Oleaginous pharmaceutical and cosmetic foam

Abstract
The invention relates to stable oleaginous cosmetic or therapeutic foam compositions containing certain active agents, having unique therapeutic properties and methods of treatment using such compositions. The foamable composition includes a polyethylene glycol (PEG) or PEG derivative and mixtures thereof, wherein the PEG or PEG derivative is present at a concentration of about 70% to about 96.5% by weight of the total composition; a surface-active agent at a concentration of about 0.1% to less than about 10% by weight of the total composition; and a therapeutically effective amount of at least one active agent.
Description
FIELD OF THE INVENTION

The invention relates to oleaginous foam compositions including cosmetic or therapeutic active agents, and methods of topical treatment using the compositions.


BACKGROUND OF THE INVENTION

Certain foam products for topical application of therapeutical agents and cosmetics have been prepared as oil-in-water emulsions. Foams and, in particular, foam compositions having a high oil content are complicated systems that do not form under all circumstances. Slight shifts in foam composition, such as the addition of an active ingredient, may destabilize the foam. It is known in the art that hydrophobic solvents are difficult to formulate into a foam-producing product. Addition of conventional hydrophobic solvents interferes with the foam forming ability of the surfactant, and thus, in the few foam products containing high-oil concentrations that have been reported, high surfactant concentrations are used, which may cause undesirable irritancy on one hand, and costly raw material usage on the other hand are used.


Oleaginous formulations for the preparation of cosmetic and therapeutic compositions are known in the art.


U.S. Pat. No. 6,620,773 relates to a foaming oil composition, which includes a surfactant mixture and an oil component, the surfactant mixture containing an anionic or zwitterionic surfactant, a nonionic surfactant and at least one ethoxylated alkyl phosphate ester component. The surfactant mixture ranges from about 15% to about 50% of the total composition, and that of the oil component ranges from about 50% to about 85%.


U.S. Pat. Nos. 5,700,396 and 5,589,515 disclose a cosmetic emulsion composition containing 0.1 to 99 wt % oily component (balance aqueous component). The oily component includes 85% or more weight % of cis Δ9-octadecanoic acid or derivatives thereof, which serves as a surfactant in the formulation.


U.S. Pat. No. 6,524,594 describes a gelled oil composition containing an emulsifier, a gelling agent, an oil, and a surfactant which, when applied to the skin in the presence of water, produces a significant amount of foam. The surfactant is used in an amount from about 10% to about 20%, and more preferably, from about 15% to about 20%.


U.S. Pat. No. 6,121,210 discloses foamable, silicone oil compositions and methods of lubricating surfaces with such compositions. The compositions are oil-in-water emulsions comprising silicone oil-in-water emulsion, a liquid propellant and a foam builder comprising a solid, non-ionic lipophilic surfactant having an HLB value of about 3 to about 8. Foam stabilizers including long claim fatty alcohols are included. A propellant is included to create a foamable composition.


In general, the foamable compositions of the art are based on oil-in-water emulsions. Furthermore, they often include a high content level of surfactants and foaming agents required to form acceptable foams which are stable and possess low specific gravity. Such surfactants, and particularly ionic surfactants, such as anionic surfactants (e.g. sodium lauryl sulfate (SDS)), may have adverse affects on certain patients, including concentration-dependent skin irritation.


There remains an unmet need for improved, stable and non-irritating oleaginous foam formulations, intended for dermal and mucosal delivery of pharmaceutical and cosmetic, with unique therapeutic and cosmetic properties.


SUMMARY OF THE INVENTION

The present invention provides stable, oleaginous foam-forming compositions including at least one active agent for dermal and mucosal delivery. The composition is dispensed as a foam providing a stable product that is pleasant and easy to spread, resulting in high patient compliance. The “oleaginous” composition has the organoleptic character of an oily substance, i.e., an oily feeling, when topically administered to the skin or mucosal tissue.


According to one aspect or the present invention, the composition includes:

    • a. at least one solvent selected from a hydrophobic solvent, a co-solvent, and mixtures thereof, wherein the solvent is present at a concentration of about 70% to about 96.5% by weight of the total composition;
    • b. a non-ionic surface-active agent at a concentration of about 0.1% to less than about 10% by weight of the total composition;
    • c. at least one gelling agent at a concentration of about 0.1% to about 5% by weight of the total composition;
    • d. at least one active agent in a therapeutically effective concentration; and
    • e. at least one liquefied or compressed gas propellant, at a concentration of about 3% to about 25% by weight of the total composition.


Water and optional ingredients are added to complete the total weight to 100%, although the composition may be essentially free of lower alkyl alcohols. In one or more embodiments, the oleaginous composition of the present invention contains less than about 5% of a lower alcohol having up to 5 carbon atoms in its carbon chain skeleton.


In one or more embodiments, the oleaginous composition includes water at a concentration less than about 30%, preferably less than about 20%, more preferably less than about 10% by weight.


In one or more embodiments, the oleaginous composition of the present invention further includes a foam adjuvant.


In yet other embodiments, the oleaginous composition of the present invention forms an emulsion.


In one or more embodiments, the oleaginous composition of the present invention includes a hydrophobic solvent having solubility in distilled water at ambient temperature of less than about one gram per 100 ml. The hydrophobic solvent may be a mineral oil, MCT oil, triglyceride oil, silicone oil, a polyunsaturated oil, an unsaturated oil and an essential oil, and mixtures thereof.


In one or more embodiments, the at least one solvent is a co-solvent. In one or more embodiments, the co-solvent is a polyethylene glycol derivative, or glycerin. In one or more embodiments, the oleaginous composition of the present invention includes a mixture of at least one hydrophobic solvent and at least one co-solvent. The mixture of at least one hydrophobic solvent and the at least one co-solvent may have a weight ratio of about 1:8 to about 8:1. In one or more embodiments, a mixture of at least one hydrophobic solvent and glycerin is used; and the mixture may have a weight ratio of about 1:4 to about 4:1, or about 1:2 to about 2:1.


According to one or more embodiments, the composition includes at least one solvent having a high solubilization capacity, termed herein a “potent solvent”. In the context of the present invention, a potent solvent is other than mineral oil and solubilizes a specific active agent substantially better than a hydrocarbon solvent such as mineral oil or petrolatum, for example, 5-fold better than mineral oil; or even 10-fold better than mineral oil.


In one or more embodiments, the oleaginous composition of the present invention contains a potent solvent selected from the group consisting of polyethylene glycol, propylene glycol, hexylene glycol, butanediols and isomers thereof, glycerol, benzyl alcohol, DMSO, ethyl oleate, ethyl caprylate, diisopropyl adipate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone, polyvinylpyrrolidone, isosorbide derivatives, such as dimethyl isosorbide, glycofurol and ethoxydiglycol (transcutol).


In one or more embodiments, the surface-active agent is a non-ionic surfactant and can be, for example, a phospholipid. The surface-active agent can be a mixture of at least one non-ionic surfactant and at least one ionic surfactant, for example, at a weight ratio of about 20:1 to about 1:1.


In one or more embodiments, the composition includes at least one gelling agent selected from the group consisting of natural polymeric materials, semi-synthetic polymeric materials, synthetic polymeric materials, inorganic gelling agents and mixtures thereof.


The oleaginous composition of the present invention upon extrusion from a pressured container has a specific gravity of about 0.02 gr/ml to about 0.5 gr/mL, and is useful for treating, alleviating or preventing a dermatological or mucosal disorder.


According to a further aspect of the present invention, an oleaginous water-in-oil emulsion is provided. The emulsion can be essentially free of lower alkyl alcohols. The emulsion includes:


at least one solvent selected from a hydrophobic solvent, a co-solvent and an emollient at a concentration of about 30% to about 96.5% by weight;


water;


at least one non-ionic lipophilic surface acting agent having an HLB value of about 3 to about 10 at a concentration of about 0.1% to less than about 10% by weight,


at least one gelling agent at a concentration of about 0.1% to about 5% by weight.


at least one active agent at a therapeutically effective concentration; and


at least one liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.


In one or more embodiments, the oleaginous emulsion of the present invention contains less than about 5% of a lower alcohol having up to 5 carbon atoms in its carbon chain skeleton. In another embodiment the oleaginous composition of the present invention further comprises a foam adjuvant.


In one or more embodiments, the oleaginous water-in-oil emulsion contains a hydrophobic solvent and water at a weight ratio of about 1:3 to about 6:1.


In one or more embodiments, the oleaginous emulsion contains a hydrophobic solvent having solubility in distilled water at ambient temperature of less than about one gram per 100 ml. The hydrophobic solvent may be selected from mineral oil, MCT oil, triglyceride oil, silicone oil, a polyunsaturated oil, an unsaturated oil and an essential oil.


The oleaginous emulsion may include a potent solvent selected from a hydrophobic solvent other than mineral oil, a co-solvent and an emollient, wherein the potent solvent solubilizes the active agent substantially better than mineral oil solubilizes the active agent, e.g. at least 5-fold better or at least 10-fold better than mineral oil solubilizes the active agent.


In one or more embodiments, the oleaginous emulsion contains a surface-active agent having a HLB value in the range of about 3 to about 10, which promote the formation of a water-in-oil emulsion.


In one or more embodiments, the oleaginous emulsions contains at least one gelling agent selected from the group consisting of natural polymeric materials, semi-synthetic polymeric materials, synthetic polymeric materials, inorganic gelling agents and mixtures thereof.


The active agent can be a therapeutic agent or a cosmetic agent. The therapeutic agent is selected for the treatment or prophylaxis of a disorder of the skin, mucosal membrane, ear channel, vagina, penile urethra and rectum. In one embodiment therapeutic agent is selected from an anti-infective, an antibiotic, an antibacterial agent, an antifungal agent, an antiviral agent, an antiparasitic agent, an antiinflammatory agent, an anesthetic, an analgesic, an antiallergic agent, a corticosteroid, a retinoid, an antiproliferative agent, an anticancer agent, a photodynamic therapy agent, a lubricating agent and mixtures thereof.


Alternatively, the active agent is an inorganic solid matter, preferably a metal oxide, more preferably zinc oxide.


The active agent can also be a cosmetic agent such as a retinoid, an anti-wrinkle agent, a radical scavenger, a self-tanning agent, a skin whitening agent a skin protective agent, an anti-cellulite agent, a massaging oil and an anti-wart agent.


In another aspect, the present invention provides a method of treating, alleviating or preventing a dermatological or mucosal disease or disorder, comprising administering topically to a subject having the disease or disorder a therapeutically effective amount of the oleaginous compositions or the oleaginous water-in-oil emulsions of the present invention.


In yet another aspect, the present invention also provides a method of designing a foamable composition, containing at least one active agent that is substantially insoluble in a hydrocarbon solvent including mineral oil. The method includes selecting at least one active agent, and identifying a solvent that solubilizes the active agent substantially better than mineral oil solubilizes the active agent. The method may further comprise the step of adjusting the type and concentration of surfactant and gelling agent to provide a foamable composition.


In one or more embodiments, the potent solvent solubilizes the active agent 5-fold better or even 10-fold better than mineral oil solubilizes the active agent.







DETAILED DESCRIPTION OF THE INVENTION

Despite the commonly known fact that hydrophobic solvents, and oils in particular, are difficult to formulate into foam-producing products and that addition of conventional hydrophobic solvents interferes with the foam forming ability of the surfactant, the present invention has surprisingly discovered stable oleaginous foam compositions, comprising at least one active agent for dermal and mucosal delivery. The compositions are dispensed as a foam providing a stable product that is pleasant and easy to use for high patient and consumer compliance. The at least one active agent is selected from a therapeutically active agent or a cosmetic agent.


Surprisingly, the compositions of the present invention require low surfactant concentrations, e.g., less than 10% by weight and often much less, thus preventing both undesirable irritancy and costly raw material usage.


According to one aspect of the present invention, the foamable compositions are light weight, have low density, spread easily and comfortably over large body area, and are thus, economical.


The compositions of the present invention comprise at least one solvent selected from a hydrophobic solvent, a co-solvent, an emollient and mixtures thereof, which provides a refatting and skin soothing effect. The selected solvents allow the inclusion of oil-soluble active agents in the formulation. In one or more embodiments, the solvents provide synergistic benefits in combination with the active agent. The compositions may comprise at least one oil soluble active agent.


In one or more embodiments, the compositions require only low concentrations of a foaming agent in order to generate a stable foam. The reduced surfactant requirement is advantageous since surfactants are known to be irritating when in contact with the skin at elevated concentrations.


The compositions are easily spreadable, allowing treatment of large areas such as the arms, back, trunk, legs and the breast. Furthermore, due to flow properties, they spread effectively into folds and wrinkles and absorb into the skin, providing uniform distribution of the active agent without the need of extensive rubbing thus providing a unique means for the treatment of large body areas.


The compositions may be used for the treatment of body cavities, such as the vagina, penile urethra, rectum and the ear channel due to their expansion properties.


Class A Foam Composition


According to one aspect the present invention provides an oleaginous foam composition for topical application including:


at least one solvent selected from a hydrophobic solvent, a co-solvent, an emollient and mixtures thereof, at a concentration of about 70% to about 96.5% by weight,


at least a non-ionic surface active agent at a concentration of about 0.1% to less than about 10% by weight and, optionally, having an HLB value of about 9 or less;


at least one gelling agent at a concentration of about 0.1% to about 5% by weight;


at least one active agent at a therapeutically effective concentration; and


a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition.


The balance of the composition contains water and additional optional components. The content of the foam composition is presented herein as concentration (percent by weight, % w/w). The foam composition can be a homogeneous mixture or an emulsion. confirm that this is true for the Class A foams.


Such a composition is placed in a pressurized aerosol container and, upon release from the container, creates a novel therapeutically-beneficial foam product.


Low water content is important in order to attain high skin and body tissue lubrication, refatting, occlusive effects and effective skin absorption of a active agents. It is also important in order to avoid degradation of water sensitive active agents.


Thus, in one or more embodiments, the composition comprises water at a concentration of about 30% or less, or at a concentration less than about 20%, or at a concentration less than about 10% by weight.


The composition is optionally substantially free of short chain alcohols, i.e. comprises less than about 5% by weight of a short chain alcohol having 5 or less carbon atom in its skeleton, and may further comprise a foam adjuvant.


According to one embodiment, the composition comprises a solvent selected from a hydrophobic solvent and an emollient and at least one co-solvent. According to one embodiment the co-solvent is a hydrophilic solvent, other than a short chaim alcohol, selected from an organic solvent that dissolves in water. Non-limiting examples of such co-solvents include propylene glycol, glycerol, and other poly-hydroxy solvents. Preferably, the composition comprises glycerol as co-solvent. In one embodiment the composition comprises a hydrophobic solvent component and a co-solvent at a weight ratio in the range of about 4:1 and about 1:4, or about 2:1 to 1:2. In an even further embodiment of the present invention, the co-solvent constitutes a continuous phase of the emulsion and a minor portion of water is included in the co-solvent phase.


Such a composition is placed in an aerosol container and, upon release from the aerosol container, creates a therapeutically-beneficial foam product.


Class B Foam Composition:


According to another aspect the present invention provides an oleaginous foam composition comprising water-in-oil emulsion, i.e., an emulsion having one phase comprising at least one hydrophobic component (oil phase) and one phase which comprises water. Due to the fact that the continuous phase of the emulsion is the oil phase, the composition provides oily feeling, occlusive properties and protective effects. Notably, while it is known that a composition with a continuous oil phase is unlikely to form foam without high amounts of surfactants, the composition of the present invention surprisingly forms a stable foam with low density. In one or more embodiments, there is an overlap between the compositions of Class A and Class B, the distinction being that Class B compositions are formed as water-in-oil emulsions.


According to one embodiment, the water-in-oil emulsion composition contains:


at least one solvent selected from a hydrophobic solvent, a co-solvent, an emollient and mixtures thereof, at a concentration of about 30% to about 96% by weight,


water at a concentration of 1% to about 70% by weight;


at least one non-ionic lipophilic surface active agent, preferably having an HLB value of about 3 to about 10, more preferably about 3.5 to about 9 at a concentration of about 0.1% to about 10% by weight, or between about 0.1% and about 5% by weight, ore even between about 0.1% and about 2% by weight;


at least one gelling agent at a concentration of about 0.1% to about 5% by weight;


at least one active agent at a therapeutically effective concentration; and


a liquefied or compressed gas propellant at a concentration of about 3% to about 25% by weight of the total composition, in an aerosol container.


According to a further embodiment, the ratio between the oil phase and water is between about 1:3 and about 6:1.


The term “oleaginous” is defined as “having the nature or qualities of oil”. The terms “oleaginous composition”, “oleaginous foam” and “oleaginous foamable composition” as used herein interchangeably refer to a composition that has the organoleptic character of an oily substance, i.e., oily feeling, when topically administered to a body area, such as the skin or mucosal tissue.


In the context of the present invention, an oleaginous foam is a composition comprising at least one solvent selected from a hydrophobic solvent, a co-solvent, an emollient and mixtures thereof in the continuous phase of the composition and is characterized by an oily feeling upon application to a body surface.


Such an oleaginous composition may provide an enhanced occlusive effect, which may in turn control the drug residence time and skin penetration of an active agent. Furthermore, oleaginous compositions provide moisturizing effects, refatting effects, protective effects and lubrication which contribute to the treatment of dermatological disorders. Thus, a composition of this nature, comprising an oleaginous vehicle and an active agent is expected to provide a synergistic therapeutic effect.


Solvents


The at least one solvent of the composition of the present invention is selected from a hydrophobic solvent, an emollient, a silicone oil, a co-solvent, and a mixture thereof. The solvent occupies at least the continuous phase; however, it may also partition into the discontinuous phase in those instances when the composition is an emulsion.


Hydrophobic Solvent


A “hydrophobic solvent” as used herein refers to a material having solubility in distilled water at ambient temperature of less than about 1 gm per 100 mL, or less than about 0.5 gm per 100 mL, or even less than about 0.1 gm per 100 mL. It is liquid at ambient temperature.


In one preferred embodiment, the at least one solvent is a hydrophobic solvent such as mineral oil. Mineral oil (Chemical Abstracts Service Registry number 8012-95-1) is a mixture of aliphatic, naphthalenic, and aromatic liquid hydrocarbons that derive from petroleum. They are typically liquid, their viscosity is in the range of between about 35 CST and about 100 CST (at 40° C.), and their pour point (the lowest temperature at which an oil can be handled without excessive amounts of wax crystals forming so preventing flow) is below 0° C. By contrast, white petrolatum, also termed “Vaseline”, is disadvantageous, due to its waxy nature and semi-solid texture. It is known to leave a waxy and sticky feeling after application and occasionally stain cloths. Thus, white petrolatum as well as other wax-like, semi-solid compounds are undesirable as a hydrophobic solvent according to the present invention.


According to one embodiment the oleaginous foam composition of the present invention comprises at least one solvent that is a hydrophobic solvent selected from mineral oil, a triglyceride oil, an ester of a fatty acid, an ester of a dicarboxylic acid, silicone oil, a polyunsaturated oil, an unsaturated oil and an essential oil.


According to one embodiment, preferred hydrophobic solvents are liquid oils originating from vegetable, marine or animal sources. The hydrophobic solvent may be selected from a saturated or an unsaturated oil. By way of example, the unsaturated oil may be selected from the group consisting of olive, corn, soybean, canola, cottonseed, coconut, sesame, sunflower, borage seed, syzigium aromaticum, hempseed, herring, cod-liver, salmon, flaxseed, wheat germ and evening primrose oils and mixtures thereof, at any proportion.


