Computer program listings are submitted on compact disc in compliance with 37 C.F.R. §1.96, and are incorporated by reference herein. A total of 2 compact discs (including duplicates) are submitted herein. The files on each compact disc are listed below:
1. Field of the Invention
The present invention relates generally to the fields of molecular biology and nucleic acid analysis. More specifically, the present invention provides a novel computer program for the design of optimized sets of oligonucleotide probes for microarrays.
2. Description of the Related Art
Genosensors, also called oligonucleotide microarrays or “DNA chips,” are miniature devices containing arrays of oligonucleotide probes tethered to a surface (Beattie, 1997a). By hybridizing target nucleic acid molecules to these arrays and analyzing the resultant hybridization patterns, comparative analysis of sequences can be conducted (Beattie, 1997b), such as detection of specific mutations, identification of microorganisms (Beattie, 1997a), profiling of gene expression (Duggan et al., 1999), and verification of sequencing data (Hacia, 1999). For any given DNA or RNA sequence a large number of potential probes could be derived; however, only a small subset is needed to manifest the desired characteristics of the analyte nucleic acid molecules. In order to design probes for successful use in genosensors it is necessary to minimize the probability of unspecific (mismatched) hybridization between the probe and any nucleic acid sequence other than the intended target site (Doktycz and Beattie, 1997). A computer program is needed to design probes that are useful in microarray analysis.
A computer program called Genosensor Probe Designer (GPD) is disclosed herein, which can be used for selecting the most suitable probes for a genosensor chip based upon several factors that could affect the hybridization process. These factors include thermal stability, secondary structure, and alternative binding sites within the nucleic acid analyte.
It is well known that thermal stability of duplex nucleic acids depends on nucleotide sequence, chain length and nucleic acid concentration, as well as the identity and concentration of counterions. It is possible to find optimal hybridization conditions for specific binding of any given probe with its target molecule, but when the hybridization reaction is carried out with numerous probes and target molecules (as with genosensor chips), a loss in specificity can occur. The loss occurs particularly if the thermal stabilities of arrayed probes paired with their target sequences vary widely, or if the complexity of the analyte nucleic acid is sufficiently high to present alternative, mismatch-containing hybrids. Thus, the hybridization of multiple probes with a nucleic acid analyte can produce signals that are partially or completely due to imperfectly matched hybrids (Doktycz and Beattie, 1997). This kind of ambiguous hybridization signal depends on the sequence and the identity of the non-paired bases. A complete understanding of the thermal stability of hybrids formed between probes and nucleic acid molecules requires information about the energetic contributions for all the possible interactions that can take part in the hybridization process (Doktycz and Beattie, 1997).
Furthermore, the target DNA or RNA molecules are capable of forming stable secondary structures that can make some target sequences inaccessible to hybridization with the complementary oligonucleotide probes. Moreover, large targets are also likely inhibited sterically from approaching the surface of the array (Southern et al., 1999). In order to avoid these problems, several approaches can be followed. If a reasonable prediction of the secondary structure of the target could be made, probes could be selected from regions that are not tied up in secondary structure. Effects of secondary structure could be reduced by fragmenting the nucleic acid preferably to a size close to that of the oligonucleotides on the array (Southern et al., 1999). Also, strategies of annealing with auxiliary oligonucleotides (tandem hybridization) have been proposed to eliminate interfering secondary or higher-order structures or to cover up unwanted (redundant) hybridization sites within the target DNA (Maldonado-Rodriguez et al., 1999a, 1999b; Maldonado-Rodriguez and Beattie, 2001). Finally, when genosensor chips are used to reveal differences between closely related nucleic acid sequences, the probes must be selected to specifically identify a particular sequence. In this case probes must be selected from regions with sufficient sequence variability to minimize nonspecific hybridization with related molecules. On the other hand, when probes are required for identifying a group of similar sequences, probes must be selected from conserved regions.
Several works dealing with nucleic acid sequence analysis and oligonucleotide probe design have been published previously (Bushnell et al., 1999; Galper et al., 1993; Shütz and von Ahsen, 1999; Vahrson et al., 1996; Li and Stormo, 2001; Pozhitkov and Tautz, 2002). One interesting work is Vahrson's library, called SCL-a, which is a C++ Object-Oriented library similar in some respects to that disclosed herein. Vahrson's library is specialized in the management of dynamical memory for manipulating long DNA sequences, whereas the library disclosed herein is specialized in the calculation of thermodynamic stability and the search for potential hybridization sites.
Object-Oriented support included in the Object Pascal library of Delphi is similar to that provided in C++. Classes are similar between Delphi and C++ programming languages; however, Object-Pascal language has a clearer syntax than that used by C++, and Delphi code can be easily translated to C++ if required with minimal complexity. Moreover, Delphi compiled native programs can run faster than those produced using C++ compilers.
