OLED display system and method

Abstract
A method and system control an OLED display to achieve desired color points and brightness levels in an array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel. The method and system select a plurality of reference points in the pixel content domain with known color points and brightness levels. For each set of three sub-pixels of different colors, the method and system determine the share of each sub-pixel to produce the color point and brightness level of each selected reference point, and select the maximum share determined for each sub-pixel as peak brightness needed from that sub-pixel.
Description
FIELD OF THE INVENTION

The present invention relates generally to OLED displays and, more particularly, to an OLED display system and method for improving color accuracy, power consumption or lifetime, and gamma and black level correction of OLED displays that have three or more sub-pixel of different colors and at least one white sub-pixel.


SUMMARY

In accordance with one embodiment, a method and system are provided for controlling an OLED display to achieve desired color points and brightness levels in an array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel. The method and system select a plurality of reference points in the pixel content domain with known color points and brightness levels. For each set of three sub-pixels of different colors, the method and system determine the share of each sub-pixel to produce the color point and brightness level of each selected reference point, and select the maximum share determined for each sub-pixel as the peak brightness needed from that sub-pixel.


In accordance with another embodiment, the method and system identify tri-color sets of three sub-pixels of different colors that encircle a desired color point, and, for each identified tri-color set of sub-pixels, determine the brightness shares of the sub-pixels in that tricolor set to produce the desired color point. The method and system select a set of share factors based on at least a pixel operation point and display performance, modify the brightness shares based on the share factors, and map the modified brightness shares to pixel input data. In one implementation, The method and system determine the efficiencies of the identified tri-color sets, increase the share factor of the tri-color set with the highest efficiency; decrease the share factor of the tri-color set with the lowest efficiency, as the gray scale of the desired color point increases, and decrease the share factor of the tri-color set with the highest efficiency, and increase the share factor of the tri-color set with the lowest efficiency, as the gray scale of the desired color point decreases.


A further embodiment provides an OLED display comprising san array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel for displaying desired color points and brightness levels. Each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel, the sub-pixels having operating conditions that vary with the gray level displayed by the sub-pixel. The pixel has at least two sub-pixels for displaying the same color but having operating conditions that vary differently with the gray level being displayed. A controller selects one of the two sub-pixels displaying the same color, in response to a gray level input to that pixel.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.



FIG. 1 is a flow chart of a routine for calculating the peak brightness of each sub-pixel in a display.



FIG. 2 is a flow chart of a routine for calculating the brightness shares for a tri-color set of sub-pixels.



FIG. 3 is a flow chart of a routine for content mapping based on multiple sub-pixel colors in a display.



FIG. 4 is a diagram of a multiple sub-pixel display structure.



FIG. 5 is a graph of an example of share factors as a function of gray levels of a tricolor set with the lowest and highest efficiencies K1 and K2.



FIG. 6 is a block diagram of two locally optimized sub-pixels.



FIG. 7 is an electrical schematic diagram of a pixel circuit having two locally optimized sub-pixels.



FIG. 8A is a flow chart of a procedure for adjusting the black level of a display panel based on panel uniformity measurements.



FIG. 8B is a flow chart of a procedure for using a measured current response to determine a lookup table for initial compensation of a display panel.



FIG. 9 is a flow chart of a current response measurement procedure.



FIG. 10 is a flow chart of a map response to target curve procedure.





While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION

Sub-Pixel Mapping


To improve color accuracy, power consumption or lifetime, OLED displays may have more than three primary sub-pixel colors. Therefore, proper color mapping is needed to provide continuous color space despite transitions between different color elements. Each pixel in such OLED displays consists of n sub-pixels {SP1, SP2, SP3 . . . SPn}. The peak brightness that each sub-pixel should be able to create can be calculated, and used for the design of the display or for adjusting the gamma levels to required levels.



FIG. 1 is a flow chart of an exemplary routine for calculating the peak brightness for each sub-pixel. The first step 101 selects a plurality of reference points, with known color and brightness, such as peak white points, in the pixel content domain. Step 102 identifies all possible tri-color sets that include three of the sub-pixels. Then for each tri-color set, step 103 calculates the share of each sub-pixel to create the reference content point, i.e., the color and brightness. Step 104 selects the maximum value for each sub-pixel, from all the calculated shares, as the peak brightness that needs to be provided that sub-pixel.


The following is an example of calculating the brightness shares for a tri-color set of sub-pixels for a given white point and peak brightness:














function [Green Red Blue] = Color_Sharing_RGB (Rc, Gc, Bc, Wc)


%% Rc, Gc, Bc the color points of the tri-color sets


%% Wc is the white color point









L = 100; %% Peak Brightness



%% calculating the brightness share











WM= [Wc(1)−1
0
Wc(1);











0
1
0;



Wc(2)
0
Wc(2) ];









LM= [−Wc(1)*L;









L;



−[Wc(2)−1)*L];









x = inx (WM);



Wt = x* LM;












Mt = [Gc(1)/(Gc(2))

Rc(1)/(Rc(2))
Bc(1)/(Bc(2));














1


1
1
;











(1−Gc(1)−Gc(2))/Gc(2)
(1−Rc(1)−Rc(2))/Rc(2)
(1−Bc(1)−









Bc(2))/Bc(2)];



x2 = inx (Mt) ;



CR = x2 * Wt; %% CR is the brightsess share of the trio-color set.



Green = CR(1);



Red = CR(2);



Blue = CR(3);







end










FIG. 2 is a flow chart of an exemplary routine for calculating the brightness shares for the sub-pixels in a tri-color set. The first step 201 finds a set of triangles, made with the tri-color sub-pixels Rc, Gc, Bc that encircle a wanted white point Wc. Step 202 then selects a sub-set of those triangles to be used in creating the wanted color point Wc. Then for each triangle in the subset of triangles, step 203 calculates the brightness share for each sub-pixel in each triangle to create the wanted color point Wc. Step 204 selects a set of sub-pixel brightness shares based on a pixel operation point, display performance and other parameters (K1, K2 . . . Kn). Step 205 then uses the outputs of steps 203 and 204 to modify the sub-pixel brightness shares, based on the calculated brightness shares and share factors. Finally, step 206 maps the modified brightness shares to the pixel input data.


Different standards exist for characterizing colors. One example is the 1931 CIE standard, which characterizes colors by a luminance (brightness) parameter and two color coordinates x and y. The coordinates x and y specify a point on a CIE chromatacity diagram, which represents the mapping of human color perception in terms of the two CIE parameters x and y. The colors that can be matched by combining a given set of three primary colors, such as red, green and blue, are represented by a triangle that joins the coordinates for the three colors, within the CIE chromaticity diagram.


The following is an example of the brightness shares:


The parameters x and y for the color points of the tri-color set and intended white point are as follows:




  • Rc=[0.66 0.34]

  • Bc=[0.14 0.15]

  • Gc=[0.38 0.59]

  • Wc=[0.31 0.33]

  • [Green Red Blue]=Color_Sharing_RGB (Rc, Gc, Bc, Wc)


    The color shares for the tri-color set are as follows:

  • Green=59.8237%

  • Red=17.7716%

  • Blue=22.4047%



Each of the tri-color sets that encircles the pixel content will create a share of the pixel contents K1, K2 . . . Km, where the Ki's are the shares of the respective sub-pixels in each tri-color set in the pixel content. The value of each sub-pixel in each of the tri-color sets is calculated considering the share of each tri-color. One such method is based on the function illustrated in FIG. 3, where step 301 calculates the color point of the input signal for the pixels, and step 302 creates all possible tri-color sets that include three of the sub-pixels. Step 303 then selects the tri-color sets that encircle the pixel color point, and step 304 calculates the share of each color sub-pixel to create the ratio of the pixel content allocated to each selected tri-color set. Step 305 uses all the calculated values for each tri-color set to calculate the total value for each sub-pixel, e.g., the sum of all values calculated for each sub-pixel.