One class of hydrophobic solvents includes polyunsaturated oils, containing omega-3 and omega-6 fatty acids, which are know to possess therapeutic properties through different modes of action. Examples of such polyunsaturated fatty acids are linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Thus, in one preferred embodiment of the present invention the at least one hydrophobic solvent comprises at least 6% of an oil selected from omega-3 oil, omega-6 oil, and mixtures thereof.


Another preferred class of hydrophobic solvents comprises the essential oils, which are considered “therapeutic oils”, which contain active biologically occurring molecules and, upon topical application, exert a therapeutic effect. Examples of such oils are rosehip oil, which contain retinoids and is known to reduce acne and post-acne scars, tea tree oil, which possesses anti-microbial activity including antibacterial, antifungal and antiviral properties. Other examples of essential oils are basil, camphor, cardamom, carrot, citronella, clary sage, clove, cypress, frankincense, ginger, grapefruit, hyssop, jasmine, lavender, lemon, mandarin, marjoram, myrrh, neroli, nutmeg, petitgrain, sage, tangerine, vanilla, verbena, as well as any other therapeutically beneficial oil known in the art of herbal medication.


Emollient


A further preferred class of solvents are “emollients” that have a softening, refatting, or soothing effect, especially when applied to body areas, such as the skin and mucosal surfaces. Emollients are not necessarily hydrophobic. Without derogating the generality of this definition, examples of suitable emollients for use include hexyleneglycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, sucrose esters of fatty acids, octyl hydroxystearate and mixtures thereof. Examples of other suitable emollients may be found in the Cosmetic Bench Reference, pp. 1.19-1.22 (1996).


Silicone Oil


According to the present invention, silicone oils are particularly preferred solvents, due to their known skin protective and occlusive properties. Suitable silicone oils or fluids for use in the invention may be selected from non-volatile silicones, such as polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers, polydimethylsiloxanes (dimethicones) and poly(dimethylsiloxane)-(diphenyl-siloxane) copolymers. These are preferably chosen from cyclic or linear polydimethylsiloxanes containing from about 3 to about 9, preferably from about 4 to about 5, silicon atoms. Volatile silicones such as cyclomethicones can also be used. Water-soluble silicones, such as dimethicone copolyol are not included in the definition of silicone oils (as hydrophobic solvents) according to the present invention. In one or more embodiments, the at least one solvent comprises at least 2% silicone oil, or at least 5% silicone oil.


Co-solvent


A “co-solvent” is an organic solvent, other than a short chain alcohol, typically soluble in both water and oil. Examples of co-solvents, according to the present invention include: polyols, such as glycerol (glycerin), propylene glycol, hexylene glycol, diethylene glycol, propylene glycol n-alkanols, terpenes, di-terpenes, tri-terpenes, terpen-ols, limonene, terpene-ol, 1-menthol, dioxolane, ethylene glycol, other glycols, sulfoxides, such as dimethylsulfoxide (DMSO), dimethylformamide, methyl dodecyl sulfoxide, dimethylacetamide; monooleate of ethoxylated glycerides (with 8 to 10 ethylene oxide units); azone (1-dodecylazacycloheptan-2-one), 2-(n-nonyl)-1,3-dioxolane; esters, such as isopropyl myristate/palmitate, ethyl acetate, butyl acetate, methyl proprionate, capric/caprylic triglycerides, octylmyristate, dodecyl-myristate; myristyl alcohol, lauryl alcohol, lauric acid, lauryl lactate ketones; amides, such as acetamide oleates such as triolein; various alkanoic acids such as caprylic acid; lactam compounds, such as azone; alkanols, such as dialkylamino acetates, and admixtures thereof.


According to one preferred embodiment the co-solvent is a polyethylene glycol (PEG) or PEG derivative that is liquid at ambient temperature, including PEG200 (MW about 190-210 kD), PEG300 (MW about 285-315 kD), PEG400 (MW about 380-420 kD), PEG600 (MW about 570-630 kD) and higher MW PEGs such as PEG 4000, PEG 6000 and PEG 10000 and mixtures thereof.


In one or more preferred embodiments, the at least one solvent comprises a mixture (e.g., an emulsion) of a hydrophobic solvent and glycerin, as described, for example, in U.S. Pat. No. 6,544,530 to Friedman. The ratio of hydrophobic solvent to glycerin can range from about 1:4 to about 4:1, and more preferably from about 1:2 to about 2:1.


In several cases, a given solvent can be defined as both emollient and co-solvent.


Potent Solvent


In one or more embodiments of the present invention, the foamable composition includes a potent solvent, in addition to or in place of one of the hydrophobic solvents, co-solvents and emollients of the composition. A potent solvent is a solvent other than mineral oil that solubilizes a specific active agent substantially better than a hydrocarbon solvent such as mineral oil or petrolatum. For example, a potent solvent solubilizes the active agent 5 fold better than a hydrocarbon solvent; or even solubilizes the active agent 10-fold better than a hydrocarbon solvent.


In one or more embodiments of the present invention, the composition includes at least one active agent in a therapeutically effective concentration; and at least one potent solvent in a sufficient amount to substantially solubilize the at least one active agent in the composition. The term “substantially soluble” means that at least 95% of the active agent has been solubilized, i.e., 5% or less of the active agent is present in a solid state. In one or more embodiments, the concentration of the at least one potent solvent is more than about 40% of the at least one solvent of the composition of the present invention; or even more than about 60%.


Non-limiting examples of pairs of active agent and potent solvent include:


Betamethasone valerate: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in glycofurol.


Hydrocortisone butyrate: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in glycofurol.


Metronidazole: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in dimethyl isosrbide.


Ketoconazole: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in glycofurol, propylene glycol and dimethyl isosrbide.


Mupirocin: Practically insoluble in mineral oil (<0.01%); soluble more than 1% in glycofurol, hexylene glycol, dimethyl isosorbide, propylene glycol and polyethylene glycol 400 (PEG 400).


Meloxicam, a nonsteroidal anti-inflammatory agent: Practically insoluble in mineral oil (<0.001%); soluble in propylene glycol: 0.3 mg/mL; and in PEG 400: 3.7 mg/mL.


Progesterone: Practically insoluble in mineral oil (<0.001%); soluble in PEG 400: 15.3 mg/mL.


A non-limiting exemplary list of solvents that can be considered as potent solvents includes polyethylene glycol, propylene glycol, hexylene glycol, butanediols and isomers thereof, glycerol, benzyl alcohol, DMSO, ethyl oleate, ethyl caprylate, diisopropyl adipate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone, polyvinylpyrrolidone, isosorbide derivatives, such as dimethyl isosorbide, glycofurol and ethoxydiglycol (transcutol).


In another aspect, the present invention provides a method of designing a stable oleaginous foamable composition by selecting at least one active agent; and identifying a solvent that solubilizes the active agent substantially better than mineral oil or petrolatum, for example, solubilizes the active agent 5-fold better or even 10-fold better than a hydrocarbon solvent such as mineral oil or petrolatum. The method may further include adjusting the type and concentration of surfactant and gelling agent to provide a foamable composition.


The use of a potent solvent in a foam composition provides an improved method of delivering poorly soluble therapeutic agents to a target area. It is known that low drug solubility results in poor bioavailability, leading to decreased effectiveness of treatment. Foam compositions of the present invention, for which the solvent includes a potent solvent, increase the levels of the active agent in solution and thus, provide high delivery and improved therapy.


Potent solvents, as defined herein, are usually liquid. Formulations comprising potent solvents and active agents are generally disadvantageous as therapeutics, since their usage involves unwanted dripping and inconvenient method of application; resulting in inadequate dosing. Surprisingly, the foams of the present invention, which are drip-free, provide a superior vehicle for such active agents, enabling convenient usage and accurate effective dosing.


The at least one solvent of the present invention may include a mixture of the above solvents selected from the group of hydrophobic solvents, silicone oils, emollients co-solvents and potent solvents in any proportion.


Surface-active Agents


Surface-active agents (surfactants) may include an agent that has a property selected from linking oil and water in the composition, in the form of an emulsion, and evolving a foam. A surfactant's hydrophilic/lipophilic balance (HLB) describes the emulsifier's affinity towards water or oil. The HLB scale ranges from about 1 (totally lipophilic) to 45 (totally hydrophlic) and in the case of non-ionic surfactants from 1 to 20 totally hydrophlic), with 10 representing an equal balance of both hydrophilic and lipophilic characteristics. Lipophilic emulsifiers from water-in-oil (w/o) emulsions, hydrophilic surfactants form oil-in-water (o/w) emulsions. The HLB of a blend of two emulsifiers equals the weight fraction of emulsifier A times its HLB value, plus the weight fraction of emulsifier B times its HLB value. (weighted average).


Without wishing to be bound by any particular theory or mode of operation, hydrophilic surfactants produce oil-in-water (o/w) microemulsions, whereas lipophilic surfactants are used to promote emulsification of the aqueous phase into the oil phase.


The composition of the present invention according to one or more embodiments includes at least one surface active agent or surfactant, which is intended to both stabilize the formulation and to evolve an acceptable foam.


A composition having a low concentration of an ionic surfactant is important in terms of safety, since high concentrations of surfactants are known to evolve skin and mucosal membrane irritation. Unlike certain foamable oleaginous compositions of the art, the total surfactant employed to obtain foam that is stable, of low specific gravity and has a fine bubble structure is relatively low. Low surfactant levels, particularly of ionic surfactants, are preferred to reduce skin irritations. The composition of the present invention comprises total surfactant in the range of about 0.1% to less than about 10% of the foamable composition, and is typically less than about 5%, or even less than about 2%.


According to one or more embodiments the at least one surfactant is selected from hydrophilic, hydrophobic, and a mixture of hydrophilic and hydrophobic surfactants. As is well known in the art, the terms “hydrophilic” and “hydrophobic” are relative terms. A combination of surface-active agents is possible.


According to one or more embodiments, suitable surfactants for formation of a water-in-oil emulsion have an HLB value of no greater than 10, preferably from about 3 to about 9. Thus, the composition may include a single surface-active agent having an HLB value between 3 and 9, or a mixture of surface-active agents having a weighted average of their HLB values between 3 and 9.


Suitable water-in-oil emulsifiers include, but are not limited to, sorbitan derivatives such as sorbitan laurate and sorbitan palmitate; alkoxylated alcohols such as laureth-4; hydroxylated derivatives of polymeric silicones, such as dimethicone copolyol; alkylated derivatives of hydroxylated polymeric silicones, such as cetyl dimethicone copolyol; glyceryl esters such as polyglyceryl-4 isostearate; beeswax derivatives such as sodium isostearoyl-2-lactylate; lecithin; and mixtures thereof. In conjunction with the oil component being a silicone oil, the preferred emulsifiers are hydroxylated derivatives of polymeric silicones and alkylated derivatives thereof.


According to one or more embodiments the present invention, the composition comprises at least one non-ionic surfactant. In one or more embodiments, the composition includes at least one non-ionic surfactant and at least one ionic surfactant selected from the group of anionic, cationic, zwitterionic, at a weight ratio of between about 1:1 and about 20:0.1, or preferably at a weight ratio of about 4:0.1 to about 20:0.1.


The choice of specific surfactants should be made keeping in mind the particular hydrophobic therapeutic agent to be used in the composition, and the range of polarity appropriate for the chosen therapeutic agent. With these general principles in mind, a very broad range of surfactants is suitable for use in the present invention.


Additional non-limiting examples of possible surfactants include polysorbates, such as polyoxyethylene (20) sorbitan monostearate (Tween 60) and polyoxyethylene (20) sorbitan monooleate (Tween 80); Polyoxyethylene (POE) fatty acid esters, such as Myrj 45, Myrj 49 and Myrj 59; poly(oxyethylene) alkylyl ethers, such as poly(oxyethylene) cetyl ether, poly(oxyethylene) palmityl ether, polyethylene oxide hexadecyl ether, polyethylene glycol cetyl ether, brij 38, brij 52, brij 56 and brij W1; sucrose esters, partial esters of sorbitol and its anhydrides, such as sorbitan monolaurate and sorbitan monolaurate; fatty alcohols or acids, mono or diglycerides, isoceteth-20, sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate and betaines, provided that, in the case of a single surfactant, the HLB value is between 3 and 9; and in the case of a mixture of surface-active agents, the weighted average of their HLB values is between 3 and 9.


In one or more embodiments, the at least one surface active agent is a phospholipid. In a one or more embodiments, the phospholipid is phosphatidylcholine or 1,2-diacyl-sn-glycerol-3-phosphorylcholine, also termed “lecithin”, which is a naturally occurring phospholipid which possesses surfactant properties. Lecithin is the most abundant lipid in the membranes of biological tissues and as such, is considered a non-irritant. Lethicin is a phospholipid composition very similar in composition to that of human skin. For this reason, it is possible to use lethicin as an emulsifier or a surfact-active agent at levels about 10% by weight. In one or more embodiments, the surface-active agent includes lethicin up to about 10% by weight and the total surfact-active agent (when a mixture of agents is used) can be up to 15% by weight.


A composition having a low concentration of an ionic surfactant, preferably no ionic surfactant, is important in terms of safety, since high concentrations of surfactants are known to evolve skin irritation.


Gelling Agents


The composition according to one or more embodiments of the present invention include at least one gelling agent at a concentration of about 0.1% to about 5%. The at least one gelling agent is selected from a natural polymeric material, a semi-synthetic polymeric material, a synthetic polymeric material, an inorganic gelling agent and mixtures thereof.


Exemplary gelling agents that can be used in accordance with one or more embodiments of the present invention include for example, but are not limited to, naturally-occurring polymeric materials such as, locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum sodium alginate, xanthan gum, quince seed extract, tragacanth gum, starch, chemically modified starches and the like, semi-synthetic polymeric materials such as cellulose ethers (e.g. hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose), polyvinylpyrrolidone, polyvinylalcohol, guar gum, hydroxypropyl guar gum, soluble starch, cationic celluloses, cationic guars and the like and synthetic polymeric materials such as carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and the like. Mixtures of the above compounds are contemplated.


Further exemplary gelling agents include the acrylic acid/ethyl acrylate copolymers and the carboxyvinyl polymers sold, for example, by the B.F. Goodrich Company under the trademark of Carbopol® resins. These resins consist essentially of a colloidal water-soluble polyalkenyl polyether crosslinked polymer of acrylic acid crosslinked with from 0.75% to 2% of a crosslinking agent such as polyallyl sucrose or polyallyl pentaerythritol. Examples include Carbopol® 934, Carbopol® 940, Carbopol® 950, Carbopol® 980, Carbopol® 951 and Carbopol® 981. Carbopol® 934 is a water-soluble polymer of acrylic acid crosslinked with about 1% of a polyallyl ether of sucrose having an average of about 5.8 allyl groups for each sucrose molecule.


Yet, another preferred group of gelling agents includes inorganic gelling agents, such as silicone dioxide (fumed silica) including but not limited to AEROSIL 200 (DEGUSSA).


The at least one gelling agent is present in an amount in the range of about 0.1% to about 5.0 wt % of the foamable composition. In one or more embodiments, it is typically less than 1 wt % of the foamable composition.


Foam Adjuvants


The composition of the present invention may optionally further include at least one foam adjuvant. In one or more embodiments, foam adjuvants include fatty alcohols having 15 or more carbons in their carbon chain, such as cetyl alcohol and stearyl alcohol (or mixtures thereof). Other examples of fatty alcohols are oleyl alcohol (C18, unsaturated), arachidyl alcohol (C20), behenyl alcohol (C22), 1-triacontanol (C30), as well as alcohols with longer carbon chains (up to C50). The concentration of the fatty alcohol that is required to support the foam system is inversely related to the length of its carbon chains. Fatty alcohols derived from beeswax including a mixture of alcohols, a majority of which has at least 20 carbon atoms in their carbon chain, are especially well suited as foam adjuvants according to the present invention.


Another class of foam adjuvants, according to one or more embodiments of the present invention, includes fatty acids having 16 or more carbons in their carbon chain, such as hexadecanoic acid (C16) stearic acid (C18), arachidic acid (C20), behenic acid (C22), octacosanoic acid (C28), as well as fatty acids with longer carbon chains (up to C50), or mixtures thereof.


Optionally, the carbon atom chain of the fatty alcohol or the fatty acid may have at least one double bond. A further class of foam adjuvant according to the present invention comprises a long chain fatty alcohol or fatty acid, wherein the carbon atom chain is branched. In an additional preferred class of foam adjuvants, the carbon chain of said fatty acid is substituted with a hydroxyl group, such as 12-hydroxy stearic acid.


The foam adjuvant according to the present invention may comprise a mixture of fatty alcohols, fatty acids and hydroxy fatty acids and derivatives thereof in any proportion, providing that the total concentration is about 0.1% to about 10% (w/w) preferably about 0.1% to about 5% (w/w) in one or more embodiments, the total concentration is about 0.4% to about 2.5% (w/w) of the total composition.

    • A feature of fatty alcohols and fatty acids relevant to their use in the foamable compositions according to one or more embodiments of the present invention is related to their therapeutic properties per se. Long chain saturated and mono unsaturated fatty alcohols, e.g., stearyl alcohol, erycyl alcohol, arachidyl alcohol and docosanol have been reported to possess antiviral, anti infective, anti-proliferative and anti-inflammatory properties (U.S. Pat. No. 4,874,794). Longer chain fatty alcohols, e.g., tetracosanol, hexacosanol, heptacosanol, octacosanol, triacontanol, etc. are also known for their metabolism modifying properties and tissue energizing properties. Long chain fatty acids have also been reported to possess anti-infective characteristics. Thus, the pharmaceutical or cosmetic composition of the present invention, comprising the optional foam adjuvant provides an extra or added therapeutic benefit.


      Water Content


The creation of a foamable composition with low water content is not easy, and usually requires very high concentrations of a foaming surfactant system, which may comprise a high proportion of ionic surfactants. However, ionic surfactants are known to be skin irritants in a concentration-dependent manner, and thus, their use in the treatment of sensitive skin and other body tissues is very limited. Surprisingly, the compositions of the present invention have a low water content, and yet require very low concentration of surfactants, which are primarily non-ionic.


Substantially Alcohol Free


Lower alcohols, having up to 5 carbon atoms in their carbon chain skeleton, such as ethanol, propanol, isopropanol, butanol, iso-butanol, t-butanol and pentanol are considered less desirable solvents or co-solvents due to their skin-irritating effect. Thus, the composition of the present invention is substantially alcohol-free and should comprise less than about 5% final concentration of lower alcohols, preferably less than 2%, more preferably less than 1%.


Optional Ingredients


The pharmaceutical or cosmetic composition of the present invention may further optionally comprise a variety of therapeutic or cosmetic ingredients, which are added in order to fine-tune the consistency of the formulation, protect the formulation components from degradation and oxidation and bestow their cosmetic acceptability. Such excipients may be selected, for example, from the group consisting of diglycerides, triglycerides, stabilizing agents, antioxidants, glycerol, flavoring, colorant and odorant agents and other formulation components, used in the art of pharmaceutical and cosmetic formulary. A pharmaceutical or cosmetic composition manufactured according to the present invention is very easy to use. When applied onto the afflicted body surface of humans or animals, it is in a foam state, allowing free application without drip or spillage. Upon further application of a mechanical force, e.g., by rubbing the composition onto the body surface, it freely spreads on the surface and is rapidly absorbed.


Active Agents


It is to be understood that the active agents useful herein can in some instances provide more than one benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit the active agent to that particular application or applications listed.


The composition of the present invention comprises at least one active agent that provides therapeutic or cosmetic activity.