A spreadsheet software program for thermodynamic melting point prediction of oligonucleotide hybridization based in the NN model has recently been developed (Shütz and von Ahsen, 1999). However, this program does not predict the specific hybridization patterns that could be expected with a given set of probes, and does not design sets of probes for the variety of Genosensor applications that are described herein.
Also a program for selection of optimal DNA probes for gene expression arrays has been published recently (Li and Stormo, 2001). Although this program uses criteria for selection of probes similar to those implemented in the software that is described in the present work, it is intended to select relatively long probes (more than 20 bases long) which are less convenient for single mutation discrimination. Also, an algorithm and program for selecting specific probes for species identification with microarrays has been published recently (Pozhitkov and Tautz, 2002). This algorithm considers position of mismatches which influences the selection; however, information is lacking about the experimental performance of the probes selected with this program.
Thus, in order to identify conserved or variable regions the complete alignment of the sequences under study must be conducted prior to selection of the most appropriate target regions for the subsequently designed probes. Consequently, in the design of optimized sets of oligonucleotide probes for nucleic acid analysis on genosensor arrays, careful consideration of numerous factors must be done, including the characteristics of the nucleic acid analyte, the type of analysis being performed, thermal stability of probe-target duplexes, secondary structure within the target sequence, and alternative probe binding sites within the target nucleic acid. The Genosensor Probe Designer software disclosed herein takes all of these factors into consideration.
A program for selecting optimized sets of oligonucleotide probes for use in genosensor chips (also known as oligonucleotide microarrays) is developed and disclosed herein. Selection of probes is based on thermodynamic stability, similarity degree properties and suitable parameter values for virtual hybridization. A more comprehensive analysis yielding even more confident predictions of hybridization patterns can be provided by inclusion of additional thermodynamic parameters such as the influence of dangling ends and contributions of non-standard nucleic acid interactions.
The Genosensor Probe Designer software disclosed herein was written in the programming language Borland Delphi (Borland International) Version 5.0. It can run on Windows 95, 98, Millennium, NT and XP operating systems. The computer program was developed based on the Object-Oriented Programming (OOP) methodology, and classes for representing the user interface, molecules, criteria and interactions are provided. The object-oriented feature of the Genosensor Probe Designer program facilitates the development of improved versions, accommodates among other information upgrades of the thermodynamic models.
The software developed herein was successfully tested in the laboratory, wherein a set of primers and probes directed against the 5′ end region of the 16S rRNA sequences of several strains of Pseudomonas and other bacterial species were designed. Results from these experiments show specific hybridization patterns for each sequence tested, and criteria for selecting probes and predicting hybridization patterns were derived.
Thus, the present invention is drawn to a software system for designing and selecting oligonucleotide probes for use in DNA microarrays as well as methods of using such software to select optimal sets of oligonucleotide probes for use in DNA microarrays.
In the Object-Oriented Programming (OOP) terminology, classes are abstract data structures which encapsulate data and operations or methods used to manipulate them. Objects are instances of the classes, used for representing any item such as an oligonucleotide molecule or a window of the user interface (Vahrson et al., 1996). Classes or objects used in the program can be divided into interface and application classes or objects, depending on whether they are involved in the design of the user interface, or in the process to select the probes.
Interface objects were developed using the Visual Component Library (VCL) provided within Delphi and the Orpheus 3.0 library (TurboPower Software Company). Both libraries have an extensive collection of Native Visual Components that permit the design of highly complex user interfaces. The user interface developed for the Genosensor Probe Designer program is based on the Multiple Document Interface (MDI) standard.
The set of application objects is the core of the Genosensor Probe Designer program. They were developed using the Object Pascal Language provided for Delphi and these objects include all the classes for representing molecules, selection criteria, interactions between molecules and similarity degree. These objects are involved in the selection of probes. Since these objects are independent of the interface objects and the VCL, they can be used to develop other applications. Moreover, application objects can be divided into four groups. The first group of objects represents the DNA molecules involved in the hybridization process (“targets” and “probes”). The second set of objects represent interactions or processes involving the DNA molecules (e.g. the hybridization reaction). The third group includes objects which use methods based on thermodynamic criteria for rejecting or accepting probes and the fourth group contains objects with methods for evaluating similarity between targets and probes.
Singlet format considers contributions from H-bonding and stacking interactions separately and uses linearly independent equations for calculating thermodynamic properties. In the doublet format the entire NN interaction is considered in a single parameter and thermodynamic values for each of the NN base pairs are used. TOligoclass objects have descendent classes specialized for using NN parameters of both data formats. As can be seen in
TDNAoligoclasses are combined classes derived from TDNAclass and TOligoclass, and were developed for describing interactions between oligonucleotides and target DNA molecules. These objects include methods for binary mapping of the DNA molecules, which are required for identifying potential sequences of probes generated from the target molecule and for evaluating similarity between oligonucleotides and target DNA sequences.