FIG. 4 shows an example of a display incorporating more than three sub-pixel colors (C1, C2, C3, C4, C5) and a wanted color point of Wc. As can be seen, the color point Wc can be created by any of {C1, C2, C4}, {C2, C4, C5}, {C2, C3, C5}, and {C1, C2, C3}. To create the wanted color Wc, one can use the algorithm described above. Also, one can use share factors to create the wanted color based on the sum of all the sets, such as:


Wc=K1*{C1, C2, C4}+K2*{C2, C4, C5}+K3*{C2, C3, C5}+K4*{C1, C2, C3},


where the Ki's are the share factors for the tri-color set.


Dynamic Share Factor Adjustment


The share of each tri-color set can be varied based on the pixel content. For example, some sets provide better characteristics (e.g., uniformity) at some grayscales, whereas other sets can be better for other characteristics (e.g., power consumption) at different grayscales.


In one example, a display consists of Red, Green, Blue and White sub-pixels. The white sub-pixel is very efficient and so it can provide lower power consumption at high brightness. However, due to higher efficiency, the non-uniformity compensation does not work well at lower gray scales. In this case, low gray scales can be created with less efficient sub-pixels (e.g., red, green, and blue). Thus, the share factor can be a function of gray scales to take advantage of different set strengths at each gray level. For example, the share factor of a tri-color set with the lowest efficiency (K1) can be reduced at higher gray levels and increased at lower gray scales. And the share factor of the tri-color set with the highest efficiency (K2=1−K1) can be increased as the gray scale increases. Thus, the display can have both lower-power consumption at higher brightness levels and higher-uniformity at lower gray scales. This function can be step, a linear function or any other complex function. However, a smoothing function can be used at large transitions to avoid contours. FIG. 5 shows an example of the share factors for a two tri-color set system.


Locally Optimized Sub-Pixels


Due to the wide range of specifications for display performance, the sub-pixels will have an optimum operation point, and diverging from that point can affect one or two specifications. For example, to achieve low power consumption, one can use drive TFTs that are as large as possible to reduce the operating voltage. On the other hand, at low current levels, the TFTs will operate in a non-optimized regime of operation (e.g., sub-threshold). On the other hand, using small TFTs to improve the low grayscale performance will affect the power consumption and lifetime due to using large operating currents.


To address the difficulty in having a single sub-pixel optimized across all gray levels and operation ranges (e.g. different environmental conditions, brightness levels, etc), one can add sub-pixels optimized for different operating ranges. To optimize the operation of each sub-pixel for a specific gray-level set, one can change the component size or use a different pixel circuit for each locally optimized sub-pixel. Here, one can share all or some components of the sub-pixel (e.g., OLEDs, bias transistors, bias lines, and others). FIG. 6 illustrates an example using two locally optimized sub-pixels with some shared components and some dedicated components to each sub-pixel. Also, one can have two different load elements (e.g., OLEDs). In this example, the current required for either shared load or combined separate load elements is generated by both sub-pixels 1 and 2 where I1=A1*I and I2=A2*I (I is the total current required for the load, I1 is the current generated by sub-pixel #1, 12 is the current generated by sub-pixel #2, and A2=(1−A1)). Here, A1 and A2 are adjusted for different gray-scales (or operating conditions) to adjust the ratio of each sub-pixel in generating the current.


One can add sub-pixels optimized for different operating ranges. Here, one can share all or some components of the pixel (e.g., OLED, bias transistors, bias lines, and others).



FIG. 7 is a circuit diagram of an exemplary embodiment in which the drive TFT (T1), the programming switch TFT (T2), and the storage element (CS) are optimized for each sub-pixel. Also, the TFT T3, the bias line, the select line (SEL) and the power line (VDD) are shared. In one case, different sizes of drive TFTs can be used to optimize the sub-pixels for different ranges of operation. For example, one can use a smaller drive TFT for one sub-pixel to be used for lower gray scales, and a larger drive TFT for the other sub-pixel to be used for higher gray scales.


Selecting each sub-pixel can be done either through a switch that activates or deactivates the sub-pixel, or through programming a sub-pixel with an off voltage to deactivate it.


The locally optimized sub-pixel method can be used for all sub-pixels or for only selected sub-pixels. For example, in the case of a RGBW sub-pixel structure, optimizing white sub-pixels across all gray levels is very difficult due to high OLED efficiency, while other sub-pixels can be optimized more easily. Thus, one can use a locally optimized sub-pixel method only for the white sub-pixel.


Gamma and Black Level Correction


A gamma calibration procedure ensures that colors displayed by a panel are accurate to the desired gamma curve, usually 2.2. The procedure has now been largely automated. The target white-point and curve are parameterized. The high level process is shown in FIGS. 8A and 8B. This procedure assumes that initial uniformity compensation for the panel has already been applied.


In the procedure of FIG. 8A, step 801 measures the display panel for uniformity compensation, and then curve fits the measured data. A black level is applied to the panel, and the threshold parameter for each sub-pixel is adjusted until the panel is black. In the procedure of FIG. 8B, the current response is measured at step 804, and then mapped to a target curve in step 805. Step 806 applies the resulting lookup table to initial compensation.


One advantage of emissive displays is deep black level. However, due to the non-linear behavior of the pixels and non-uniformity in the pixels, it is difficult to achieve black levels based on a continuous gamma curve. In one method, the worst case is chosen, and the off voltage is calculated based on that. Then that voltage, with some margin, is assigned to the black gray level, which generally puts the panel in a deep negative biasing condition. Since some backplanes are sensitive to negative bias conditions, the panel will develop image burn-in and non-uniformity over time.


To avoid that, the black level can be adjusted based on panel uniformity information. In this case, the uniformity of the pixel is measured at step 801 in FIG. 8A, and the threshold voltage (at which the pixel current is assumed to be off) is calculated at step 802. However, since simplified models are used to reduce the calculation and compensation complexity, the calculated threshold voltage will have some error. To assign a black voltage, the threshold voltage of the pixel is reduced at step 803 until the panel turns black. This can be done for each color individually, and the new modified threshold voltage is used for black voltage level.


In another aspect of this invention, a plurality of sensors are added to the panel, and the voltage of the black level is adjusted until all sensors provide zero readings. In this case, the initial start of the black level can be the calculated threshold voltage.


In another aspect of this invention, the black level for each sensor is adjusted individually, and a map of black level voltage is created based on each sensor data. This map can be created based on different methods of interpolation.


In another aspect of the invention, the black level has at least two values. One value is used for dark environments and another value is used for bright environments. Since the lower black level is not useful in bright environments, the pixel can be slightly on (at a level that is less than or similar to the reflection of the panel). Therefore, the pixel can avoid negative stress which is accelerated under higher brightness levels.


In another aspect of the invention, the black level has at least two values. One value is used when all the sup-pixels are off, and another value is used when at least one sub-pixel is ON. In this case, there can be a threshold for the brightness level of the ON sub-pixels required to switch to the second black level value for the OFF sub-pixels. For example, if the blue sub-pixel is ON and its brightness is higher than 1 nit, the other sub-pixels can be slightly ON (for example, less than 0.01 nit). In this case, the OFF sub-pixels can eliminate the negative bias stress under illumination.