The composition of the present invention comprising at least one “active agent”, provides the following benefits:


favorable spreadability and absorption, compared to conventional ointment, cream, lotion and the like; improved treatment convenience, leading to better compliance;


enhanced delivery, leading to elevated bioavailability of the drug or cosmetic active agent in the target organ, thereby improving treatment efficacy.


In the context of the present invention, pharmaceutical and cosmetic active agents are included under the definition of at least one active agent. According to one embodiment the at least one active agent may be a single agent or a combination of agents that can be dissolved in the oleaginous carrier composition.


According to one embodiment, the at least one active agent is a hydrophobic agent, having solubility in distilled water at ambient temperature of less than about 1 gm per 100 mL, more preferable less than about 0.5 gm per 100 mL, and most preferably less than about 0.1 gm per 100 mL. In another embodiment, the at least one active agent is any therapeutic or cosmetic agent, providing that it is encapsulated in a hydrophobic envelope.


In another embodiment, the at least one active agent is insoluble and thus, incorporated in the foamable carrier of the present invention by suspension.


Non-limiting examples of active agents include antibiotic, antibacterial, antifungal, antiviral, antiinflammatory, anesthetic, analgesic, antiallergic, corticosteroid, retinoidretinoids, lubricating agents and antiproliferative medications and mixtures thereof at any proportion. The concentration of said agents may be adopted to exert a therapeutic effect on a disease when applied to an afflicted area.


A general non-limiting list of hydrophobic active agents include abacavir, acebutolol, acrivastine, alatrofloxacin, albuterol, albendazole, alprazolam, alprenolol, amantadine, amiloride, aminoglutethimide, amiodarone, amitriptyline, amlodipine, amodiaquine, amoxapine, amphetamine, amphotericin, amprenavir, aminone, amsacrine, astemizole, atenolol, atropine, azathioprine, azelastine, azithromycin, baclofen, benethamine, benidipine, benzhexyl, benznidazole, benztropine, biperiden, bisacodyl, bisanthrene, bromazepam, bromocriptine, bromperidol, brompheniramine, brotizolam, bupropion, butenafine, butoconazole, cambendazole, camptothecin, carbinoxamine, cephadrine, cephalexin, cetrizine, cinnarizine, chlorambucil, chlorpheniramine, chlorproguanil, chlordiazepoxide, chlorpromazine, chlorprothixene, chloroquine, cimetidine, ciprofloxacin, cisapride, citalopram, clarithromycin, clemastine, clemizole, clenbuterol, clofazimine, clomiphene, clonazepam, clopidogrel, clozapine, clotiazepam, clotrimazole, codeine, cyclizine, cyproheptadine, dacarbazine, darodipine, decoquinate, delavirdine, demeclocycline, dexamphetamine, dexchlorpheniramine, dexfenfluramine, diamorphine, diazepam, diethylpropion, dihydrocodeine, dihydroergotamine, diltiazem, dimenhydrinate, diphenhydramine, diphenoxylate, diphenylimidazole, diphenylpyraline, dipyridamole, dirithromycin, disopyramide, dolasetron, domperidone, donepezil, doxazosin, doxycycline, droperidol, econazole, efavirenz, ellipticine, enalapril, enoxacin, enrofloxacin, eperisone, ephedrine, ergotamine, erythromycin, ethambutol, ethionamide, ethopropazine, etoperidone, famotidine, felodipine, fenbendazole, fenfluramine, fenoldopam, fentanyl, fexofenadine, flecamide, flucytosine, flunarizine, flunitrazepam, fluopromazine, fluoxetine, fluphenthixol, fluphenthixol decanoate, fluphenazine, fluphenazine decanoate, flurazepam, flurithromycin, frovatriptan, gabapentin, granisetron, grepafloxacin, guanabenz, halofantrine, haloperidol, hyoscyamine, imipenem, indinavir, irinotecan, isoxazole, isradipine, itraconazole, ketoconazole, ketotifen, labetalol, lamivudine, lanosprazole, leflunomide, levofloxacin, lisinopril, lomefloxacin, loperamide, loratadine, lorazepam, lormetazepam, lysuride, mepacrine, maprotiline, mazindol, mebendazole, meclizine, medazepam, mefloquine, melonicam, meptazinol, mercaptopurine, mesalamine, mesoridazine, metformin, methadone, methaqualone, methylphenidate, methylphenobarbital, methysergide, metoclopramide, metoprolol, metronidazole, mianserin, miconazole, midazolam, miglitol, minoxidil, mitomycins, mitoxantrone, molindone, montelukast, morphine, moxifloxacin, nadolol, nalbuphine, naratriptan, natamycin, nefazodone, nelfinavir, nevirapine, nicardipine, nicotine, nifedipine, nimodipine, nimorazole, nisoldipine, nitrazepam, nitrofurazone, nizatidine, norfloxacin, nortriptyline, nystatin, ofloxacin, olanzapine, omeprazole, ondansetron, omidazole, oxamniquine, oxantel, oxatomide, oxazepam, oxfendazole, oxiconazole, oxprenolol, oxybutynin, oxyphencyclimine, paroxetine, pentazocine, pentoxifylline, perchlorperazine, perfloxacin, perphenazine, phenbenzamine, pheniramine, phenoxybenzamine, phentermine, physostigmine, pimozide, pindolol, pizotifen, pramipexol, pranlukast, praziquantel, prazosin, procarbazine, prochlorperazine, proguanil, propranolol, pseudoephedrine, pyrantel, pyrimethamine, quetiapine, quinidine, quinine, raloxifene, ranitidine, remifentanil, repaglinide, reserpine, ricobendazole, rifabutin, rifampin, rifapentine, rimantadine, risperidone, ritonavir, rizatriptan, ropinirole, rosiglitazone, roxaditine, roxithromycin, salbutamol, saquinavir, selegiline, sertraline, sibutramine, sildenafil, sparfloxacin, spiramycins, stavudine, sulconazole, sulphasalazine, sulpiride, sumatriptan, tacrine, tamoxifen, tamsulosin, temazepam, terazosin, terbinafine, terbutaline, terconazole, terfenadine, tetramisole, thiabendazole, thioguanine, thioridazine, tiagabine, ticlopidine, timolol, timidazole, tioconazole, tirofiban, tizanidine, tolterodine, topotecan, toremifene, tramadol, trazodone, triamterene, triazolam, trifluoperazine, trimethoprim, trimipramine, tromethamine, tropicamide, trovafloxacin, vancomycin, venlafaxine, vigabatrin, vinblastine, vincristine, vinorelbine, vitamin K5, vitamin K6, vitamin K7, zafirlukast, zolmitriptan, zolpidem, zopiclone, acetazolamide, acetohexamide, acrivastine, alatrofloxacin, albuterol, alclofenac, aloxiprin, alprostadil, amodiaquine, amphotericin, amylobarbital, aspirin, atorvastatin, atovaquone, baclofen, barbital, benazepril, bezafibrate, bromfenac, bumetamide, butobarbital, candesartan, capsaicin, captopril, cefazolin, celecoxib, cephadrine, cephalexin, cerivastatin, cetrizine, chlorambucil, chlorothiazide, chlorpropamide, chlorthalidone, cinoxacin, ciprofloxacin, clinofibrate, cloxacillin, cromoglicate, cromolyn, dantrolene, dichlorophen, diclofenac, dicloxacillin, dicumarol, diflunisal, dimenhydrinate, divalproex, docusate, dronabinol, enoximone, enalapril, enoxacin, enrofloxacin, epalrestat, eposartan, essential fatty acids, estramustine, ethacrynic acid, ethotoin, etodolac, etoposide, fenbufen, fenoprofen, fexofenadine, fluconazole, flurbiprofen, fluvastatin, fosinopril, fosphenyloin, fumagillin, furosemide, gabapentin, gemfibrozil, gliclazide, glipizide, glybenclamide, glyburide, glimepiride, grepafloxacin, ibufenac, ibuprofen, imipenem, indomethacin, irbesartan, isotretinoin, ketoprofen, ketorolac, lamotrigine, levofloxacin, levothyroxine, lisinopril, lomefloxacin, losartan, lovastatin, meclofenamic acid, mefenamic acid, mesalamine, methotrexate, metolazone, montelukast, nalidixic acid, naproxen, natamycin, nimesulide, nitrofurantoin, non-essential fatty acids, norfloxacin, nystatin, ofloxacin, oxacillin, oxaprozin, oxyphenbutazone, penicillins, pentobarbital, perfloxacin, phenobarbital, phenyloin, pioglitazone, piroxicam, pramipexol, pranlukast, pravastatin, probenecid, probucol, propofol, propylthiouracil, quinapril, rabeprazole, repaglinide, rifampin, rifapentine, sparfloxacin, sulfabenzamide, sulfacetamide, sulfadiazine, sulfadoxine, sulfamerazine, sulfamethoxazole, sulfafurazole, sulfapyridine, sulfasalazine, sulindac, sulphasalazine, sulthiame, telmisartan, teniposide, terbutaline, tetrahydrocannabinol, tirofiban, tolazamide, tolbutamide, tolcapone, tolmetin, tretinoin, troglitazone, trovafloxacin, undecenoic acid, ursodeoxycholic acid, valproic acid, valsartan, vancomycin, verteporfin, vigabatrin, vitamin K-S (II), zafirlukast, and pharmaceutically acceptable oil-soluble derivative and salts thereof.


Anti-infective Agents


Anti-infective agents include antibacterial, antifungal, antiviral, and anti-parasitic agents.


Antibacterial Agents


One important class of active agents comprises antibacterial agents. It is well known that bacterial infections are involved in a variety of superficial and non-superficial disorders of the skin and mucosal membranes. The antibacterial agent can be active against gram positive and gram-negative bacteria, protozoa, aerobic bacteria and anaerobes. The composition of the invention may include one or a combination of water soluble, oil soluble and suspended antibacterial agents.


Specific oil-soluble species of macrolide antibiotics, such as erythromycin; sulfonamide (in its base form), such as sulfanilamide, sulfadiazine and sulfacetamide; mupirocin; tetracyclines, such as tetracycline and doxycycline; specific oil-soluble species of synthetic and semi-synthesic penicillins and beta-lactams; cloramphenicol; specific oil-soluble species of imidazoles; dicarboxylic acids, such as azelaic acid; salicylates; peptide antibiotics; cyclic peptides, such as cyclosporine, tacrolimus, pimecrolimus and sirolimus (rapamycin); and non-specific antibacterial agents such as strong oxidants and free radical liberating compounds, bleaching agents, iodine compounds and benzoyl peroxide.


Antibacterial compositions according to the present invention may be used to treat infections of the skin. An example of a very common skin infection is impetigo, a bacterial disease caused by Staphylococcus aureus and beta-hemolytic streptococci, which mainly afflicts children and infants. Various antibacterial creams and ointments, such as mupirocin cream and mupirocin ointment, have been utilized to treat impetigo, however, treatment compliance is markedly impaired due to the fact that children resist the extensive rubbing involved in cream and ointment treatment. Foam, on the other hand, was found to be easily applied, without any difficulty. It has been surprisingly discovered that a composition of mupirocin n a vehicle containing PEG (as a potent solvent), a non-ionic surfactant and a gelling agent, where the non-ionic surface-active agent at a concentration of 2% by weight and the total amounts of surface-active agent is in the range of 2.5% by weight, and propellan, afforded an excellent foam which was stable upon discharge from the aerosol can and was easy to apply onto an afflicted area.


The composition of the present invention is particularly useful and beneficial in the prevention and treatment of secondary infections, accompanying skin-structure damage, such as in cuts, wounds, burns and ulcers. In all such cases, the present formulation is easy to use, being in foam state upon application and absorbing into the skin instantly upon gentle application.


While being useful in the prevention and treatment of infections, the antibacterial foam of the present invention is also applicable for decontaminating areas, afflicted with bacterial warfare organisms, such as anthrax and smallpox.


Anti-fungal Agents


Fungal infections are another object of treatment using the composition of the present invention. Superficial fungal infection of the skin is one of the most common skin diseases seen in general practice. Dermatophytosis is probably the most common superficial fungal infection of the skin. It is caused by a group of fungi, which are capable of metabolizing the keratin of human epidermis, nails or hair. There are three genera of dermatophytes causing dermatophytosis, i.e., microsporum, trichophyton and epidermophyton.


Candidiasis is an infection caused by the yeast like fungus candida albicans or occasionally other species of candida. Clinical syndromes of candidiasis include: (a) oral candidiasis (thrush); (b) candidiasis of the skin and genital mucous membrane; and (c) candida paronychia, which inflicts the nail and nail bed.


The foam composition of the present invention may comprise an antifungal drug, which is active against dermatophytes and candida, selected from the group of, but not limited to azoles, diazoles, triazoles, miconazole, fluconazole, ketoconazole, clotrimazole, itraconazole griseofulvin, ciclopirox, amorolfine, terbinafine, Amphotericin B, potassium iodide, flucytosine (5FC) and any combination thereof at a therapeutically effective concentration.


The composition of the present invention is useful for example for the treatment and prevention of tinea corporis, tinea pedis, tinea rubrum, tinea unguium, tinea cruris, tinea barbae and tinea versicolor, as well as yeast infections, such as candidiasis, and candidal vaginitis.


Anti-viral Agents


The composition of the present invention is particularly beneficial in treating and preventing viral infections. Cold sores are caused by the herpes simplex Type 1 virus and are sometimes referred to as facial herpes. Mollusca are small viral growths that appear singly or in groups on the face, trunk, lower abdomen, pelvis, inner thighs, or penis. Shingles (herpes zoster), which usually only occurs once in a lifetime, appears as a rash (clusters of blisters with a red base). It is caused by the same virus responsible for chickenpox. Warts are a common, benign skin tumor caused by viral infection.


Any known antiviral agent, in a therapeutically effective concentration, can be incorporated in the foam composition of the present invention. The composition of the present invention, which comprises a hydrophobic solvent, would facilitate an enhanced rate of penetration and better topical distribution of any of the above listed antiviral drugs.


Anti-inflammatory or Anti-allergic Agents


Yet, according to another embodiment according to the present invention the active agent is an anti-inflammatory or anti-allergic agent. Anti-inflammatory agents can be selected from the group of corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), anti-histamines, immunosuppressant agents, immunomodulators; and any combination thereof at a therapeutically effective concentration.


The following table provides a summary of currently available corticosteroid agent and their typical therapeutically effective concentration.














Potency
Compound
Current products







Very high
Clobetasol proprionate
Cream or ointment 0.05%



Halobetasol proprionate
Cream or ointment 0.05%


High
Betamethasone diproprionate
Cream or ointment 0.05%



Betamethasone valerate
Ointment 0.1%



Fluocinolone acetonide
Cream 0.02%



Halcinonide
Cream or ointment 0.1%


Medium
Betamethasone valerate
Cream 0.1%



Fluocinolone acetonide
Cream or ointment 0.020%



Hydrocortisone valerate
Cream or ointment 0.2%



Triamcinolone acetonide
Cream, ointment, or lotion




0.1% or 0.020%


Low
Hydrocortisone
Cream, ointment, or lotion




1.0% or 2.5%









The concentrations of corticosteroid drugs, as presented in the above table are provided herein only as example, and any therapeutically effective concentration of such corticosteroids can be incorporated in the composition of the present invention.


Since corticosteroid drugs are typically hydrophobic, the composition of the present invention, comprising a hydrophobic solvent, is most suitable as a vehicle to facilitate better topical distribution, improved occlusion and an enhanced rate of penetration of any of the above listed drugs.


Corticosteroids are used for treating psoriasis. Psoriasis is a very common chronic skin disease, which may be the target of treatment using the composition of the present invention. It is marked by periodic flare-ups of sharply defined red patches covered by a silvery, flaky surface.


Corticosteroid ointments, greasy preparations containing little or no water, are typically used for treating psoriasis. Their main disadvantage is in their sticky feeling, which remains so long after treatment is over. By contrast, the foam of the present invention, while comprising considerable concentration of an oil (hydrophobic solvent), spreads very easily throughout the afflicted area and absorbs into the skin without leaving any untoward sensation or look.


Other non-limiting examples of inflammatory disorders, which can be prevented or treated by the oleaginous compositions of the present invention, wherein the drug is a steroid are atopic dermatitis, seborrhea, seborrheic dermatitis of the face and trunk, seborrheic blepharitis, contact dermatitis, stasis dermatitis (gravitational eczema; varicose eczema), exfoliative dermatitis (erythroderma), lichen simplex chronicus, pityriasis rosea and pemphigus.


It is pointed out that certain of the solvents that may be used in the preparation of the composition of the present invention including polyunsaturated fatty acids, containing omega-3 and omega-6 fatty acids (e.g., linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are themselves beneficial in the treatment of psoriasis and other skin inflammation conditions.


A second class of anti-inflammatory agents, which is useful in the foam of the present invention, includes the nonsteroidal anti-inflammatory agents (NSAIDs). The variety of compounds encompassed by this group is well-known to those skilled in the art. Specific non-steroidal anti-inflammatory agents useful in the composition invention include, but are not limited to:


Oxicams, such as piroxicam, isoxicam, tenoxicam, sudoxicam;


Salicylates, such as salicylic acid, ethyl salicylate, methyl salycilate, aspirin, disalcid, benorylate, trilisate, safapryn, solprin, diflunisal, and fendosal;


Acetic acid derivatives, such as diclofenac, fenclofenac, indomethacin, sulindac, tolmetin, isoxepac, furofenac, tiopinac, zidometacin, acematacin, fentiazac, zomepirac, clindanac, oxepinac, felbinac, and ketorolac;


Fenamates, such as mefenamic, meclofenamic, flufenamic, niflumic, and tolfenamic acids;


Propionic acid derivatives, such as ibuprofen, naproxen, benoxaprofen, flurbiprofen, ketoprofen, fenoprofen, fenbufen, indopropfen, pirprofen, carprofen, oxaprozin, pranoprofen, miroprofen, tioxaprofen, suprofen, alminoprofen, and tiaprofenic; and


Pyrazoles, such as phenylbutazone, oxyphenbutazone, feprazone, azapropazone, and trimethazone.


Any further steroidal and nonsteroidal compounds, having the capacity to prevent, alleviate the symptoms of, treat or cure inflammation processes, are generally included, as possible anti-inflammatory agents, according to the present invention.


Topical antihistaminic preparations currently available include 1% and 2% diphenhydramine, 5% doxepin, phrilamine maleate, chlorpheniramine and tripelennamine, phenothiazines, promethazine hydrochloride and dimethindene maleate. These active agents, as well as additional antihistamines can also be incorporated in the composition of the present invention.


The therapeutic composition of the present invention may also comprise an anti-inflammatory or antiallergic agent, wherein said agent reduces the occurrence of pro-inflammatory cytokines or inhibits the effect of pro-inflammatory cytokines. Mixtures of such anti-inflammatory agents may also be employed, as well as the dermatologically acceptable salts, esters, amides, prodrugs and derivatives of these agents.


Topical application of a foam, comprising a safe and effective dose of an NSAID can be useful in the prevention and/or alleviation of the symptoms of rheumatoid arthritis, osteoarthritis and pain. Topical NSAIDs, incorporated in the foam of the present invention can be also used in the treatment of dermatological disorders, such as acne, rosacea, hair growth disorders, actinic keratosis and certain skin cancer conditions.