TCriteriaclass includes several criteria for rejecting or accepting oligonucleotide probes based upon their thermodynamic properties. The selection criteria are based upon user-specified [A+T] composition, [G+C] composition, melting temperature (Tm) range, enthalpy, entropy, free energy, internal repeated sequences, sequence symmetry of probes, and frequency of occurrence. The user can conveniently disable any of the evaluated properties in order to customize the selection procedure.
TSimilarityclass class includes methods for evaluating similarity between probes and targets. By using this class, specific probes can be selected by establishing convenient cut-off values for similarity between probes and sites within the target DNA sequences. To accomplish this, a search of similarity can be performed against sequences contained within Internal or External DNA databases. The naming conventions for databases are based upon considerations of whether the DNA sequences are defined within the internal DNA database that is generated when the program starts (see below). External databases can contain several DNA sequences within a single text file and they must be in FASTA format, while internal databases are composed of several text files, each containing just a single DNA sequence in FASTA or Genbank formats. Methods defined in TSimilarityclass can show very detailed information about all the sites within the DNA sequences where probes have significantly high similarity degree. This information can be useful to predict potential hybridization of the probes as well as to know whether the probes are specific for one particular DNA sequence or a set of sequences.
From the sequences specified in the initial data section, an internal DNA database table is created including the entire target DNA sequences from which probes will be selected. Then, a primary table of oligonucleotides is generated containing all possible probes of a defined length that can be derived from the DNA target molecules. When the user-defined selection criteria within Tcriteriaclass are applied, a secondary table is created containing just the probes with appropriate composition and thermodynamic properties. An additional search can then be performed with the probes contained in the secondary table in order to make a further selection of specific probes. For this analysis, the program uses the methods defined in an instance of TSimilarityclass. Similarity degree is evaluated between probes and selected target DNA molecules contained in the internal DNA database (defined before) or in external DNA databases which are text files containing sequences saved in FASTA format.
An additional analysis can be made with the table of specific probes in order to obtain oligonucleotides of variable length but similar stability. This analysis adds or deletes nucleotides from one or both ends of the probe based on the flanking DNA sequence in the target site. As the length of the probes changes an additional similarity analysis can be performed in order to delete sequences that no longer have the desired specificity.
Using the final table of specific oligonucleotides, an analysis of the possible hybridization of the probes against the DNA sequences in the internal database can be performed. This analysis shows target sites for perfect hybridization, as well as sites that could be potential sites for ambiguous hybridization due to complementarity degree and stability values. This approach is called Virtual Hybridization (VH).
In order to perform the VH analysis the following rules are defined in the program:
(i) For a given probe length (L) a minimal value (minbasescom) for the number of complementary bases between probes and potential hybridization sites is defined such that 2≦minbasescom≦L.
(ii) For a given probe length (L) a minimal value (minblocksize) for the length of contiguously paired bases within potential hybridization sites is specified such that 2≦minblocksize≦L.
(iii) The complementarity degree between probes and potential hybridization sites is evaluated along the target sequences (representing all nucleic acid sequences present in the analyte). Potential Hybridization Sites are selected as sites where the number of complementary bases between the probe and the evaluated site is equal to or greater than minbasescom or sites where a block of contiguously paired bases is equal to or greater than minblocksize.
(iv) Potential hybridization sites with 100% complementarity with the probe are shown as sites with only Watson-Crick base-pairing or sites of perfect hybridization.
(v) Potential hybridization sites with less than 100% complementarity with the probe are shown as sites with some non-Watson-Crick paired bases or sites of ambiguous hybridization.
(vi) An additional analysis of the thermal stability of probes paired with their respective potential hybridization sites is performed using the NN model (including mismatch data). Free energy values calculated by this model are useful to estimate the hybridization probability. In general, at more negative ΔG° values the probability of stable pairing is higher.
(vii) ΔG° cutoff values are defined (Gcutoff). Potential hybridization sites with ΔG° values equal to or greater than Gcutoff are shown as sites of high hybridization probability.
Virtual Hybridization (VH) is an important new capability that can yield a predicted hybridization pattern from any given combination of oligonucleotide probes and target sequences. By incorporating VH analysis during the selection of probes, ambiguous hybridization can be minimized or avoided entirely, thus optimizing the effectiveness of genosensor chips. A more comprehensive implementation of the VH strategy can be provided by expansion of the predicted vs. experimental hybridization data set, utilizing a larger collection of sequence-verified targets. Currently, the program parameters are adjusted in order to show only the sites of high hybridization probability such that a virtual hybridization pattern is obtained.
The Genosensor Probe Designer software disclosed herein can use any or all of the program applications described below for selecting the probes.
In the simple selection program application a set of probes for a particular DNA sequence will be generated. Selection criteria are based only on thermodynamic and composition properties.
The mapping application is a very fast procedure for selecting all the possible probes of any size (up to 15-mers) that can be obtained from any sequence or sequences, usually a complete genomic sequence.
The non-aligned sequences application is used in order to select probes that are specific for particular sequences (which could be similar or not). However, the search procedure is time-consuming and could be slow for the analysis of long sequences.