In another aspect of the invention, the brightness of neighboring sub-pixel can be used to switch between different black level values. In this case, a weight can be assigned to the sub-pixels based on their distance from the OFF sub-pixels. In one example, this weight can be a fixed value, dropping to zero after a distance of a selected number of pixels. In another example, the weight can be a linear drop from one to zero. Also, different complex functions can be used for the weight function.


Measure Current Response


The steps for a measure-current-response process are summarized in FIG. 9. The initial step 901 sets a timing controller, which ensures that measurements are taken with the display in the correct mode. Specifically, it ensures that the most recent compensation is being displayed on the panel. It also ensures that TFT and OLED corrections required before a gamma function is applied, are enabled while gamma correction and luminance correction are disabled. To avoid having to write the entire frame buffer to a single value, special flat-field registers can be implemented in the timing controller. When the timing controller is placed in this mode, step 902 writes the desired grey scale to the corresponding colors register, which is sufficient to display the desired color. Since characterizing the panel, especially at higher levels, with the entire panel on can lead to lower brightness and/or current limiting, step 903 sets only part of the panel to show the desired color level.


As pre-set list of grey scales is used to determine the measurement points that will be used. In one implementation, a list of 61 levels is used for characterization. These points are not linearly spaced; they are positioned more densely toward the low end of the curve, becoming sparser as the grey level increases. This is done to generally fit a 2.2 curve, not a linear one, and can be adjusted for other gamma curves. The list is ordered from the lowest target level (e.g., 0) to the highest target (e.g., 1023). Also, it can be in any other order. After applying each color level, the resulting luminance and/or color point (CIE-XY) are then recorded at step 904. Multiple measurements are taken, and error checking is employed to ensure the validity of the readings. For example, if the variation in the reading is too great, the setup is not working properly. Or if the reading shows an increasing or decreasing trend, it means the values have not settled yet. If luminance only is measured by a calibrated sensor, these readings are converted to luminance and color point data during processing based on a calibration curve of the sensor. The order of steps can be changed and still obtain valid results. Steps 903 and 904 are repeated until the last color is detected at step 905, after which steps 902-905 are repeated until the last gray color is detected at step 906.


Map Response to Target Curve


The target curve (e.g., the required gamma response) and white-point are specified as input parameters to the mapping function. The steps of this process are summarized in FIG. 10.


The first step is to load the measured data from the generated by the characterization procedure. If the data to be processed is from a calibrated sensor, one additional step is required. The calibration files for the sensor are used to convert the raw sensor readings to luminance and color point values.


Once the data is loaded, the target color point and peak luminance are used to calculate the peak target luminance for each color. Step 1001 finds the grey scale which results in this luminance, which allows the new maximum grey scale for each color to be determined. If any of the colors are not able to achieve the target, the target is adjusted such that the highest achievable brightness is targeted instead. Then the luminance readings are normalized to one, with respect to this new maximum grey scale, at step 1002.


This normalized data can now be used to map the measurements to the target curve, generating a look up table at step 1003. Linear interpolation is used to estimate the luminance between the measurement points. However, different known curve fitting processes can be used as well. The target curve is created by normalizing the target curve and finding the values for each of the points from lowest gray level (e.g., 0) to the highest gray level (e.g., 1023).


Some cases, like the standard sRGB curve, are actually piece wise. In these cases, a different component is used for each part of the curve. For example, for the standard sRGB, there is a linear component at the low end while the remainder of the curve is exponential. As a result, linearization is applied to the low end of the lookup table at step 1004. The point where linearization needs to be applied can be extracted from mapping the measured data to the standard. For example, the linearization can be applied to the first 100 grey scales where gray 100 represents the brightness points that the standard identifies and the change in the curve.


After the linearization is applied, all that remains is to write the resulting lookup table (LUT) to the appropriate output formats, at step 1005.


