKPRKEE





BjLPCAT1 S15_Bj_Trinity_73901 - ORF 1 (frame 3)


SEQ ID NO: 89



MISMDMDSMAASIGVSVAVLRFLLCFVATIPVSFFWRIVPSRLGKHVYAAASGVFLSYLSFGFSSNL



HFLVPMTIGYASMAMYRPKCGIITFFLGFAYLIGCHVFYMSGDAWKEGGIDSTGALMVLTLKVIS


CAVNYNDGMLKEEGLREAQKKNRLIEMPSLIEYFGYCLCCGSHFAGPVYEMKDYLQWTEGTGI


WDSSEKRKQPSPYLATLRAIFQAGICMALYLYLVPQFPLTRFTEPVYQEWGFWKKFGYQYMAGQ


TARWKYYFIWSISEASIIISGLGFSGWTDDEASPKPKWDRAKNVDILGVELAKSAVQIPLVWNIQV


STWLRHYVYERLVKSGKKAGFFQLLATQTVSAVWHGLYPGYMMFFVQSALMIAGSRVIYRWQQ


AISPKLGVLRSMMVFINFLYTVLVLNYSAVGFMVLSLHETLTAYGSVYYIGTIIPVGLILLSYVVPA


KPYRAKPRKEE





BjLPCAT2 _PTX_Sample_S15_Bj_merged_transcripts- ORF 1 (frame 3)


SEQ ID NO: 90



MISMDMDSMAASIGVSVAVLRFLLCFVATIPVSFFWRIVPSRLGKHVYAAASGVFLSYLSFGFSSN



LHFLVPMTIGYASMAMYRPKCGIITFFLGFAYLIGCHVFYMSGDAWKEGGIDSTGALMVLTLKVI


SCAVNYNDGMLKEEGLREAQKKNRLIEMPSLIEYFGYCLCCGSHFAGPVYEMKDYLQWTEGTGI


WDSSEKRKQPSPYLATLRAIFQAGICMALYLYLVPQFPLTRFTEPVYQEWGFWKKFGYQYMAGQ


TARWKYYFIWSISEASIIISGLGFSGWTDDEASPKPKWDRAKNVDILGVELAKSAVQIPLVWNIQV


STWLRHYVYERLVKSGKKAGFFQLLATQTVSAVWHGLYPGYMMFFVQSALMIAGSRVIYRWQQ


AISPKLGVLRSMMVFINFLYTVLVLNYSAVGFMVLSLHETLTAYGSVYYIGTIIPVGLILLSYVVPA


KPYRAKPRKEE





LimdLPCAT1 S03_Ld_Trinity_38978 - ORF 2 (frame 3)


SEQ ID NO: 91



MDLDMDSMASSIGVSVPVLRFLLCYAATIPVSFICRFVPGKTPKNVFSAATGAFLSYLSFGFSSNIH



FLIPMTLGYASMALYRAKCGIVTFFLAFGYLIGCHVYYMSGDAWKEGGIDATGALMVLTLKVISC


SVNYNDGLLKEEGLRPSQKKNRLSSLPSFIEYVGYCLCCGTHFAGPVYEMKDYLEWTAGKGIWA


KSEKAKSPSPFLPALRALLQGAVCMVLYLYLVPQYPLSQFTSPVYQEWGFWKRLSYQYMAGFTA


RWKYYFIWSISEASVILSGLGFSGWTDSSPPKPRWDRAKNVDILGVEFATSGAQVPLVWNIQVST


WLRHYVYDRLVKTGKKPGFFQLLATQTTSAVWHGLYPGYLFFFVQSALMIAGSKVIYRWKQALP


PSASVLQKILVFANFLYTLLVLNYSCVGFMVLSMHETIAAYGSVYYVGTIVPIVLTILGSIIPVKPRR


TKVQKEQ





LimdLPCAT2 S03_Ld_Trinity_29594 - ORF 1 (frame 1)


SEQ ID NO: 92



MNMQNAALLIGVSVPVFRFLVSFLATVPVSFLWRYAPGNLGKHVYAAGSGALLSCLAFGLLSNL



HFLVLMVMGYCSMVFYRSKCGILTFVLGFTYLIGCHFYYMSGDAWKDGGMDATGSLMVLTLKV


ISCAINYNDGLLKEEGLREAQKKNRLINLPSVVEYVGYCLCCGSHFAGPVFEMKDYLQWTKKKGI


WAAKERSPSPYVATIRALLQAAICMVVYMYLVPRFPLSTLAEPIYQEWGFWKKLSYQYITGFSSR


WKYFFVWSISEASMIISGLGFSGWTDTSPQNPQWDRAKNVDILRAELPESAVVLPLVWNIHVSTW


LRHYVYERLIKNGKKPGFFELLATQTVSAVWHGLYPGYIIFFVHTALMIAGSRVIYRWRQAVPPN


MALVKKMLTFMNLLYTVLILNYSYVGFRVLNLHETLAAHRSVYYVGTILPIIFIFLGYIFPAKPSRP


KPRKQQ





pSZ5344; AtPDCT


SEQ ID NO: 93





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgttagca





accactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagctgccctt




tatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgatgctgtcgttt




gccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccaccttgcctgggccttg




cagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacctggtgaagcagcgc




atgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgggcttttgagacactgtttg




tgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctctcaaccccatctcaccttttctc




catcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctg




cgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatca




tcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggcc




acgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccgg




ctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaac




aagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgcccca




tcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcga




cgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccact




gctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacct




ggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatc




atcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtccgtcatcgccatcaaccaggactcc




aacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggt




ccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctgga




ggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcga




caactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaag




gacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgt





embedded image





acacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaaca




gcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttcc




ctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctc




gcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





agtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttat




caaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatc




cccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcact




gcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacggga




agtagtgggatgggaacacaaatggaaagcttaattaagagctccgtcctccactaccacagggtatggtcgtgtggggtcgagc




gtgttgaagcgcagaaggggatgcgccgtcaagatcaggagctaaaaatggtgccagcgaggatccagcgctctcactcttgctg




ccatcgctcccacccttttccccaggggaccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctg




ccacccccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttctc




gcgcaagcgtcccccaattcgttacaccacatccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgagg




aggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggt




gggcggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcg




ccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccct




gaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







PSZ5295: ATDAG-CPT


SEQ ID NO: 94





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgttagca





accactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagctgccctt




tatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgatgctgtcgttt




gccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccaccttgcctgggccttg




cagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacctggtgaagcagcgc




atgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgggcttttgagacactgtttg




tgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctctcaaccccatctcaccttttctc




catcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctg




cgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatca




tcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggcc




acgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccgg




ctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaac




aagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgcccca




tcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcga




cgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccact




gctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacct




ggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatc




atcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactcc




aacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggt




ccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctgga




ggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcg




caactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaag




gacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgt





embedded image





acacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaaca




gcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttcc




ctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctc




gcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgc




ttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccaccccca




gcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgc




tcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcac




gggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccgtcctccactaccacagggtatggtcgtgtggggtc




gagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagctaaaaatggtgccagcgaggatccagcgctctcactct




tgctgccatcgctcccacccttttccccaggggaccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatg




ctctgccacccccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattctggatatgacctctgaggtgtgt




ttctcgcgcaagcgtcccccaattcgttacaccacatccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaat




gaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgc




gggtgggcggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcat




cttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaac




tccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







BrDAG-CPT in pSZ5345 and pSZ5350


SEQ ID NO: 95





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







BjDAG-CPT in pSZ5306 and pSZ5347


SEQ ID NO: 96





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







PSZ5296; AtLPCAT1


SEQ ID NO: 97





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgttagca





accactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagctgccctt




tatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgatgctgtcgttt




gccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccaccttgcctgggccttg




cagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacctggtgaagcagcgc




atgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgggcttttgagacactgtttg




tgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctctcaaccccatctcaccttttctc




catcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctg




cgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatca




tcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcacatgggcc




acgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccgg




ctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaac




aagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgcccca




tcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcga




cgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccact




gctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacct




ggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatc




atcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactcc




aacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggt




ccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctgga




ggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcga




caactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaag




gacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgt





embedded image





acacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaaca




gcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttcc




ctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctc




gcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





catggccggctccatcggcgtgtccgtggccgtgctgcgcttcctgctgtgcttcgtggccaccatccccgtgtccttcgcctgccg




catcgtgccctcccgcctgggcaagcacctgtacgccgccgcctccggcgccttcctgtcctacctgtccttcggcttctcctccaac




ctgcacttcctggtgcccatgaccatcggctacgcctccatggccatctaccgccccaagtgcggcatcatcaccttcttcctgggc




ttcgcctacctgatcggctgccacgtgttctacatgtccggcgacgcctggaaggagggcggcatcgactccaccggcgccctg




atggtgctgaccctgaaggtgatctcctgctccatgaactacaacgacggcatgctgaaggaggagggcctgcgcgaggccc




agaagaagaaccgcctgatccagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctcccacttcgccggccc




cgtgtacgagatgaaggactacctggagtggaccgagggcaagggcatctgggacaccaccgagaagcgcaagaagccct




ccccctacggcgccaccatccgcgccatcctgcaggccgccatctgcatggccctgtacctgtacctggtgccccagtaccccctg




acccgcttcaccgagcccgtgtaccaggagtggggcttcctgcgcaagttctcctaccagtacatggccggcttcaccgcccgct




ggaagtactacttcatctggtccatctccgaggcctccatcatcatctccggcctgggcttctccggctggaccgacgacgcctcc




cccaagcccaagtgggaccgcgccaagaacgtggacatcctgggcgtggagctggccaagtccgccgtgcagatccccctgg




tgtggaacatccaggtgtccacctggctgcgccactacgtgtacgagcgcctggtgcagaacggcaagaaggccggcttcttc




cagctgctggccacccagaccgtgtccgccgtgtggcacggcctgtaccccggctacatgatgttcttcgtgcagtccgccctga




tgatcgccggctcccgcgtgatctaccgctggcagcaggccatctcccccaagatggccatgctgcgcaacatcatggtgttcat




caacttcctgtacaccgtgctggtgctgaactactccgccgtgggcttcatggtgctgtccctgcacgagaccctgaccgcctacg




gctccgtgtactacatcggcaccatcatccccgtgggcctgatcctgctgtcctacgtggtgcccgccaagccctcccgccccaag





embedded image





ccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgc




gagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttat




ctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctg




gtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagag





ctc

cgtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggag




ctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtggcccacg




tgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggttaggacaa




gggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccacatccctcacacc




ctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccg




caaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcattggccctcaccg




aggcagcacatcggacaccagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcgccgggaccaaggac




acgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgag




tgaacccccgtcgtcgaccagaagagcgctcttctgcttcggattccactacatcaagtgggtgaacctggcgggcgcgga




ggagggcccccgcccgggcggcattgttagcaaccactgcagctacctggacatcctgctgcacatgtccgattccttc




cccgcctttgtggcgcgccagtcgacggccaagctgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctg




tggtcgtggtgggcggggtcacaaatgaggacattgatgctgtcgtttgccgatcaggggagctcgaaagtaagtgca




gcctggtcatgggatcacaaatctcaccaccactcgtccaccttgcctgggccttgcagccaaattatgagctgcctcta




cgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacctggtgaagcagcgcatgcaggacgaggcc




gaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgggcttttgagacactgtttgtgcttgaa




actgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctctcaaccccatctcaccttttctc




catcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgcccgtcc





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ttcgcgactacacctgacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctga




cgccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgc




atctccgacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgac




ggcttcctggtcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccacctgt




tcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccag




acacgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagttcggcacgcccgagatctcc




taccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccctgtgcaactggggccag




gacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgcccc




gactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctgaac




aaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaac




ctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaa




caacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggcatccccgcca




cgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccctggac




aacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctggaggagatcacac




gactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacg




gcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcct




gtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgc





embedded image





cactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaaca




gcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatcccct




tccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactg




cccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacggg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagct




gcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtc




ctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgc




aacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctcc




gtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcag




gagctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggggaccc




tgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgt




gatgaaggttaggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaa




ttcgttacaccacatccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaagg




ccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtggg




cggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcat




cttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgct




acctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaag






agc







AtLPCAT2


SEQ ID NO: 98





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







BrLPCAT


SEQ ID NO: 99





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







BjLPCAT


SEQ ID NO: 100





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







LimdLPCAT1


SEQ ID NO: 101





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







LimdLPCAT2


SEQ ID NO: 102





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







pSZ5297: AtLPCAT


SEQ ID NO: 103





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgttagca





accactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagctgccctt




tatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgatgctgtcgttt




gccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccaccttgcctgggccttg




cagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacctggtgaagcagcgc




atgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgggcttttgagacactgtttg




tgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctctcaaccccatctcaccttttctc




catcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctg




cgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatca




tcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggcc




acgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccgg




ctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaac




aagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgcccca




tcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcga




cgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccact




gctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacct




ggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatc




atcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactcc




aacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggt




ccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctgga




ggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcga




caactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaag




gacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgt





embedded image





acacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaaca




gcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttcc




ctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctc




gcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





acatgaactccatggccgcctccatcggcgtgtccgtggccgtgctgcgcttcctgctgtgcttcgtggccaccatccccatctcct




tcctgtggcgcttcatcccctcccgcctgggcaagcacatctactccgccgcctccggcgccttcctgtcctacctgtccttcggcttc




tcctccaacctgcacttcctggtgcccatgaccatcggctacgcctccatggccatctaccgccccctgtccggcttcatcaccttct




tcctgggcttcgcctacctgatcggctgccacgtgttctacatgtccggcgacgcctggaaggagggcggcatcgactccaccg




gcgccctgatggtgctgaccctgaaggtgatctcctgctccatcaactacaacgacggcatgctgaaggaggagggcctgcgc




gaggcccagaagaagaaccgcctgatccagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctcccacttc




gccggccccgtgttcgagatgaaggactacctggagtggaccgaggagaagggcatctgggccgtgtccgagaagggcaa




gcgcccctccccctacggcgccatgatccgcgccgtgttccaggccgccatctgcatggccctgtacctgtacctggtgccccagt




tccccctgacccgcttcaccgagcccgtgtaccaggagtggggcttcctgaagcgcttcggctaccagtacatggccggcttcac




cgcccgctggaagtactacttcatctggtccatctccgaggcctccatcatcatctccggcctgggcttctccggctggaccgacg




agacccagaccaaggccaagtgggaccgcgccaagaacgtggacatcctgggcgtggagctggccaagtccgccgtgcag




atccccctgttctggaacatccaggtgtccacctggctgcgccactacgtgtacgagcgcatcgtgaagcccggcaagaaggc




cggcttcttccagctgctggccacccagaccgtgtccgccgtgtggcacggcctgtaccccggctacatcatcttcttcgtgcagt




ccgccctgatgatcgacggctccaaggccatctaccgctggcagcaggccatcccccccaagatggccatgctgcgcaacgtg




ctggtgctgatcaacttcctgtacaccgtggtggtgctgaactactcctccgtgggcttcatggtgctgtccctgcacgagaccct




ggtggccttcaagtccgtgtactacatcggcaccgtgatccccatcgccgtgctgctgctgtcctacctggtgcccgtgaagcccg





embedded image





gatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgt




acgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatccca




accgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgc




ctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaag



cttaattaagagctccgtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtc



aagatcaggagctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggggacc




ctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaa




ggttaggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccaca




tccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacgccc




aaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcatt




ggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcgccgg




gaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaa




gaaaattgagtgaacccccgtcgtcgacca

gaagagc







pSZ5119


SEQ ID NO: 104





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgttagca





accactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagctgccctt




tatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgatgctgtcgttt




gccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccaccttgcctgggccttg




cagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacctggtgaagcagcgc




atgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgggcttttgagacactgtttg




tgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctctcaaccccatctcaccttttctc




catcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctg




cgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatca




tcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggcc




acgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccgg




ctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaac




aagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgcccca




tcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcga




cgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccact




gctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacct




ggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatc




atcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactcc




aacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggt




ccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctgga




ggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtcga




caactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaag




gacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgt





embedded image





acacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaaca




gcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttcc




ctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctc




gcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gcacctcctccctgcgcaaccgccgccagctgaagcccgccgtggccgccaccgccgacgacgacaaggacggcgtgttcatg




gtgctgctgtcctgcttcaagatcttcgtgtgcttcgccatcgtgctgatcaccgccgtggcctggggcctgatcatggtgctgctg




ctgccctggccctccctgcgcctccgcctgggccccctgtccggccccctcatcggcggcctggtgctctggctctacggcatcc




ccatcacgatcccgggctccgcgccccccccgcagcgcgccatctacatctccaaccacgcctcccccatcgccgccttcttcgt




gatgtggctggcccccctcggccccgtgggcgtggccaagacggcggtgatctggtaccccctgctgggcccgctgtcccccc




tggcccaccacatccgcatcgaccgctccaaccccgccgccgccatccagtccatgaaggaggccgtgcgcgtgatcaccgag




aagaacctgtccctgatcatgttccccgagggcacccgctcccgcgacggccgcctgctgcccttcccgccgggcttcgtgccc




ctggccctgcagtcccacctgcccatcgtgcccatgatcctgaccggcacccacctggcctggcgcaagggcaccttccgcgtgc




gccccgtgcccatcaccgtgaagtacctgccccccatcaacaccgacgactggaccgtggacaagatcgacgactacgtgaa





embedded image





cagcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaa




tatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcga




ataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctg




ctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgca




atgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccgtcctccactaccacagggtatggt




cgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagctaaaaatggtgccagcgaggatccag




cgctctcactcttgctgccatcgctcccaccdtttccccaggggaccctgtggcccacgtgggagacgattccggccaagtggcac




atcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattctggatatgacc




tctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccacatccctcacaccctcgcccctgacactcgcagttgcccgtg




tacgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgggaaccgtca




aagtttgcttgcgggtgggcggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggacaccagtcgccac




ccggcttgcatcttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgc




gctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







Sequence of PLSC-2/LPAAT1-2 5′ flank in pSZ5120 and pSZ5348


SEQ ID NO: 105





gctctt

ctgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcat





tgttagcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcga




cggccaagctgccctttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcga




aggggggcaggcgtaggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcaga




gccagcctggtcatgggatcacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgc




ctctacgtgaaccgcgaccgctcggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacga




ggccgaggggaggaccccgcccgagtaccgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgct




tgaaactgtgggcacgcgtgccccgacgcgcctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctccttt




cctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgccc




gtccagcccgt

ggtacc







PLSC-2/LPAAT1-2 3′ flank in pSZ5120 and pSZ5348


SEQ ID NO: 106





gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgcgctgtca





agttttggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttc




cccagggaaccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgcc




acaaagtgaccgtgatgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtgtttctcgcg




cacgcgtcccccgatgcgctgcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaat




gaggaggaaaaggccgaccccaagctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtt




tgcttgcgggtgggcggggcggctctagcgaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgt




cacccggcgagcaattccgccccctctgtcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgttt




gaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccc




cgtcgtcgacca

gaagagc








L. alba LPAAT (LimaLPAAT) contained in pSZ5343 and pSZ5348



SEQ ID NO: 107





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image








B. Juncea LPCAT1 (BjLPCAT1) contained in pSZ5346 and pSZ5351



SEQ ID NO: 108





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image








B. juncea LPCAT2 (BjLPCAT2) contained in pSZ5298 and pSZ5352



SEQ ID NO: 109





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







PSZ5298


SEQ ID NO: 110





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgttagca





accactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagctgccctt




tatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgatgctgtcgttt




gccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccaccttgcctgggccttg




cagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacctggtgaagcagcgc




atgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgggcttttgagacactgtttg




tgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctctcaaccccatctcaccttttctc




catcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcgcctg




cgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatgggctacaagtacatca




tcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatgggcc




acgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccgg




ctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaac




aagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgcccca




tcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcga




cgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccact




gctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacct




ggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatc




atcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactcc




aacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggt




ccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccctgga




ggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcg




caactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaag




gacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgt





embedded image





acacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaaca




gcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttcc




ctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctc




gcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





catgaactccatggccgcctccatcggcgtgtccgtggccgtgctgcgcttcctgctgtgcttcgtggccaccatccccgtgtcctt




cgcctggcgcatcgtgccctcccgcctgggcaagcacatctacgccgccgcctccggcgtgttcctgtcctacctgtccttcggctt




ctcctccaacctgcacttcctggtgcccatgaccatcggctacgcctccatggccatgtaccgccccaagtgcggcatcatcacct




tcttcctgggcttcgcctacctgatcggctgccacgtgttctacatgtccggcgacgcctggaaggagggcggcatcgactccac




cggcgccctgatggtgctgaccctgaaggtgatctcctgcgccgtgaactacaacgacggcatgctgaaggaggagggcctg




cgcgaggcccagaagaagaaccgcctgatccagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctcccac




ttcgccggccccgtgtacgagatgaaggactacctgcagtggaccgagggcaagggcatctgggactcctccgagaagcgc




aagcagccctccccctacggcgccaccctgcgcgccatcttccaggccggcatctgcatggccctgtacctgtacctggtgcccc




agttccccctgacccgcttcaccgagcccgtgtaccaggagtggggcttcctgaagaagttcggctaccagtacatggccggcc




agaccgcccgctggaagtactacttcatctggtccatctccgaggcctccatcatcatctccggcctgggcttctccggctggacc




gacgacgacgcctcccccaagcccaagtgggaccgcgccaagaacgtggacatcctgggcgtggagctggccaagtccgcc




gtgcagatccccctggtgtggaacatccaggtgtccacctggctgcgccactacgtgtacgagcgcctggtgaagtccggcaa




gaaggccggcttcttccagctgctggccacccagaccgtgtccgccgtgtggcacggcctgtaccccggctacatgatgttcttc




gtgcagtccgccctgatgatcgccggctcccgcgtgatctaccgctggcagcaggccatctcccccaagctggccatgctgcgc




aacatcatggtgttcatcaacttcctgtacaccgtgctggtgctgaactactccgccgtgggcttcatggtgctgtccctgcacga




gaccctgaccgcctacggctccgtgtactacatcggcaccatcatccccgtgggcctgatcctgctgtcctacgtggtgcccgcca





embedded image





tcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatctt




gtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgca




tcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggc




tccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatgg




aaagcttaattaagagctccgtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcg




ccgtcaagatcaggagctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggg




gaccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtga




tgaaggttaggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacac




cacatccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtac




gcccaaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggct




cattggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcg




ccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgc




ctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







SEQ ID NO: 111





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccctttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggggggcaggcg




taggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcagagccagcctggtcatgggat




cacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgcctctacgtgaaccgcgaccgctc




ggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggaggaccccgcccgagt




accgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc




ctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcctttcctccatcgccagggcaccacctccaacggcgacta




cctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

ggtacc







SEQ ID NO: 112





gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgcgctgtcaagttt





tggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttccccagggaa




ccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtg




atgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtgtttctcgcgcacgcgtcccccgatgcgct




gcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaa




gctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcgggtgggcggggcggctctagc




gaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgtcacccggcgagcaattccgccccctctgtcttctc




gcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaa




gtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc




SEQ ID NO: 113





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 114





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 115





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 116





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 117





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccattatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat




gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt




gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc




tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg




gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct




caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





tgacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctggga




caactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaagga




catgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaag




ttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgacggcatgtactcctccgcgggcgagtacac




gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt




acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac




aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg




gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt




acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac




gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa




gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca




accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc




cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg




accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc




gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc




tacaaggacggcctgtccaagaacgacacccgcctgacggccagaagatcggctccctgtcccccaacgcgatcctgaacacg





embedded image





gtatcgacacactctggacgctggtcgtgtgatggactgagccgccacacttgctgccttgacctgtgaatatccctgccgcattatcaa




acagcctcagtgtgatgatcagtgtgtacgcgcattgcgagagctagctgatgtgctatttgcgaataccacccccagcatccccttc




cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg




cacagccaggtagggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





tccatcggcgtgtccgtggccgtgctgcgcttcctgctgtgcttcgtggccaccatccccgtgtccttcgcctgccgcatcgtgccctcc




cgcctgggcaagcacctgtacgccgccgcctccggcgccttcctgtcctacctgtccttcggcttctcctccaacctgcacttcctggt




gcccatgaccatcggctacgcctccatggccatctaccgccccaagtgcggcatcatcaccttcttcctgggcttcgcctacctgatc




ggctgccacgtgactacatgtccggcgacgcctggaaggagggcggcatcgactccaccggcgccctgatggtgctgaccctga




aggtgatctcctgctccatgaactacaacgacggcatgctgaaggaggagggcctgcgcgaggcccagaagaagaaccgcct




gatccagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctcccacttcgccggccccgtgtacgagatgaagga




ctacctggagtggaccgagggcaagggcatctgggacaccaccgagaagcgcaagaagccctccccctacggcgccaccatc