In the aligned sequences application, DNA sequences aligned with any alignment tool such as Clustal-X are read. Then, the alignment is scanned column by column. If oligonucleotide probes are required for hybridization with the conserved regions of the alignment, contiguous columns with identical bases in all the rows are selected until the probe size is reached. Such probes are sent to the primary table of oligonucleotides. Alternatively, probes could be required for revealing the differences between the DNA sequences included in the alignment. In the latter case, columns containing several base variations are selected and probes are derived from those columns in order to obtain a set that can be used to represent the maximum differences between the aligned sequences.
In the tandem hybridization application (Maldonado-Rodriguez and Beattie, 2001; Maldonado-Rodriguez et al., 1999a,b), short probes (typically 5-mer to 9-mer) called the “capture” probes can be selected as in the single selection application. After the secondary table of capture probes is built, longer “stacking” probes are selected contiguous to the 5′ or 3′ end of the capture probes. Stacking probes are typically 20-30 nucleotides or longer without restriction regarding their sequences. Alternatively, capture and stacking probes can be selected manually from specific sites within the target.
The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion. One skilled in the art will appreciate readily that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those objects, ends and advantages inherent herein. Changes therein and other uses which are encompassed within the spirit of the invention as defined by the scope of the claims will occur to those skilled in the art.
Program Details and Algorithms
There are several aspects of oligonucleotide interactions which are taken into consideration in the algorithms of the Genosensor Probe Designer program. Some of these design considerations are illustrated and discussed in
Frequently it is important to know the occurrence of particular n-mers in a particular DNA sequence in order to be able to design probes for DNA finger printing or SBH. The occurrence of particular n-mers can be determined by searching all possible combinations of n-mers or mapping of the DNA target sequence.
The number of possible combinations of n-mers is equal to 4n. Therefore, there are 16 combinations for dimers. As an example, the occurrence of each dimer on the sequence: 5′-TATAGTAGAAACCACAA-3′ (SEQ ID NO.1) can be searched by comparing target/pattern (using Brute search, Boyer-Moore, or Quicksearch) with the pattern sliding along the target. Searching each dimer will obtain the following results: AA=3, TA=3, AC=2, TC=0, AT=1, TT=0, AG=2, TG=0, CA=2, GA=1, CC=1, GC=0, CT=0, GT=1, CG=0, GG=0.
For mapping all the probes of a given size in a particular sequence, each probe sequence can be represented with a number in base 4: Probe=N1N2 . . . Nm with Ni={A, C, G, T} with m<16. If A=0, C=1, G=2, and T=3 then, in the case of dimers:
And the occurrence of each dimer on the sequence: 5′-TATAGTAGAAACCACAA-3′ (SEQ ID NO.1) can be mapped as shown in
For ambiguous sequences, the characters R, Y, M, K, S, W, H, B, V, D, N and X are used to represent ambiguous bases in DNA sequences: R={A,C}, Y={C,T}, M={A,C}, K={G,T}, S={G,C}, W={A,T}, H={A,C,T}, B={G,T,C}, V={G,C,A}, D={G,A,T}, N or X={A,C,T,G}. If target=‘ACNAC’ and pattern=‘ACTAC’, then the probability of perfect match between target and pattern can be defined as: P=1/# combinations=1/2r 3h 4n, where r=number of Rs, Ys, Ms, Ks, Ss and Ws in target; h=number of Hs, Bs, Vs, and Ds; n=number of Ns or Xs.
The searching and mapping methods described above were used for finding specific n-mer in the E. coli genome sequence (4,639,221 bp) using a Pentium 260 Mhz processor. The time of search for Quicksearch was 4.2 hours, whereas the time of search for mapping was 0.52 hour.
Also, these methods were used for finding specific n-mers in the Small Subunit rRNA Database (22,324 sequences, average size=1093 bp). This database has ambiguous bases in several sequences (9271 sequences). Using a Pentium 260 Mhz processor, the time of search for Quicksearch was 1.5 days, whereas the time of search for mapping was 0.45 hour.
Virtual Hybridization Algorithm
Accurate prediction of the thermal stability for hybridization reactions has become a very important issue in several molecular biology techniques. Reliable prediction of the free energy associated with the formation of the DNA duplex is necessary in order to select the optimal experimental conditions for specific detection and/or identification of target molecules. This aspect is dramatically important in DNA microarrays where several hybridization reactions are carried out simultaneously. If the thermal stability of the different probes used in the array is too different, a loss in the specificity of the hybridization can result, whereby “hybridization signals” are due to both perfect match between the probes and target but also some imperfectly matched hybrids, which is known as ambiguous hybridization.
Thermodynamic models have been developed in order to predict the free energy values and other thermodynamic parameters associated with the thermal stability of DNA duplexes. The most accurate model for oligonucleotides is based on stacking interactions between neighboring bases in the duplex, and it is named the nearest-neighbor interactions model.