Immunosuppressant agents, immunoregulating agents and immunomodulators are chemically or biologically-derived agents that modify the immune response or the functioning of the immune system (as by the stimulation of antibody formation or the inhibition of white blood cell activity). Immunosuppressant agents and immunomodulators include, among other options, cyclic peptides, such as cyclosporine, tacrolimus, tresperimus, pimecrolimus, sirolimus (rapamycin), verolimus, laflunimus, laquinimod and imiquimod. Such compounds, delivered in the foam of the present invention, are especially advantageous in skin disorders such as psoriasis, eczema and atopic dermatitis, where the large skin areas are to be treated. The oleaginous foam compositions of the present invention provide excellent vehicles for such applications and are superior to conventional creams and ointments.


Topical Anesthetics


The compositions of the present invention may comprise a safe and effective amount of a topical anesthetic. Examples of topical anesthetic drugs include benzocaine, lidocaine, bupivacaine, chlorprocaine, dibucaine, etidocaine, mepivacaine, tetracaine, dyclonine, hexylcaine, procaine, cocaine, ketamine, pramoxine, phenol, and pharmaceutically acceptable salts thereof. Mixtures of such anesthetic agents may be synergistically beneficial.


Keratolytically Active Agents


The term “keratolytically active agent” refers herein to a compound which loosens and removes the stratum corneum of the skin, or alters the structure of the keratin layers of skin.


Keratolytically active agents are used in the treatment of many dermatological disorders, which involve dry skin, hyperkeratinization (such as psoriasis), skin itching (such as xerosis), acne and rosacea.


Suitable keratolytically active agents include phenol and substituted phenolic compounds. Such compounds are known to dissolve and loosen the intracellular matrix of the hyperkeratinized tissue. As such, they are used in the treatment of dermatological disorders. Dihydroxy benzene and derivatives thereof have been recognized as potent keratolytic agents. Resorcinol (m-dihydroxybenzene) and derivatives thereof are used in anti-acne preparations. Hydroquinone (p-dihydroxybenzene), besides its anti-pigmentation properties, is also keratolytic. These compounds also exhibit antiseptic properties. Cresols also possess bactericidal and keratolytic properties.


Vitamin A and its derivatives, such as retinoic acid, isoretinoic acid, retinol and retinal are another preferred class of keratolytically active agents.


Another group of keratolytically active agents include alpha-hydroxy acids, such as lactic acid and glycolic acid and their respective salts and derivatives; and beta-hydroxy acids, such as Salicylic acid (o-hydroxybenzoic acid) and its salts and pharmaceutically acceptable derivatives, which typically possess anti-inflammatory, as well as keratolytic, activity.


Yet, another class of preferred keratolytically active agents includes urea and its derivatives.


Retinoids


Another preferred group of active agents includes, for example, retinol, retinal, all trans retinoic acid and derivatives, isomers and analogs thereof, collectively termed “retinoids”. Etretinate, actiretin, isotretinoin, adapalene and tazarotene are further examples of said retinoid isomers and analogs. Compositions according to the present invention, which comprise retinoids as the active agent, can be used for the treatment of acne, seborrhea, various dermatoses, inflammation of the skin, mucosal membranes, vagina and the rectum, psoriasis, actinic keratosis and skin cancers, by application onto the affected area.


Insecticide and Insect Repellents Agents


Insects, such as mosquitoes, biting flies, mites, gnats, fleas, chiggers, punkies, sand flies, lice and ticks can be annoying and sometimes pose a serious risk to human and animal health. In certain areas of the United States, mosquitoes can transmit diseases like equine and St. Louis encephalitis. Biting flies can inflict a painful bite that can persist for days, swell, and become infected. Ticks can transmit serious diseases like Lyme disease and Rocky Mountain spotted fever.


There are several types of insect repellents to use when protecting people and animals from flying or biting insects, spiders, ticks and mites. By way of example, these may include DEET (N,N-diethyl-m-toluamide), dimethyl phthalate, piperonyl butoxide and permethrin. Insect repelling terpenoids, have been reported by Hwang, et al, J. Chem. Ecol., 11, 1297 (1985); and Ruledge, J. Am. Mosquito Control Assoc. 4, 414 (1988).


A particularly preferred group of insect repellents includes the terpenoid compounds, described in U.S. Pat. No. 5,411,992, including:


Terpenoid-alcohol or terpene-ols are terpenoids which have at least one hydroxyl group. Examples of terpene-ols include: C10H16O compounds, perillyl alcohol, carveol, myrtenol, and cis-verbenol; C10H18O compounds, myrtanol, iso-pinocampheol, dihydrocarveol, isopulegol, terpineol, terpinen-4-ol, nerol, geraniol, and linalool, and C10H20O compounds, menthol, beta-citronellol, and dihydro-myrcenol.


Terpenoid-esters are terpenoids, which have at least one ester group which is the product of the bonding of the hydroxyl group of a terpene-ol with an aliphatic carboxylic acid that can contain functional groups such as the hydroxyl or amine on the aliphatic chain. Examples of suitable aliphatic carboxylic acids include acetic acid, propionic acid, lactic acid, and various amino acids. Examples of terpenoid-esters include: carvyl acetate, carvyl propionate, and menthyl lactate.


Essential oils which contain terpenoids and perfumes which contain terpenoids. Non-limiting examples of essential oils which have high content of terpene-ols and esters include bergamot (62% terpenoids); sage (>50% terpenoids); styrax (>50% terpenoids); peppermint (>50% terpenoids); and pine Siberian (75% terpenoids %). Terpenes, aldehydes and ketones vary in their usefulness but as a general group have potential as insect-repellent.


The oleaginous foams of the present invention are particularly suitable for the effective uniform spreading of an insect repellent agent onto large areas of the skin of humans and animals. The hydrophobic solvent present in the foam composition helps retain the insect repellent on the skin surface for an extended period of time.


Yet, in a further embodiment, the foams of the present invention are suitable for delivery of insect-killing agents (insecticides) to an afflicted external surface area of humans and animals. Thus, the pharmaceutical or cosmetic composition of the present invention may comprise an insecticide, known in the art of parasitology. By way of example, such insecticide can be selected from the group of permethrin, hexachlorobenzene, carbamate, naturally occurring pyrethroids, permethrin, allethrin, malathion, piperonyl butoxide and any combination thereof at a therapeutically effective concentration. Its application is very convenient and it spreads easily, even over hairy areas. The hydrophobic solvent present in the foam composition helps retain the insecticide on the treated area for an extended period of time. Furthermore, the presence of a hydrophobic solvent in the foam of the present invention eases mechanical removal of lice and nits with a comb.


Anti Cancer Agents


Anti cancer agents can also be used according to the present invention as the drug of choice from skin malignant tumors, such as basal cell carcinoma, squamous sell carcinoma, melanoma and Kaposi's sarcoma, as well as the pre-cancerous condition actinic keratosis. In certain cases, topical cytotoxic and antiproliferative drugs are used to treat or prevent such cancers, including 5-fluorouracil, also called 5-FU. 5-FU, as well as any other anti-cancer agents, know in the art of cancer medicine, can be incorporated in the foam at therapeutically effective levels.


A preferred family of anticancer drugs, suitable for usage in the foam of the present formulation comprises anti-estrogens, such as tamoxifen.


Photodynamic Therapy Agents


The foam compositions of the present invention are also useful to deliver photo-sensitizing agents, known in the art of photodynamic therapy. By way of example, such photosensitizers can be selected from the group comprising modified porphyrins, chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbides, purpurins, m-THPC, mono-L-aspartyl chlorin e6, bacteriochlorins, phthalocyanines, benzoporphyrin derivatives, as well as photosensitizer precursors, such as aminolevulinic acid (ALA).


Active Agents for Burns, Wounds, Cuts and Ulcers


The treatment of burns, wounds, cuts and ulcers, using the composition of the present invention is particularly advantageous. The oleaginous foam compositions of the present invention may comprise a combination of anti-infective agents (against bacteria, fungi and/or viruses), anti-inflammatory agents (steroidal and/or NSAIDs) and pain relieving components. Upon application, the foam spreads easily, covering the surface of the affected area, and without causing pain.


Cosmetic Active Agents


The oleaginous foams of the present invention are useful and advantageous for skin care and cosmetic care. The combination of oil, having refatting, protective and moisture-retaining properties, in a spreadable foam form, can be used to substitute currently used cosmetic skin care creams, lotions, gels, etc. The foam compositions of the present invention, with or without further active ingredients, are suitable for the further application as “cosmeceutical” preparation (cosmetic products with therapeutic benefit), to treat “cosmetic” skin disorders, such as aging skin, wrinkles, hyperpigmentation (melasma, chloasma, freckles, etc.), scaly skin and other skin undesirable properties.


The CTFA Cosmetic Ingredient Handbook describes a wide variety of non-limiting cosmetic and pharmaceutical ingredients commonly used in the skin care industry, which are suitable for use in the compositions of the present invention. Examples of these ingredient classes include: abrasives, absorbents, aesthetic components such as fragrances, pigments, colorings/colorants, essential oils, astringents, etc. (e.g., clove oil, menthol, camphor, eucalyptus oil, eugenol, menthyl lactate, witch hazel distillate), anti-acne agents, anti-caking agents, antifoaming agents, anti-microbial agents (e.g., iodopropyl butylcarbamate), antioxidants, binders, biological additives, buffering agents, bulking agents, chelating agents, chemical additives, colorants, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, external analgesics, film formers or materials, e.g., polymers, for aiding the film-forming properties and substantivity of the composition (e.g., copolymer of eicosene and vinyl pyrrolidone), opacifying agents, pH adjusters, propellants, reducing agents, sequestrants, skin bleaching and lightening agents (e.g., hydroquinone, kojic acid, ascorbic acid, magnesium ascorbyl phosphate, ascorbyl glucosamine), skin-conditioning agents (e.g., humectants, including miscellaneous and occlusive), skin soothing and/or healing agents (e.g., panthenol and derivatives (e.g., ethyl panthenol), aloe vera, pantothenic acid and its derivatives, allantoin, bisabolol, and dipotassium glycyrrhizinate), skin treating agents, and vitamins and derivatives thereof.


In one embodiment the active agent is a cosmetic agent selected from a retinoid, an anti-wrinkle agent, a radical scavenger, a self-tanning agent, a skin whitening agent, a skin protective agent, an anti-cellulite agent, a massaging oil and an anti-wart agent.


Anti-acne and Anti-wrinkle Active Agents


The compositions of the present invention may comprise a safe and effective amount of one or more pharmaceutically or cosmetically acceptable anti-acne active agents. Examples of useful anti-acne actives include resorcinol, sulfur, salicylic acid and salicylates, alpha-hydroxy acids, nonsteroidal anti-inflammatory agents, benzoyl peroxide, retinoic acid, isoretinoic acid and other retinoid compounds, adapalene, tazarotene, azelaic acid and azelaic acid derivatives, antibiotic agents, such as erythromycin and clyndamycin, zinc salts and complexes, and combinations thereof, in a therapeutically effective concentration. Certain anti-acne agents from this list are also useful in the treatment of other skin disease, such as psoriasis, eczema and atopic dermatitis.


Anti-wrinkle Active Agents/Anti-atrophy Active Agents and Agents to Treat Dry and Scaly Skin (Xerosis and Ichthyosis)


The compositions of the present invention may further comprise a safe and effective amount of one or more anti-wrinkle actives or anti-atrophy actives, which can be easily delivered by spreading a foam onto the skin. Exemplary anti-wrinkle/anti-atrophy active agents suitable for use in the compositions of the present invention include sulfur-containing D and L amino acids and their derivatives and salts, particularly the N-acetyl derivatives; thiols; hydroxy acids (e.g., alpha-hydroxy acids such as lactic acid and glycolic acid and their derivatives and salts; or beta-hydroxy acids such as salicylic acid and salicylic acid salts and derivatives), urea, hyaluronic acid, phytic acid, lipoic acid; lysophosphatidic acid, skin peel agents (e.g., phenol, resorcinol and the like), vitamin B3 compounds (e.g., niacinamide, nicotinic acid and nicotinic acid salts and esters, including non-vasodilating esters of nicotinic acid (such as tocopheryl nicotinate), nicotinyl amino acids, nicotinyl alcohol esters of carboxylic acids, nicotinic acid N-oxide and niacinamide N-oxide), vitamin B5 and retinoids (e.g., retinol, retinal, retinoic acid, retinyl acetate, retinyl palmitate, retinyl ascorbate). In the case of dry, scaly skin (xerosis) and ichthyosis such agents can alleviate the symptoms by temporary relief of itching associated with these conditions.


Anti-oxidants/Radical Scavengers


A safe and effective amount of an anti-oxidant/radical scavenger may be added to the compositions of the subject invention, preferably from about 0.1% to about 10%, more preferably from about 1% to about 5%, of the composition.


Anti-oxidants/radical scavengers such as ascorbic acid (vitamin C) and its salts, ascorbyl esters of fatty acids, ascorbic acid derivatives (e.g., magnesium ascorbyl phosphate, sodium ascorbyl phosphate, ascorbyl sorbate), tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (commercially available under the tradename Trolox.sup.R), gallic acid and its alkyl esters, especially propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, lipoic acid, amines (e.g., N,N-diethylhydroxylamine, amino-guanidine), sulfhydryl compounds (e.g., glutathione), dihydroxy fumaric acid and its salts, lycine pidolate, arginine pilolate, nordihydroguaiaretic acid, bioflavonoids, curcumin, lysine, methionine, proline, superoxide dismutase, silymarin, tea extracts, grape skin/seed extracts, melanin, and rosemary extracts may be used.


The foam of the present invention is suitable for delivering skin protecting and revitalizing anti-oxidants/radical scavengers. It is further pointed out that polyunsaturated fatty acids, containing omega-3 and omega-6 fatty acids (e.g., linoleic and linolenic acid, gamma-linoleic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial in the treatment of psoriasis and other skin inflammation conditions. Likewise, emollients and silicone oils exert moisture-retaining and skin protective effects on the skin. Thus in a preferred embodiment, a skin protective foam is provided, wherein the hydrophobic solvent comprises in full or in part, a solvent, selected from the group of emollients, silicone oil and oils, rich in unsaturated fatty acids, thus, affording a synergistic therapeutic effect of the anti-oxidants/radical scavenger agent and the vehicle components.


Self-tanning Active Agents


The oleaginous foams of the present invention are particularly suitable for the uniform delivery of a tanning active agent onto large areas of the skin. It is preferable that the compositions comprise from about 0.1% to about 20%, more preferably from about 2% to about 7%, and still more preferably from about 3% to about 6% of the composition, of dihydroxyacetone, or any other compound, know in the art as an artificial tanning active agent.


Solid Matter Agents


According to a preferred embodiment of the present invention, the at least one active agent comprises solid matter or particulate matter i.e., material that is not soluble in the liquid carrier composition of the foamable composition. For definition purposes, solid matter shall mean material that is not soluble in the foamable composition more than 10% of the concentration intended to be included in said foamable composition. The concentration of the solid matter in the foamable composition is from about 1% to about 20% w/w. In one or more embodiments, the concentration of solid matter in the composition is from about 2% to about 16% w/w.


By way of example, the following classes of solid matter substances are presented.


Metallic oxides, such as titanium dioxide, zinc oxide, zirconium oxide, iron oxide. Preferably, as used in the present invention, titanium dioxide has an average primary particle size of from about 15 nm to about 100 nm, zinc oxide having an average primary particle size of from about 15 nm to about 150 nm, zirconium oxide having an average primary particle size of from about 15 nm to about 150 nm, iron oxide having an average primary particle size of from about 15 nm to about 500 nm, and mixtures thereof. In one embodiment the metal oxides are present in the amount of from about 0.1% to about 20%, preferably from about 0.5% to about 16%, more preferably from about 1% to about 10%, of the composition. In yet another embodiment, such solids are micronized to form particles having primary size of less than 15 nm.


Silicon containing solid matter includes silicone oxide, also termed “silica”, “fumed silica” and “silica gel”, a white or colorless insoluble solid (SiO2); and talc, which is fine grained mineral consisting of hydrated magnesium silicate;


Carbon, for example in the form of amorphous carbon or graphite;


Oxidizing agents, such as benzoyl peroxide, calcium and magnesium hypochlorite;


Metallic Silver, in small particles, including nanocrystalline silver, which is used for antibacterial and wound healing purposes; other metal particles and mineral particles


Cosmetic scrub materials, including, for example meals of strawberry seeds, raspberry seeds, apricot seeds, sweet almond, cranberry seeds;


Pigments, which are insoluble in the foamable composition.


When such solid matter agents are included in the oleaginous foamable composition of the present invention, a novel foam product, combining the refatting, occlusive and protective properties of the oleaginous foam carrier and the beneficial properties of the solid matter agent is afforded. Thus, several unique products can be provided, as exemplified herein:


Generally, products for the prevention and treatment of diaper dermatitis and for skin protection are provided in the form of paste that is intended for application on the baby's posterior, under the diaper. The paste typically includes about 30% oil and/or petrolatum, and about 10% zinc oxide, which are intended to provide a protective barrier between the baby's skin and the irritating environment inside the diaper. While containing the right ingredients, current baby pastes are very viscous and thick, and therefore hard to spread on the target area.


The oleaginous foam for treating or preventing diaper rash of the present invention comprises the following ingredients:


at least one solvent selected from a hydrophobic solvent, a co-solvent, an emollient and mixtures thereof, at a concentration of about 30% to about 90%, preferably between about 30% to about 70%;


water at a concentration of 1% to about 60%;


about 6% to about 20% zinc oxide (or an alternative metal oxide);


at least one non-ionic lipophilic surface active agent, preferably having an HLB value of about 3 to about 10, more preferably about 3.5 to about 9 at a concentration of about 0.1% to about 10%, or between about 0.1% and about 5%;


at least one gelling agent at a concentration of about 0.1% to about 5%;


a liquefied or compressed gas propellant at a concentration of about 3% to about 25% of the total composition, in an aerosol container.


Such foam is superior to current pastes in that it is very fluffy and light. Upon discharge from the aerosol can, it creates a mass, having density between 0.04 gr/mL and 0.2 gr/mL, which is very easy to spread evenly and uniformly on the target area. There is no need to rub thoroughly and therefore, application of the foam does not cause any discomfort to the baby, unlike conventional baby pastes. Following application and spreading of the foam, a protective layer is formed, which is water resistant, and does not wash out under a stream of tap water.


Foam for diaper dermatitis and/or skin protection can further comprise anti-irritant and/or infective agents, such as corticosteroids, anti-inflammatory, anti-allergic, anti-fungal and anti-microbial agents.


Skin-Lightening and Whitening Agents


The foam of the present invention is particularly suitable for the uniform delivery of a skin-lightening agent. When used, the compositions preferably comprise from about 0.1% to about 10%, more preferably from about 0.2% to about 5%, of the composition, of a skin-lightening agent. Suitable skin lightening or whitening agents include those known in the art, including hydroquinone, azelaic acid and other related dicarboxylic acids, and salts and derivatives thereof, retinoids, kojic acid, arbutin, nicotinic acid and its precursors, salts and derivatives, ascorbic acid and salts and derivatives thereof (e.g., magnesium ascorbyl phosphate or sodium ascorbyl phosphate), and herbal extracts (e.g., mulberry extract, placental extract).


In one or more embodiments of the present invention, the foam composition comprises a combination of a skin-whitening agent and a sunscreen agent.


In one or more embodiments of the present invention, the foam composition comprises a combination of a skin-whitening agent and an inorganic sunscreen agent. When inorganic sunscreen agents, e.g. TiO2, are rubbed onto the skin, they leave a white coating, which provides an immediate (although transient) whitening effect, which is highly desirable by the consumer, who wishes to see instant change in his/her appearance. The whitening agent, in combination with the inorganic sunscreen agent in the foam carrier can be easily and uniformly distributed on the skin surface, thereby affording an even instant whitening effect, unlike creams that are difficult to spread evenly on skin areas.