While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. A method of controlling an OLED display to achieve desired color points and brightness levels in an array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel, said method comprising selecting a plurality of reference points in a pixel content domain with known color points and brightness levels,identifying all possible tri-color sets of three sub-pixels from the at least three sub-pixels having different colors and the at least one white sub-pixel;for each tri-color set of three sub-pixels, determining a share of each sub-pixel to produce the color point and brightness level of each selected reference point, andselecting the maximum share determined for each sub-pixel as the peak brightness needed for that sub-pixel.
  • 2. The method of claim 1 wherein the at least three sub-pixels having different colors of each pixel comprises red, green and blue sub-pixels.
  • 3. A system for controlling an OLED display to achieve desired color points and brightness levels in an array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel, said system comprising a processor configured to select a plurality of reference points in a pixel content domain with known color points and brightness levels,identify all possible tri-color sets of three sub-pixels from the at least three sub-pixels having different colors and the at least one white sub-pixel,determine, for each tri-color set of three sub-pixels, a share of each sub-pixel to produce the color point and brightness level of each selected reference point, andselect the maximum share determined for each sub-pixel as the peak brightness needed for that sub-pixel.
  • 4. The system of claim 3 wherein the at least three sub-pixels having different colors of each pixel comprises red, green and blue sub-pixels.
  • 5. A method of controlling an OLED display to achieve desired color points and brightness levels in an array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel, said method comprising identifying two or more tri-color sets of three sub-pixels of different colors that encircle a desired color point,for each identified tri-color set of sub-pixels, determining the brightness shares of the sub-pixels in that tricolor set to produce the desired color point,for each identified tri-color set of sub-pixels, selecting a set of share factors based on at least one of a pixel operation point and display performance,modifying said brightness shares based on said share factors, andmapping the modified brightness shares to pixel input data.
  • 6. The method of claim 5 which includes determining the efficiencies of the identified tri-color sets,increasing the set share factor of one of the tri-color sets with the highest efficiency,decreasing the set share factor of one of the tri-color sets with the lowest efficiency, as the gray scale of the desired color point increases, anddecreasing the share factor of the tri-color set with the highest efficiency, and increasing the share factor of the tri-color set with the lowest efficiency, as the gray scale of the desired color point decreases.
  • 7. The method of claim 5 in which each tricolor set of sub-pixels of different colors is a set of red, green and blue sub-pixels.
  • 8. A system for controlling an OLED display to achieve desired color points and brightness levels in an array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel, said system comprising a processor configured to identify two or more tri-color sets of three sub-pixels of different colors that encircle a desired color point,determine, for each identified tri-color set of sub-pixels, the brightness shares of the sub-pixels in that tricolor set to produce the desired color point,select, for each identified tri-color set of sub-pixels, a set share factor based on at least one of: a pixel operation point and display performance,modify said brightness shares based on said set share factors, andmap the modified brightness shares to pixel input data.
  • 9. The system of claim 8 which said processor is configured to: determine the efficiencies of the identified tri-color sets,increase the set share factor of one of the tri-color sets with the highest efficiency, and decrease the set share factor of one of the tri-color sets with the lowest efficiency, as the gray scale of the desired color point increases, anddecrease the set share factor of the tri-color set with the highest efficiency, and increase the set share factor of the tri-color set with the lowest efficiency, as the gray scale of the desired color point decreases.
  • 10. The system of claim 8 in which each tri-color set of sub-pixels of different colors is a set of red, green and blue sub-pixels.
  • 11. A method of controlling an OLED display to achieve desired color points and brightness levels in an array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel, said method comprising determining the color point of an input signal for a selected pixel,identifying all tri-color sets of three sub-pixels of different colors,selecting two or more tri-color sets that encircle said color point of said input signal,for each selected tri-color set of sub-pixels, determining brightness shares of the three sub-pixels of that tri-color set to produce said color point of said input signal,selecting, for each identified tri-color set of sub-pixels, a set share factor based on at least one of: a pixel operation point and display performance,modifying said brightness shares based on said set share factors, andmapping the modified brightness shares to pixel input data.
  • 12. The method of claim 11 in which each tri-color set of sub-pixels of different colors is a set of red, green and blue sub-pixels.
  • 13. An OLED display comprising an array of pixels in which each pixel includes at least three sub-pixels having different colors and at least one white sub-pixel for displaying desired color points and brightness levels, said sub-pixels having operating conditions that vary with the gray level displayed by the sub-pixel,said pixel having at least two sub-pixels for displaying the same color but having operating conditions that vary differently with the gray level being displayed, anda controller for selecting one of the two sub-pixels displaying the same color, in response to a gray level input to that pixel.
  • 14. The OLED display of claim 13 wherein the at least three sub-pixels having different colors of each pixel comprises red, green and blue sub-pixels.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Applications Nos. 61/976,909, filed Apr. 8, 2014, and 61/912,786, filed Dec. 6, 2013, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (504)
Number Name Date Kind
3506851 Polkinghorn Apr 1970 A
3774055 Bapat Nov 1973 A
4090096 Nagami May 1978 A
4160934 Kirsch Jul 1979 A
4354162 Wright Oct 1982 A
4943956 Noro Jul 1990 A
4996523 Bell Feb 1991 A
5153420 Hack Oct 1992 A
5198803 Shie Mar 1993 A
5204661 Hack Apr 1993 A
5266515 Robb Nov 1993 A
5489918 Mosier Feb 1996 A
5498880 Lee Mar 1996 A
5557342 Eto Sep 1996 A
5572444 Lentz Nov 1996 A
5589847 Lewis Dec 1996 A
5619033 Weisfield Apr 1997 A
5648276 Hara Jul 1997 A