cgcgccatcctgcaggccgccatctgcatggccctgtacctgtacctggtgccccagtaccccctgacccgcttcaccgagcccgt




gtaccaggagtggggcttcctgcgcaagttctcctaccagtacatggccggcttcaccgcccgctggaagtactacttcatctggtc




catctccgaggcctccatcatcatctccggcctgggcttctccggctggaccgacgacgcctcccccaagcccaagtgggaccgc




gccaagaacgtggacatcctgggcgtggagctggccaagtccgccgtgcagatccccctggtgtggaacatccaggtgtccacc




tggctgcgccactacgtgtacgagcgcctggtgcagaacggcaagaaggccggcttatccagctgctggccacccagaccgtgt




ccgccgtgtggcacggcctgtaccccggctacatgatgacttcgtgcagtccgccctgatgatcgccggctcccgcgtgatctacc




gctggcagcaggccatctcccccaagatggccatgctgcgcaacatcatggtgttcatcaacttcctgtacaccgtgctggtgctga




actactccgccgtgggcttcatggtgctgtccctgcacgagaccctgaccgcctacggctccgtgtactacatcggcaccatcatcc





embedded image





gcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatc




cctgccgcattatcaaacagcctcagtgtgatgatcagtgtgtacgcgcattgcgagagctagctgcttgtgctatttgcgaataccac




ccccagcatcccatccctcgatcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctc




ctgctcactgcccctcgcacagccaggtagggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgc




acgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccgtcctccactaccacagggtatggtcgtgtgggg




tcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagctaaaaatggtgccagcgaggatccagcgctctc




actcttgctgccatcgctcccacccttttccccaggggaccctgtggcccacgtgggagacgattccggccaagtggcacatctt




cctgatgctctgccacccccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattctggatatgacctc




tgaggtgtglltctcgcgcaagcgtcccccaattcgttacaccacatccctcacaccctcgcccctgacactcgcagttgcccgt




gtacgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgggaacc




gtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggacaccag




tcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgtttgagg




acaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcga




cca

g
aagagc







SEQ ID NO: 118





Gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggccmcgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccdttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggggggcaggcg




taggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcagagccagcctggtcatgggat




cacagagctcaccaccactcgtccacctcgcctmccttgcagccaaatcatgagdgcctctacgtgaaccgcgaccgctc




ggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggaggaccccgcccgagt




accgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc




ctctggcgcctgcttcgcatccattcgcctdcaaccccgtctctcctttcctccatcgccagggcaccacctccaacggcgacta




cctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

ggtacc







SEQ ID NO: 119





Gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgagtcgctgtcaagttt





tggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttccccagggaa




ccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtg




atgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtgtttctcgcgcacgcgtcccccgatgcgct




gcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaa




gctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcgggtgggcggggcggctctagc




gaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgtcacccggcgagcaattccgccccctctgtcttctc




gcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaa




gtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







SEQ ID NO: 120





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 121





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 122





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 123





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 124





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 125





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 126





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccdttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat




gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt




gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc




tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg




gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccgmcctgtdcgcatccattcgcctct




caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





tgacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctggga




caactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaagga




catgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaag




ttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacac




gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt




acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac




aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg




gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt




acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac




gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa




gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca




accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc




cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg




accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc




gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc




tacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacg





embedded image





gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcattatcaa




acagcctcagtgtgatgatcagtgtgtacgcgcattgcgagagctagctgcttgtgctatttgcgaataccacccccagcatccccttc




cctcgatcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg




cacagccaggtagggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ggacgttgccgccacacttgctgccttgacctgtgaatatccctgccgcattatcaaacagcctcagtgtgatgatcagtgtgtacgcg




cttttgcgagagctagctgcttgtgctatttgcgaataccacccccagcatcccatccctcgatcatatcgcttgcatcccaaccgcaac




ttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccaggtagggctccgcctgtattctcc




tggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagag





ctc

cgtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcag




gagctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtgg




cccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggt




taggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccaca




tccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacg




cccaaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattgg




ctcattggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggag




gtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaag




cctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







SEQ ID NO: 127





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccctttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggggggcaggcg




taggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcagagccagcctggtcatgggat




cacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgcctctacgtgaaccgcgaccgctc




ggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggaggaccccgcccgagt




accgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc




ctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcctttcctccatcgccagggcaccacctccaacggcgacta




cctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccg

tggtacc







SEQ ID NO: 128





gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgcgctgtcaagttt





tggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttccccagggaa




ccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtg




atgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtgtttctcgcgcacgcgtcccccgatgcgct




gcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaa




gctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcgggtgggcggggcggctctagc




gaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgtcaccggcgagcaattccgccccctctgtcttctc




gcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaa




gtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







SEQ ID NO: 129





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat




gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccac




gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc




tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg




gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct




caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg




gccggggtgcccgtccagcccgt

ggtacc
gcggtgagaatcgaaaatgcatcgtttctaggttcggagacggtcaattccctgctcc



ggcgaatctgtcggtcaagctggccagtggacaatgttgctatggcagcccgcgcacatgggcctcccgacgcggccatcaggagc


ccaaacagcgtgtcagggtatgtgaaactcaagaggtccctgctgggcactccggccccactccgggggcgggacgccaggcattc


gcggtcggtcccgcgcgacgagcgaaatgatgattcggttacgagaccaggacgtcgtcgaggtcgagaggcagcctcggacacg


tctcgctagggcaacgccccgagtccccgcgagggccgtaaacattgtttctgggtgtcggagtgggcattttgggcccgatccaatc


gcctcatgccgctctcgtctggtcctcacgttcgcgtacggcctggatcccggaaagggcggatgcacgtggtgttgccccgccattg


gcgcccacgtttcaaagtccccggccagaaatgcacaggaccggcccggctcgcacaggccatgctgaacgcccagatttcgaca


gcaacaccatctagaataatcgcaaccatccgcgttttgaacgaaacgaaacggcgctgtttagcatgtttccgacatcgtgggggccg


aagcatgctccggggggaggaaagcgtggcacagcggtagcccattctgtgccacacgccgacgaggaccaatccccggcatca




embedded image





gacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggac




aactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggac




atgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagt




tccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacac




gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt




acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac




aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg




gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt




acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac




gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa




gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca




accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc




cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg




accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc




gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc




tacaaggacggcctgtccaagaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacg





embedded image





gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa




acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc




cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg




cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg




atgggaacacaaatggaaagctgtagaattcctggctcgggcctcgtgctggcactccctcccatgccgacaacctttctgctgtcacc



acgacccacgatgcaacgcgacacgacccggtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcatactccaat


cgtatccgtttgatttctgtgaaaactcgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgtttcgtcga


aaggccagcaaccccaaatcgcaggcgatccggagattgggatctgatccgagcttggaccagatcccccacgatgcggcacggg


aactgcatcgactcggcgcggaacccagctttcgtaaatgccagattggtgtccgataccttgatttgccatcagcgaaacaagacttca


gcagcgagcgtatttggcgggcgtgctaccagggttgcatacattgcccatttctgtctggaccgctttaccggcgcagagggtgagtt


gatggggttggcaggcatcgaaacgcgcgtgcatggtgtgtgtgtctgttttcggctgcacaatttcaatagtcggatgggcgacggta


gaattgggtgttgcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcctgctaac




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcg




cttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctgtttcatatcgcttgcatcccaaccgcaac




ttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcc




tggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagag





ctc

cgtcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcag




gagctaaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtgg




cccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggt




taggacaagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccaca




tccctcacaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacg




cccaaaacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattgg




ctcattggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggag




gtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaag




cctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







SEQ ID NO: 130





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccctttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggggggcaggcg




taggcgtgcagtgtgagcggacattgatgccgtcgtttgccggtcaggagagctcgaaatcagagccagcctggtcatgggat




cacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgcctctacgtgaaccgcgaccgctc




ggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggaggaccccgcccgagt




accgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc




ctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcctttcctccatcgccagggcaccacctccaacggcgacta




cctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

ggtacc







SEQ ID NO: 131





gagctc

gtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgcgctgtcaagttt





tggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttccccagggaa




ccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtg




atgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtgtttctcgcgcacgcgtcccccgatgcgct




gcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaa




gctgtacgcccaaaatgttcgcaaagccatggtgcgtcgggaaccgttcaagtttgcttgcgggtgggcggggcggctctagc




gaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgtcacccggcgagcaattccgccccctctgtcttctc




gcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaa




gtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







SEQ ID NO: 132





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat




gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt




gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc




tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg




gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct




caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg




gccggggtgcccgtccagcccgt

ggtacc
gcgcggtgagaatcgaaaatgcatcgtttctaggttcggagacggtcaattccctgctcc



ggcgaatctgtcggtcaagctggccagtggacaatgttgctatggcagcccgcgcacatgggcctcccgacgcggccatcaggagc


ccaaacagcgtgtcagggtatgtgaaactcaagaggtccctgctgggcactccggccccactccgggggcgggacgccaggcattc


gcggtcggtcccgcgcgacgagcgaaatgatgattcggttacgagaccaggacgtcgtcgaggtcgagaggcagcctcggacacg


tctcgctagggcaacgccccgagtccccgcgagggccgtaaacattgtttctgggtgtcggagtgggcattttgggcccgatccaatc


gcctcatgccgctctcgtctggtcctcacgttcgcgtacggcctggatcccggaaagggcggatgcacgtggtgttgccccgccattg


gcgcccacgtttcaaagtccccggccagaaatgcacaggaccggcccggctcgcacaggccatgctgaacgcccagatttcgaca


gcaacaccatctagaataatcgcaaccatccgcgttttgaacgaaacgaaacggcgctgtttagcatgtttccgacatcgtgggggccg


aagcatgctccggggggaggaaagcgtggcacagcggtagcccattctgtgccacacgccgacgaggaccaatccccggcatcac




embedded image





gacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggac




aactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggac




atgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagt




tccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacac




gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt




acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac




aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg




gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt




acgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac




gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa




gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca




accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc




cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg




accctggaggagatcttcttcgactccctttcctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc




gcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc




tacaaggacggcctgtccaagaacgacacccgcctgucggccagaagatcggctccctgtcccccaacgcgatcctgaacacg





embedded image





gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa




acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttc




cctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg




cacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg




atgggaacacaaatggaaagctgtagaattcctggctcgggcctcgtgctggcactccctcccatgccgacaacctttctgctgtcacc



acgacccacgatgcaacgcgacacgacccggtgggactgatcggttcactgcacctgcatgcaattgtcacaagcgcatactccaat


cgtatccgtttgatttctgtgaaaactcgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgtttcgtcga


aaggccagcaaccccaaatcgcaggcgatccggagattgggatctgatccgagcttggaccagatcccccacgatgcggcacggg


aactgcatcgactcggcgcggaacccagctttcgtaaatgccagattggtgtccgataccttgatttgccatcagcgaaacaagacttca


gcagcgagcgtatttggcgggcgtgctaccagggttgcatacattgcccatttctgtctggaccgctttaccggcgcagagggtgagtt


gatggggttggcaggcatcgaaacgcgcgtgcatggtgtgtgtgtctgttttcggctgcacaatttcaatagtcggatgggcgacggta


gaattgggtgttgcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcctgctaac




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttg




cgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatct




acgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggta




ctgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccg




tcctccactaccacagggtatggtcgtgtggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagct




aaaaatggtgccagcgaggatccagcgctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtggcccac




gtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggttagga




caagggtcgggacccgattctggatatgacctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccacatccctc




acaccctcgcccctgacactcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaa




aacgtccgcaaagccatggtgcgtcgggaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcatt




ggccctcaccgaggcagcacatcggacaccagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcgc




cgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgt




gcctaagaaaattgagtgaacccccgtcgtcgacat

gaagagc







SEQ ID NO: 133





gctcttc

tgcttcggattccactacatcaagtgggtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccactgcagctacctggacatcctgctgcacatgtccgactccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccctttatcggcatcatcaggtgcgtgaaagcgggggctgctgtggccgtggtgggcagggttgcgaaggggggcaggcg




toggcgtgcagtgtgagcggacattgatgccgtc+tttgccggtcaggagagctcgaaatcagagccagcctggtcatgggat




cacagagctcaccaccactcgtccacctcgcctgcgccttgcagccaaatcatgagctgcctctacgtgaaccgcgaccgctc




ggggcccaaccacgtgggcgtggccgatctggtgaagcagcgcatgcaggacgaggccgaggggaggaccccgcccgagt




accgaccgctgctcctcttccccgaggtgggctttcgaggcaccgtttgtgcttgaaactgtgggcacgcgtgccccgacgcgc