The nearest-neighbor model can predict the thermal stability for both perfectly and imperfectly matched duplexes, and can thus be used for predicting whether oligonucleotides can hybridize under a given set of experimental conditions. We call such a theoretical approach Virtual Hybridization (VH). If accurate parameters for the nearest-neighbor model are used, then VH can simulate the results of hybridization experiments under defined experimental conditions with a high degree of accuracy. Parameters have been derived and disclosed herein to predict patterns of hybridization of PCR products derived from 16S rRNA genes of several bacterial species with arrays of 9-mer probes. In this section a more detailed description of the algorithm used for virtual hybridization is given.
The Nearest-Neighbor Model
The nearest-neighbor model considers thermal stability as sequence-dependent and in terms of base pair doublets (nearest-neighbors). In duplex DNA there are ten possible combinations of such nearest-neighbors:
The NN model assumes that the stability of a given base pair depends on the identity and the orientation of the neighboring base pairs. In the most simple format of the NN model, the free energies for oligonucleotide duplexes result from the sum of its nearest-neighbor interactions. It has been proven that the NN model also serves to estimate the contribution of other secondary structure components. Currently, the NN model has been extended to predict the contribution of several components of the secondary structure of DNA oligonucleotides such as: Stacking regions, Internal single mismatches, Dangling ends.
The Algorithm
Virtual Hybridization analysis has been conceived as a two-stage approach. The first stage aims to find the most probable sites within a target sequence where a particular probe can hybridize. This search includes two parameters called minbasescom and minblocksize. The values of these parameters are dependent on the probe size and, for a given probe length: 2≦minblocksize≦minbasescom≦L, where L is the length of the probe, minblocksize is the minimal accepted length of contiguously paired bases between a probe and a potential hybridization site, and minbasescom is the minimal accepted number of complementary bases between a probe and a potential hybridization site. A Virtual Hybridization search begins by looking for sites in the target molecule where the number of contiguously paired bases or the number of complementary bases with the probe are equal to or greater than minblocksize or minbasescom, respectively. Sites found by means of this search are stored and considered as potential hybridization sites.
The second stage of the virtual hybridization approach is the calculation of the free energy associated with the formation of duplexes between the probe and the potential hybridization sites.
Bases between a particular site and the probe are compared in order to decide if bases can be paired (match) or not (mismatch). Matches and mismatches between bases are grouped by pairs. This approach does not presently consider gaps on that comparison. Different components of the secondary structure of the duplex can be found in this way. Table 1 summarizes several secondary structure components (substructures) and abbreviations used to represent them.
Matching patterns for each of the nearest-neighbors of the duplex can be combined with the positions of such patterns in the duplex in order to identify a secondary structure component as is illustrated in
The nearest-neighbor data set has not been completed to represent the contributions of all the secondary structure components of the DNA. For this reason some values need to be estimated from separate considerations.
Thermodynamic values for terminal mismatches are not published yet. However, some studies indicate that terminal mismatches have stabilizing values (negative free energy values). Free energy values for terminal mismatches in this prediction have been assumed to be zero, however, a more confident prediction of the thermal stability will be possible when precise values for these contributions are available.
Free energy values for double and multiple contiguous internal mismatches are also not published. Estimated values have been derived for these interactions assuming that internal mismatches have destabilizing values (positive free energies).
Penultimate mismatches deserve special attention. Free energy values for structures with penultimate mismatches are greater (more unstable) than values calculated by considering that the paired bases in the end adjacent to the penultimate mismatch are untied as shown in
Once the free energy value for the duplex is calculated, it is compared with specified cut-off values. The cut-off values can be assigned for particular experimental conditions. If free energy of the duplex is less than or equal to the cut-off value (i.e., if it has a greater negative free energy value than the cut-off value), then site is marked as a high probability of hybridization site or probable signal.
Oligonucleotide Arrays Targeted to Microbial 16S rRNA Genes
Successful performance of algorithms implemented in the Genosensor Probe Designer program has been demonstrated through the discrimination of Pseudomonas aeruginosa and closely related bacterial strains via hybridization fingerprinting using genosensor chips. The seven test strains and the accession numbers for the 16S rRNA gene sequences are listed in Table 2.
Bacillus pumilus DNA for 16S ribosomal RNA.
Pseudomonas veronii 16S ribosomal RNA gene,
Pseudomonas alcaligenes 16S rRNA gene,
P. fluorescens 16S rRNA gene.
Stenotrophomonas maltophilia 16S ribosomal RNA
Pseudomonas putida 16S rRNA gene, complete
Pseudomonas aeruginosa DNA for 16S rRNA.
Pseudomonas syringae pv. Myricae DNA for 16S
DNA sequences encoding 16S rRNA genes of the seven microbial test strains (including closely related pseudomonads) were aligned with the aid of the Clustal X program (Thompson et al., 1997). From the analysis of the produced alignment, three conserved regions which delimit two highly variable regions (named “A” and “B”) near the 5′ end of the gene were found. The conserved regions were analyzed to find convenient PCR primers for the amplification of the regions A and B based on established rules for PCR primer selection (Rychlik, 1993). PCR forward primers were derivatized with a 5′-Biotin group to facilitate single-stranded target DNA purification. PCR reverse primers were derivatized with a 5′-fluorescent label (CY3 or CY5) to enable visualization of the hybridization patterns.