5670973 Bassetti Sep 1997 A
5684365 Tang Nov 1997 A
5691783 Numao Nov 1997 A
5714968 Ikeda Feb 1998 A
5723950 Wei Mar 1998 A
5744824 Kousai Apr 1998 A
5745660 Kolpatzik Apr 1998 A
5748160 Shieh May 1998 A
5815303 Berlin Sep 1998 A
5870071 Kawahata Feb 1999 A
5874803 Garbuzov Feb 1999 A
5880582 Sawada Mar 1999 A
5903248 Irwin May 1999 A
5917280 Burrows Jun 1999 A
5923794 McGrath Jul 1999 A
5945972 Okumura Aug 1999 A
5949398 Kim Sep 1999 A
5952789 Stewart Sep 1999 A
5952991 Akiyama Sep 1999 A
5982104 Sasaki Nov 1999 A
5990629 Yamada Nov 1999 A
6023259 Howard Feb 2000 A
6069365 Chow May 2000 A
6091203 Kawashima Jul 2000 A
6097360 Holloman Aug 2000 A
6144222 Ho Nov 2000 A
6177915 Beeteson Jan 2001 B1
6229506 Dawson May 2001 B1
6229508 Kane May 2001 B1
6246180 Nishigaki Jun 2001 B1
6252248 Sano Jun 2001 B1
6259424 Kurogane Jul 2001 B1
6262589 Tamukai Jul 2001 B1
6271825 Greene Aug 2001 B1
6288696 Holloman Sep 2001 B1
6304039 Appelberg Oct 2001 B1
6307322 Dawson Oct 2001 B1
6310962 Chung Oct 2001 B1
6320325 Cok Nov 2001 B1
6323631 Juang Nov 2001 B1
6356029 Hunter Mar 2002 B1
6373454 Knapp Apr 2002 B1
6392617 Gleason May 2002 B1
6414661 Shen Jul 2002 B1
6417825 Stewart Jul 2002 B1
6433488 Bu Aug 2002 B1
6437106 Stoner Aug 2002 B1
6445369 Yang Sep 2002 B1
6475845 Kimura Nov 2002 B2
6501098 Yamazaki Dec 2002 B2
6501466 Yamagishi Dec 2002 B1
6518962 Kimura Feb 2003 B2
6522315 Ozawa Feb 2003 B2
6525683 Gu Feb 2003 B1
6531827 Kawashima Mar 2003 B2
6542138 Shannon Apr 2003 B1
6555420 Yamazaki Apr 2003 B1
6580408 Bae Jun 2003 B1
6580657 Sanford Jun 2003 B2
6583398 Harkin Jun 2003 B2
6583775 Sekiya Jun 2003 B1
6594606 Everitt Jul 2003 B2
6618030 Kane Sep 2003 B2
6639244 Yamazaki Oct 2003 B1
6668645 Gilmour Dec 2003 B1
6677713 Sung Jan 2004 B1
6680580 Sung Jan 2004 B1
6687266 Ma Feb 2004 B1
6690000 Muramatsu Feb 2004 B1
6690344 Takeuchi Feb 2004 B1
6693388 Oomura Feb 2004 B2
6693610 Shannon Feb 2004 B2
6697057 Koyama Feb 2004 B2
6720942 Lee Apr 2004 B2
6724151 Yoo Apr 2004 B2
6734636 Sanford May 2004 B2
6738034 Kaneko May 2004 B2
6738035 Fan May 2004 B1
6753655 Shih Jun 2004 B2
6753834 Mikami Jun 2004 B2
6756741 Li Jun 2004 B2
6756952 Decaux Jun 2004 B1
6756958 Furuhashi Jun 2004 B2
6771028 Winters Aug 2004 B1
6777712 Sanford Aug 2004 B2
6777888 Kondo Aug 2004 B2
6781567 Kimura Aug 2004 B2
6806497 Jo Oct 2004 B2
6806638 Lin Oct 2004 B2
6806857 Sempel Oct 2004 B2
6809706 Shimoda Oct 2004 B2
6815975 Nara Nov 2004 B2
6828950 Koyama Dec 2004 B2
6853371 Miyajima Feb 2005 B2
6859193 Yumoto Feb 2005 B1
6873117 Ishizuka Mar 2005 B2
6876346 Anzai Apr 2005 B2
6885356 Hashimoto Apr 2005 B2
6900485 Lee May 2005 B2
6903734 Eu Jun 2005 B2
6909243 Inukai Jun 2005 B2
6909419 Zavracky Jun 2005 B2
6911960 Yokoyama Jun 2005 B1
6911964 Lee Jun 2005 B2
6914448 Jinno Jul 2005 B2
6919871 Kwon Jul 2005 B2
6924602 Komiya Aug 2005 B2
6937215 Lo Aug 2005 B2
6937220 Kitaura Aug 2005 B2
6940214 Komiya Sep 2005 B1
6943500 LeChevalier Sep 2005 B2
6947022 McCartney Sep 2005 B2
6954194 Matsumoto Oct 2005 B2
6956547 Bae Oct 2005 B2
6975142 Azami Dec 2005 B2
6975332 Arnold Dec 2005 B2
6995510 Murakami Feb 2006 B2
6995519 Arnold Feb 2006 B2
7023408 Chen Apr 2006 B2
7027015 Booth, Jr. Apr 2006 B2
7027078 Reihl Apr 2006 B2
7034793 Sekiya Apr 2006 B2
7038392 Libsch May 2006 B2
7057359 Hung Jun 2006 B2
7061451 Kimura Jun 2006 B2
7064733 Cok Jun 2006 B2
7071932 Libsch Jul 2006 B2
7088051 Cok Aug 2006 B1
7088052 Kimura Aug 2006 B2
7102378 Kuo Sep 2006 B2
7106285 Naugler Sep 2006 B2
7112820 Chang Sep 2006 B2
7116058 Lo Oct 2006 B2
7119493 Fryer Oct 2006 B2
7122835 Ikeda Oct 2006 B1
7127380 Iverson Oct 2006 B1
7129914 Knapp Oct 2006 B2
7161566 Cok Jan 2007 B2
7164417 Cok Jan 2007 B2
7193589 Yoshida Mar 2007 B2
7224332 Cok May 2007 B2
7227519 Kawase Jun 2007 B1
7245277 Ishizuka Jul 2007 B2
7248236 Nathan Jul 2007 B2
7262753 Tanghe Aug 2007 B2
7274363 Ishizuka Sep 2007 B2
7310092 Imamura Dec 2007 B2
7315295 Kimura Jan 2008 B2
7321348 Cok Jan 2008 B2
7339560 Sun Mar 2008 B2
7355574 Leon Apr 2008 B1
7358941 Ono Apr 2008 B2
7368868 Sakamoto May 2008 B2
7397485 Miller Jul 2008 B2
7411571 Huh Aug 2008 B2
7414600 Nathan Aug 2008 B2
7423617 Giraldo Sep 2008 B2
7453054 Lee Nov 2008 B2
7474285 Kimura Jan 2009 B2
7502000 Yuki Mar 2009 B2
7528812 Tsuge May 2009 B2
7535449 Miyazawa May 2009 B2
7554512 Steer Jun 2009 B2
7569849 Nathan Aug 2009 B2
7576718 Miyazawa Aug 2009 B2
7580012 Kim Aug 2009 B2
7589707 Chou Sep 2009 B2
7609239 Chang Oct 2009 B2
7619594 Hu Nov 2009 B2
7619597 Nathan Nov 2009 B2
7633470 Kane Dec 2009 B2
7656370 Schneider Feb 2010 B2
7800558 Routley Sep 2010 B2
7847764 Cok Dec 2010 B2
7859492 Kohno Dec 2010 B2
7868859 Tomida Jan 2011 B2
7876294 Sasaki Jan 2011 B2
7924249 Nathan Apr 2011 B2
7932883 Klompenhouwer Apr 2011 B2
7969390 Yoshida Jun 2011 B2
7978187 Nathan Jul 2011 B2
7994712 Sung Aug 2011 B2
8026876 Nathan Sep 2011 B2
8049420 Tamura Nov 2011 B2
8077123 Naugler, Jr. Dec 2011 B2
8115707 Nathan Feb 2012 B2
8208084 Lin Jun 2012 B2
8223177 Nathan Jul 2012 B2
8232939 Nathan Jul 2012 B2
8259044 Nathan Sep 2012 B2
8264431 Bulovic Sep 2012 B2
8279143 Nathan Oct 2012 B2
8339386 Leon Dec 2012 B2
8441206 Myers May 2013 B2
8493296 Ogawa Jul 2013 B2
20010002703 Koyama Jun 2001 A1
20010009283 Arao Jul 2001 A1
20010024181 Kubota Sep 2001 A1
20010024186 Kane Sep 2001 A1
20010026257 Kimura Oct 2001 A1
20010030323 Ikeda Oct 2001 A1
20010035863 Kimura Nov 2001 A1
20010040541 Yoneda Nov 2001 A1
20010043173 Troutman Nov 2001 A1
20010045929 Prache Nov 2001 A1
20010052606 Sempel Dec 2001 A1
20010052940 Hagihara Dec 2001 A1
20020000576 Inukai Jan 2002 A1
20020011796 Koyama Jan 2002 A1
20020011799 Kimura Jan 2002 A1
20020012057 Kimura Jan 2002 A1
20020014851 Tai Feb 2002 A1
20020018034 Ohki Feb 2002 A1
20020030190 Ohtani Mar 2002 A1
20020047565 Nara Apr 2002 A1
20020052086 Maeda May 2002 A1
20020067134 Kawashima Jun 2002 A1
20020084463 Sanford Jul 2002 A1
20020101172 Bu Aug 2002 A1
20020105279 Kimura Aug 2002 A1
20020117722 Osada Aug 2002 A1
20020122308 Ikeda Sep 2002 A1
20020158587 Komiya Oct 2002 A1
20020158666 Azami Oct 2002 A1
20020158823 Zavracky Oct 2002 A1
20020167471 Everitt Nov 2002 A1
20020167474 Everitt Nov 2002 A1
20020180369 Koyama Dec 2002 A1
20020180721 Kimura Dec 2002 A1
20020181276 Yamazaki Dec 2002 A1
20020186214 Siwinski Dec 2002 A1
20020190924 Asano Dec 2002 A1
20020190971 Nakamura Dec 2002 A1
20020195967 Kim Dec 2002 A1
20020195968 Sanford Dec 2002 A1
20030020413 Oomura Jan 2003 A1
20030030603 Shimoda Feb 2003 A1
20030043088 Booth Mar 2003 A1
20030057895 Kimura Mar 2003 A1
20030058226 Bertram Mar 2003 A1
20030062524 Kimura Apr 2003 A1
20030063081 Kimura Apr 2003 A1
20030071821 Sundahl Apr 2003 A1
20030076048 Rutherford Apr 2003 A1
20030090447 Kimura May 2003 A1
20030090481 Kimura May 2003 A1
20030107560 Yumoto Jun 2003 A1
20030111966 Mikami Jun 2003 A1
20030122745 Miyazawa Jul 2003 A1
20030122813 Ishizuki Jul 2003 A1
20030142088 LeChevalier Jul 2003 A1
20030151569 Lee Aug 2003 A1
20030156101 Le Chevalier Aug 2003 A1
20030174152 Noguchi Sep 2003 A1
20030179626 Sanford Sep 2003 A1
20030185438 Osawa Oct 2003 A1
20030197663 Lee Oct 2003 A1
20030210256 Mori Nov 2003 A1
20030230141 Gilmour Dec 2003 A1
20030230980 Forrest Dec 2003 A1
