The present invention relates to a display technology field, and more particularly to an OLED pixel structure.
Organic Light Emitting Diode (OLED) is a flat panel display technology which has great prospects for development. It does not only possess extremely excellent display performance but also properties of self-illumination, simple structure, ultra thin, fast response speed, wide view angle, low power consumption and capability of realizing flexible display, and therefore is considered as “dream display”. Meanwhile, the investment for the production equipments is far smaller than the Liquid Crystal Display (LCD). It has been favored by respective big display makers and has become the main selection of the third generation display element.
As shown in
As shown in
In the OLED pixel structure according to prior art, the light emitting materials, the aperture ratios and attenuations of the red, the green, the blue sub pixel areas are different and the total capacitance values of the red, the green, the blue sub pixel areas are different. Thus, the voltages of two ends of the OLEDs in the different sub pixel areas are different, and the brightnesses of the OLEDs in the different sub pixel areas are different, either. Accordingly, the performances of the OLED elements and the display quality of the entire display screen are influenced.
An objective of the present invention is to provide an OLED pixel structure, and the total capacitance values of the red, green, blue sub pixel areas in the OLED pixel structure are equivalent to reach the capacitance value required by the OLED drive circuit.
For realizing the aforesaid objective, the present invention provides an OLED pixel structure, comprising red, green, blue sub pixel areas, and the red, the green, the blue sub pixel areas respectively comprise a substrate, an anode formed on the substrate, a flat layer formed on the anode, an organic light emitting layer formed on the flat layer and a cathode formed on the organic light emitting layer, and an aperture area is formed on the flat layer, and the organic light emitting layer contacts the anode through the aperture area, and the anode comprises a positive electrode and a positive electrode compensation area coupled to the positive electrode, and the cathode, the positive electrode compensation area and a sandwiched layer between the cathode and the positive electrode compensation area constitute a compensation capacitor Cp, and the compensation capacitor Cp respectively makes total capacitance values of the red/green/blue sub pixel areas are equivalent to reach the capacitance value Ctotal required by an OLED drive circuit.
The sandwiched layer is the organic light emitting layer and the flat layer, and the cathode, the positive electrode compensation area and the organic light emitting layer and the flat layer between the cathode and the positive electrode compensation area constitute the compensation capacitor Cp.
An insulative layer is located on the positive electrode compensation area, and the sandwiched layer is the organic light emitting layer and the insulative layer, and the cathode, the positive electrode compensation area and the organic light emitting layer and the insulative layer between the cathode and the positive electrode compensation area constitute the compensation capacitor Cp.
Material of the insulative layer is silicon oxide, and a thickness of the insulative layer is smaller than a thickness of the flat layer.
Material of the positive electrode is Indium Tin Oxide.
Material of the flat layer is organic material.
Proportions of the positive electrode compensation areas of the red, the green, the blue sub pixel areas are different.
With the capacitance value Ctotal required by the OLED drive circuit and the self capacitor Cr of the OLED in the red sub pixel area, the compensation capacitor Cp=Ctotal−Cr is calculated, and the proportion of the positive electrode compensation area of the red sub pixel area is calculated according to a parallel plate capacitor calculation formula.
With the capacitance value Ctotal required by the OLED drive circuit and the self capacitor Cg of the OLED in the green sub pixel area, the compensation capacitor Cp=Ctotal−Cg is calculated, and the proportion of the positive electrode compensation area of the green sub pixel area is calculated according to a parallel plate capacitor calculation formula.
With the capacitance value Ctotal required by the OLED drive circuit and the self capacitor Cb of the OLED in the blue sub pixel area, the compensation capacitor Cp=Ctotal−Cb is calculated, and the proportion of the positive electrode compensation area of the blue sub pixel area is calculated according to a parallel plate capacitor calculation formula.