ctctggcgcctgcttcgcatccattcgcctctcaaccccgtctctcctttcctccatcgccagggcaccacctccaacggcgacta




cctgcttcccttcaagaccggcgccttcctggccggggtgcccgtccagcccgt

ggtacc







SEQ ID NO: 134





gagctc

cgtcctccactaccacagggtatggtggtgtggggtcgagcgtgttgaagcgcggaaggggatgctgtcaagttt





tggagctgaaaatggtgcccgcgaggatccagcgcgccccactcacccttgctgccatcgctccccacccttttccccagggaa




ccctgtggcccacgtgggagacgattccggccaagtggcacatcttcctgatgctctgccacccccgccacaaagtgaccgtg




atgaaggtacgaacaagggtcgggccccgattctggatatcacgtctggggtgtgtttctcgcgcacgcgtcccccgatgcgct




gcacagtctccctcacaccctcacccctaacgctcgcagttgcccgtgtacgtccccaatgaggaggaaaaggccgaccccaa




gctgtacgcccaaaatgttcgcaaagccatggtgcgtcgtcgggaaccgttcaagtttgcttgcgggtgggcggggcggctctagc




gaattggcgcattggccctcaccgaggcagcacatcggacaccaatcgtcacccggcgagcaattccgccccctctgtcttctc




gcagatggaggtcgccgggaccaaggacacgacggcggtgtttgaggacaagatgcgctacctgaactccctgaagagaaa




gtacggcaagcctgtgcctaagaaaattgagtgaacccccgtcgtcgacca

gaagagc







SEQ ID NO: 135





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 136





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 137





gctcttc

tgcttcggattccactacatcaagtaagtgaacctggcgggcgcggaggagggcccccgcccgggcggcattgtta





gcaaccattgcagctacctggacatcctgctgcacatgtccgattccttccccgcctttgtggcgcgccagtcgacggccaagc




tgccctttatcggcatcatcaggtgcgtgaaagtgggggctgctgtggtcgtggtgggcggggtcacaaatgaggacattgat




gctgtcgtttgccgatcaggggagctcgaaagtaagtgcagcctggtcatgggatcacaaatctcaccaccactcgtccacctt




gcctgggccttgcagccaaattatgagctgcctctacgtgaaccgcgaccgctcggggcccaaccacgtgggtgtggccgacc




tggtgaagcagcgcatgcaggacgaggccgaggggaagaccccgcccgagtaccggccgctgctcctcttccccgaggtgg




gcttttgagacactgtttgtgcttgaaactgtggacgcgcgtgccctgacgcgcctccggcgcctgtctcgcatccattcgcctct




caaccccatctcaccttttctccatcgccagggcaccacctccaacggcgactacctgcttcccttcaagaccggcgccttcctg




gccggggtgcccgtccagcccgt

ggtacc
gcggtgagaatcgaaaatgcatcgtttctaggttcggagacggtcaattccctgctcc



ggcgaatctgtcggtcaagctggccagtggacaatgttgctatggcagcccgcgcacatgggcctcccgacgcggccatcaggagc


ccaaacagcgtgtcagggtatgtgaaactcaagaggtccclgctgggcactccggccccactccgggggcgggacgccaggcattc


gcggtcggtcccgcgcgacgagcgaaatgatgattcggttacgagaccaggacgtcgtcgaggtcgagaggcagcctcggacacg


tctcgctagggcaacgccccgagtccccgcgagggccgtaaacattgtttctgggtgtcggagtgggcattttgggcccgatccaatc


gcctcatgccgctctcgtctggtcctcacgttcgcgtacggcctggatcccggaaagggcggatgcacgtggtgttgccccgccattg


gcgcccacgtttcaaagtccccggccagaaatgcacaggaccggcccggctcgcacaggccatgctgaacgcccagatttcgaca


gcaacaccatctagaataatcgcaaccatccgcgttttgaacgaaacgaaacggcgctgtttagcatgtttccgacatcgtgggggcc


aagcatgctccggggggaggaaagcgtggcacagcggtagcccattctgtgccacacgccgacgaggaccaatccccggcatca




embedded image





gacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctgggac




aactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggac




atgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagt




tccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttccttcctgttcggcatgtactcctccgcgggcgagtacac




gtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagt




acgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaac




aagacgggccgccccatcttctactccctgtgcaactggggccaggacctgaccttctactggggctccggcatcgcgaactcctg




gcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagt




acgccggcttccactgctccatcatgaacacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaac




gacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaa




gtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatca




accaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagtacggccagggcgagatc




cagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacg




accctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaacc




gcgtcgacaactccacggcgtccgccatgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcc




tacaaggacggcctgtccaagaacgacacccgcctgacggccagaagatcggctccctgtcccccaacgcgatcctgaacacg





embedded image





gtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa




acagcctcagtgtgatgatcagtgtgtacgcgcattgcgagagctagctgatgtgctatttgcgaataccacccccagcatccccttc




cctcgatcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcg




cacagccaggtagggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtggg




atgggaacacaaatggaaagctgtagaattcctggctcgggcctcgtgctggcactccctcccatgccgacaacctactgctgtcacc



acgacccacgatgcaacgcgacacgacccggtgggactgatcggacactgcacctgcatgcaattgtcacaagcgcatactccaat


cgtatccgtttgatttctgtgaaaactcgctcgaccgcccgcgtcccgcaggcagcgatgacgtgtgcgtgacctgggtgtttcgtcga


aaggccagcaaccccaaatcgcaggcgatccggagattgggatctgatccgagcaggaccagatcccccacgatgcggcacggg


aactgcatcgactcggcgcggaacccagattcgtaaatgccagattggtgtccgataccttgatttgccatcagcgaaacaagacttca


gcagcgagcgtataggcgggcgtgctaccagggagcatacattgcccatactgtctggaccgattaccggcgcagagggtgagtt


gatggggaggcaggcatcgaaacgcgcgtgcatggtgtgtgtgtctgattcggctgcacaatttcaatagtcggatgggcgacggta


gaattgggtgttgcgctcgcgtgcatgcctcgccccgtcgggtgtcatgaccgggactggaatcccccctcgcgaccctcctgctaac




embedded image





tggccgcctccatcggcgtgtccgtggccgtgctgcgcttcctgctgtgcttcgtggccaccatccccatctccttcctgtggcgcttca




tcccctcccgcctgggcaagcacatctactccgccgcctccggcgccttcctgtcctacctgtcatcggcttctcctccaacctgcac




ttcctggtgcccatgaccatcggctacgcctccatggccatctaccgccccctgtccggcttcatcaccttcttcctgggcttcgcctac




ctgatcggctgccacgtgttctacatgtccggcgacgcctggaaggagggcggcatcgactccaccggcgccctgatggtgctga




ccctgaaggtgatctcctgctccatcaactacaacgacggcatgctgaaggaggagggcctgcgcgaggcccagaagaagaa




ccgcctgatccagatgccctccctgatcgagtacttcggctactgcctgtgctgcggctcccacttcgccggccccgtgacgagatg




aaggactacctggagtggaccgaggagaagggcatctgggccgtgtccgagaagggcaagcgcccctccccctacggcgcca




tgatccgcgccgtgaccaggccgccatctgcatggccctgtacctgtacctggtgccccagttccccctgacccgcttcaccgagc




ccgtgtaccaggagtggggcttcctgaagcgcttcggctaccagtacatggccggcttcaccgcccgctggaagtactacttcatct




ggtccatctccgaggcctccatcatcatctccggcctgggcttctccggctggaccgacgagacccagaccaaggccaagtggg




accgcgccaagaacgtggacatcctgggcgtggagctggccaagtccgccgtgcagatccccctgttctggaacatccaggtgtc




cacctggctgcgccactacgtgtacgagcgcatcgtgaagcccggcaagaaggccggcttcttccagctgctggccacccagac




cgtgtccgccgtgtggcacggcctgtaccccggctacatcatcttcttcgtgcagtccgccctgatgatcgacggctccaaggccat




ctaccgctggcagcaggccatcccccccaagatggccatgctgcgcaacgtgctggtgctgatcaacttcctgtacaccgtggtgg




tgctgaactactcctccgtgggcttcatggtgctgtccctgcacgagaccctggtggccttcaagtccgtgtactacatcggcaccgt





embedded image






aggcagcagcagctcggatagtatcgacacactctggacgctggtcgtgtgatggactgagccgccacacttgctgccttgacctgtg





aatatccctgccgcattatcaaacagcctcagtgtgatgatcagtgtgtacgcgcattgcgagagctagctgcttgtgctatttgcgaat




accacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcc




tgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgct




gatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctccgtcctccactaccacagggtatggtcgtgt




ggggtcgagcgtgttgaagcgcagaaggggatgcgccgtcaagatcaggagctaaaaatggtgccagcgaggatccagcg




ctctcactcttgctgccatcgctcccacccttttccccaggggaccctgtggcccacgtgggagacgattccggccaagtggcac




atcttcctgatgctctgccacccccgccacaaagtgaccgtgatgaaggttaggacaagggtcgggacccgattctggatatg




acctctgaggtgtgtttctcgcgcaagcgtcccccaattcgttacaccacatccctcacaccctcgcccctgacactcgcagttg




cccgtgtacgtccccaatgaggaggaaaaggccgaccccaagctgtacgcccaaaacgtccgcaaagccatggtgcgtcgg




gaaccgtcaaagtttgcttgcgggtgggcggggcggctctagcgaattggctcattggccctcaccgaggcagcacatcggac




accagtcgccacccggcttgcatcttcgccccctttcttctcgcagatggaggtcgccgggaccaaggacacgacggcggtgtt




tgaggacaagatgcgctacctgaactccctgaagagaaagtacggcaagcctgtgcctaagaaaattgagtgaacccccgtc




gtcgacca

gaagagc







SEQ ID NO: 138





embedded image







embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image







SEQ ID NO: 139





gctcttc

gcgaaggtcattttccagaacaacgaccatggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcgacccagt





cgctcgcaggagaacgcggcaactgccgagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattggtagcattata




attcggcttccgcgctgtttatgggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccagctccgggcgaccggg




ctccgtgtcgccgggcaccacctcctgccatgagtaacagggccgccctctcctcccgacgttggcccactgaataccgtgtcttggggccc




tacatgatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggattctgggacgtggtctgaatcctccaggcgggtttccccgaga




aagaaagggtgccgatttcaaagcagagccatgtgccgggccctgtggcctgtgttggcctgtgttggcgcctatgtagtcaccccccctcacccaattgtc




gccagtttgcgcaatccataaactcaaaactgcagcttctgagctgcgctgttcaagaacacctctggggtttgctcacccgcgaggtcgac





embedded image






embedded image






embedded image






embedded image






embedded image





gcgttctacttcctgacggcctgcatctccctgaagggcgtgttcggcgtctccccctcctacaacggcctgggcctgacgccccagatgggctg




ggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctccgacctgggcctgaaggacatg




ggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggc




atgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccggc




tccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaacaagggccagt




tcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccctgaacaagacgggccgccccatcttctactccctgtgcaact




ggggccaggacctgaccttctactggggctccggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgac




tcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccat




gggccagaacgcgggcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggc




gcacttctccatgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccag




gcgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgctcacggctcgagtacggcca




gggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgctgaacggcggctccgtgtcccgccccatgaac




acgaccctggaggagatcttcttcgactccaacctgggctccaagaagctgacctccacctgggacatctacgacctgtgggcgaaccgcgtc




gacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggc




ctgtccaagaacgacacccgcctgncggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggcat





embedded image





tactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaagggtggcacaagatggatcgcgaat




gtacgagatcgacaacgatggtgattgttatgaggggceaaacctggctcaatcttgtcgcatgtccggcgcaatgtgatccagcggcgtgactctc




gcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcccgtcaactcacaagcctactctagctcccattgcgcact




cgggcgcccggctcgatcaatgttctgagcggagggcgaagcgtcaggaaatcgtctcggcagctggaagcgcatggaatgcggagcggagat




cgaatcaggatcccgcgtctcgaacagagcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataacc



acctgacgaatgcgcttggttcttcgtccattagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtgga




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaa




acagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttc




atatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgg




gctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggagaattc





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgt




ttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatccc




aaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattct




cctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctcctc




actcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgcacgcgcgactccgtcgcttcgcgggtggcacccccatt




gaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccacccacctgcacctctattattggtattattgacgcgggagcgg




gcgttgtactctacaacgtagcgtctctggttttcagctggctcccaccattgtaaattcttgctaaaatagtgcgtggttatgtgagaggtat




ggtgtaacagggcgtcagtcatgttggttttcgtgctgatctcgggcacaaggcgtcgtcgacgtgacgtgcccgtgatgagagcaatacc




gcgctcaaagccgacgcatggcctttactccgcactccaaacgactgtcgctcgtatttttcggatatctattttttaagagcgagcacagcg




ccgggcatgggcctgaaaggcctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcaga




cggaggaacgcatggtgagtgcgcatcacaagatgcatgtcttgttgtctgtactataatgctagagcatcaccaggggcttagtcatcgca




cctgctttggtcattacagaaattgcacaagggcgtcctccgggatgaggagatgtaccagctcaagctggagcggcttcgagccaagca




ggagcgcggcgcatgacgacctacccacatgc

gaagagc







SEQ ID NO: 140





gctcttc

acccaactcagataataccaatacccctccttctcctcctcatccattcagtacccccccccttctcttcccaaagcagcaagcgcg





tggcttacagaagaacaatcggcttccgccaaagtcgccgagcactgcccgacggcggcgcgcccagcagcccgcttggccacacaggc




aacgaatacattcaatagggggcctcgcagaatggaaggagcggtaaagggtacaggagcactgcgcacaaggggcctgtgcaggag




tgactgactgggcgggcagacggcgcaccgcgggcgcaggcaagcagggaagattgaagcggcagggaggaggatgctgattgagg




ggggcatcgcagtctctcttggacccgggataaggaagcaaatattcggccggttgggttgtgtgtgtgcacgttttcttcttcagagtcgtg





embedded image






embedded image






embedded image






embedded image






embedded image





acgagacgtccgaccgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacg




ccaagtggcacctgtacttccagtacaacccgaacgacaccgtctgggggacgcccttgttctggggccacgccacgtccgacgacctgacc




aactgggaggaccagcccatcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacct




ccggcttcttcaacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcc




tacagcctggacggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtctt




ctggtacgagccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcct




ggaagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggaccc




cagcaagtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttcaacggc




acccacttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaacaccgacccgacc




tacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccctggcgctcctccatgtccctcgtgc




gcaagttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagccgatcctgaacatcagcaacg




ccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgtccaacagcaccggcaccctgg




agttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctctggttcaagggcctggaggaccc




cgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaacagcaaggtgaagttcgtgaaggagaaccc




ctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaacgacctgtcctactacaaggtgtacggcttgctggaccaga




acatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatgaccaccgggaacgccctgggctccgtgaacatga





embedded image





acactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgttt




gatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatccca




accgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccaggtagggctccgcctgtaactc




ctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaggatcccgcgtctcgaacaga



gcgcgcagaggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcaggacacgtcca


ttagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacgttcacagcctagg




embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





atagtatcgacacactctggacgctggtcgtgtgatggactgagccgccacacagctgccagacctgtgaatatccctgccgcattatcaaacagc




ctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcg




cagcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccaggtagggctccg




cctgtaactcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagctgtagagc





tc
agattccagaaggagagctccagagccatcattctcagcctcgataacctccaaagccgctctaattgtggagggggacgaaccgaatgctg




cgtgaacgggaaggaggaggagaaagagtgagcagggagggattcagaaatgagaaatgagaggtgaaggaacgcatccctatgcc




cttgcaatggacagtgtttctggccaccgccaccaagacttcgtgtcctctgatcatcatgcgattgattacgttgaatgcgacggccggtca




gccccggacctccacgcaccggtgctcctccaggaagatgcgcttgtcctccgccatcttgcagggctcaagctgctcccaaaactcttggg




cgggttccggacggacggctaccgcgggtgcggccctgaccgccactgttcggaagcagcggcgctgcatgggcagcggccgctgcggt




gcgccacggaccgcatgatccaccggaaaagcgcacgcgctggagcgcgcagaggaccacagagaagcggaagagacgccagtact




ggcaagcaggctggtcggtgccatggcgcgctactaccctcgctatgactcgggtcctcggccggctggcggtgctgacaattcgtttagtg




gagcagcgactccattcagctaccagtcgaactcagtggcacagtgactcc

gctcttc







SEQ ID NO: 141





gctcttc

gccgccgccactcctgctcgagcgcgcccgcgcgtgcgccgccagcgccttggccttttcgccgcgctcgtgcgcgtcgctgatgt





ccatcaccaggtccatgaggtctgccttgcgccggctgagccactgcttcgtccgggcggccaagaggagcatgagggaggactcctggt




ccagggtcctgacgtggtcgcggctctgggagcgggccagcatcatctggctctgccgcaccgaggccgcctccaactggtcctccagca




gccgcagtcgccgccgaccctggcagaggaagacaggtgaggggggtatgaattgtacagaacaaccacgagccttgtctaggcagaa




tccctaccagtcatggctttacctggatgacggcctgcgaacagctgtccagcgaccctcgctgccgccgcttctcccgcacgcttctttcca




gcaccgtgatggcgcgagccagcgccgcacgctggcgctgcgcttcgccgatctgaggacagtcggggaactctgatcagtctaaacccc





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





caacaacaagaaccactccgcccgccccaagctgcccaactcctccctgctgcccggcttcgacgtggtggtccaggccgcggccacccgct




tcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaactccgagcgcgccaagcagcgcaagcacac




catcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttccccaagtccacgaaggagcacaaggaggtggtgcacga




ggagtccggccacgtcctgaaggtgccatccgccgcgtgcacctgtccggcggcgagcccgcatcgacaactacgacacgtccggccccc




agaacgtcaacgcccacatcggcctggcgaagctgcgcaaggagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcag




atgtactacgcgaagcagggcatcatcacggaggagatgctgtactgcgcgacgcgcgagaagctggaccccgagttcgtccgctccgagg




tcgcgcggggccgcgccatcatcccctccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaa




cgcgaacatcggcaactccgccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacaccatc




atggacctgtccacgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtccccatctacca




ggcgctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgagcaggccgagcagggcgtgg




actacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcctgacgggcatcgtgtcccgcggcggctccatcc




acgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactgggacgacatcctggacatctgcaaccagtacgacgtcgc




cctgtccatcggcgacggcctgcgccccggctccatctacgacgccaacgacacggcccagttcgccgagctgctgacccagggcgagctg




acgcgccgcgcgtgggagaaggacgtgcaggtgatgaacgagggccccggccacgtgcccatgcacaagatccccgagaacatgcaga




agcagctggagtggtgcaacgaggcgcccttctacaccctgggccccctgacgaccgacatcgcgcccggctacgaccacatcacctccgc




catcggcgcggccaacatcggcgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacga




cgtgaaggcgggcgtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacg




cgctgtccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgagacgct




gcccgcggacggcgcgaaggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggacatccgcaagtacg




ccgaggagaacggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgaggagttcaacatcgccaagaagacg





embedded image





taa
cagacgaccaggcaggcgtcgggtagggaggtggtggtgatggcgtctcgatgccatcgcacgcatccaacgaccgtatacgcatcgtcca




atgaccgtcggtgtcctctctgcctccgattgtgagatgtctcaggcttggtgcatcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctct




cttgcgcctctgtggtactggaaaatatcatcgaggcccgtttttttgctcccatttcctttccgctacatcttgaaagcaaacgacaaacgaagcagca




agcaaagagcacgaggacggtgaacaagtctgtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcagagtcagc





embedded image






embedded image






embedded image






embedded image





caagatcagcgcctccatgacgaacgagacgtccgaccgccccctggtgcacttcacccccaacaagggctggatgaacgaccccaacgg




cctgtggtacgacgagaaggacgccaagtggcacctgtacttccagtacaacccgaacgacaccgtctgggggacgccatgttctggggcc




acgccacgtccgacgacctgaccaactgggaggaccagcccatcgccatcgccccgaagcgcaacgactccggcgccttctccggctccat




ggtggtggactacaacaacacctccggcttcttcaacgacaccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccgg




agtccgaggagcagtacatctcctacagcctggacggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccac




ccagttccgcgacccgaaggtcttctggtacgagccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatct




actcctccgacgacctgaagtcctggaagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcg




aggtccccaccgagcaggaccccagcaagtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctcatcaaccagt




acttcgtcggcagcttcaacggcacccacttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcaga




ccttcttcaacaccgacccgacctacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccct




ggcgctcctccatgtccctcgtgcgcaagttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgag




ccgatcctgaacatcagcaacgccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacctgt




ccaacagcaccggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacctctccctct




ggttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctccttcttcctggaccgcgggaacagcaag




gtgaagttcgtgaaggagaacccctacttcaccaaccgcatgagcgtgaacaaccagccatcaagagcgagaacgacctgtcctactaca




aggtgtacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacacctacttcatgaccaccggga





embedded image





cgcccgcgcggcgcacctgacctgttctctcgagggcgcctgttctgccttgcgaaacaagcccctggagcatgcgtgcatgatcgtctctggcgc




cccgccgcgcggtttgtcgccctcgcgggcgccgcggccgcgggggcgcattgaaattgttgcaaaccccacctgacagattgagggcccagg




caggaaggcgttgagatggaggtacaggagtcaagtaactgaaagtttttatgataactaacaacaaagggtcgtttctggccagcgaatgacaag




aacaagattccacatttccgtgtagaggcttgccatcgaatgtgagcgggcgggccgcggacccgacaaaacccttacgacgtggtaagaaaaac




gtggcgggcactgtccctgtagcctgaagaccagcaggagacgatcggaagcatcacagcacaggatcccgcgtctcgaacagagcgcgcag



aggaacgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcaggacttcgtccattagcgaag


cgtccggttcacacacgtgccacgaggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacgttcacagcctagggcagcagc



agctcggatagtatcgacacactctggacgctggtcgtgtgatggactgagccgccacacttgctgccttgacctgtgaatatccctgccgatttatc




aaacagcctcagtgtgatgatcagtgtgtacgcgcttagcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtt




tcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccaggtag




ggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagct





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcga




gttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgc




tatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccaggtagggctccgcctgtaactcctggtactgcaacctgtaaaccagca




ctgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaaagcttaattaagagctc
ttgttttccagaaggagttgctccttgagc




ctttcattctcagcctcgataacctccaaagccgctctaattgtggagggggttcgaatttaaaagcttggaatgttggttcgtgcgtctggaa




caagcccagacttgttgctcactgggaaaaggaccatcagctccaaaaaacttgccgctcaaaccgcgtacctctgctttcgcgcaatctg




ccctgttgaaatcgccaccacattcatattgtgacgcttgagcagtctgtaattgcctcagaatgtggaatcatctgccccctgtgcgagccc




atgccaggcatgtcgcgggcgaggacacccgccactcgtacagcagaccattatgctacctcacaatagttcataacagtgaccatatttc




tcgaagctccccaacgagcacctccatgctctgagtggccaccccccggccctggtgcttgcggagggcaggtcaaccggcatggggcta




ccgaaatccccgaccggatcccaccacccccgcgatgggaagaatctctccccgggatgtgggcccaccaccagcacaacctgctggcc




caggcgagcgtcaaaccataccacacaaatatccttggcatcggccctgaattccttctgccgctctgctacccggtgcttctgtccgaagc




aggggttgctagggatcgctccgagtccgcaaacccttgtcgcgtggcggggcttgttcgagctt

gaagagc







SEQ ID NO: 142





catatg
cggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgccattcgccattcaggctgcgcaactgttgg




gaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgcc


agggattcccagtcacgacgagtaaaacgacggccagtgaattgatgcatgctatcgcgaaggtcattttccagaacaacgacca



tggcttgtcttagcgatcgctcgaatgactgctagtgagtcgtacgctcgacccagtcgctcgcaggagaacgcggcaactgcc




gagcttcggcttgccagtcgtgactcgtatgtgatcaggaatcattggcattggtagcattataattcggcttccgcgctgtttat




gggcatggcaatgtctcatgcagtcgaccttagtcaaccaattctgggtggccagctccgggcgaccgggctccgtgtcgccg




ggcaccacctcctgccatgagtaacagggccgccactcctcccgacgttggcccactgaataccgtgtcttggggccctacat




gatgggctgcctagtcgggcgggacgcgcaactgcccgcgcaatctgggacgtggtctgaatcctccaggcgggtttccccga




gaaagaaagggtgccgatttcaaagcagagccatgtgccgggccagtggcctgtgttggcgcctatgtagtcaccccccctc




acccaattgtcgccagtttgcgcaatccataaactcaaaactgcagcttctgagagcgctgttcaagaacacctaggggtttg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ctgaagggcgtgttcggcgtaccccctcctacaacggcctgggcctgacgccccagatgggctgggacaactggaacacgttcg