Use of a Solvent, Surface Active Agent, Foam Adjuvant and Polymeric Agent as an Active Agent.


According to one embodiment, the at least one active agent is selected from the group of solvent, surface active agent, foam adjuvant and gelling agent, which are, on a case by case basis known to possess a therapeutic benefit.


Composition and Foam Physical Characteristics


Composition Flow Properties


It is desirable to have an oleaginous foam composition, including solvents, formulation excipients, water (as applicable), active agents and propellant, in a stable formulation, which provides acceptable shelf-life of the product.


Yet, another crucial property of a composition is its level of flow, since a composition that is not free flowing cannot flow through the dip-tube of the aerosol container and create acceptable foam. It has been noted that in the context of the composition of the present invention, compositions comprising semi-solid hydrophobic solvents, e.g., white petrolatum, are excessively viscous and demonstrate poor flowability.


The combination of at least one surface active agent, at least one foaming adjuvant and at least one gelling agent, according to one or more embodiments of the invention provides a low specific gravity foam having superior expandability, flow properties and sheer breakability (among other attributes). According to one or more embodiments of the present invention, the total amount of at least one surface active agent, at least one foam adjuvant (optional) and at least gelling agent, in combination does not exceed 8% (w/w) of foamable composition. In other embodiments, the combined amounts of at least one surface active agent, at least one foaming adjuvant and at least one gelling agent is less than 5% (w/w) of foam composition. The low solid content improves the flow properties of the foam, reduces unpleasant skin residue and reduces the cost of manufacture. As is demonstrated herein, the foam stability and expandability are excellent, despite the low levels of these components in the foam.


Expandability


Expandability is an important feature of a product, intended to treat large surface areas and internal cavities of the body. Thus, in one embodiment of the present invention, the specific gravity of the foam, upon discharge from the aerosol can is between about 0.02 gr/mL and 0.5 gr/mL, more preferably between about 0.04 gr/mL and about 0.2 gr/mL


Foam Physical Characteristics


In terms of foam consistency and texture an acceptable foam is one, that exhibits the following characteristics:


Upon release from the aerosol can, creates a foam mass, which is sustained on a surface for at least one minute;


Foam texture should vary from a very fine creamy foam to a fine bubble structure;


Foam has to have specific gravity in the range of about 0.02 gr/mL to about 0.5 gr/mL, more preferably between about 0.04 gr/mL and about 0.2 gr/mL.


In terms of spreadability and absorption an acceptable foam is one, that:


Does not readily collapse upon dispensing on the skin;


Spreads easily on a skin surface;


Substantially absorbed following rubbing onto the skin.


In terms of organoleptic properties an acceptable foam is one, that:


Creates a pleasant feeling after application;


Leaves minimal oily residue;


Leaves minimal shiny residual look.


The following scale for foam quality is used to evaluate foams:


E (excellent): very rich and creamy in appearance, does not show any bubble structure or shows a very fine (small) bubble structure.


G (good): rich and creamy in appearance, very small bubble size, “dulls” more rapidly than an excellent foam.


FG (fairly good): a moderate amount of creaminess noticeable, bubble structure is noticeable.


F (fair): very little creaminess noticeable, larger bubble structure than a “fairly good” foam.


P (poor): no creaminess noticeable, large bubble structure.


VP (very poor): dry foam, large very dull bubbles, difficult to spread on the skin.


Foam Stability and Breakability


In one or more embodiments, the foam compositions are desirably stable for a long period of time. Thus, the foam composition does not undergo phase separation following at least two freeze/thaw cycles.


According to further embodiments, upon discharge from an aerosol can onto a mucosal membrane at about 37° C., the foam expands to reach its designated volume and stays stable as a foam for at least 60 seconds following application, or about 2 minutes, or even about 3 minutes.


A crucial aspect of foam properties, according to the present invention is breakability. Sheer-force breakability of the foam, as attained by the composition of the present invention is clearly advantageous to thermally-induced breakability, present, for example in U.S. Pat. No. 6,126,920, and the respective Olux® and Luxiq® products, as demonstrated by the fact that according to the use instructions of Olux® and Luxiq®, the foam cannot be applied on the hand and afterwards delivered to the afflicted area, since it collapses upon exposure to skin temperature.


Further Technical Parameters


The composition of the present invention may be contained in and dispensed from a container capable of withstanding the pressure of the propellant gas and having an appropriate valve/nozzle for dispensing the composition as foam under pressure. A customary liquefied or compressed gas propellant can be added, in the amount of about 3 to about 25% of the total composition. Liquefied propellants are gases that exist as liquids under pressure, including high purity hydrocarbons such as propane, isobutane and n-butane, dimethyl ether and chlorofluorocarbons (CFCs). Compressed gasses are exemplified by air, nitrogen and carbon dioxide.


A specific embodiment according to the present invention comprises placing the composition of the present invention on a patch, occlusive tape or the skin-contact compartment of a transdermal delivery apparatus and applying such object onto the skin, in order to attain effective superficial treatment or enhanced penetration of the drug into the skin or through the skin.


Utilizing such strategy, one can apply drugs, which are currently administered systemically or that require transdermal delivery, in the preferred therapeutic system of the present invention. Examples for such drugs are nicotine, testosterone and other male hormones and male hormone precursors, estrogen and other female hormones and hormone precursors, growth hormone, insulin, caffeine, steroidal and non-steroidal antiinflammatory agents and thyroid hormone substitutes.


The therapeutic composition according to the present invention can also be used to prepare cosmetics for beauty purpose by adding into skin care agents and perfume.


Metered Dosing


In order to provide proper therapy, precise dosing is advantageous. According to one preferred embodiment, the foam therapeutic product is adapted for storage in an aerosol container having a metered dose valve associated therewith for dispensing an accurate dose of drug in the form of a foam. More preferably, the metered dose valve is selected to release a foam in a volume that will allow effective spreading of the active agent throughout the body surface with substantially minimal overdose.


In one or more embodiments, the meter dose valve provides a unit dose of between about 10 μL and about 1000 μL. Assuming a representative foam density (specific gravity) of 0.06 g/mL, a 10 μL valve provides a volume of about 0.17 mL of foam, and a 1000 μL metered dose valve provides about 17 mL of foam. Thus, by selecting a specific metered dosing valve and adjusting the foam density by fine tuning formulation parameters and adjusting the ration between the liquid components of the composition and the propellant, one can design an adequate dosage form according to the specific target body surface.


Fields of Pharmaceutical Applications


By including an appropriate therapeutic agent in the foamable carrier, the foam composition of the present invention is useful in treating a patient having a any one of a variety of dermatological disorders (also termed “dermatoses”), such as classified, in a non-limiting exemplary manner, according to the following groups:


Dermatitis including Contact Dermatitis, Atopic Dermatitis, Seborrheic Dermatitis, Nummular Dermatitis, Chronic Dermatitis of the hands and feet, Generalized Exfoliative Dermatitis, Stasis Dermatitis; Lichen Simplex Chronicus; Diaper rash; Bacterial Infections including Cellulitis, Acute Lymphangitis, Lymphadenitis, Erysipelas, Cutaneous Abscesses, Necrotizing Subcutaneous Infections, Staphylococcal Scalded Skin Syndrome, Folliculitis, Furuncles, Hidradenitis Suppurativa, Carbuncles, Paronychial Infections, Erythrasma; Fungal Infections including Dermatophyte Infections, Yeast Infections; Parasitic Infections including Scabies, Pediculosis, Creeping Eruption; Viral Infections; Disorders of Hair Follicles and Sebaceous Glands including Acne, Rosacea, Perioral Dermatitis, Hypertrichosis (Hirsutism), Alopecia, including male pattern baldness, alopecia greata, alopecia universalis and alopecia totalis; Pseudofolliculitis Barbae, Keratinous Cyst; Scaling Papular Diseases including Psoriasis, Pityriasis Rosea, Lichen Planus, Pityriasis Rubra Pilaris; Benign Tumors including Moles, Dysplastic Nevi, Skin Tags, Lipomas, Angiomas, Pyogenic Granuloma, Seborrheic Keratoses, Dermatofibroma, Keratoacanthoma, Keloid; Malignant Tumors including Basal Cell Carcinoma, Squamous Cell Carcinoma, Malignant Melanoma, Paget's Disease of the Nipples, Kaposi's Sarcoma; Reactions to Sunlight including Sunburn, Chronic Effects of Sunlight, Photosensitivity; Bullous Diseases including Pemphigus, Bullous Pemphigoid, Dermatitis Herpetiformis, Linear Immunoglobulin A Disease; Pigmentation Disorders including Hypopigmentation such as Vitiligo, Albinism and Postinflammatory hypopigmentation and Hyperpigmentation such as Melasma (chloasma), Drug-induced hyperpigmentation, Postinflammatory hyperpigmentation; Disorders of Cornification including Ichthyosis, Keratosis Pilaris, Calluses and Corns, Actinic keratosis; Pressure Sores; Disorders of Sweating; Inflammatory reactions including Drug Eruptions, Toxic Epidermal Necrolysis; Erythema Multiforme, Erythema Nodosum, Granuloma Annulare.


The oleaginous compositions of the present invention are useful in the therapy of non-dermatological disorders, which respond to topical/transdermal delivery of an active agent. By way of example, such disorders include localized pain in general, as well as joint pain, muscle pain, back pain, rheumatic pain, arthritis, ostheoarthritis and acute soft tissue injuries and sports injuries. Other disorders of this class include conditions, which respond to hormone therapy, such as hormone replacement therapy, transdermal nicotine administration, and other respective disorders, known in the art of drug delivery.


The oleaginous compositions of the present invention are further useful for the treatment and prevention of disorders and diseases of other body cavities including the rectum, vagina, penile urethra and ear canal.


Thus, the oleaginous foam compositions of the present invention are useful in treating a patient having any one of a variety of gynecological disorders, such as classified, in a non-limiting exemplary manner, according to the following groups:


Pelvic pain, including premenstrual syndrome (PMS), mittelschmerz (severe midcycle pain due to ovulation), dysmenorrhea (pain related to the menstrual cycle), endometriosis, ectopic pregnancy, ovarian cysts and masses, acute pelvic inflammatory disease, pelvic congestion syndrome and vulvodynia; vulvovaginal infections, including bacterial vaginosis, candidal vaginitis, trichomonas vaginalis, herpes simplex genital ulcers and warts, pelvic inflammatory disease (PID), cervicitis, acute and chronic salpingitis; endometriosis; gynecological neoplasms, including endometrial Cancer, ovarian cancer, cervical cancer, vulvar cancer, vaginal cancer, fallopian tube cancer and gestational trophoblastic disease; benign tumors; sexually transmitted diseases; sexual dysfunction disorders that respond to pharmacological therapy, including sexual arousal disorder, female orgasmic disorder, dyspareunia and vaginismus; and various gynecological disorders that respond to hormonal therapy.


The foam according to one or more embodiments of the present invention can be used as a lubricating foam. Without limitation, the lubricating foam is useful in lubrication of the birth canal for easy passage of a newborn baby or the vaginal cavity during intercourse.


Rectal applications include, for example, anal abscess/fistula, anal cancer, anal warts, Crohn's disease, haemorrhoids, anal and perianal pruritus, soreness, and excoriation, perianal thrush, anal fissures, fecal incontinence, constipation, polyps of the colon and rectum.


The oleaginous foam compositions of the present invention are further useful for intra-vaginal and rectal treatment of sexually-transmitted and non-sexually-transmitted infectious disease (STDs).


In one or more embodiments, the invention provides a method of treatment of a disorder of the skin, mucosal membrane, ear channel, vaginal, rectal and penile urethra disorders, comprising topical application of the foam composition of the present invention, whereby one or more active agents, in a therapeutically effective concentration to the afflicted area.


In a further embodiment, the invention provides a method of treatment of a non-dermatological disorder, which responds to topical delivery of an active agent, comprising topical application of the foam composition of the present invention, whereby one or more active agents, in a therapeutically effective concentration to the skin.


Treatment/Therapy


The terms “therapy” and “treatment” as used herein interchangeably, cover any treatment of a disease or disorder, and includes, for example:

    • (i) Curing the disease or disorder;
    • (ii) preventing the disease or disorder from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it;
    • (iii) inhibiting the disease or disorder;
    • (iv) relieving the disease or disorder;
    • (iv) causing regression of the disease;
    • (v) providing a beneficial immunological effect;
    • (vi) improving the quality of life of a subject afflicted by a disease or disorder; and, in the case of cosmetic treatment;
    • (vii) cleansing, beautifying, promoting attractiveness, or altering the appearance without affecting the body's structure or functions.


In the following, some non-limiting examples and experiments are described in detail. This invention is not limited to these examples and experiments. Many variations will suggest themselves are within the full intended scope of the appended claims.


EXAMPLE 1
Anhydrous Foam Comprising a Potent Solvent and MCT Oil

The components of the anhydrous foam are listed in the table below.



















Ingredient
Synonym
Function
%
%
%
%
%






















n-Methyl
NMP
Potent solvent
68.4
0
0
0
0


pyrrolidone


Propylene glycol

Potent solvent
0
69.5
0
0
0


Glycofurol

Potent solvent
0
0
69.5

69.5


Dimethyl
Arlasolve
Potent solvent
0
0
0
70.0
0


isosorbide


MCT oil
Caprylic/Capric
hydrophobic
9.0
9.0
9.0
9.0
9.0



Triglycerides
solvent


Hexylene glycol

Co-solvent
2.1
2.1
2.1
2.1
2.1


Glyceryl

Stabilizer
1.8
1.8
1.8
1.8
1.8


monostearate


Stearyl alcohol

Stabilizer
1.8
1.8
1.8
1.8
1.8


Oleylalcohol

Foam adjuvant
2.3
2.3
2.3
2.3
2.3


Sisterna SP-30
Sucrose ester
Surfactant
0.9
0.9
0.9
0.9
0.9


Sisterna SP70
Sucrose ester
Surfactant
0.9
0.9
0.9
0.9
0.9


Klucel MF
Hydroxypropyl
Gelling agent
0.4
0.4
0.4
0.4
0.4



methylcellulose


Phenonip
Methyl, butyl,
Preservative
0.3
0.3
0.3
0.3
0.3



propyl paraben,



phenoxyethanol


Betamethasone

Active agent
0.1
0
0
0
0


valerate


Mupirocin

Active agent
0
1.0
0
0
0


Ketoconazole

Active agent
0
0
1.0
0
0


Cyclosporine

Active agent
0
0
0
0.5
0


Acyclovir

Active agent
0
0
0
0
5


Propane/butane

Propellant
12.0
10.0
10.0
10.0
10.0





Notes:


The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.


The compositions used only non-ionic surface active agents, in a concentration of about 2%, and the total amount of surface active agent, foam adjuvants and polymeric agent ranged from about 4% to about 6% (w/w).


The foam of this example having a density of about 0.2 gr/mL is useful as a carrier of additional active agents. It is also useful as lubricating foam, for various purposes.






EXAMPLE 2
MCT Oil Foams

The components of the oil/glycerin foam are listed in the table below.




















Ingredient
Synonym
Function
%
%
%
%
%
%























Caprylic/Capric
MCT oil
hydrophobic
60.9
60.0
59.0
60.0
60.0
56.0


Triglycerides

solvent/potent




solvent


Propylene glycol

Co-solvent/poten
10.0
10.0


5.0
5.0




solvent


Hexylene glycol

Co-solvent/poten


10.0
5.0




solvent


Purified water
De-ionized
Solvent
10.0
10.0
10.0
10.0
10.0
10.0



Distilled water


Potent solvent





5.0
5.0
5.0


Lecithin
Phospholipids
Surfactant
10.0
10.0
10.0
10.0
10.0
10.0


Stearyl alcohol
Stearyl alcohol
Stabilizer
5.0
5.0
5.0
5.0
5.0
5.0


Glyceryl
Glyceryl
Stabilizer
2.0
2.0
2.0
2.0
2.0
2.0


monostearate
monostearate


PVP K90
Polyvinyl
Gelling agent
2.0
2.0
2.0
2.0
2.0
2.0



pyrrolidone


Preservative


0.3
0.3
0.3
0.3
0.3
0.3


Betamethasone

Active agent
0.1


valerate


Mupirocin

Active agent

1.0


1.0


Ketoconazole

Active agent


2.0


Tacrolimus

Active agent



1.0


Acyclovir

Active agent





5.0


Propane/butane

Propellant
12.0
10.0
10.0
10.0
10.0
10.0





Notes:


The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.


The potent solvent and hexylene glycol (emollient) may be optionally incorporated.


In these particular examples, the water content was minimal and necessary for the gelling agent incorporation; higher levels of water are an option.


Lecithin is provided as the surfactant. Several types of powdered, de-oiled and liquid (55% to 80% Phosphatidyl choline) phospholids have been tested successfully for the production of acceptable foams.


In certain examples, polyvinylpyrrolidone (PVP) was shown to be the preferred gelling agent.


The compositions use only non-ionic surface active agents, in concentration of about 2%, and the total amount of surface active agent, foam adjuvants and polymeric agent ranged from about 4% to about 6% (w/w).


The foam of this example is useful as a carrier of additional active agents. It is also useful as lubricating foam, for various purposes.


Stearyl alcohol, cetyl alcohol or oleyl alcohol (foam adjuvants) and co-solvents, such as propylene glycol and hexylene glycol, are optionally incorporated in the foam.


Density of the foam is about 0.08 to about 0.12 gr/mL






EXAMPLE 3
Oil/Glycerin Foam

The components of the oil/glycerin foam are listed in the table below.


















Ingredient
Synonym
Function
%
%
%
%





















Glycerin
Glycerol
Co-solvent
32.0
32.0
32.5
40.5


Purified water

Solvent
17.0
17.0
18.55
14.05


MCT oil
Caprylic/Capric
Hydrophobic
9.0
9.0
9.0
8.0



Triglycerides
Solvent


Isopropyl myristate
IPM
Co-solvent
0
0
9.0
8.0


Isopropyl palmitate
IPP
Co-solvent
0
10.0
0
0


Diisopropyl adipate
DISPA
Co-solvent
9.0
0
0
0


Hexylene glycol
Hexylene glycol
Emollient
9.0
9.0
9.0
8.0


Oleyl alcohol
Oleyl alcohol
Foam adjuvant
9.0
9.0
9.0
8.0


Sisterna sp-50
Sucrose ester
Surfactant
1.8
1.8
1.8
1.8


Glyceryl
Glyceryl
Stabilizer
0.4
0.4
0.4
0.4


monostearate
monostearate


Pemulen TR2
Acrylates/C10-30
Stabilizer
0.1
0.1
0.1
0.1



Alkyl Acrylate



Cross-Polymer


Methocel K100M
Methyl cellulose
Gelling agent
0.3
0.3
0.3
0.3


TEA
Tri-ethanolamine
Neutralizer
0.05
0.05
0.05
0.05


Phenonip
Methyl, butyl, propyl
Preservative
0.25
0.35
0.3
0.3



paraben,



phenoxyethanol


Betamethasone

Active agent
0.1
0
0
0


valerate


Mupirocin

Active agent
0
1.0
0
0


Ketoconazole

Active agent
0
0
2.0
0


Cyclosporine

Active agent
0
0
0
0.5


Propane/butane

Propellant
12.0
10.0
8.0
10.0





Notes:


The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.


In non-limiting examples, the oil/glycerin foams of the present invention comprise about 10% to about 20% water, about 37% glycerin and about 30% oil blend and about 10% hexylene glycol.