The present invention further provides an OLED pixel structure, comprising red, green, blue sub pixel areas, and the red, the green, the blue sub pixel areas respectively comprise a substrate, an anode formed on the substrate, a flat layer formed on the anode, an organic light emitting layer formed on the flat layer and a cathode formed on the organic light emitting layer, and an aperture area is formed on the flat layer, and the organic light emitting layer contacts the anode through the aperture area, and the anode comprises a positive electrode and a positive electrode compensation area coupled to the positive electrode, and the cathode, the positive electrode compensation area and a sandwiched layer between the cathode and the positive electrode compensation area constitute a compensation capacitor Cp, and the compensation capacitor Cp respectively makes total capacitance values of the red, green, blue sub pixel areas are equivalent to reach the capacitance value Ctotal required by an OLED drive circuit;
wherein the sandwiched layer is the organic light emitting layer and the flat layer, and the cathode, the positive electrode compensation area and the organic light emitting layer and the flat layer between the cathode and the positive electrode compensation area constitute the compensation capacitor Cp;
wherein material of the positive electrode is Indium Tin Oxide.
The benefits of the present invention are: the OLED pixel structure of the present invention respectively calculates the compensation capacitors required by the red, the green, the blue sub pixel areas according to the total capacitance values required by the drive circuit of the OLED elements and the self capacitors of the OLEDs in the red, the green, the blue sub pixel areas. Then the demanded enlarged areas of the anodes of the red, the green, the blue sub pixel areas are respectively calculated according to a parallel plate capacitor calculation formula to manufacture the positive electrode compensation area so that the positive electrode compensation area, the anode and the sandwiched layer between the cathode and the positive electrode compensation area constitute a compensation capacitor. The compensation capacitors make the total capacitance values of the red, the green, the blue sub pixel areas are equivalent. Accordingly, the issue that the light emitting materials, the aperture ratios and attenuations of the red, the green, the blue sub pixel areas are different and thus the total capacitance values of the red, the green, the blue sub pixel areas are different can be solved. Meanwhile, the structure is simple and easy for manufacture.
In order to better understand the characteristics and technical aspect of the invention, please refer to the following detailed description of the present invention is concerned with the diagrams, however, provide reference to the accompanying drawings and description only and is not intended to be limiting of the invention.
The technical solution and the beneficial effects of the present invention are best understood from the following detailed description with reference to the accompanying figures and embodiments.
In drawings,
For better explaining the technical solution and the effect of the present invention, the present invention will be further described in detail with the accompanying drawings and the specific embodiments.
Please refer to
Specifically, material of the positive electrode 2 is Indium Tin Oxide and material of the flat layer 3 is organic material.
Specifically, as shown in
Specifically, the respective organic light emitting layers 4, the aperture ratios of the red, the green, the blue sub pixel areas are different, and thus, the self capacitor values of the OLEDs in the respective sub pixel areas are different, either. For making all the total capacitance values of the respective sub pixel areas reach the capacitance value Ctotal required by an OLED drive circuit, the compensation capacitor values Cp required by respective sub pixel areas are different, and proportions of the positive electrode compensation areas 21 of the red, the green, the blue sub pixel areas are different, either.
Specifically, with the capacitance value Ctotal required by the OLED drive circuit and the self capacitor Cr of the OLED in the red sub pixel area, the compensation capacitor Cp=Ctotal−Cr is calculated, and the proportion of the positive electrode compensation area of the red sub pixel area is calculated according to a parallel plate capacitor calculation formula;
With the capacitance value Ctotal required by the OLED drive circuit and the self capacitor Cg of the OLED in the green sub pixel area, the compensation capacitor Cp=Ctotal−Cg is calculated, and the proportion of the positive electrode compensation area of the green sub pixel area is calculated according to a parallel plate capacitor calculation formula;
With the capacitance value Ctotal required by the OLED drive circuit and the self capacitor Cb of the OLED in the blue sub pixel area, the compensation capacitor Cp=Ctotal−Cb is calculated, and the proportion of the positive electrode compensation area of the blue sub pixel area is calculated according to a parallel plate capacitor calculation formula.