cctgcgacgtaccgagcagagagaggacacggccgaccgcataccgacctgggcctgaaggacatgggctacaagtaca




tcatcctggacgactgctggtcctccggccgcgactccgacggcttcctggtcgccgacgagcagaagttccccaacggcatggg




ccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactcctccgcgggcgagtacacgtgcgccggctaccccg




gctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaaccgcgtggactacctgaagtacgacaactgctacaac




aagggccagttcggcacgcccgagatctcctaccaccgctacaaggccatgtccgacgccagaacaagacgggccgccccat




cttctactccctgtgcaactggggccaggacctgaccttctactggggaccggcatcgcgaactcctggcgcatgtccggcgacgt




cacggcggagttcacgcgccccgactcccgctgcccctgcgacggcgacgagtacgactgcaagtacgccggatccactgac




catcatgaacatcctgaacaaggccgcccccatgggccagaacgcgggcgtcggcggctggaacgacctggacaacctggag




gtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctccatgtgggccatggtgaagtcccccctgatcatcggc




gcgaacgtgaacaacctgaaggcctcctcctactccatctactcccaggcgtccgtcatcgccatcaaccaggactccaacggca




tccccgccacgcgcgtaggcgctactacgtgtccgacacggacgagtacggccagggcgagatccagatgtggtccggccccc




tggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtgtcccgccccatgaacacgaccaggaggagatatctt




cgactccaacctgggaccaagaagagacctccacctgggacatctacgacctgtgggcgaaccgcgtcgacaactccacggc




gtccgccatcctgggccgcaacaagaccgccaccggcatcctgtacaacgccaccgagcagtcctacaaggacggcctgtcca




agaacgacacccgcctgttcggccagaagatcggctccctgtcccccaacgcgatcctgaacacgaccgtccccgcccacggc





embedded image





tctttcagactttactcttgaggaattgaacctttctcgcttgctggcatgtaaacattggcgcaattaattgtgtgatgaagaaagggtggc




acaagatggatcgcgaatgtacgagatcgacaacgatggtgattgttatgaggggccaaacctggctcaatcttgtcgcatgtccggc




gcaatgtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgcaccgggtcgctttgattaaaactgatcgcattgccatcccgt




caactcacaagcctactctagctcccattgcgcactcgggcgcccggctcgatcaatgttctgagcggagggcgaagcgtcaggaaa





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gtccggcagggaggtgacaaggcccccaggacctgccggactccgccacggtcgctgacctccaggaggccttccacaagc




gcgcgaagaagttttatcccagccgccagcggctgacccttccggtggcccccggaccaaggacaagccggtggtgctgaact




cgaagaagagcctcaaggagtactgcgacggtaacaccgactcgacacggtggtgtttaaggacttgggcgcgcaggtacct




accgcaccagttcttatcgagtacctgggccccctgctgatctaccccgtatctactacttccagtctataagtacctgggctacgg




cgaggaccgcgtcatccacccggtgcagacgtatgccatgtactactggtgatccactactttaagcgcattatggagacgttcttc




gtgcaccgatcagccacgccacctcgcccatcggtaacgtatccgcaactmcctactactggacgttcggcgcctacatcgct




tactacgtgaaccaccccctgtacacccccgtgagcgacttgcagatgaagatcggcttcgggttcggcctcgtgtttcaggtggcg




aacttctactgccacatcctgctgaagaatctgcgcgacccgaacggcagcggcggttaccagatcccgcgcggcttcctgttcaa




catcgtcacgtgcgcgaactacaccacggagatctaccagtggctcggattaacatcgccacgcagaccatcgccggctacgtg




ttcctcgcggtggccgccagattatgaccaactgggccacggcaagcactcgcggaccggaagatatcgacggcaaggacg





embedded image





cacactctggacgctggtcgtgtgatggactgttgccgccacacagctgccagacctgtgaatatccctgccgctatatcaaacagcc




tcagtgtgtagatcagtgtgtacgcgcattgcgagagctagctgcagtgctatttgcgaataccacccccagcatccccttccctcgat




catatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagc




cttggtttgggctccgcctgtaactcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatggga




acacaaatggaaagctgtagagctcctcactcagcgcgcctgcgcggggatgcggaacgccgccgccgccttgtcttttgcacgc




gcgactccgtcgcttcgcgggtggcacccccattgaaaaaaacctcaattctgtttgtggaagacacggtgtacccccaaccac




ccacctgcacctctattattggtattattgacgcgggagcgggcgttgtactctacaacgtagcgtctctggttttcagctggctc




ccaccattgtaaattcttgctaaaatagtgcgtggttatgtgagaggtatggtgtaacagggcgtcagtcatgttggttttcgtgc




tgatctcgggcacaaggcgtcgtcgacgtgacgtgcccgtgatgagagcaataccgcgctcaaagccgacgcatggcctttac




tccgcactccaaacgactgtcgctcgtatttttcggatatctattttttaagagcgagcacagcgccgggcatgggcctgaaagg




cctcgcggccgtgctcgtggtgggggccgcgagcgcgtggggcatcgcggcagtgcaccaggcgcagacggaggaacgcat




ggtgagtgcgcatcacaagatgcatgtcttgttgtctgtactataatgctagagcatcaccaggggcttagtcatcgcacctgct




ttggtcattacagaaattgcacaagggcgtcctccgggatgaggagatgtaccagctcaagctggagcggcttcgagccaag




caggagcgcggcgcatgacgacctacccacatgcgaagagcctctaga






SEQ ID NO: 143





embedded image





ctgtactagccgtcaagacgctcaaggagtccggccacgagaacgtgtacgacgccgtggagaagcccctccagctggcgcaaac


cgccgcggtcctggagatcctccacggcctggtcggcctcgtcaggagcccggtctcggccaccctgccgcagatcgggagccgc


ctctactgacctggggcattctgtattccacccggaggtccagagccactactggtgacctccctcgtgatcagctggtcgatcacgg


aaatcatccgctacagatcacggcctgaaggaggcgctgggcacgcgcccagctggcacctgtggctccgctattcgagctactg


gtgctctaccccaccggcatcacctccgaggtcggcctcatctacctggccctgccgcacatcaagacgtcggagatgtactccgtcc


gcatgcccaacaccagaacttaccacgacatactacgccacgattctcgtcctcgcgatctacgtccccggacgccccacatgtacc




embedded image







SEQ ID NO: 144





embedded image





cgacgttctccctcctgaagagcctgtacatctacttcctgcgccccggcaagaacctccgccgctacgggtcctgggccattatcacc


ggcccgaccgacggcatcggcaaggccatgcgaccagctggcccacaagggcctgaacctggtgctggtggcgcgcaacccgg


acaagctgaaggacgtctccgacagcatcaggtccaagcatagcaacgtgcagatcaagacggtgatcatggacatagcggcgac


gttgacgacggcgtccgccgcatcaaggagaccatcgaggggctggaggtgggcatcctgatcaacaatgccggcatgtcctaccc


gtacgcgaagtactacacgaggtcgacgaggagctcgtcaacggcctcatcaaaatcaacgtcgagggcacgaccaaggtgaccc


aggccgtgctgccgggcatgctggagcgcaagcgcggcgccatcgtcaacatgggcagcggcgcggccgccctgatcccgtcgt


accccactacagcgtgtatgccggcgcgaagacgtacgtggaccagacacccggtgcctgcacgtcgagtacaagaagagcggc


attgacgtccagtgccaggtcccgctctacgtggccacgaagatgacgaagatccgccgcgcctccacctggtcgcctcccccgag


ggctacgccaaggccgccctgcggttcgtggggtacgaggcccggtgcaccccctactggccgcacgccctgatgggctacgtcgt


ctccgccctgccccagtccgtgacgagtccacaacatcaagcgctgcctgcagatccgcaagaagggcatgctgaaggattcgcgg




embedded image







SEQ ID NO: 145





gatttctatc

atcaagtttctcatatgtttcacgcgttgctcacaacaccggcaaatgcgttgttgttccctgtttttacaccttgcc





agagcctggtcaaagcttgacagtttgaccaaattcaggtggcctcatctctctcgcactgatagacattgcagatttggaaga




cccagtcagtacactacatgcacagccgtttgctcctgcgccatgaacttgccacttttgtgcgccggtcgggggtgatagctcg




gcagccgccgatcccaaaggtcccgcggcccaggggcacgagaacccccgacacgattaaatagccaaaatcagttagaac




ggcacctccaccctacccgaatctgacagggtcatcaagcgcgcgaaacaacggcgagggtgcgttcgggaagcgcgcgta




gttgacgcaagaagcctgggtcaggctgggagggccgcgagaagatcgcttcctgccgagtctgcacccacgcctcgagcgc




accgtccgcgaacaaccaacccctttgcgcgagccctgacattctttcaattgccaaggatgcacatgtgacacgtatagccat




tcggctttgtttgtgcctgcttgactcgcgtcatttaattgatttgtgccggtgagccgggagtcggccactcgtctccgagccgc




agtcccggcgccagtcccccggcctctgatctgggtccggaagggttggtataggagcggtctcggctatctgaagcccattac





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ATGttcgcgttctacttcctgacggcctgcatctccctgaagggcgtgttcggcgtaccccctcctacaacggcctgggcctgacg




ccccagatgggctgggacaactggaacacgttcgcctgcgacgtctccgagcagctgctgctggacacggccgaccgcatctcc




gacctgggcctgaaggacatgggctacaagtacatcatcctggacgactgctggtcctccggccgcgactccgacggcttcctgg




tcgccgacgagcagaagttccccaacggcatgggccacgtcgccgaccacctgcacaacaactccttcctgttcggcatgtactc




ctccgcgggcgagtacacgtgcgccggctaccccggctccctgggccgcgaggaggaggacgcccagttcttcgcgaacaacc




gcgtggactacctgaagtacgacaactgctacaacaagggccagttcggcacgcccgagatctcctaccaccgctacaaggcc




atgtccgacgccctgaacaagacgggccgccccatatctactccctgtgcaactggggccaggacctgaccttctactggggctc




cggcatcgcgaactcctggcgcatgtccggcgacgtcacggcggagttcacgcgccccgactcccgctgcccctgcgacggcga




cgagtacgactgcaagtacgccggcttccactgctccatcatgaacatcctgaacaaggccgcccccatgggccagaacgcgg




gcgtcggcggctggaacgacctggacaacctggaggtcggcgtcggcaacctgacggacgacgaggagaaggcgcacttctc




catgtgggccatggtgaagtcccccctgatcatcggcgcgaacgtgaacaacctgaaggcctcctcctactccatctactcccagg




cgtccgtcatcgccatcaaccaggactccaacggcatccccgccacgcgcgtctggcgctactacgtgtccgacacggacgagt




acggccagggcgagatccagatgtggtccggccccctggacaacggcgaccaggtcgtggcgctgctgaacggcggctccgtg




tcccgccccatgaacacgaccctggaggagatatcttcgactccaacctgggctccaagaagctgacctccacctgggacatct




acgacctgtgggcgaaccgcgtcgacaactccacggcgtccgccatcctgggccgcaacaagaccgccaccggcatcctgtac




aacgccaccgagcagtcctacaaggacggcctgtccaagaacgacacccgcctgacggccagaagatcggctccctgtcccc





embedded image





ttctgaccggcgctgatgtggcgcggacgccgtcgtactcatcagacatactcagaggaattgaaccatctcgcttgctggcatgta




aacattggcgcaattaattgtgtgatgaagaaagggtggcacaagatggatcgcgaatgtacgagatcgacaacgatggtgattgttat




gaggggccaaacctggctcaatcttgtcgcatgtccggcgcaatgtgatccagcggcgtgactctcgcaacctggtagtgtgtgcgca




ccgggtcgctttgattaaaactgatcgcattgccatcccgtcaactcacaagcctactctagctcccattgcgcactcgggcgcccggct




cgatcaatgttctgagcggagggcgaagcgtcaggaaatcgtctcggcagctggaagcgcatggaatgcggagcggagatcgaat