The primer sequences (5′->3′) were as follows:
For PCR amplification of the combined region AB, the 5′-biotin forward primer for Region A was used together with the 5′-fluorescent reverse primer for Region B. The PCR product from region “A” is located between nucleotides 356 and 554, yielding a 197 bp fragment for P. aeruginosa and a 198 bp fragment for the six other species. The PCR product from region “B” is positioned between nucleotides 533 and 830, forming a 293 bp fragment for P. aeruginosa and a 294 bp fragment for the remaining species. The distal pair of primers yields a larger “AB” PCR product encompassing regions “A” and “B” that has a length of 471 bp for P. aeruginosa and 473 bp for the other species.
The sequences of the seven PCR products for each region were realigned using Clustal X and the resultant alignment was analyzed using the aligned sequences module of the Genosensor Probe Designer program to select 9-mer probes. In this module an alignment of DNA sequences is read and then scanned column by column. Columns containing several base variations are selected and probes are derived from those columns in order to obtain a set that can be used to represent the maximum differences between the aligned sequences. In order to verify that probe sequences were present only within the intended target sites, all selected probes were tested for 100% degree of similarity against all sequences in the alignment.
As a result of this process a set of 87 nonamer probes (28 for region “A” and 59 for region “B”) directed against the most highly variable regions of the alignment was selected (Table 3).
PCR products derived from each of the seven bacterial test species were hybridized to genosensor chips bearing the selected probes for each region. Results of these experiments showed unique hybridization patterns for each species. The experimental details of the PCR, oligonucleotide array formation, and hybridization experiments have been reported separately (Reyes-Lopez et al., 2003).
B. pumilus
B. pumilus
B. pumilus
B. pumilus
B. pumilus
P. syringae, P. veronii
P. syringae, P. veronii
B. pumilus
B. pumilus
B. pumilus
P. aeruginosa, P. alcaligenes
B. pumilus
P. aeruginosa, P. alcaligenes
P. putida, P. fluorescens
P. aeruginosa, P. alcaligenes
P. putida, P. fluorescens
P. syringae, P. veronii
P. putida, P. fluorescens
P. aeruginosa, P. alcaligenes
P. syringae
P. fluorescens
P. putida
P. fluorescens
B. pumilus
P. syringae, P. aeruginosa, P. alcaligenes, P. veronii
B. pumilus
P. aeruginosa, P. alcaligenes
P. aeruginosa, P. alcaligenes
P. aeruginosa, P. alcaligenes
P. aeruginosa, P. alcaligenes
P. aeruginosa
P. alcaligenes
P. aeruginosa
P. alcaligenes
P. aeruginosa
P. aeruginosa
B. pumilus
P. aeruginosa
B. pumilus
P. aeruginosa
B. pumilus
P. aeruginosa
B. pumilus
P. aeruginosa
P. alcaligenes
P. fluorescens, P. veronii
P. aeruginosa
P. alcaligenes
P. fluorescens, P. veronii
P. syringae, P. putida
P. aeruginosa
P. aeruginosa, P. alcaligenes
P. fluorescens, P. veronji
P. syringae, P. putida
P. aeruginosa, P. alcaligenes
P. fluorescens, P. veronji
P. fluorescens, P. veronii
P. syringae, P. putida
P. fluorescens, P. veronii
P. syringae, P. putida
P. aeruginosa, P. alcaligenes
P. syringae, P. putida
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. fluorescens
B. pumilus
B. pumilus
B. pumilus
P.aeruginosa
P.aeruginosa
To help explain discrepancies between anticipated and observed hybridization results obtained with the 16S rRNA gene system, the virtual hybridization module of the Genosensor Probe Designer (GPD) software (described further in Example 3) was applied to the data. The virtual hybridization program calculates the Gibbs free energy (ΔG°) of mismatched or matched probes when aligned to target DNA (Table 4). The GPD software runs each probe along the full target DNA sequence (including all test strains) and calculates binding energy as ΔG° for each position. The selection can be adjusted to search for pairings with high, medium or low probability to produce stable hybridization under a given hybridization condition.
Hybridization signals that are observed but not predicted (i.e., involving mismatched hybrids) belong nevertheless to a specific target and consequently, can contribute to the identification of bacterial species via hybridization fingerprinting. As further detailed in Example 3, the hybridization data obtained in the 16S rRNA gene study provided the “working materials” for development of the Virtual Hybridization strategy which is useful in the interpretation of hybridization results, and can guide the selection of optimal sets of oligonucleotide probes for a given genosensor application.