The compositions use only non-ionic surface active agents, in concentration of about 2%, and the total amount of surface active agent, foam adjuvants and polymeric agent ranged from about 8% to about 12% (w/w).


The foam of this example is useful as a carrier of additional active agents. It is also useful as lubricating foam, for various purposes.


Density of the foam is about 0.18 gr/mL to about 0.20 gr/mL.


Upon release from the aerosol can, foam is released, and stays stable for several minutes, until it is rubbed onto the afflicted area, then it is immediately broken down and absorbed. This property enables convenient and even application with good sensory feeling.






EXAMPLE 4
Compositions Comprising PEG

Compositions comprising polyethylene glycol (PEG) derivatives have been prepared and shown to be excellent foams. According to the following non-limiting example the composition comprises about 80% to about 97.5% PEG 400, about 1% to about 5% of at least one surface active agent having HLB between 2 and 9 and 0.5% gelling agent, prior to the addition of a propellant (about 10% of the total composition). Notably the following compositions did not comprise any water at all.


PEG 400 Foamable Compositions (Vehicle)





















% w/w
% w/w
% w/w
% w/w
% w/w
% w/w
% w/w























PEG400
87.50
91.50
87.50
89.50
87.50
87.50
87.50


Klucel MX (hydroxypropyl
0.50
0
0.50
0
0.50
0
0.50


cellulose)


Klucel LF (hydroxypropyl
0
0.50
0
0.50
0
0.50
0


cellulose)


Lipocol C2 (POE (2) cetyl
2.00
2.00
0
0
0
0
0


ether)


Myrj 52
0
0
2.00
2.00
0
0
0


Steareth-2
0
0
0
0
2.00
2.00
0


Dermofeel G10L (Polyglyceryl-
0
0
0
0
0
0
2.00


10


Laurate)


Propellant
10
6
10
8
10
10
10


Density
0.060
0.063
0.063
0.055
0.052
0.050
0.075





Notes:


The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.


The foams of this example have a non-ionic surface active agent at a concentration of 2%. Total amounts of surface active agent foam adjuvant and polymeric agent is in the range of 2.5%.


The compositions are useful as carriers of various active therapeutic active agents.






The following table exemplifies the use of PEG 400 as a potent solvent for Mupirocin, which is practically insoluble in mineral oil and other commonly used ointment solvents. Note that Mupirocin is incompatible with most solvents and thus, a foam comprising PEG 400 as the sole solvent is highly valuable.


PEG 400 Foamable Compositions, Comprising Mupirocin
















% w/w
% w/w




















Mupirocin
2.00
2.00



PEG400
89.50
89.50



Klucel LF (hydroxypropyl cellulose)
0.50
0.50



Steareth-2
2.00
0



Polyglyceryl-10

2.00



Laurate



Propellant (Propane/butane)*
6.0
6.0



Density
0.060
0.062







Notes:



*The liquefied or gas propellant can be added at a concentration of about 3% to about 25%.



**The foams of this example have a non-ionic surface active agent at a concentration of 2%. Total amounts of surface active agent foam adjuvant and polymeric agent is in the range of 2.5% (w/w).





Claims
  • 1. An foamable pharmaceutical or cosmetic composition, comprising: a polyethylene glycol (PEG) or mixtures thereof, wherein the PEG is present at a concentration of about 70% to about 96.5% by weight of the total composition;at least one gelling agent at a concentration of about 0.1% to about 5% by weight of the total composition;a surface-active agent at a concentration of about 0.1% to about 10% by weight of the total composition; anda therapeutically effective amount of at least one active agent;
  • 2. The composition of claim 1, wherein the at least one gelling agent is selected from the group consisting of natural polymeric materials, semi-synthetic polymeric materials, synthetic polymeric materials, inorganic gelling agents and mixtures thereof.
  • 3. The composition of claim 1, further comprising: at least one liquefied or compressed gas propellant, at a concentration of about 3% to about 25% by weight of the total composition.
  • 4. The composition of claim 1, wherein the polyethylene glycol (PEG) or mixtures thereof is liquid or is flowable at ambient temperature.
  • 5. The composition of claim 1, wherein the polyethylene glycol (PEG) or mixtures thereof have an average Molecular Weight of about 190 kD to about 10,000 kD.
  • 6. The composition of claim 1, wherein the polyethylene glycol (PEG) is selected from the group consisting of PEG200, PEG300, PEG400, PEG600, PEG 4000,PEG 6000 and PEG 10000and mixtures thereof.
  • 7. The composition of claim 1, wherein the polyethylene glycol (PEG) comprises PEG400.
  • 8. The composition of claim 1, wherein the surface-active agent is a non-ionic surface active agent.
  • 9. The composition of claim 1, wherein surface-active agent is selected from the group consisting of sorbitan derivatives, alkoxylated alcohols, hydroxylated derivatives of polymeric silicones, alkylated derivatives of hydroxylated polymeric silicones, glyceryl esters, beeswax derivatives, lecithin, and mixtures thereof.
  • 10. The composition of claim 1, wherein surface-active agent is selected from the group consisting of polysorbates, polyoxyethylene fatty acid esters, polyoxyethylene alkyl ethers, sucrose esters, partial esters of sorbitol and its anhydrides, mono and diglycerides, isoceteth-20, sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate, betaines and mixtures thereof.
  • 11. The composition of claim 10, wherein the surface-active agent comprises a polyoxyethylene alkyl ether.
  • 12. The composition of claim 1, further comprising an emollient.
  • 13. The composition of claim 12, wherein the emollient is selected from the group consisting of hexylene glycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, sucrose esters of fatty acids, octyl hydroxystearate and mixtures thereof.
  • 14. The composition of claim 1, wherein the composition is contained within a pressurized container.
  • 15. The composition of claim 1, further comprising an antioxidant.
  • 16. The composition of claim 15, wherein the antioxidant is one or more antioxidants selected from the group consisting of ascorbic acid (vitamin C) and its salts, ascorbyl esters of fatty acids, ascorbic acid derivatives, tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, gallic acid and its alkyl esters, propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, lipoic acid, amines, sulfhydryl compounds, dihydroxy fumaric acid and its salts, lycine pidolate, arginine pilolate, nordihydroguaiaretic acid, bioflavonoids, curcumin, lysine, methionine, proline, superoxide dismutase, silymarin, tea extracts, grape skin/seed extracts, melanin, and rosemary extracts.
  • 17. An foamable pharmaceutical or cosmetic composition, comprising: a polyethylene glycol (PEG) or mixtures thereof, wherein the PEG is present at a concentration of about 70% to about 96.5% by weight of the total composition;at least one gelling agent at a concentration of about 0.1% to about 5% by weight of the total composition;a surface-active agent at a concentration of about 0.1% to about 10% by weight of the total composition; anda therapeutically effective amount of an antiproliferative agent,
  • 18. The composition of claim 17, wherein the at least one gelling agent is selected from the group consisting of natural polymeric materials, semi-synthetic polymeric materials, synthetic polymeric materials, inorganic gelling agents and mixtures thereof.
  • 19. The foamable therapeutic composition of claim 17, further comprising: at least one liquefied or compressed gas propellant, at a concentration of about 3% to about 25% by weight of the total composition.
  • 20. The composition of claim 17, wherein the polyethylene glycol (PEG) or mixtures thereof is liquid or flowable at ambient temperature.
  • 21. The composition of claim 17, wherein the polyethylene glycol (PEG) is selected from the group consisting of PEG200, PEG300, PEG400, PEG600, PEG 4000,PEG 6000 and PEG 10000and mixtures thereof.
  • 22. The composition of claim 17, wherein the polyethylene glycol (PEG) or mixtures thereof have an average Molecular Weight of about 190 kD to about 10,000 kD.
  • 23. The composition of claim 17, wherein the polyethylene glycol (PEG) comprises PEG400.
  • 24. The composition of claim 17, wherein the surface-active agent is a non-ionic surface active agent.
  • 25. The composition of claim 17, wherein surface-active agent is selected from the group consisting of sorbitan derivatives, alkoxylated alcohols, hydroxylated derivatives of polymeric silicones, alkylated derivatives of hydroxylated polymeric silicones, glyceryl esters, beeswax derivatives, lecithin, and mixtures thereof.
  • 26. The composition of claim 17, wherein surface-active agent is selected from the group consisting of polysorbates, polyoxyethylene fatty acid esters, polyoxyethylene alkyl ethers, sucrose esters, partial esters of sorbitol and its anhydrides, mono and diglycerides, isoceteth-20, sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate, betaines and mixtures thereof.
  • 27. The composition of claim 26, wherein the surface-active agent comprises a polyoxyethylene alkyl ether.
  • 28. The composition of claim 17, further comprising an emollient.
  • 29. The composition of claim 28, wherein the emollient is selected from the group consisting of hexylene glycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, sucrose esters of fatty acids, octyl hydroxystearate and mixtures thereof.
  • 30. The composition of claim 17, wherein the composition is contained within a pressurized container.
  • 31. The composition of claim 17, further comprising an antioxidant.
  • 32. The composition of claim 31, wherein the antioxidant is one or more antioxidant selected from the group consisting of ascorbic acid (vitamin C) and its salts, ascorbyl esters of fatty acids, ascorbic acid derivatives, tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, gallic acid and its alkyl esters, propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, lipoic acid, amines, sulfhydryl compounds, dihydroxy fumaric acid and its salts, lycine pidolate, arginine pilolate, nordihydroguaiaretic acid, bioflavonoids, curcumin, lysine, methionine, proline, superoxide dismutase, silymarin, tea extracts, grape skin/seed extracts, melanin, and rosemary extracts.
  • 33. A foamable composition, comprising: a polyethylene glycol (PEG) or mixtures thereof, wherein the PEG is present at a concentration of about 70% to about 96.5% by weight of the total composition;at least one gelling agent at a concentration of about 0.1% to about 5% by weight of the total composition;a surface-active agent at a concentration of about 0.1% to about 10% by weight of the total composition; anda therapeutically effective amount of a vitamin or a derivative thereof;
  • 34. The composition of claim 33, wherein the at least one gelling agent is selected from the group consisting of natural polymeric materials, semi-synthetic polymeric materials, synthetic polymeric materials, inorganic gelling agents and mixtures thereof.
  • 35. The composition of claim 33, further comprising: at least one liquefied or compressed gas propellant, at a concentration of about 3% to about 25% by weight of the total composition.
  • 36. The composition of claim 33, wherein the polyethylene glycol (PEG) or mixtures thereof is liquid or flowable at ambient temperature.
  • 37. The composition of claim 33, wherein the polyethylene glycol (PEG) is selected from the group consisting of PEG200, PEG300, PEG400, PEG600, PEG 4000,PEG 6000 and PEG 10000and mixtures thereof.
  • 38. The composition of claim 33, wherein the polyethylene glycol (PEG) or mixtures thereof have an average Molecular Weight of about 190 kD to about 10,000 kD.
  • 39. The composition of claim 33, wherein the polyethylene glycol (PEG) comprises PEG400.
  • 40. The composition of claim 33, wherein the surface-active agent is a non-ionic surface active agent.
  • 41. The composition of claim 33, wherein the surface-active agent is selected from the group consisting of sorbitan derivatives, alkoxylated alcohols, hydroxylated derivatives of polymeric silicones, alkylated derivatives of hydroxylated polymeric silicones, glyceryl esters, beeswax derivatives, lecithin, and mixtures thereof.
  • 42. The composition of claim 33, wherein the surface-active agent is selected from the group consisting of polysorbates, polyoxyethylene fatty acid esters, polyoxyethylene alkyl ethers, sucrose esters, partial esters of sorbitol and its anhydrides, mono and diglycerides, isoceteth-20, sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate, betaines and mixtures thereof.
  • 43. The composition of claim 42, wherein the surface-active agent comprises a polyoxyethylene alkyl ether.
  • 44. The composition of claim 33, further comprising an emollient.
  • 45. The composition of claim 44, wherein the emollient is selected from the group consisting of hexylene glycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, sucrose esters of fatty acids, octyl hydroxystearate and mixtures thereof.
  • 46. The composition of claim 33, wherein the composition is contained within a pressurized container.
  • 47. The composition of claim 33, further comprising an antioxidant.
  • 48. The composition of claim 47, wherein the antioxidant is one or more antioxidant selected from the group consisting of ascorbic acid (vitamin C) and its salts, ascorbyl esters of fatty acids, ascorbic acid derivatives, tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, gallic acid and its alkyl esters, propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, lipoic acid, amines, sulfhydryl compounds, dihydroxy fumaric acid and its salts, lycine pidolate, arginine pilolate, nordihydroguaiaretic acid, bioflavonoids, curcumin, lysine, methionine, proline, superoxide dismutase, silymarin, tea extracts, grape skin/seed extracts, melanin, and rosemary extracts.
  • 49. The composition of claim 33, wherein the vitamin comprises a vitamin B3 compound.
  • 50. The composition of claim 49, wherein the composition additionally comprises another vitamin or vitamin derivative.
  • 51. A method of treating or alleviating a hyper proliferative dermal disease, comprising administering topically to a subject having said disorder, a therapeutically effective amount of a foam composition according to claim 17.
  • 52. An foamable pharmaceutical or cosmetic carrier composition, comprising: a polyethylene glycol (PEG) or mixtures thereof, wherein the PEG is present at a concentration of about 70% to about 96.5% by weight of the total composition;at least one gelling agent at a concentration of about 0.1% to about 5% by weight of the total composition; anda surface-active agent at a concentration of about 0.1% to about 10% by weight of the total composition;
  • 53. The composition of claim 52, wherein the at least one gelling agent is selected from the group consisting of natural polymeric materials, semi-synthetic polymeric materials, synthetic polymeric materials, inorganic gelling agents and mixtures thereof.
  • 54. The composition of claim 52, further comprising: at least one liquefied or compressed gas propellant, at a concentration of about 3% to about 25% by weight of the total composition.
  • 55. The composition of claim 52, wherein the polyethylene glycol (PEG) or mixtures thereof is liquid or is flowable at ambient temperature.
  • 56. The composition of claim 52, wherein the polyethylene glycol (PEG) or mixtures thereof have an average Molecular Weight of about 190 kD to about 10,000 kD.
  • 57. The composition of claim 52, wherein the polyethylene glycol (PEG) is selected from the group consisting of PEG200, PEG300, PEG400, PEG600, PEG 4000,PEG 6000 and PEG 10000and mixtures thereof.
  • 58. The composition of claim 52, wherein the polyethylene glycol (PEG) comprises PEG400.
  • 59. The composition of claim 52, wherein the surface-active agent is a non-ionic surface active agent.
  • 60. The therapeutic composition of claim 52, wherein surface-active agent is selected from the group consisting of sorbitan derivatives, alkoxylated alcohols, hydroxylated derivatives of polymeric silicones, alkylated derivatives of hydroxylated polymeric silicones, glyceryl esters, beeswax derivatives, lecithin, and mixtures thereof.
  • 61. The composition of claim 52, wherein the surface-active agent is selected from the group consisting of polysorbates, polyoxyethylene fatty acid esters, polyoxyethylene alkyl ethers, sucrose esters, partial esters of sorbitol and its anhydrides, mono and diglycerides, isoceteth-20, sodium methyl cocoyl taurate, sodium methyl oleoyl taurate, sodium lauryl sulfate, triethanolamine lauryl sulfate, betaines and mixtures thereof.
  • 62. The composition of claim 61, wherein the surface-active agent comprises a polyoxyethylene alkyl ether.
  • 63. The composition of claim 52, further comprising an emollient.
  • 64. The composition of claim 63, wherein the emollient is selected from the group consisting of hexylene glycol, propylene glycol, isostearic acid derivatives, isopropyl palmitate, isopropyl isostearate, diisopropyl adipate, diisopropyl dimerate, maleated soybean oil, octyl palmitate, cetyl lactate, cetyl ricinoleate, tocopheryl acetate, acetylated lanolin alcohol, cetyl acetate, phenyl trimethicone, glyceryl oleate, tocopheryl linoleate, wheat germ glycerides, arachidyl propionate, myristyl lactate, decyl oleate, propylene glycol ricinoleate, isopropyl lanolate, pentaerythrityl tetrastearate, neopentylglycol dicaprylate/dicaprate, isononyl isononanoate, isotridecyl isononanoate, myristyl myristate, triisocetyl citrate, octyl dodecanol, sucrose esters of fatty acids, octyl hydroxystearate and mixtures thereof.
  • 65. The composition of claim 52, wherein the composition is contained within a pressurized container.
  • 66. An pharmaceutical or cosmetic foam carrier, comprising: a polyethylene glycol (PEG) or mixtures thereof, wherein the PEG is present at a concentration of about 70% to about 96.5% by weight of the total composition;at least one gelling agent at a concentration of about 0.1% to about 5% by weight of the total composition;a surface-active agent at a concentration of about 0.1% to about 10% by weight of the total composition,at least one liquefied or compressed gas propellant, at a concentration of about 3% to about 25% by weight of the total composition,
  • 67. The composition of claim 66, further comprising a therapeutically effective amount of an active agent.
  • 68. The composition of claim 67, wherein the at least one gelling agent is selected from the group consisting of locust bean gum, sodium alginate, sodium caseinate, egg albumin, gelatin agar, carrageenin gum sodium alginate, xanthan gum, quince seed extract, tragacanth gum, starch, chemically modified starches, cellulose ethers, hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose, polyvinylpyrrolidone, polyvinylalcohol, guar gum, hydroxypropyl guar gum, soluble starch, cationic celluloses, cationic guars, carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and mixtures thereof.
  • 69. An foamable pharmaceutical or cosmetic composition, comprising: a polyethylene glycol (PEG) or mixtures thereof, wherein the PEG is present at a concentration of about 70% to about 96.5% by weight of the total composition;at least one gelling agent at a concentration of about 0.1% to about 5% by weight of the total composition;a surface-active agent at a concentration of about 0.1% to about 10% by weight of the total composition; anda therapeutically effective amount of at least one active agent;
  • 70. The foamable pharmaceutical or cosmetic composition of claim 1, further comprising a fatty acid or a fatty alcohol.
  • 71. The foamable pharmaceutical or cosmetic composition of claim 52, further comprising a fatty acid or a fatty alcohol.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 10/835,505, filed on Apr. 28, 2004, entitled “Oleaginous Pharmaceutical and Cosmetic Foam,” which claims priority under 35 U.S.C. §119(e) to co-pending U.S. Provisional Patent Application No. 60/530,015, filed Dec. 16, 2003, entitled “Oleaginous Pharmaceutical and Cosmetic Foam,” and U.S. Provisional Patent Application No. 60/492,385, filed Aug. 4, 2003, and entitled “Cosmetic and Pharmaceutical Foam,” all of which are incorporated herein in their entirety by reference.