20030231148 Lin Dec 2003 A1
20040032382 Cok Feb 2004 A1
20040041750 Abe Mar 2004 A1
20040066357 Kawasaki Apr 2004 A1
20040070557 Asano Apr 2004 A1
20040070565 Nayar Apr 2004 A1
20040090186 Kanauchi May 2004 A1
20040090400 Yoo May 2004 A1
20040095297 Libsch May 2004 A1
20040100427 Miyazawa May 2004 A1
20040108518 Jo Jun 2004 A1
20040135749 Kondakov Jul 2004 A1
20040140982 Pate Jul 2004 A1
20040145547 Oh Jul 2004 A1
20040150592 Mizukoshi Aug 2004 A1
20040150594 Koyama Aug 2004 A1
20040150595 Kasai Aug 2004 A1
20040155841 Kasai Aug 2004 A1
20040174347 Sun Sep 2004 A1
20040174349 Libsch Sep 2004 A1
20040174354 Ono Sep 2004 A1
20040178743 Miller Sep 2004 A1
20040183759 Stevenson Sep 2004 A1
20040196275 Hattori Oct 2004 A1
20040207615 Yumoto Oct 2004 A1
20040227697 Mori Nov 2004 A1
20040233125 Tanghe Nov 2004 A1
20040239596 Ono Dec 2004 A1
20040252089 Ono Dec 2004 A1
20040257313 Kawashima Dec 2004 A1
20040257353 Imamura Dec 2004 A1
20040257355 Naugler Dec 2004 A1
20040263437 Hattori Dec 2004 A1
20040263444 Kimura Dec 2004 A1
20040263445 Inukai Dec 2004 A1
20040263541 Takeuchi Dec 2004 A1
20050007355 Miura Jan 2005 A1
20050007357 Yamashita Jan 2005 A1
20050007392 Kasai Jan 2005 A1
20050017650 Fryer Jan 2005 A1
20050024081 Kuo Feb 2005 A1
20050024393 Kondo Feb 2005 A1
20050030267 Tanghe Feb 2005 A1
20050057484 Diefenbaugh Mar 2005 A1
20050057580 Yamano Mar 2005 A1
20050067970 Libsch Mar 2005 A1
20050067971 Kane Mar 2005 A1
20050068270 Awakura Mar 2005 A1
20050068275 Kane Mar 2005 A1
20050073264 Matsumoto Apr 2005 A1
20050083323 Suzuki Apr 2005 A1
20050088103 Kageyama Apr 2005 A1
20050110420 Arnold May 2005 A1
20050110807 Chang May 2005 A1
20050122294 Ben-David Jun 2005 A1
20050140598 Kim Jun 2005 A1
20050140610 Smith Jun 2005 A1
20050145891 Abe Jul 2005 A1
20050156831 Yamazaki Jul 2005 A1
20050162079 Sakamoto Jul 2005 A1
20050168416 Hashimoto Aug 2005 A1
20050179626 Yuki Aug 2005 A1
20050179628 Kimura Aug 2005 A1
20050185200 Tobol Aug 2005 A1
20050200575 Kim Sep 2005 A1
20050206590 Sasaki Sep 2005 A1
20050212787 Noguchi Sep 2005 A1
20050219184 Zehner Oct 2005 A1
20050225683 Nozawa Oct 2005 A1
20050248515 Naugler Nov 2005 A1
20050269959 Uchino Dec 2005 A1
20050269960 Ono Dec 2005 A1
20050280615 Cok Dec 2005 A1
20050280766 Johnson Dec 2005 A1
20050285822 Reddy Dec 2005 A1
20050285825 Eom Dec 2005 A1
20060001613 Routley Jan 2006 A1
20060007072 Choi Jan 2006 A1
20060007249 Reddy Jan 2006 A1
20060012310 Chen Jan 2006 A1
20060012311 Ogawa Jan 2006 A1
20060022305 Yamashita Feb 2006 A1
20060027807 Nathan Feb 2006 A1
20060030084 Young Feb 2006 A1
20060038758 Routley Feb 2006 A1
20060038762 Chou Feb 2006 A1
20060044227 Hadcock Mar 2006 A1
20060066533 Sato Mar 2006 A1
20060077135 Cok Apr 2006 A1
20060077142 Kwon Apr 2006 A1
20060082523 Guo Apr 2006 A1
20060092185 Jo May 2006 A1
20060097628 Suh May 2006 A1
20060097631 Lee May 2006 A1
20060103611 Choi May 2006 A1
20060149493 Sambandan Jul 2006 A1
20060170623 Naugler, Jr. Aug 2006 A1
20060176250 Nathan Aug 2006 A1
20060208961 Nathan Sep 2006 A1
20060208971 Deane Sep 2006 A1
20060214888 Schneider Sep 2006 A1
20060232522 Roy Oct 2006 A1
20060244697 Lee Nov 2006 A1
20060261841 Fish Nov 2006 A1
20060273997 Nathan Dec 2006 A1
20060279481 Haruna Dec 2006 A1
20060284801 Yoon Dec 2006 A1
20060284802 Kohno Dec 2006 A1
20060284895 Marcu Dec 2006 A1
20060290618 Goto Dec 2006 A1
20070001937 Park Jan 2007 A1
20070001939 Hashimoto Jan 2007 A1
20070008251 Kohno Jan 2007 A1
20070008268 Park Jan 2007 A1
20070008297 Bassetti Jan 2007 A1
20070057873 Uchino Mar 2007 A1
20070057874 Le Roy Mar 2007 A1
20070069998 Naugler Mar 2007 A1
20070075727 Nakano Apr 2007 A1
20070076226 Klompenhouwer Apr 2007 A1
20070080905 Takahara Apr 2007 A1
20070080906 Tanabe Apr 2007 A1
20070080908 Nathan Apr 2007 A1
20070097038 Yamazaki May 2007 A1
20070097041 Park May 2007 A1
20070103411 Cok et al. May 2007 A1
20070103419 Uchino May 2007 A1
20070115221 Buchhauser May 2007 A1
20070126672 Tada et al. Jun 2007 A1
20070164664 Ludwicki Jul 2007 A1
20070182671 Nathan Aug 2007 A1
20070236134 Ho Oct 2007 A1
20070236440 Wacyk Oct 2007 A1
20070236517 Kimpe Oct 2007 A1
20070241999 Lin Oct 2007 A1
20070273294 Nagayama Nov 2007 A1
20070285359 Ono Dec 2007 A1
20070290957 Cok Dec 2007 A1
20070290958 Cok Dec 2007 A1
20070296672 Kim Dec 2007 A1
20080001525 Chao Jan 2008 A1
20080001544 Murakami Jan 2008 A1
20080030518 Higgins Feb 2008 A1
20080036706 Kitazawa Feb 2008 A1
20080036708 Shirasaki Feb 2008 A1
20080042942 Takahashi Feb 2008 A1
20080042948 Yamashita Feb 2008 A1
20080048951 Naugler, Jr. Feb 2008 A1
20080055209 Cok Mar 2008 A1
20080055211 Ogawa Mar 2008 A1
20080074413 Ogura Mar 2008 A1
20080088549 Nathan Apr 2008 A1
20080088648 Nathan Apr 2008 A1
20080111766 Uchino May 2008 A1
20080116787 Hsu May 2008 A1
20080117144 Nakano et al. May 2008 A1
20080136770 Peker Jun 2008 A1
20080150845 Ishii Jun 2008 A1
20080150847 Kim Jun 2008 A1
20080158115 Cordes Jul 2008 A1
20080158648 Cummings Jul 2008 A1
20080191976 Nathan Aug 2008 A1
20080198103 Toyomura Aug 2008 A1
20080211749 Weitbruch Sep 2008 A1
20080231558 Naugler Sep 2008 A1
20080231562 Kwon Sep 2008 A1
20080231625 Minami Sep 2008 A1
20080252223 Toyoda Oct 2008 A1
20080252571 Hente Oct 2008 A1
20080259020 Fisekovic Oct 2008 A1
20080290805 Yamada Nov 2008 A1
20080297055 Miyake Dec 2008 A1
20090058772 Lee Mar 2009 A1
20090109142 Takahara Apr 2009 A1
20090121994 Miyata May 2009 A1
20090146926 Sung Jun 2009 A1
20090160743 Tomida Jun 2009 A1
20090174628 Wang Jul 2009 A1
20090184901 Kwon Jul 2009 A1
20090195483 Naugler, Jr. Aug 2009 A1
20090201281 Routley Aug 2009 A1
20090206764 Schemmann Aug 2009 A1
20090213046 Nam Aug 2009 A1
20090244046 Seto Oct 2009 A1
20090262047 Yamashita Oct 2009 A1
20100004891 Ahlers Jan 2010 A1
20100026725 Smith Feb 2010 A1
20100039422 Seto Feb 2010 A1
20100039458 Nathan Feb 2010 A1
20100060911 Marcu Mar 2010 A1
20100079419 Shibusawa Apr 2010 A1
20100165002 Ahn Jul 2010 A1
20100194670 Cok Aug 2010 A1
20100207960 Kimpe Aug 2010 A1
20100225630 Levey Sep 2010 A1
20100251295 Amento Sep 2010 A1
20100277400 Jeong Nov 2010 A1
20100315319 Cok Dec 2010 A1
20100315449 Chaji Dec 2010 A1
20110063197 Chung Mar 2011 A1
20110069051 Nakamura Mar 2011 A1
20110069089 Kopf Mar 2011 A1
20110069094 Knapp Mar 2011 A1
20110074750 Leon Mar 2011 A1
20110149166 Botzas Jun 2011 A1
20110169798 Lee Jul 2011 A1
20110181630 Smith Jul 2011 A1
20110199395 Nathan Aug 2011 A1
20110227964 Chaji Sep 2011 A1
20110242074 Bert Oct 2011 A1
20110273399 Lee Nov 2011 A1
20110293480 Mueller Dec 2011 A1
20120056558 Toshiya Mar 2012 A1
20120062565 Fuchs Mar 2012 A1
20120262184 Shen Oct 2012 A1
20120299970 Bae Nov 2012 A1
20120299978 Chaji Nov 2012 A1
20130027381 Nathan Jan 2013 A1
20130057595 Nathan Mar 2013 A1
20130112960 Chaji May 2013 A1
20130135272 Park May 2013 A1
20130162617 Yoon Jun 2013 A1
20130201223 Li et al. Aug 2013 A1
20130309821 Yoo Nov 2013 A1
20130321671 Cote Dec 2013 A1
20140111567 Nathan et al. Apr 2014 A1
Foreign Referenced Citations (126)
Number Date Country
1 294 034 Jan 1992 CA
2 109 951 Nov 1992 CA
2 249 592 Jul 1998 CA
2 368 386 Sep 1999 CA
2 242 720 Jan 2000 CA
2 354 018 Jun 2000 CA
2 432 530 Jul 2002 CA
2 436 451 Aug 2002 CA
2 438 577 Aug 2002 CA