The first column shows the 9 mer probe number as given in Table 3. The second column displays the 9 mer probe sequence (5′->3′ direction). The third column lists the calculated Tm values for each 9 mer probe, paired with its complementary target sequence. The fourth column lists the binding energy (ΔG° in Kcal/mol) calculated for each probe, paired with its complementary target sequence. The fifth column lists the first nucleotide position of the most stable site (MSS) for binding of each probe within region B of P. aeruginosa. The sixth column displays the target sequence (3′->5′ direction) for each MSS within region B of P. aeruginosa, with paired positions written in black and mispaired positions indicated in orange. The last (seventh) column lists the calculated binding energy (ΔG° in Kcal/mol) for hybridization of each probe at its MSS within region B of P. aeruginosa.
Virtual Hybridization
Using virtual hybridization (VH) analysis rules as described earlier, the set of selected 16S rRNA gene probes and target sequences were analyzed to predict virtual hybridization patterns. Table 5 represents the predicted and experimentally observed hybridization signals obtained in all of these experiments, grouped according to predicted free energy of probe-target hybrids.
Predicted free energy values for potential hybridization sites were compared with experimentally obtained hybridization signals in order to select idealized parameters for reliable virtual hybridization. These comparisons revealed that predictions of the hybridization of 9 mer probes could be made with the highest degree of accuracy using the set of parameters listed in Table 6. Moreover, it appears that the prediction of hybridization based on the evaluation of the number of contiguously paired bases and thermal stability of the bases involved in the hybridization could be sufficient for designing genosensor chips with the greatest capacity to manifest the desired characteristics of the analyzed sequences.
Similar experiments can be readily performed to derive suitable parameters for Virtual Hybridization analysis of probes shorter and longer than 9 mer. An important feature of Virtual Hybridization analysis provided within the Genosensor Probe Designer software is that the program can accommodate future expansion of knowledge concerning the thermodynamics of unusual nucleic acid interactions. For example, as additional information becomes available on the free energy contributions of mismatched base pairs and secondary or tertiary structures, the new thermodynamic data sets can be directly used in the existing Virtual Hybridization software to provide a still more comprehensive and reliable prediction of hybridization patterns.
From the analysis of the VH results it can be seen that about 50% of the potential hybridization sites (perfect or ambiguous) with free energy range between −12 and −10 Kcal/mol yielded detectable experimental signal (strong signals for the most part). A similar situation existed for potential sites with free energy range between −10 and −8 Kcal/mol, where 49% of the sites gave experimental signal, but this time the proportion of weak signals was higher than the strong ones. This situation changes considerably for the free energy range of −8 to −6 Kcal/mol, where only 23% of the sites gave experimental signal (all weak signals). For weaker free energy ranges (above −6 Kcal/mol) the relative number of experimental signals with respect to the number of potential hybridization sites was even lower.
A Kolmogorov-Smirnov normality test showed that the distributions of free energy values for the potential hybridization sites and for the sum of weak and strong signals, differ considerably from the normality. However, strong and weak signals assume a normal distribution. In order to demonstrate if calculated free energy values for “strong” and “weak” experimental signals were significantly lower (more stable) than the free energy distribution for all potential hybridizations sites, we perform both parametric and nonparametric tests for all cases.
Statistical tests showed that free energies for strong signals differ considerably from the free energies for all potential hybridization sites for both PCR products. Free energies for weak signals at the PCR products for region A are not significantly different to the free energies for all potential hybridization sites, but the difference is significantly for PCR products for region B and also when we combine the results for both regions. In conclusion, this analysis showed that strong hybridization signals were significantly obtained at more negative free energies (more stable) while weak signals are usually found at negative free energies too, but the discrimination power between them and the energies for all potential sites is considerably lower than that for strong signals. Moreover, it can be seen that both signals as a whole are significantly present at more negative free energies.
The results of statistical analyses for Regions A+B are shown in Table 7 and
It can be seen from the above Virtual Hybridization results that some probes that were predicted to hybridize perfectly or ambiguously by the VH analysis at stable ΔG ranges failed to yield experimental hybridization signals. For example, for region A of P. aeruginosa probes 12 and 14 were predicted to yield hybridization signals, however these signals were not observed. Some possible explanations of this phenomenon include:
(i) UNCERTAINTY OF TARGET SEQUENCES. Genbank reference sequences used to design the probes (cited in Example 2) may be different from the actual PCR product sequences derived from the environmentally isolated test strains. Thus, differences between experimental and virtual hybridization patterns (including both unexpected and unobserved signals) could be due to differences between reference and actual target sequences.
(ii) SECONDARY STRUCTURE OF THE PRODUCT. Hybridization reactions were carried out at low temperature which favors the formation of secondary structure within the target molecule. A simplified evaluation of the secondary structure of the target is provided within the Genosensor Probe Designer program. Self-complementary sections of the target molecules longer than a given value are searched for and listed. If target sites of the probes overlap with sections with potential secondary structure, these probes could have lower probability of yielding hybridization signals. Results in this case are somewhat equivocal, but they suggest than the absence of some hybridization signals could be due to the secondary structure of the target molecule.