US Referenced Citations (604)
Number Name Date Kind
1924972 Beckert Aug 1933 A
2085733 Bird Jul 1937 A
2390921 Clark Dec 1945 A
2524590 Boe Oct 1950 A
2586287 Apperson Feb 1952 A
2617754 Neely Nov 1952 A
2968628 Reed Jan 1961 A
3062715 Reese Nov 1962 A
3067784 Gorman Dec 1962 A
3092255 Hohman Jun 1963 A
3092555 Horn Jun 1963 A
3141821 Compeau Jul 1964 A
3142420 Gawthrop Jul 1964 A
3144386 Brighttenback Aug 1964 A
3154075 Weckesser Oct 1964 A
3178352 Erickson Apr 1965 A
3236457 Kennedy et al. Feb 1966 A
3244589 Sunnen Apr 1966 A
3252859 Silver May 1966 A
3261695 Sienciewicz Jul 1966 A
3263869 Corsette Aug 1966 A
3298919 Charles et al. Jan 1967 A
3301444 Wittke Jan 1967 A
3303970 Breslau et al. Feb 1967 A
3330730 Emil Hernaadez Jul 1967 A
3346451 Collins et al. Oct 1967 A
3366494 Bower Jan 1968 A
3369034 Chalmers Feb 1968 A
3384541 Clark et al. May 1968 A
3395214 Mummert Jul 1968 A
3395215 Warren Jul 1968 A
3401849 Weber, III Sep 1968 A
3419658 Amsdon Dec 1968 A
3527559 Sliwinski Sep 1970 A
3559890 Brooks et al. Feb 1971 A
3561262 Borocki Feb 1971 A
3574821 Pfirrmann et al. Apr 1971 A
3577518 Shepherd May 1971 A
3751562 Nichols Aug 1973 A
3770648 Mackles Nov 1973 A
3787566 Gauvreau Jan 1974 A
3819524 Schubert et al. Jun 1974 A
3849580 Weinstein et al. Nov 1974 A
3866800 Schmitt Feb 1975 A
3882228 Boncey et al. May 1975 A
3886084 Vassiliades May 1975 A
3890305 Weber et al. Jun 1975 A
3912665 Spitzer et al. Oct 1975 A
3923970 Breuer Dec 1975 A
3929985 Webb, Jr. Dec 1975 A
3959160 Horsler et al. May 1976 A
3962150 Viola Jun 1976 A
3963833 DeSalva et al. Jun 1976 A
3966090 Prussin et al. Jun 1976 A
3970219 Spitzer et al. Jul 1976 A
3970584 Hart et al. Jul 1976 A
3993224 Harrison Nov 1976 A
3997467 Jederstrom et al. Dec 1976 A
4001391 Feinstone et al. Jan 1977 A
4001442 Stahlberger et al. Jan 1977 A
4019657 Spitzer et al. Apr 1977 A
4102995 Hebborn Jul 1978 A
4110426 Barnhurst et al. Aug 1978 A
4124149 Spitzer et al. Nov 1978 A
4145411 Mende Mar 1979 A
4160827 Cho et al. Jul 1979 A
4213979 Levine Jul 1980 A
4214000 Papa Jul 1980 A
4230701 Holick et al. Oct 1980 A
4241048 Durbak et al. Dec 1980 A
4241149 Labes et al. Dec 1980 A
4252787 Sherman et al. Feb 1981 A
4254104 Suzuki et al. Mar 1981 A
4268499 Keil May 1981 A
4271149 Winicov et al. Jun 1981 A
4292250 DeLuca et al. Sep 1981 A
4292326 Nazzaro-Porro et al. Sep 1981 A
4299826 Luedders Nov 1981 A
4310510 Sherman et al. Jan 1982 A
4323694 Scala, Jr. Apr 1982 A
4335120 Holick et al. Jun 1982 A
4385161 Caunt et al. May 1983 A
4386104 Nazzaro-Porro May 1983 A
4393066 Garrett et al. Jul 1983 A
4439416 Cordon et al. Mar 1984 A
4439441 Hallesy et al. Mar 1984 A
4447486 Hoppe et al. May 1984 A
4508705 Chaudhuri et al. Apr 1985 A
4522948 Walker Jun 1985 A
4529601 Broberg et al. Jul 1985 A
4529605 Lynch et al. Jul 1985 A
4552872 Cooper et al. Nov 1985 A
4574052 Gupte et al. Mar 1986 A
4576961 Lorck et al. Mar 1986 A
4627973 Moran et al. Dec 1986 A
4628063 Haines et al. Dec 1986 A
4672078 Sakai et al. Jun 1987 A
4673569 Shernov et al. Jun 1987 A
4678463 Millar Jul 1987 A
4701320 Hasegawa et al. Oct 1987 A
4725609 Kull et al. Feb 1988 A
4741855 Grote et al. May 1988 A
4752465 Mackles Jun 1988 A
4770634 Pellico Sep 1988 A
4784842 London et al. Nov 1988 A
4792062 Goncalves et al. Dec 1988 A
4798682 Ansmann Jan 1989 A
4804674 Curtis-Prior Feb 1989 A
4806262 Snyder Feb 1989 A
4808388 Beutler et al. Feb 1989 A
4822613 Rodero Apr 1989 A
4827378 Gillan et al. May 1989 A
4828837 Uster et al. May 1989 A
4836217 Fischer et al. Jun 1989 A
4837019 Georgalas et al. Jun 1989 A
4837378 Borgman Jun 1989 A
4844902 Grohe Jul 1989 A
4847068 Dole et al. Jul 1989 A
4855294 Patel et al. Aug 1989 A
4863900 Pollock et al. Sep 1989 A
4867967 Crutcher Sep 1989 A
4873078 Edmundson et al. Oct 1989 A
4874794 Katz Oct 1989 A
4877805 Kligman Oct 1989 A
4885282 Thornfeldt Dec 1989 A
4897262 Nandagiri et al. Jan 1990 A
4906453 Tsoucalas Mar 1990 A
4913893 Varco et al. Apr 1990 A
4954487 Cooper et al. Sep 1990 A
4956049 Bernheim et al. Sep 1990 A
4957732 Grollier et al. Sep 1990 A
4963351 Weston Oct 1990 A
4970067 Panandiker et al. Nov 1990 A
4975466 Bottcher Dec 1990 A
4981677 Thau Jan 1991 A
4981679 Briggs et al. Jan 1991 A
4981845 Pereira et al. Jan 1991 A
4992478 Geria Feb 1991 A
5002540 Brodman et al. Mar 1991 A
5002680 Schmidt et al. Mar 1991 A
5007556 Lover Apr 1991 A
5015471 Birtwistle et al. May 1991 A
5019375 Tanner et al. May 1991 A
5034220 Helioff et al. Jul 1991 A
5035895 Shibusawa et al. Jul 1991 A
5053228 Mori et al. Oct 1991 A
5071648 Rosenblatt Dec 1991 A
5071881 Parfondry et al. Dec 1991 A
5082651 Healey et al. Jan 1992 A
5087618 Bodor Feb 1992 A
5089252 Grollier et al. Feb 1992 A
5091111 Neumiller Feb 1992 A
5094853 Hagarty Mar 1992 A
5100917 Flynn et al. Mar 1992 A
5104645 Cardin et al. Apr 1992 A
5112359 Murphy et al. May 1992 A
5114718 Damani May 1992 A
5122519 Ritter Jun 1992 A
5130121 Kopolow et al. Jul 1992 A
5133972 Ferrini et al. Jul 1992 A
5135915 Czarniecki et al. Aug 1992 A
5137714 Scott Aug 1992 A
5143717 Davis Sep 1992 A
5156765 Smrt Oct 1992 A
5164357 Bartman et al. Nov 1992 A
5164367 Pickart Nov 1992 A
5167950 Lins Dec 1992 A
5171577 Griat et al. Dec 1992 A
5196405 Packman Mar 1993 A
5204093 Victor Apr 1993 A
5208031 Kelly May 1993 A
5217707 Szabo et al. Jun 1993 A
5219877 Shah et al. Jun 1993 A
5221696 Ke et al. Jun 1993 A
5230897 Griffin et al. Jul 1993 A
5236707 Stewart, II Aug 1993 A
5252246 Ding et al. Oct 1993 A
5254334 Ramirez et al. Oct 1993 A
5262407 Leveque et al. Nov 1993 A
5279819 Hayes Jan 1994 A
5286475 Louvet et al. Feb 1994 A
5300286 Gee Apr 1994 A
5301841 Fuchs et al. Apr 1994 A
5308643 Osipow et al. May 1994 A
5314904 Egidio et al. May 1994 A
5322683 Mackles et al. Jun 1994 A
5326557 Glover et al. Jul 1994 A
5344051 Brown Sep 1994 A
5352437 Nakagawa et al. Oct 1994 A
5369131 Poli et al. Nov 1994 A
5378451 Gorman et al. Jan 1995 A
5380761 Szabo Jan 1995 A
5384308 Henkin Jan 1995 A
5385943 Nazzaro-Porro Jan 1995 A
5389676 Michaels Feb 1995 A
5397312 Rademaker et al. Mar 1995 A
5411992 Eini et al. May 1995 A
5422361 Munayyer et al. Jun 1995 A
5429815 Faryniarz et al. Jul 1995 A
5435996 Glover et al. Jul 1995 A
5447725 Damani et al. Sep 1995 A
5449520 Frigerio et al. Sep 1995 A
5451404 Furman Sep 1995 A
5482965 Rajadhyaksha Jan 1996 A
5491245 Gruning et al. Feb 1996 A
5500211 George et al. Mar 1996 A
5508033 Briand et al. Apr 1996 A
5512555 Waldstreicher Apr 1996 A
5514367 Lentini et al. May 1996 A
5514369 Salka et al. May 1996 A
5520918 Smith May 1996 A
5523078 Baylin Jun 1996 A
5527534 Myhling Jun 1996 A
5527822 Scheiner Jun 1996 A
5529770 McKinzie et al. Jun 1996 A
5531703 Skwarek et al. Jul 1996 A
5534261 Rodgers et al. Jul 1996 A
5536743 Borgman Jul 1996 A
5540853 Trinh et al. Jul 1996 A
5545401 Shanbrom Aug 1996 A
5567420 McEleney et al. Oct 1996 A
5576016 Amselem et al. Nov 1996 A
5578315 Chien et al. Nov 1996 A
5585104 Ha et al. Dec 1996 A
5589157 Hatfield Dec 1996 A
5589515 Suzuki et al. Dec 1996 A
5603940 Candau et al. Feb 1997 A
5605679 Hansenne et al. Feb 1997 A
5611463 Favre Mar 1997 A
5612056 Jenner et al. Mar 1997 A
5614171 Clavenna et al. Mar 1997 A
5635469 Fowler et al. Jun 1997 A
5641480 Vermeer Jun 1997 A
5643600 Mathur Jul 1997 A
5645842 Gruning et al. Jul 1997 A
5650554 Moloney Jul 1997 A
5658749 Thornton Aug 1997 A
5658956 Martin et al. Aug 1997 A
5663208 Martin Sep 1997 A
5672634 Tseng et al. Sep 1997 A
5679324 Lisboa et al. Oct 1997 A
5683710 Akemi et al. Nov 1997 A
5695551 Buckingham et al. Dec 1997 A
5700396 Suzuki et al. Dec 1997 A
5716611 Oshlack et al. Feb 1998 A
5719122 Chiodini et al. Feb 1998 A
5719197 Kanios et al. Feb 1998 A
5725872 Stamm et al. Mar 1998 A
5730964 Waldstreicher Mar 1998 A
5733558 Breton et al. Mar 1998 A
5733572 Unger et al. Mar 1998 A
5747049 Tominaga May 1998 A
5753241 Ribier et al. May 1998 A
5753245 Fowler et al. May 1998 A
5759520 Sachetto Jun 1998 A
5759579 Singh et al. Jun 1998 A
5767104 Bar-Shalom et al. Jun 1998 A
5783202 Tomlinson et al. Jul 1998 A
5792448 Dubief et al. Aug 1998 A
5792922 Moloney Aug 1998 A
5804546 Hall et al. Sep 1998 A
5817322 Xu et al. Oct 1998 A
5824650 De Lacharriere et al. Oct 1998 A
5833960 Gers-Barlag et al. Nov 1998 A
5837270 Burgess Nov 1998 A
5840744 Borgman Nov 1998 A
5840771 Oldham et al. Nov 1998 A
5843411 Hernandez et al. Dec 1998 A
5846983 Sandborn et al. Dec 1998 A
5849042 Lim et al. Dec 1998 A
5856452 Moloney et al. Jan 1999 A
5858371 Singh et al. Jan 1999 A
5866040 Nakama et al. Feb 1999 A
5869529 Sintov et al. Feb 1999 A
5871720 Gutierrez et al. Feb 1999 A
5877216 Place et al. Mar 1999 A
5879469 Avram et al. Mar 1999 A
5885581 Massand Mar 1999 A
5889028 Sandborn et al. Mar 1999 A
5889054 Yu et al. Mar 1999 A
5891458 Britton Apr 1999 A
5902574 Stoner et al. May 1999 A
5902789 Stoltz May 1999 A
5905092 Osborne et al. May 1999 A
5911981 Dahms et al. Jun 1999 A
5912007 Pan et al. Jun 1999 A
5914122 Otterbeck et al. Jun 1999 A
5914310 Li et al. Jun 1999 A
5922331 Mausner Jul 1999 A
5948682 Moloney Sep 1999 A
5951993 Scholz et al. Sep 1999 A
5952373 Lanzendorfer et al. Sep 1999 A
5952392 Katz et al. Sep 1999 A
5961957 McAnalley Oct 1999 A
5972310 Sachetto Oct 1999 A
5976555 Liu et al. Nov 1999 A
5980904 Leverett et al. Nov 1999 A
5993846 Friedman et al. Nov 1999 A
6006948 Auer Dec 1999 A
6019967 Breton et al. Feb 2000 A
6024942 Tanner et al. Feb 2000 A
6033647 Touzan et al. Mar 2000 A
6039936 Restle et al. Mar 2000 A
6042848 Lawyer et al. Mar 2000 A
6045779 Mueller et al. Apr 2000 A
6071536 Suzuki et al. Jun 2000 A
6075056 Quigley, Jr. et al. Jun 2000 A
6080394 Lin et al. Jun 2000 A
6087317 Gee Jul 2000 A
6090772 Kaiser et al. Jul 2000 A
6093408 Hasenoehrl et al. Jul 2000 A
6110477 Hernandez et al. Aug 2000 A
6113888 Castro et al. Sep 2000 A
6116466 Gueret et al. Sep 2000 A
6121210 Taylor Sep 2000 A
6126920 Jones et al. Oct 2000 A
6140355 Egidio et al. Oct 2000 A
6146645 Deckers et al. Nov 2000 A
6146664 Siddiqui Nov 2000 A
6162834 Sebillotte-Arnaud et al. Dec 2000 A
6165455 Torgerson et al. Dec 2000 A
6168576 Reynolds Jan 2001 B1
6171347 Kunz et al. Jan 2001 B1
6180669 Tamarkin Jan 2001 B1
6183762 Deckers et al. Feb 2001 B1
6186367 Harrold Feb 2001 B1
6187290 Gilchrist et al. Feb 2001 B1
6189810 Nerushai et al. Feb 2001 B1
6204285 Fabiano et al. Mar 2001 B1
6210656 Touzan et al. Apr 2001 B1
6210742 Deckers et al. Apr 2001 B1
6214318 Osipow et al. Apr 2001 B1
6221381 Shelford et al. Apr 2001 B1
6224888 Vatter et al. May 2001 B1
6231837 Stroud et al. May 2001 B1
6232315 Shafer et al. May 2001 B1
6251369 Stoltz Jun 2001 B1
6258374 Friess et al. Jul 2001 B1
6271295 Powell et al. Aug 2001 B1
6274150 Simonnet et al. Aug 2001 B1
6287546 Reich et al. Sep 2001 B1
6294550 Place et al. Sep 2001 B1
6299023 Arnone Oct 2001 B1
6299900 Reed et al. Oct 2001 B1
6305578 Hildebrandt et al. Oct 2001 B1
6306841 Place et al. Oct 2001 B1
6308863 Harman Oct 2001 B1
6319913 Mak et al. Nov 2001 B1
6328950 Franzke et al. Dec 2001 B1
6333362 Lorant Dec 2001 B1
6335022 Simonnet et al. Jan 2002 B1
6341717 Auer Jan 2002 B2
6344218 Dodd et al. Feb 2002 B1
6358541 Goodman Mar 2002 B1
6372234 Deckers et al. Apr 2002 B1
6375960 Simonnet et al. Apr 2002 B1
6383471 Chen et al. May 2002 B1
6395258 Steer May 2002 B1
6395300 Straub et al. May 2002 B1
6403061 Candau et al. Jun 2002 B1
6403069 Chopra et al. Jun 2002 B1
6410036 De Rosa et al. Jun 2002 B1
6423323 Neubourg Jul 2002 B2
6428772 Singh et al. Aug 2002 B1
6433003 Bobrove et al. Aug 2002 B1
6433024 Popp et al. Aug 2002 B1
6433033 Isobe et al. Aug 2002 B1
6437006 Yoon et al. Aug 2002 B1
6440429 Torizuka et al. Aug 2002 B1
6455076 Hahn et al. Sep 2002 B1
6468989 Chang et al. Oct 2002 B1
6479058 McCadden Nov 2002 B1
6486168 Skwierczynski et al. Nov 2002 B1
6488947 Bekele Dec 2002 B1
6511655 Muller et al. Jan 2003 B1
6514487 Barr Feb 2003 B1
6524594 Santora et al. Feb 2003 B1
6531118 Gonzalez et al. Mar 2003 B1
6536629 van der Heijden Mar 2003 B2
6544530 Friedman Apr 2003 B1
6548074 Mohammadi Apr 2003 B1
6562355 Renault May 2003 B1
6566350 Ono et al. May 2003 B2
6582679 Stein et al. Jun 2003 B2
6582710 Deckers et al. Jun 2003 B2
6589509 Keller et al. Jul 2003 B2
6596287 Deckers et al. Jul 2003 B2
6599513 Deckers et al. Jul 2003 B2
6620773 Stork et al. Sep 2003 B1
6649571 Morgan Nov 2003 B1
6649574 Cardis et al. Nov 2003 B2
6672483 Roy et al. Jan 2004 B1
6682726 Marchesi et al. Jan 2004 B2
6691898 Hurray et al. Feb 2004 B2
6709663 Espinoza Mar 2004 B2
6730288 Abram May 2004 B1
6753000 Breton et al. Jun 2004 B2
6753167 Moloney et al. Jun 2004 B2
6762158 Lukenbach et al. Jul 2004 B2
6765001 Gans et al. Jul 2004 B2
6774114 Castiel et al. Aug 2004 B2
6777591 Chaudhary Aug 2004 B1
6790435 Ma et al. Sep 2004 B1
6796973 Contente et al. Sep 2004 B1
RE38623 Hernandez et al. Oct 2004 E
6811767 Bosch et al. Nov 2004 B1
6834778 Jinbo et al. Dec 2004 B2
6843390 Bristor Jan 2005 B1
6875438 Kraemer et al. Apr 2005 B2
6902737 Quemin et al. Jun 2005 B2
6946120 Wai-Chiu So et al. Sep 2005 B2
6946139 Henning Sep 2005 B2
6951654 Malcolm et al. Oct 2005 B2
6955816 Klysz Oct 2005 B2
6956062 Beilfuss et al. Oct 2005 B2
6958154 Brandt et al. Oct 2005 B2