2 463 653 Jan 2004 CA
2 498 136 Mar 2004 CA
2 522 396 Nov 2004 CA
2 443 206 Mar 2005 CA
2 472 671 Dec 2005 CA
2 567 076 Jan 2006 CA
2 526 782 Apr 2006 CA
2 541 531 Jul 2006 CA
2 550 102 Apr 2008 CA
2 773 699 Oct 2013 CA
1381032 Nov 2002 CN
1448908 Oct 2003 CN
1682267 Oct 2005 CN
1760945 Apr 2006 CN
1886774 Dec 2006 CN
102656621 Sep 2012 CN
0 158 366 Oct 1985 EP
1 028 471 Aug 2000 EP
1 111 577 Jun 2001 EP
1 130 565 Sep 2001 EP
1 194 013 Apr 2002 EP
1 335 430 Aug 2003 EP
1 372 136 Dec 2003 EP
1 381 019 Jan 2004 EP
1 418 566 May 2004 EP
1 429 312 Jun 2004 EP
145 0341 Aug 2004 EP
1 465 143 Oct 2004 EP
1 469 448 Oct 2004 EP
1 521 203 Apr 2005 EP
1 594 347 Nov 2005 EP
1 784 055 May 2007 EP
1854338 Nov 2007 EP
1 879 169 Jan 2008 EP
1 879 172 Jan 2008 EP
2395499 Dec 2011 EP
2 389 951 Dec 2003 GB
1272298 Oct 1989 JP
4-042619 Feb 1992 JP
6-314977 Nov 1994 JP
8-340243 Dec 1996 JP
09-090405 Apr 1997 JP
10-254410 Sep 1998 JP
11-202295 Jul 1999 JP
11-219146 Aug 1999 JP
11 231805 Aug 1999 JP
11-282419 Oct 1999 JP
2000-056847 Feb 2000 JP
2000-81607 Mar 2000 JP
2001-134217 May 2001 JP
2001-195014 Jul 2001 JP
2002-055654 Feb 2002 JP
2002-91376 Mar 2002 JP
2002-514320 May 2002 JP
2002-278513 Sep 2002 JP
2002-333862 Nov 2002 JP
2003-076331 Mar 2003 JP
2003-124519 Apr 2003 JP
2003-177709 Jun 2003 JP
2003-271095 Sep 2003 JP
2003-308046 Oct 2003 JP
2003-317944 Nov 2003 JP
2004-004675 Jan 2004 JP
2004-145197 May 2004 JP
2004-287345 Oct 2004 JP
2005-057217 Mar 2005 JP
2007-065015 Mar 2007 JP
2008-102335 May 2008 JP
4-158570 Oct 2008 JP
2004-0100887 Dec 2004 KR
342486 Oct 1998 TW
473622 Jan 2002 TW
485337 May 2002 TW
502233 Sep 2002 TW
538650 Jun 2003 TW
1221268 Sep 2004 TW
1223092 Nov 2004 TW
200727247 Jul 2007 TW
WO 9848403 Oct 1998 WO
WO 9948079 Sep 1999 WO
WO 0106484 Jan 2001 WO
WO 0127910 Apr 2001 WO
WO 0163587 Aug 2001 WO
WO 02067327 Aug 2002 WO
WO 03001496 Jan 2003 WO
WO 03034389 Apr 2003 WO
WO 03058594 Jul 2003 WO
WO 03063124 Jul 2003 WO
WO 03077231 Sep 2003 WO
WO 2004003877 Jan 2004 WO
WO 2004025615 Mar 2004 WO
WO 2004034364 Apr 2004 WO
WO 2004047058 Jun 2004 WO
WO 2004104975 Dec 2004 WO
WO 2005022498 Mar 2005 WO
WO 2005022500 Mar 2005 WO
WO 2005029455 Mar 2005 WO
WO 2005029456 Mar 2005 WO
WO 2005055185 Jun 2005 WO
WO 2006000101 Jan 2006 WO
WO 2006053424 May 2006 WO
WO 2006063448 Jun 2006 WO
WO 2006084360 Aug 2006 WO
WO 2007003877 Jan 2007 WO
WO 2007079572 Jul 2007 WO
WO 2007120849 Oct 2007 WO
WO 2009048618 Apr 2009 WO
WO 2009055920 May 2009 WO
WO 2010023270 Mar 2010 WO
WO 2010146707 Dec 2010 WO
WO 2011041224 Apr 2011 WO
WO 2011064761 Jun 2011 WO
WO 2011067729 Jun 2011 WO
WO 2012160424 Nov 2012 WO
WO 2012160471 Nov 2012 WO
WO 2012164474 Dec 2012 WO
WO 2012164475 Dec 2012 WO
Non-Patent Literature Citations (131)
Entry
Ahnood : “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009.
Alexander : “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
Alexander : “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
Ashtiani : “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
Chaji : “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
Chaji : “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
Chaji : “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
Chaji : “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
Chaji : “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
Chaji : “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
Chaji : “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
Chaji : “A Novel Driving Scheme for High Resolution Large-area a-SI:H AMOLED displays”; dated Aug. 2005 (3 pages).
Chaji : “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
Chaji : “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
Chaji : “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
Chaji : “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
Chaji : “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
Chaji : “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji : “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
Chaji : “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated My 2003 (4 pages).
Chaji : “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
Chaji : “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
Chaji : “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
Chaji : “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages).
Chaji : “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
Chaji : “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
Chaji : “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
Chaji : “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
Chaji : “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
Chaji : “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
Chaji : “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
Chaji : “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
Chaji : “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
European Search Report for Application No. EP 01 11 22313 dated Sep. 14, 2005 (4 pages).
European Search Report for Application No. EP 04 78 6661 dated Mar. 9, 2009.
European Search Report for Application No. EP 05 75 9141 dated Oct. 30, 2009. (2 pages).
European Search Report for Application No. EP 05 81 9617 dated Jan. 30, 2009.
European Search Report for Application No. EP 06 70 5133 dated Jul. 18, 2008.
European Search Report for Application No. EP 06 72 1798 dated Nov. 12, 2009 (2 pages).
European Search Report for Application No. EP 07 71 0608.6 dated Mar. 19, 2010 (7 pages).
European Search Report for Application No. EP 07 71 9579 dated May 20, 2009.
European Search Report for Application No. EP 07 81 5784 dated Jul. 20, 2010 (2 pages).
European Search Report for Application No. EP 10 16 6143, dated Sep. 3, 2010 (2 pages).
European Search Report for Application No. EP 10 83 4294.0-1903, dated Apr. 8, 2013, (9 pages).
European Search Report for Application No. PCT/CA2006/000177 dated Jun. 2, 2006.
European Supplementary Search Report for Application No. EP 04 78 6662 dated Jan. 19, 2007 (2 pages).
Extended European Search Report for Application No. 11 73 9485.8 mailed Aug. 6, 2013(14 pages).
Extended European Search Report for Application No. EP 09 73 3076.5, mailed Apr. 27, (13 pages).
Extended European Search Report for Application No. EP 11 16 8677.0, mailed Nov. 29, 2012, (13 page).
Extended European Search Report for Application No. EP 11 19 1641.7 mailed Jul. 11, 2012 (14 pages).
Extended European Search Report for Application No. EP 10834297 mailed Oct. 27, 2014 (6 pages).
Fossum, Eric R.. “Active Pixel Sensors: Are CCD's Dinosaurs?” SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages).
Goh , “A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, pp. 583-585.
International Preliminary Report on Patentability for Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages.
International Search Report for Application No. PCT/CA2004/001741 dated Feb. 21, 2005.
International Search Report for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages).
International Search Report for Application No. PCT/CA2005/001007 dated Oct. 18, 2005.
International Search Report for Application No. PCT/CA2005/001897, mailed Mar. 21, 2006 (2 pages).