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





ccccggaagccccgttcgacagcgagggttcctcgctggcgcccgacaatgggtccagcaagcccaccaagctgagctccac




ccggtccttgctgtccatctcctaccgggagctctcgcgttccaagtgcgtgcaggggcgggggcaccttttgttggtgttgtttg




ggcgggcctcagcactggggtggaggaagaatgcgtgagtgtgcttgcacacctcggcggtttaagatgtaatgcgccaattt




cttgctgatgcattcctagacacaaagagtactcattcgagtctcatcgcggttgtgcgctcctcactccgtgcagccagcagtc




gcggtcgttcacttcgcggggggtgccagggaggacggacgtttcggatgagaggagcgccgcatcctcgagtggcagggc




gatcgcgccatccacaggtcggttgggtgggaaagggggggcgttggggtcaggtcagaagtcgtgaagttacaggcctgca




tttgcacatcctgcgcgcgcctctggccgcttgtcttaagacccttgcactcgcttcctcatgaacccccatgaactccctcctgc




accccacagcgtgctggtggccaacaacggtctggcggcggtcaagttcatccggtcgatccggtcgtggtcgtacaagacgt




ttgggaacgagcgtgcggtgaagctgatcgcgatggcgacgcccgaggacatgcgcggacgcggagcacatccgcatgg




cggaccagtttgtggaggtccccggcggcaagaacgtgcagaactacgccaacgtgggcctgatcacctcggtggcggtgcg




caccggggtggacgcggtg

cctgcagg







SEQ ID NO: 146




Gattcatatcatcaaatttcgcatatgtttcacgagttgctcacaacatcggcaaatgcgttgttgttccctgtttttacaccttgccagggcc




tggtcaaagcttgacagtttgaccaaattcaggtggcctc atctctttcgcactgatagacattgcagatttggaagacccagccagtaca


ttacatgcacagccatttgctcctgcaccatgaacttgccacttttgtgcgccggtcgggggtgatagctcggcagccgccgatcccaa


aggtcccgcggcccaggggcacgagaccccccgacacgattaaatagccaaaatcagtcagaacggcacctccaccctacccgaa


tctgacaaggtcatcaaacgcgcgaaacaacggcgagggtgcgttcgggaagcgcgcgtagttgacgcaagaagcctgggtcagg


ctggagggccgcgagaagatcgcttcctgccgagtctgcacccacgcctcgagcgcaccgtccgcgaacaaccaaccccttttcgc


gagccctggcattctttcaattgccaaggatgcacatgtgacacgtatagccattcggctttgtttgtgcctgcttgactcgcgccatttaat


tgttttgtgccggtgagccgggagtcggccactcgtctccgagccgcagtcccggcgccagtcccccggcctctgatctgggtccgg


aagggttggtataggagcagtctcggctatctgaagcccgttaccagacactttggccggctgctttccaggcagccgtgtactcttgc


gcagtcggtacc





SEQ ID NO: 147




actagt
ATGacggtggccaatcccccggaagccccgttcgacagcgagggttcctcgctggcgcccgacaatgggtccagcaag




cccaccaagctgagctccacccggtccctgctgtccatctcctaccgggagctctcgcgttccaagtgcgtacaggggcgagggcac


cttttgttggtgttgtttgggcgggcctcggtactgggaggaggaggaatgcgtgcacacctctgcggttttagatgcaatgcgacaagt


gcctgctgatgcattttctagacatgaagcatctcgtattcgagtctcaacgcgggtgtgcgctcctcactccgtgcagccagcagtcgc


ggtcgttcacttcgcggggggtgccagggaggacggacgtttcggatgagctggagcgccgcatcctcgagtggcagggcgatcg


cgccatccacaggtcggttgggtgggaaagggggagtaccggggtcaggtcagaagtcgtgcatttacaggcatgcatctgcacatc


gtgcgcacgcgcacgtctttggccgcttgtctcaagactcttgcactcgtttcctcatgcaccataatcaattccctcccccctcgcaaact


cacagcgtgctggtggccaacaacggtctggcggcggtcaagttcatccggtcgatccggtcgtggtcgtacaagacgtttgggaac


gagcgcgcggtgaagctgattgcgatggcgacgcccgagggcatgcgcgcggacgcggagcacatccgcatggcggaccagttt


gtggaggtccccggcggcaagaacgtgcagaactacgccaacgtgggcctgatcacctcggtggcggtgcgcaccggggtggac


gcggtgcctgcagg





SEQ ID NO: 148





embedded image







embedded image






embedded image






embedded image






embedded image






ctccgggccccggcgcccagcgaggcccctccccgtgcgcg
ggcgcgcc

gtccaggccgcggccacccgcttcaagaaggag




acgacgaccacccgcgccacgctgacgttcgacccccccacgaccaactccgagcgcgccaagcagcgcaagcacaccatc




gacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttccccaagtccacgaaggagcacaaggaggtggtgc




acgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcacctgtccggcggcgagcccgccttcgacaactacgaca




cgtccggcccccagaacgtcaacgcccacatcggcctggcgaagctgcgcaaggagtggatcgaccgccgcgagaagctggg




cacgcccgctacacgcagatgtactacgcgaagcagggcatcatcacggaggagatgctgtactgcgcgacgcgcgagaag




ctggaccccgagttcgtccgctccgaggtcgcgcggggccgcgccatcatcccctccaacaagaagcacctggagctggagcc




catgatcgtgggccgcaagttcctggtgaaggtgaacgcgaacatcggcaactccgcgtggcctcctccatcgaggaggaggt




ctacaaggtgcagtgggccaccatgtggggcgccgacaccatcatggacctgtcacgggccgccacatccacgagacgcgcg




agtggatcctgcgcaactccgcggtccccgtgggcaccgtcccatctacaggcgctggagaaggtggacggcatcgcggag




aacctgaactgggaggtgttccgcgagacgctgatcgagcaggccgagcagggcgtggactacttcacgatccacgcgggcgt




gctgctgcgctacatccccctgaccgccaagcgcatgacgggcatcgtgcccgcggcggctccatccacgcgaagtggtgcctg




gcctaccacaggagaacttcgcctacgagcactgggacgacatcctggacatctgcaaccagtacgacgtcgccctgtccatc




ggcgacggcctgcgccccggctccatctacgacgccaacgacacggcccagttcgccgagctgctgacccagggcgagctgac




gcgccgcgcgtgggagaaggacgtgcaggtgatgaacgagggccccggccacgtgcccatgcacaagatccccgagaacat




gcagaagcagctggagtggtgcaacgaggcgcccttctacaccctgggccccctgacgaccgacatcgcgcccggctacgacc




acatcacctccgccatcggcgcggccaacatcggcgccctgggcaccgccctgctgtgctacgtgacgcccaaggagcacctgg




gcctgcccaaccgcgacgacgtgaaggcgggcgtcatcgcctacaagatcgccgcccacgcggccgacctggccaagcagca




cccccacgcccaggcgtgggacgacgcgctgtccaaggcgcgcttcgagttccgctggatggaccagttcgcgctgtccctggac




cccatgacggcgatgtccttccacgacgagacgctgcccgcggacggcgcgaaggtcgcccattctgctccatgtgcggcccc




aagttctgctccatgaagatcacggaggacatccgcaagtacgccgaggagaacggctacggctccgccgaggaggccatcc




gccagggcatggacgccatgtccgaggagttcaacatcgccaagaagacgatctccggcgagcagcacggcgaggtcggcg





embedded image




ggtaggaggtggtggtgatggcgtctcgatgccatcgcacgcatccaacgaccgtatacgcatcgtccaatgaccgtcggtgtcctc


tctgcctccgttttgtgagatgtctcaggcttggtgcatcctcgggtggccagccacgttgcgcgtcgtgctgcttgcctctcttgcgcctc


tgtggtactggaaaatatcatcgaggcccgtttttttgctcccatttcctttccgcacatcttgaaagcaaacgacaaacgaagcagcaa


gcaaagagcacgaggacggtgaacaagtctgtcacctgtatacatctatttccccgcgggtgcacctactctctctcctgccccggcag


agtcagctgccttacgtgacggatcc





SEQ ID NO: 149





catatg

tttcacgcgttgctcacaacaccggcaaatgcgttgttgttccctgtttttacaccttgccagagcctggtcaaagcttg





acagtttgaccaaattcaggtggcctcatctctctcgcactgatagacattgcagatttggaagacccagtcagtacactacatg




cacagccgtttgctcctgcgccatgaacttgccacttttgtgcgccggtcgggggtgatagctcggcagccgccgatcccaaag




gtcccgcggcccaggggcacgagaacccccgacacgattaaatagccaaaatcagttagaacggcacctccaccctacccg




aatctgacagggtcatcaagcgcgcgaaacaacggcgagggtgcgttcgggaagcgcgcgtagttgacgcaagaagcctgg




gtcaggctgggagggccgcgagaagatcgcttcctgccgagtctgcacccacgcctcgagcgcaccgtccgcgaacaacca




acccctttgcgcgagccctgacattctttcaattgccaaggatgcacatgtgacacgtatagccattcggctttgtttgtgcctgct




tgactcgcgtcatttaattgatttgtgccggtgagccgggagtcggccactcgtctccgagccgcagtcccggcgccagtcccc




cggcctctgatctgggtccggaagggttggtataggagcggtctcggctatctgaagcccattacccgacactttggccggctg





embedded image






embedded image






embedded image






embedded image






embedded image





ccgctgcggcgacctgcgtcgctcggcgggctccgggccccggcgcccagcgaggcccctcccccgtgcgcgggcgcgccgtcc




aggccgcggccacccgcttcaagaaggagacgacgaccacccgcgccacgctgacgttcgacccccccacgaccaactccga




gcgcgccaagcagcgcaagcacaccatcgacccctcctcccccgacttccagcccatcccctccttcgaggagtgcttccccaag




tccacgaaggagcacaaggaggtggtgcacgaggagtccggccacgtcctgaaggtgcccttccgccgcgtgcacctgtccgg




cggcgagcccgccttcgacaactacgacacgtccggcccccagaacgtcaacgcccacatcggcctggcgaagctgcgcaag




gagtggatcgaccgccgcgagaagctgggcacgccccgctacacgcagatgtactacgcgaacagggcatcatcacggagg




agatgctgtactgcgcacgcgcgagaagctggaaaagagttcgtccgctccgaggtcgcgcggggccgcgccatcatcccct




ccaacaagaagcacctggagctggagcccatgatcgtgggccgcaagttcctggtgaaggtgaacgcgaacatcggcaactcc




gccgtggcctcctccatcgaggaggaggtctacaaggtgcagtgggccaccatgtggggcgccgacaccatcatggacctgtcc




acgggccgccacatccacgagacgcgcgagtggatcctgcgcaactccgcggtccccgtgggcaccgtccccatctaccaggc




gctggagaaggtggacggcatcgcggagaacctgaactgggaggtgttccgcgagacgctgatcgagcaggccgagcaggg




cgtggactacttcacgatccacgcgggcgtgctgctgcgctacatccccctgaccgccaagcgcatgacgggcatcgtgtcccgc




ggcggctccatccacgcgaagtggtgcctggcctaccacaaggagaacttcgcctacgagcactgggacgacatcctggacatc




tgcaaccagtacgacgtcgccctgtccatcggcgacggcctgcgccccggctccatctacgacgccaacgacacggcccagttc




gccgagctgctgacccagggcgagctgacgcgccgcgcgtgggagaaggacgtgcaggtgatgaacgagggccccggccac




gtgcccatgcacaagatccccgagaacatgcagaagcagctggagtggtgcaacgaggcgcccttctacaccctgggccccct




gacgaccgacatcgcgcccggctacgaccacatcacctccgccatcggcgcggccaacatcggcgccctgggcaccgccctgc




tgtgctacgtgacgcccaaggagcacctgggcctgcccaaccgcgacgacgtgaaggcgggcgtcatcgcctacaagatcgcc




gcccacgcggccgacctggccaagcagcacccccacgcccaggcgtgggacgacgcgctgtccaaggcgcgcttcgagttcc




gctggatggaccagttcgcgctgtccctggaccccatgacggcgatgtccttccacgacgagacgctgcccgcggacggcgcga




aggtcgcccacttctgctccatgtgcggccccaagttctgctccatgaagatcacggaggacatccgcaagtacgccgaggaga




acggctacggctccgccgaggaggccatccgccagggcatggacgccatgtccgaggagttcaacatcgccaagaagacgat





embedded image




attacgtaacagacgaccttggcaggcgtcgggtagggaggtggtggtgatggcgtctcgatgccatcgcacgcatccaacgaccg



tatacgcatcgtccaatgaccgtcggtgtcctctctgcctccgttttgtgagatgtctcaggcttggtgcatcctcgggtggccagccacg




ttgcgcgtcgtgctgcttgcctctcttgcgcctctgtggtactggaaaatatcatcgaggcccgtttttttgctcccatttcctttccgctacat




cttgaaagcaaacgacaaacgaagcagcaagcaaagagcacgaggacggtgaacaagtctgtcacctgtatacatctatttccccgc




gggtgcacctactctctctcctgccccggcagagtcagctgccttacgtgacggatcc
cgcgtctcgaacagagcgcgcagagga




acgctgaaggtctcgcctctgtcgcacctcagcgcggcatacaccacaataaccacctgacgaatgcgcttggttcttcgtcca