6969521 Gonzalez et al. Nov 2005 B1
7014844 Mahalingam et al. Mar 2006 B2
7029659 Abram et al. Apr 2006 B2
7060253 Mundschenk Jun 2006 B1
7078058 Jones et al. Jul 2006 B2
7137536 Walters et al. Nov 2006 B2
7225518 Eidenschink et al. Jun 2007 B2
7235251 Hamer et al. Jun 2007 B2
7270828 Masuda et al. Sep 2007 B2
7575739 Tamarkin et al. Aug 2009 B2
7654415 van der Heijden Feb 2010 B2
7700076 Tamarkin et al. Apr 2010 B2
20010006654 Cannell et al. Jul 2001 A1
20010027218 Stern et al. Oct 2001 A1
20010036450 Verite et al. Nov 2001 A1
20020002151 Ono et al. Jan 2002 A1
20020004063 Zhang Jan 2002 A1
20020013481 Schonrock et al. Jan 2002 A1
20020015721 Simonnet et al. Feb 2002 A1
20020032171 Chen et al. Mar 2002 A1
20020035046 Lukenbach et al. Mar 2002 A1
20020035087 Barclay Mar 2002 A1
20020035182 L'Alloret et al. Mar 2002 A1
20020039591 Dahle Apr 2002 A1
20020044659 Ohta Apr 2002 A1
20020045659 Michelet et al. Apr 2002 A1
20020048798 Avery et al. Apr 2002 A1
20020058010 Picard-Lesboueyries et al. May 2002 A1
20020072544 Miller et al. Jun 2002 A1
20020098215 Douin et al. Jul 2002 A1
20020111281 Vishnupad Aug 2002 A1
20020117516 Lasserre et al. Aug 2002 A1
20020134376 Castro et al. Sep 2002 A1
20020143188 Garvey et al. Oct 2002 A1
20020182162 Shahinpoor et al. Dec 2002 A1
20020198136 Mak et al. Dec 2002 A1
20030006193 Ikeda et al. Jan 2003 A1
20030031693 Breton et al. Feb 2003 A1
20030053961 Eccard Mar 2003 A1
20030078172 Guiramand et al. Apr 2003 A1
20030175232 Elliott et al. Sep 2003 A1
20030175315 Yoo et al. Sep 2003 A1
20030185839 Podolsky Oct 2003 A1
20030206955 Sonneville-Aubrun et al. Nov 2003 A1
20030215472 Bonda et al. Nov 2003 A1
20040018228 Fischell et al. Jan 2004 A1
20040028752 Kamm et al. Feb 2004 A1
20040038912 Michelet et al. Feb 2004 A1
20040053797 Chen et al. Mar 2004 A1
20040058878 Walker Mar 2004 A1
20040063787 Villanueva Apr 2004 A1
20040078896 Hellyer et al. Apr 2004 A1
20040105825 Henning Jun 2004 A1
20040120917 Perrier et al. Jun 2004 A1
20040127554 Ghisalberti Jul 2004 A1
20040138179 Goldstein et al. Jul 2004 A1
20040151671 Abram et al. Aug 2004 A1
20040184992 Abram Sep 2004 A1
20040185123 Mazzio et al. Sep 2004 A1
20040191196 Tamarkin Sep 2004 A1
20040192754 Shapira et al. Sep 2004 A1
20040197276 Takase et al. Oct 2004 A1
20040197295 Riedel et al. Oct 2004 A1
20040219122 Masuda et al. Nov 2004 A1
20040219176 Dominguez Nov 2004 A1
20040229813 DiPiano et al. Nov 2004 A1
20040234475 Lannibois-Drean et al. Nov 2004 A1
20040241099 Popp et al. Dec 2004 A1
20040247531 Riedel et al. Dec 2004 A1
20040253275 Eini et al. Dec 2004 A1
20040258627 Riedel et al. Dec 2004 A1
20040265240 Tamarkin et al. Dec 2004 A1
20050002976 Wu Jan 2005 A1
20050013853 Gil-Ad et al. Jan 2005 A1
20050031547 Tamarkin et al. Feb 2005 A1
20050042182 Arkin Feb 2005 A1
20050054991 Tobyn et al. Mar 2005 A1
20050069566 Tamarkin et al. Mar 2005 A1
20050074414 Tamarkin et al. Apr 2005 A1
20050075407 Tamarkin et al. Apr 2005 A1
20050079139 Jacques et al. Apr 2005 A1
20050084551 Jensen et al. Apr 2005 A1
20050101936 Gonzales et al. May 2005 A1
20050106197 Blin et al. May 2005 A1
20050123496 Shah et al. Jun 2005 A1
20050186142 Tamarkin et al. Aug 2005 A1
20050186147 Tamarkin et al. Aug 2005 A1
20050189377 Lanzendorfer et al. Sep 2005 A1
20050196414 Dake et al. Sep 2005 A1
20050205086 Tamarkin et al. Sep 2005 A1
20050222090 Cheng et al. Oct 2005 A1
20050232869 Tamarkin et al. Oct 2005 A1
20050244342 Friedman et al. Nov 2005 A1
20050244354 Speron Nov 2005 A1
20050245902 Cornish et al. Nov 2005 A1
20050255048 Hirsh et al. Nov 2005 A1
20050266035 Healy et al. Dec 2005 A1
20050271596 Friedman et al. Dec 2005 A1
20050271598 Friedman et al. Dec 2005 A1
20050276836 Wilson et al. Dec 2005 A1
20050281755 Zarif et al. Dec 2005 A1
20050281766 Martin et al. Dec 2005 A1
20050285912 Delametter et al. Dec 2005 A1
20050287081 Aust et al. Dec 2005 A1
20060008432 Scarampi et al. Jan 2006 A1
20060018937 Friedman Jan 2006 A1
20060018938 Neubourg Jan 2006 A1
20060029565 Xu et al. Feb 2006 A1
20060057168 Larm Mar 2006 A1
20060088561 Eini et al. Apr 2006 A1
20060110418 Johnson May 2006 A1
20060121073 Goyal et al. Jun 2006 A1
20060140984 Tamarkin et al. Jun 2006 A1
20060140990 Bortz et al. Jun 2006 A1
20060165616 Brock et al. Jul 2006 A1
20060177392 Walden Aug 2006 A1
20060193789 Tamarkin et al. Aug 2006 A1
20060193813 Simonnet Aug 2006 A1
20060204446 Lulla et al. Sep 2006 A1
20060222675 Sabnis et al. Oct 2006 A1
20060233721 Tamarkin et al. Oct 2006 A1
20060239937 Neubourg Oct 2006 A2
20060251684 Annis et al. Nov 2006 A1
20060254597 Thompson Nov 2006 A1
20060263323 Hoang et al. Nov 2006 A1
20060269485 Friedman et al. Nov 2006 A1
20060272199 Licciardello Dec 2006 A1
20060275218 Tamarkin et al. Dec 2006 A1
20060275221 Tamarkin et al. Dec 2006 A1
20060285912 Eini et al. Dec 2006 A1
20060292080 Abram et al. Dec 2006 A1
20070020213 Tamarkin et al. Jan 2007 A1
20070020304 Tamarkin et al. Jan 2007 A1
20070027055 Koivisto et al. Feb 2007 A1
20070036831 Baker Feb 2007 A1
20070059253 Popp et al. Mar 2007 A1
20070069046 Eini et al. Mar 2007 A1
20070071688 Illel et al. Mar 2007 A1
20070098647 Neubourg May 2007 A1
20070134174 Irwin et al. Jun 2007 A1
20070142263 Stahl et al. Jun 2007 A1
20070148112 Dingley et al. Jun 2007 A1
20070148194 Amiji et al. Jun 2007 A1
20070154402 Trumbore et al. Jul 2007 A1
20070237724 Abram et al. Oct 2007 A1
20070253911 Tamarkin et al. Nov 2007 A1
20070264317 Yosha et al. Nov 2007 A1
20070280891 Tamarkin et al. Dec 2007 A1
20070281999 Fox et al. Dec 2007 A1
20070292355 Tamarkin et al. Dec 2007 A1
20070292359 Friedman et al. Dec 2007 A1
20070292461 Tamarkin et al. Dec 2007 A1
20080015271 Abram et al. Jan 2008 A1
20080031907 Tamarkin et al. Feb 2008 A1
20080031908 Aubrun-Sonneville et al. Feb 2008 A1
20080035155 Dahl Feb 2008 A1
20080044444 Tamarkin et al. Feb 2008 A1
20080058055 LeMay et al. Mar 2008 A1
20080069779 Tamarkin et al. Mar 2008 A1
20080131378 Keller et al. Jun 2008 A1
20080138293 Tamarkin et al. Jun 2008 A1
20080138296 Tamarkin et al. Jun 2008 A1
20080152596 Friedman et al. Jun 2008 A1
20080153789 Dmowski et al. Jun 2008 A1
20080166303 Tamarkin et al. Jul 2008 A1
20080167376 Bar-Or et al. Jul 2008 A1
20080188445 Muldoon et al. Aug 2008 A1
20080188446 Muldoon et al. Aug 2008 A1
20080193762 Dubertret et al. Aug 2008 A1
20080206155 Tamarkin et al. Aug 2008 A1
20080206159 Tamarkin et al. Aug 2008 A1
20080206161 Tamarkin et al. Aug 2008 A1
20080241079 Neubourg Oct 2008 A1
20080253973 Tamarkin et al. Oct 2008 A1
20080260655 Tamarkin et al. Oct 2008 A1
20080292560 Tamarkin et al. Nov 2008 A1
20080299220 Tamarkin et al. Dec 2008 A1
20080311167 Oronsky et al. Dec 2008 A1
20080317679 Tamarkin et al. Dec 2008 A1
20090041680 Tamarkin et al. Feb 2009 A1
20090068118 Eini et al. Mar 2009 A1
20090093514 Statham et al. Apr 2009 A1
20090130029 Tamarkin et al. May 2009 A1
20090175799 Tamarkin et al. Jul 2009 A1
20090180970 Tamarkin et al. Jul 2009 A1
20090317338 Tamarkin et al. Dec 2009 A1
20100221194 Loupenok Sep 2010 A1
20110002969 Serraima et al. Jan 2011 A1
Foreign Referenced Citations (257)
Number Date Country
198780257 Sep 1986 AU
933486 Sep 1955 DE
1926796 Nov 1965 DE
4140474 Jun 1993 DE
10138495 Feb 2003 DE
102004016710 Oct 2005 DE
0156507 Oct 1985 EP
0186453 Jul 1986 EP
211550 Feb 1987 EP
0214865 Mar 1987 EP
0216856 Apr 1987 EP
0270316 Jun 1988 EP
270316 Jun 1988 EP
297436 Jan 1989 EP
326196 Aug 1989 EP
336812 Oct 1989 EP
0391124 Oct 1990 EP
0404376 Dec 1990 EP
414920 Mar 1991 EP
0484530 May 1992 EP
485299 May 1992 EP
0488089 Jun 1992 EP
504301 Sep 1992 EP
0535327 Apr 1993 EP
0569773 Nov 1993 EP
0598412 Nov 1993 EP
0676198 Oct 1995 EP
0738516 Oct 1996 EP
0824911 Feb 1998 EP
829259 Mar 1998 EP
928608 Jul 1999 EP
0979654 Feb 2000 EP
0993827 Apr 2000 EP
1055425 Nov 2000 EP
0506197 Jul 2001 EP
1215258 Jun 2002 EP
1287813 Mar 2003 EP
1308169 May 2003 EP
1397118 Mar 2004 EP
1428521 Jun 2004 EP
1438946 Jul 2004 EP
1189579 Sep 2004 EP
1475381 Nov 2004 EP
1483001 Dec 2004 EP
1500385 Jan 2005 EP
1600185 Nov 2005 EP
1734927 Dec 2006 EP
1758547 Mar 2007 EP
1584324 Nov 2007 EP
1889609 Feb 2008 EP
2736824 Jan 1997 FR
2774595 Aug 1999 FR
2840903 Dec 2003 FR
2860976 Apr 2005 FR
2915891 Nov 2008 FR
808104 Jan 1959 GB
808105 Jan 1959 GB
922930 Apr 1963 GB
933486 Aug 1963 GB
1026831 Apr 1966 GB
1033299 Jun 1966 GB
1081949 Sep 1967 GB
1121358 Jul 1968 GB
1170152 Nov 1969 GB
1347950 Feb 1974 GB
1376649 Dec 1974 GB
1397285 Jun 1975 GB
1408036 Oct 1975 GB
1489672 Oct 1977 GB
2004746 Apr 1979 GB
1561423 Feb 1980 GB
2114580 Aug 1983 GB
2153686 Aug 1985 GB
2172298 Sep 1986 GB
2166651 May 1996 GB
2337461 Nov 1999 GB
2406791 Apr 2005 GB
0152486 May 2003 IL
60001113 Apr 1978 JP
55069682 May 1980 JP
63119420 May 1988 JP
01100111 Apr 1989 JP
01156906 Jun 1989 JP
2184614 Jul 1990 JP
02184614 Jul 1990 JP
2255890 Oct 1990 JP
04282311 Oct 1992 JP
4312521 Nov 1992 JP
5070340 Mar 1993 JP
5213734 Aug 1993 JP
6100414 Apr 1994 JP
6329532 Nov 1994 JP
7215835 Aug 1995 JP
2008040899 Feb 1996 JP
8119831 May 1996 JP
8165218 Jun 1996 JP
8277209 Oct 1996 JP
9099553 Apr 1997 JP
9110636 Apr 1997 JP
10114619 May 1998 JP
3050289 Sep 1998 JP
11250543 Sep 1999 JP
2000017174 Jan 2000 JP
2000080017 Mar 2000 JP
2000128734 May 2000 JP
2000191429 Jul 2000 JP
2000239140 Sep 2000 JP
2000351726 Dec 2000 JP
2000354623 Dec 2000 JP
2001002526 Jan 2001 JP
2001019606 Jan 2001 JP
2001072963 Mar 2001 JP
2002012513 Jan 2002 JP
2002047136 Feb 2002 JP
2002302419 Oct 2002 JP
2003055146 Feb 2003 JP
2004047136 Feb 2004 JP
2004250435 Sep 2004 JP
2005314323 Nov 2005 JP
2005350378 Dec 2005 JP
2006008574 Jan 2006 JP
2007131539 May 2007 JP
143232 Jul 1998 KR
2001003063 Jan 2001 KR
66796 Jun 2004 UA
WO-8201821 Jun 1982 WO
WO-8605389 Sep 1986 WO
WO-8801863 Mar 1988 WO
WO-8801502 Mar 1988 WO
WO-8801863 Mar 1988 WO
WO-8808316 Nov 1988 WO
WO-8906537 Jul 1989 WO
WO-9005774 May 1990 WO
WO-9111991 Aug 1991 WO
WO9111991 Aug 1991 WO
WO 9111991 Aug 1991 WO
WO-9200077 Jan 1992 WO
WO-9205142 Apr 1992 WO
WO-9211839 Jul 1992 WO
WO-9325189 Dec 1993 WO
WO-9406440 Mar 1994 WO
WO-9603115 Feb 1996 WO
WO-9619921 Jul 1996 WO
WO-9624325 Aug 1996 WO
WO-9627376 Sep 1996 WO
WO-9639119 Dec 1996 WO
WO-9703638 Feb 1997 WO
WO-9739745 Oct 1997 WO
WO-9817282 Apr 1998 WO
WO-9818472 May 1998 WO
WO-9819654 May 1998 WO
WO-9821955 May 1998 WO
WO-9823291 Jun 1998 WO
WO-9836733 Aug 1998 WO
WO-9908649 Feb 1999 WO
WO-9920250 Apr 1999 WO
WO-9937282 Jul 1999 WO
WO-9953923 Oct 1999 WO
WO-0009082 Feb 2000 WO
WO-0015193 Mar 2000 WO
WO-0023051 Apr 2000 WO
WO-0033825 Jun 2000 WO
WO-0038731 Jul 2000 WO
WO-0061076 Oct 2000 WO
WO-0076461 Dec 2000 WO
WO-0108681 Feb 2001 WO
WO-0110961 Feb 2001 WO
WO-0154679 Aug 2001 WO
WO-0162209 Aug 2001 WO
WO-0170242 Sep 2001 WO
WO-0182880 Nov 2001 WO
WO-0185102 Nov 2001 WO
WO-0185128 Nov 2001 WO
WO-0200820 Jan 2002 WO
WO-0215860 Feb 2002 WO
WO-0215873 Feb 2002 WO
WO-0228435 Apr 2002 WO
WO-0241847 May 2002 WO
WO-0243490 Jun 2002 WO
WO-02062324 Aug 2002 WO
WO-02078667 Oct 2002 WO
WO-02087519 Nov 2002 WO
WO-03000223 Jan 2003 WO
WO-03002082 Jan 2003 WO
WO-03051294 Jun 2003 WO
WO-03053292 Jul 2003 WO
WO-03055445 Jul 2003 WO
WO-03055454 Jul 2003 WO
WO-03075851 Sep 2003 WO
WO-03092641 Nov 2003 WO
WO-2004017962 Mar 2004 WO
WO-2004037225 May 2004 WO
WO-2004037197 May 2004 WO
WO-2004064833 Aug 2004 WO
WO-2004064833 Aug 2004 WO
WO-2004071479 Aug 2004 WO
WO-2004064769 Aug 2004 WO
WO-2004078896 Sep 2004 WO
WO-2004078158 Sep 2004 WO
WO-2004093895 Nov 2004 WO
WO-2004112780 Dec 2004 WO
WO-2005011567 Feb 2005 WO
WO-2005018530 Mar 2005 WO
WO-2005018530 Mar 2005 WO
WO-2005032522 Apr 2005 WO
WO-2005044219 May 2005 WO
WO-2005065652 Jul 2005 WO
WO-2005063224 Jul 2005 WO
WO-2005076697 Aug 2005 WO
WO-2005097068 Oct 2005 WO
WO-2005097068 Oct 2005 WO
WO-2005102539 Nov 2005 WO
WO-2005117813 Dec 2005 WO
WO-2006003481 Jan 2006 WO
WO-2006003481 Jan 2006 WO
WO-2006010589 Feb 2006 WO
WO-2006011046 Feb 2006 WO
WO-2006020682 Feb 2006 WO
WO-2006031271 Mar 2006 WO
WO-2006028339 Mar 2006 WO
WO-2006045170 May 2006 WO
WO-2006091229 Aug 2006 WO
WO-2006079632 Aug 2006 WO
WO-2006081327 Aug 2006 WO
WO-2006100485 Sep 2006 WO
WO-2006120682 Nov 2006 WO
WO-2006121610 Nov 2006 WO
WO-2006122158 Nov 2006 WO
WO-2006129161 Dec 2006 WO
WO-2006131784 Dec 2006 WO
WO-2007007208 Jan 2007 WO
WO-2007012977 Feb 2007 WO
WO-2007023396 Mar 2007 WO
WO-2007031621 Mar 2007 WO
WO-2007039825 Apr 2007 WO
WO-2007050543 May 2007 WO
WO-2007054818 May 2007 WO
WO-2007072216 Jun 2007 WO
WO-2007085899 Aug 2007 WO
WO-2007085902 Aug 2007 WO
WO-2007099396 Sep 2007 WO
WO-2007111962 Oct 2007 WO
WO-2008008397 Jan 2008 WO
WO-2008010963 Jan 2008 WO
WO-2008038147 Apr 2008 WO
WO-2008075207 Jun 2008 WO
WO-2008087148 Jul 2008 WO
WO-2008110872 Sep 2008 WO
WO-2009007785 Jan 2009 WO
WO-2009069006 Jun 2009 WO
WO-2009072007 Jun 2009 WO
WO-2009087578 Jul 2009 WO
WO-2009090495 Jul 2009 WO
WO-2009090558 Jul 2009 WO
WO-2009098595 Aug 2009 WO
WO-2011039637 Apr 2011 WO
WO-2011039638 Apr 2011 WO
Related Publications (1)
Number Date Country
20070280891 A1 Dec 2007 US
Provisional Applications (2)
Number Date Country
60492385 Aug 2003 US
60530015 Dec 2003 US
Continuations (1)
Number Date Country
Parent 10835505 Apr 2004 US
Child 11645444 US