International Search Report for Application No. PCT/CA2007/000652 dated Jul. 25, 2007.
International Search Report for Application No. PCT/CA2009/000501, mailed Jul. 30, 2009 (4 pages).
International Search Report for Application No. PCT/CA2009/001769, dated Apr. 8, 2010 (3 pages).
International Search Report for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 3 pages.
International Search Report for Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 5 pages.
International Search Report for Application No. PCT/IB2014/060959, Dated Aug. 28, 2014, 5 pages.
International Search Report for Application No. PCT/IB2010/055541 filed Dec. 1, 2010, dated May 26, 2011; 5 pages.
International Search Report for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (6 pages).
International Search Report for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages.
International Search Report for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Search Report for Application No. PCT/IB2012/052372, mailed Sep. 12, 2012 (3 pages).
International Search Report for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages).
International Search Report for Application No. PCT/JP02/09668, mailed Dec. 3, 2002, (4 pages).
International Written Opinion for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages).
International Written Opinion for Application No. PCT/CA2005/001897, mailed Mar. 21, 2006 (4 pages).
International Written Opinion for Application No. PCT/CA2009/000501 mailed Jul. 30, 2009 (6 pages).
International Written Opinion for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 6 pages.
International Written Opinion for Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 8 pages.
International Written Opinion for Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages.
International Written Opinion for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages).
International Written Opinion for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 6 pages.
International Written Opinion for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Written Opinion for Application No. PCT/IB2012/052372, mailed Sep. 12, 2012 (6 pages).
International Written Opinion for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages).
International Written Opinion for Application No. PCT/IB2014/060879, Canadian Intellectual Property Office, dated Jul. 17, 2014; (4 pages).
Jafarabadiashtiani : “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages).
Kanicki, J., “Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays.” Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318).
Karim, K. S., “Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging.” IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208).
Lee : “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006.
Lee, Wonbok: “Thermal Management in Microprocessor Chips and Dynamic Backlight Control in Liquid Crystal Displays”, Ph.D. Dissertation, University of Southern California (124 pages).
Liu, P. et al., Innovative Voltage Driving Pixel Circuit Using Organic Thin-Film Transistor for AMOLEDs, Journal of Display Technology, vol. 5, Issue 6, Jun. 2009 (pp. 224-227).
Ma E Y: “organic light emitting diode/thin film transistor integration for foldable displays” dated Sep. 15, 1997(4 pages).
Matsueda y : “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004.
Mendes E., “A High Resolution Switch-Current Memory Base Cell.” IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721).
Nathan A. , “Thin Film imaging technology on glass and plastic” ICM 2000, proceedings of the 12 international conference on microelectronics, dated Oct. 31, 2001 (4 pages).
Nathan , “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486.
Nathan : “Backplane Requirements for active Matrix Organic Light Emitting Diode Displays,”; dated 2006 (16 pages).
Nathan : “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
Nathan : “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
Nathan : “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages).
Office Action in Japanese patent application No. JP2006-527247 dated Mar. 15, 2010. (8 pages).
Office Action in Japanese patent application no. JP2007-545796 dated Sep. 5, 2011. (8 pages).
Office Action in Japanese patent application No. JP2012-541612 dated Jul. 15, 2014. (3 pages).
Partial European Search Report for Application No. EP 11 168 677.0, mailed Sep. 22, 2011 (5 pages).
Partial European Search Report for Application No. EP 11 19 1641.7, mailed Mar. 20, 2012 (8 pages).
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages.
Rafati : “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
Safavian : “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
Safavian : “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
Safavian : “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
Safavian : “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
Safavian : “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
Safavian : “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
Search Report for Taiwan Invention Patent Application No. 093128894 dated May 1, 2012. (1 page).
Search Report for Taiwan Invention Patent Application No. 94144535 dated Nov. 1, 2012. (1 page).
Singh,, “Current Conveyor: Novel Universal Active Block”, Samriddhi, S-JPSET vol. I, Issue 1, 2010, pp. 41-48 (12EPPT).
Smith, Lindsay I., “A tutorial on Principal Components Analysis,” dated Feb. 26, 2001 (27 pages).
Spindler , System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48.
Stewart M. , “polysilicon TFT technology for active matrix oled displays” IEEE transactions on electron devices, vol. 48, No. 5, dated May 2001 (7 pages).
Vygranenko : “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009.
Wang : “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Yi He , “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.
Yu, Jennifer “Improve OLED Technology for Display”, Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages).
International Search Report for Application No. PCT/IB2014/058244, Canadian Intellectual Property Office, dated Apr. 11, 2014; (6 pages).
International Search Report for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 23, 2014; (6 pages).
Written Opinion for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 12, 2014 (6 pages).
International Search Report for Application No. PCT/IB2014/060879, Canadian Intellectual Property Office, dated Jul. 17, 2014 (3 pages).
Extended European Search Report for Application No. EP 14158051.4, mailed Jul. 29, 2014, (4 pages).
Office Action in Chinese Patent Invention No. 201180008188.9, dated Jun. 4, 2014 (17 pages).
International Search Report for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015.
Written Opinion for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015.
Extended European Search Report for Application No. EP 11866291.5, mailed Mar. 9, 2015, (9 pages).
Extended European Search Report for Application No. EP 14181848.4, mailed Mar. 5, 2015, (8 pages).
Related Publications (1)
Number Date Country
20150161935 A1 Jun 2015 US
Provisional Applications (2)
Number Date Country
61976909 Apr 2014 US
61912786 Dec 2013 US