Please refer to
As comparing the second embodiment with the first embodiment, the difference is: on the positive electrode compensation area 21, the insulative layer 32 is employed to replace the flat layer 3, and the insulative property of the insulative layer 32 is larger than the insulative property of the flat layer 3. Thus, under circumstance that the compensation capacitor Cp is the same, the proportion of the positive electrode compensation area 21 in the second embodiment is smaller than the proportion of the positive electrode compensation area 21 in the second embodiment. Accordingly, the proportion of the positive electrode compensation area 21 required to manufacture is diminished, and the production cost and manufacture difficulty are lowered.
In the aforesaid pixel structure, by respectively locating the capacitor compensation areas in the red, the green, the blue sub pixel areas, the capacitor compensation area comprises the positive electrode compensation area coupled to the positive electrode, the cathode and the sandwiched layer between the cathode and the positive electrode compensation area. The aforesaid sandwiched layer structure constitutes the compensation capacitors Cp of the red, the green, the blue sub pixel areas. The compensation capacitors Cp respectively make all the total capacitance values of the red, the green, the blue sub pixel areas reach the capacitance value Ctotal required by the drive circuit of the OLED element.
In conclusion, the OLED pixel structure of the present invention respectively calculates the compensation capacitors required by the red, the green, the blue sub pixel areas according to the total capacitance values required by the drive circuit of the OLED elements and the self capacitors of the OLEDs in the red, the green, the blue sub pixel areas. Then the demanded enlarged areas of the anodes of the red, the green, the blue sub pixel areas are respectively calculated according to a parallel plate capacitor calculation formula to manufacture the positive electrode compensation area so that the positive electrode compensation area, the anode and the sandwiched layer between the cathode and the positive electrode compensation area constitute a compensation capacitor. The compensation capacitors make the total capacitance values of the red, the green, the blue sub pixel areas are equivalent. Accordingly, the issue that the light emitting materials, the aperture ratios and attenuations of the red, the green, the blue sub pixel areas are different and thus the total capacitance values of the red, the green, the blue sub pixel areas are different can be solved. Meanwhile, the structure is simple and easy for manufacture.
Above are only specific embodiments of the present invention, the scope of the present invention is not limited to this, and to any persons who are skilled in the art, change or replacement which is easily derived should be covered by the protected scope of the invention. Thus, the protected scope of the invention should go by the subject claims.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0044960 | Jan 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/075691 | 4/1/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/119306 | 8/4/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8253135 | Uochi | Aug 2012 | B2 |
8796920 | Han | Aug 2014 | B2 |
8816579 | Kim | Aug 2014 | B2 |
8890166 | Sakakura | Nov 2014 | B2 |
9111891 | Isobe | Aug 2015 | B2 |
9118030 | Kim | Aug 2015 | B2 |
9331256 | Chien | May 2016 | B2 |
20060035469 | Truong | Feb 2006 | A1 |
20060125381 | Oh | Jun 2006 | A1 |
20060181221 | Sato | Aug 2006 | A1 |
20070141234 | Cheng | Jun 2007 | A1 |
20090140638 | Asano | Jun 2009 | A1 |
20090195483 | Naugler, Jr. | Aug 2009 | A1 |
20090295283 | Kim | Dec 2009 | A1 |
20100060153 | Uchida | Mar 2010 | A1 |
20100181559 | Nakatani | Jul 2010 | A1 |
20100231124 | Song | Sep 2010 | A1 |
20120175605 | Shin | Jul 2012 | A1 |
20130015453 | Sato | Jan 2013 | A1 |
20130048986 | Lee | Feb 2013 | A1 |
20130222217 | Shin | Aug 2013 | A1 |
20130228801 | Lee | Sep 2013 | A1 |
20130307548 | Lee | Nov 2013 | A1 |
20140054557 | Jung | Feb 2014 | A1 |
20140159022 | Song | Jun 2014 | A1 |
20140291636 | Kim | Oct 2014 | A1 |
20140291685 | Kinoshita | Oct 2014 | A1 |
20140292622 | Lee | Oct 2014 | A1 |
20140353636 | Baek | Dec 2014 | A1 |
20150331508 | Nho | Nov 2015 | A1 |
20160064363 | Bower | Mar 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160307983 A1 | Oct 2016 | US |