ttagcgaagcgtccggttcacacacgtgccacgttggcgaggtggcaggtgacaatgatcggtggagctgatggtcgaaacg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





cggtggtgagcaggtccggcagggaggtgctcaaggcccccctggacctgccggactccgccacggtcgctgacctccaggag




gccttccacaagcgcgcgaagaagttttatcccagccgccagcggctgaccctgccggtggcccccggctccaaggacaagcc




ggtggtgctgaactcgaagaagagcctcaaggagtactgcgacggtaacaccgactcgctcacggtggtgtttaaggacttggg




cgcgcaggtctcctaccgcaccctgttcttcttcgagtacctgggccccctgctgatctaccccgtcttctactacttccctgtctataag




tacctgggctacggcgaggaccgegtcatccacccggtgcagacgtatgccatgtactactggtgcttccactactttaagcgcatt




atggagacgttcttcgtgcaccgcttcagccacgccacctcgcccatcggtaacgtcttccgcaactgcgcctactactggacgttc




ggcgcctacatcgcttactacgtgaaccaccccctgtacacccccgtgagcgacttgcagatgaagatcggcttcgggttcggcct




cgtgtttcaggtggcgaacttctactgccacatcctgctgaagaatctgcgcgacccgaacggcagcggcggttaccagatccg




cgcggcttcctgttcaacatcgtcacgtgcgcgaactacaccacggagatctaccagtggctcggctttaacatcgccacgcagac




catcgccggctacgtgttcctcgcggtggccgccctgattatgaccaactgggccctcggcaagcactcgcggctccggaagatct





embedded image





agctcggatagtatcgacacactctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgc




cgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccaccccca




gcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctc




actgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacggg





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image





gacgttctccctcctgaagagcctgtacatctacttcctgcgccccggcaagaacctccgccgctacgggtcctgggccattatcac




cggcccgaccgacggcatcggcaaggcctttgcgttccagctggcccacaagggcctgaacctggtgctggtggcgcgcaaccc




ggacaagctgaaggacgtctccgacagcatcaggtccaagcatagcaacgtgcagatcaagacggtgatcatggactttagcg




gcgacgttgacgacggcgtccgccgcatcaaggagaccatcgaggggctggaggtgggcatcctgatcaacaatgccggcatg




tcctacccgtacgcgaagtactttcacgaggtcgacgaggagctcgtcaacggcctcatcaaaatcaacgtcgagggcacgacc




aaggtgacccaggccgtgctgccgggcatgctggagcgcaagcgcggcgccatcgtcaacatgggcagcggcgcggccgccc




tgatcccgtcgtaccccttctacagcgtgtatgccggcgcgaagacgtacgtggaccagttcacccggtgcctgcacgtcgagtac




aagaagagcggcattgacgtccagtgccaggtcccgctctacgtggccacgaagatgacgaagatccgccgcgcctccttcctg




gtcgcctcccccgagggctacgccaaggccgccctgcggttcgtggggtacgaggcccggtgcaccccctactggccgcacgcc




ctgatgggctacgtcgtctccgccctgccccagtccgtgttcgagtccttcaacatcaagcgctgcctgcagatccgcaagaaggg





embedded image





cgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtg




tgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatccca




accgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcc




tgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggagatatc





embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image






embedded image




ccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaat





SEQ ID NO: 150





embedded image





ctgtactttgccgtcaagacgctcaaggagtccggccacgagaacgtgtacgacgccgtggagaagcccctccagctggcgcaaac


cgccgcggtcctggagatcctccacggcctggtcggcctcgtcaggagcccggtctcggccaccctgccgcagatcgggagccgc


ctctttctgacctggggcattctgtattccttcccggaggtccagagccactttctggtgacctccctcgtgatcagctggtcgatcacgg


aaatcatccgctacagcttcttcggcctgaaggaggcgctgggcttcgcgcccagctggcacctgtggctccgctattcgagctttctg


gtgctctaccccaccggcatcacctccgaggtcggcctcatctacctggccctgccgcacatcaagacgtcggagatgtactccgtcc


gcatgcccaacaccagaactatccacgactattctacgccacgattctcgtcctcgcgatctacgtccccggacgccccacatgtacc




embedded image







SEQ ID NO: 151





gattcatatc

atcaaatttcgcatatgtttcacgagttgctcacaacatcggcaaatgcgttgttgttccctgttttacaccttgcc





agggcctggtcaaagcttgacagtttgaccaaattcaggtggcctcatctattcgcactgatagacattgcagatttggaagac




ccagccagtacattacatgcacagccatttgctcctgcaccatgaacttgccacttttgtgcgccggtcgggggtgatagctcgg




cagccgccgatcccaaaggtcccgcggcccaggggcacgagaccccccgacacgattaaatagccaaaatcagtcagaac




ggcacctccaccctacccgaatctgacaaggtcatcaaacgcgcgaaacaacggcgagggtgcgttcgggaagcgcgcgta




gttgacgcaagaagcctgggtcaggctggagggccgcgagaagatcgcttcctgccgagtdgcacccacgcctcgagcgca




ccgtccgcgaacaaccaaccccttttcgcgagccaggcattctttcaattgccaaggatgcacatgtgacacgtatagccattc




ggctttgtttgtgcctgcttgactcgcgccatttaattgttttgtgccggtgagccgggagtcggccactcgtaccgagccgcag




tcccggcgccagtcccccggcctctgatctgggtccggaagggttggtataggagcagtctcggctatctgaagcccgttacca




gacactttggccggctgctttccaggcagccgtgtactcttgcgcagtc

ggtacc







SEQ ID NO: 152





embedded image






aagcccaccaagctgagctccacccggtccctgctgtccatctcctaccgggagctctcgcgttccaagtgcgtacaggggcg




agggcaccttttgttggtgttgtttgggcgggcctcggtactgggaggaggaggaatgcgtgcacacctctgcggttttagatgc




aatgcgacaagtgcctgctgatgcattttctagacatgaagcatctcgtattcgagtctcaacgcgggtgtgcgctcctcactcc




gtgcagccagcagtcgcggtcgttcacttcgcggggggtgccagggaggacggacgtttcggatgagctggagcgccgcatc




ctcgagtggcagggcgatcgcgccatccacaggtcggttgggtgggaaagggggagtaccggggtcaggtcagaagtcgtg




catttacaggcatgcatctgcacatcgtgcgcacgcgcacgtctttggccgcttgtctcaagactcttgcactcgtttcctcatgc




accataatcaattccctcccccctcgcaaactcacagcgtgctggtggccaacaacggtctggcggcggtcaagttcatccggt




cgatccggtcgtggtcgtacaagacgtttgggaacgagcgcgcggtgaagctgattgcgatggcgacgcccgagggcatgcg




cgcggacgcggagcacatccgcatggcggaccagtttgtggaggtccccggcggcaagaacgtgcagaactacgccaacgt




gggcctgatcacctcggtggcggtgcgcaccggggtggacgcggtg

cctgcagg







Claims
  • 1. An oleaginous eukaryotic microalgal cell that produces a cell oil, the cell optionally of the genus Prototheca, the cell comprising an ablation of one or more alleles of an endogenous polynucleotide encoding a lysophosphatidic acid acyltransferase (LPAAT).
  • 2. The cell of claim 1, wherein the endogenous polynucleotide encoding the LPAAT has at least 80, 85, 90 or 95% sequence identity to SEQ ID NOs: 105 or 106.
  • 3. The cell of claim 1, further comprising an exogenous gene encoding an active enzyme selected from the group consisting of (a) a lysophosphatidylcholine acyltransferase (LPCAT);(b) a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT);(c) CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT);(d) a lysophosphatidic acid acyltransferase LPAAT; and(e) a fatty acid elongase (FAE).
  • 4. The cell of claim 3, wherein the exogenous gene encodes a lysophosphatidylcholine acyltransferase having at least 80, 85, 90 or 95% sequence identity to SEQ ID NOs: 98, 99, 100, 101, 102, or 108.
  • 5-7. (canceled)
  • 8. The cell of claim 3, wherein the exogenous gene encodes a fatty acid elongase having at least 80, 85, 90 or 95% sequence that encodes the amino acid of SEQ ID NO: 19, 20, 84 or 85.
  • 9-31. (canceled)
  • 32. An oleaginous eukaryotic microalgal cell that produces a cell oil, the cell optionally of the genus Prototheca, the cell comprising a first exogenous gene encoding an active enzyme of one of the following types: (a) a lysophosphatidylcholine acyltransferase (LPCAT);(b) a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT); or(c) CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT);(d) an LPAAT;(e) and optionally a second exogenous gene encoding(f) a fatty acid elongase (FAE).
  • 33. The cell of claim 32, wherein the cell comprises a fatty acid elongase enzyme having at least 80, 85, 90 or 95% sequence identity to SEQ ID NOs: 20, 84 or 85.
  • 34. The cell of claim 32, wherein the first exogenous gene encodes a phosphatidylcholine diacylglycerol cholinephosphotransferase having at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 93.
  • 35. The cell of claim 32, wherein the first exogenous gene encodes a lysophosphatidylcholine acyltransferase having at least 80, 85, 90 or 95% sequence identity to SEQ ID NOs: 98, 99, 100, 101, 102, or 108.
  • 36. The cell of claim 32, wherein the first exogenous gene encodes an LPAAT having at least 80, 85, 90 or 95% sequence identity to SEQ ID NOs: 12, 29, 30, 32, 33, or 34.
  • 37-53. (canceled)
  • 54. An oleaginous eukaryotic microalgal cell that produces a cell oil, the cell optionally of the genus Prototheca, the cell comprising an exogenous polynucleotide that encodes an active ketoacyl-CoA reductase, hydroxyacyl-CoA dehydratase, or enoyl-CoA reductase.
  • 55. The oleaginous eukaryotic microalgal cell of claim 54, wherein the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 144 and encodes an active ketoacyl-CoA reductase.
  • 56. The oleaginous eukaryotic microalgal cell of claim 54, wherein the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 143 and encodes an active hydroxyacyl-CoA dehydratase.
  • 57. The oleaginous eukaryotic microalgal cell of claim 54, wherein the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to the enoyl-CoA reductase encoding portion of SEQ ID NO: 142 and encodes an active enoyl-CoA reductase.
  • 58. The oleaginous eukaryotic microalgal cell of claim 54, wherein the cell further comprises an exogenous nucleic acid encoding a lysophosphatidylcholine acyltransferase (LPCAT), a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT), a lysophosphatidic acid acyltransferase (LPAAT) or a fatty acid elongase (FAE).
  • 59. The oleaginous eukaryotic microalgal cell of claim 58, wherein the cell further comprises an exogenous nucleic acid encoding an enzyme selected from the group consisting of a sucrose invertase and an alpha galactosidase.
  • 60. The oleaginous eukaryotic microalgal cell of claim 54, wherein the cell further comprises an exogenous nucleic acid that encodes a desaturase and/or a ketoacyl synthase.
  • 61-64. (canceled)
  • 65. An oil produced by an oleaginous eukaryotic microalgal cell, the cell optionally of the genus Prototheca, the cell comprising an exogenous polynucleotide that encodes an active ketoacyl-CoA reductase, hydroxyacyl-CoA dehydratase, or enoyl-CoA reductase.
  • 66. The oil of claim 65, wherein the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 144 and encodes an active ketoacyl-CoA reductase.
  • 67. The oil of claim 65, wherein the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to SEQ ID NO: 143 and encodes an active hydroxyacyl-CoA dehydratase.
  • 68. The oil of claim 65, wherein the exogenous polynucleotide has at least 80, 85, 90 or 95% sequence identity to the enoyl-CoA reductase encoding portion of SEQ ID NO: 142 and encodes an active enoyl-CoA reductase.
  • 69. The oil of claim 65, wherein the cell further comprises an exogenous nucleic acid encoding a lysophosphatidylcholine acyltransferase (LPCAT), a phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), CDP-choline:1,2-sn-diacylglycerol cholinephosphotransferase (DAG-CPT), a lysophosphatidic acid acyltransferase (LPAAT) or a fatty acid elongase (FAE).
  • 70. The oil of claim 69, wherein the cell further comprises and exogenous nucleic acid encoding an enzyme selected from the group consisting of a sucrose invertase and an alpha galactosidase.
  • 71-110. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 USC 119(e) of U.S. Provisional Patent Application No. 62/143,711, filed Apr. 6, 2015, and U.S. Provisional Patent Application No. 62/145,723, filed Apr. 10, 2015, each of which is incorporated herein by reference in its entirety.

Provisional Applications (2)
Number Date Country
62143711 Apr 2015 US
62145723 Apr 2015 US