Secondary structure within the 16S rRNA gene sequences was further evaluated with the help of the program RNA draw v1.1. Since this program was designed to predict secondary structure of RNA sequences, the prediction will be just an approximation for DNA targets. In order to provide a closer prediction of the secondary structure of the DNA target, G-U pairs (common in RNA molecules) were forbidden (G-T pair are uncommon in DNA). For PCR product A of P. aerugionosa, an interesting region which includes bases 50 through 77 contains the targeted sites for probes 12, 14, 16, 20 and 27. As seen in
Source Code of Genosensor Probe Designer Program and Associated Materials
The source code of the Genosensor Probe Designer Program, together with associated data and documents are provided in the computer program listings appendix.
The source code include: (1) the source code for the main Genosensor Probe Designer program; (2) the source code for objects and other tools used for representing DNA molecules, interactions and selection criteria; (3) the source code for dialog boxes that art part of the GPD program interface; (4) data files containing thermodynamic properties used by the GPD program; and (5) documents and Microsoft help projects for building the Help system of the GPD program.
The Genosensor Probe Designer Program is further described in the following Table 8, which includes a description of program units contained in the main GPD program.
Source Code of Accessory Programs
A number of accessory programs that extend the application of the Genosensor Probe Designer (GPD) software are also provided in the computer program listings appendix. The listed source codes include:
(1) The source code of the program Virtual Hyb. This program performs the Virtual Hybridization analysis independent of the GPD program (within which this function is also incorporated) and has some limited capabilites for manipulating files.
(2) The source code of a program called AlnClustal. This program is used to select “specific” or “universal” probes from a Clustal alignment of sequences.
(3) The source code of the program BuiltDB. This program is used to build a FASTA library of sequences (One file containing multiple sequences in FASTA format).
(4) The source code of a program called Genbank, which converts sequences from the Genbank format into the FASTA format.
(5) The source code of the program ProbesHom. This is an auxiliary application useful for evaluation of the similarity between multiple probes or primers and single or multiple DNA sequences. It implements a search algorithm which is similar to that used in the VH program, looking for sites with a number of total similar bases or with a block of contiguous similar bases.
(6) The source code of a program called Structure Windows. This is a program to a simplify evaluation of secondary structure of targets. This program simply locates zones inside of a target molecule that can be self-paired and calculates their free energy value. The program uses an algorithm similar to “build a dot graph,” wherein the DNA sequence is placed on X and Y axes. Coordinates X,Y represent the potential pairing of the Base number X with the base number Y. If these two bases can be paired, a dot is placed in such coordinate. In a graph such as this, diagonals represent zones of the DNA molecules that can be self-paired. This program does not currently show the dot graph but it shows all the sequences in the diagonals.
(7) The source code of the program Tandem. Tandem is a program that selects sets of probes for the tandem hybridization approach including a capture probe and a stacking probe. This program may be readily modified to accommodate updated information on the thermodynamic properties of tandem hybridization.
(8) The source code of a program named AdjustLen. This program modifies the length of a set of probes in order to obtain a set probes with decreased Tm variation. The basic GPD program generates probes with the same length and a similar stability. However, stability criteria can be disabled in a GPD session, then the probes can be modified on their length using AdjustLen until their stability approaches a defined Tm value. The algorithm used in AdjustLen adds nucleotides to 3′ or 5′ end, then calculates Tm. Deletion of bases is not currently implemented, so after the AdjustLen program runs the probes will have the same or longer length.
(9) The source code of a program called MapSeq. This program uses a very fast algorithm to build a “map” of all possible sequences of a given size found within a given DNA sequence.
(10) The source code of a program named Stability. This program shows graphically the calculation of thermal stability for perfect and mismatched hybrids. Free energy calculations use the same algorithm implemented in the VH algorithm. This function can be conveniently used for fast visualization of energetic contributions in the hybridization between any given pair of strands, as illustrated in the screen image of
The Genosensor Probe Design software system is further described in the following Table 9, which includes descriptions of program units contained in the GPD accessory programs.
Screen Images of the Genosensor Probe Designer Program
The operation of the Genosensor Probe Designer program is further illustrated in
Installation of Programs
To install the GPD and VH programs on a PC, setup programs are created with the help of a tool called InstallShield Express for Delphi. The InstallShield Express program first creates files called scripts, which contain all the information required by InstallShield Express to build the setup programs. The scripts for GPD and VH are listed below. To build the setup program, the files called in the script must be saved in the directories specified in the script. The script for installation of Genosensor Probe Designer program [SCRIPT.DOC] is provided in the computer program listings appendix.
Tutorial on Use of GPD Program
A brief tutorial is provided to exemplify the use of the GPD/VH software disclosed herein.
Case 1: Completely Automatic Design
P. aeruginosa
B.pumilus
A. veronii
Case 2: Manual selection of probes.
The following references were cited herein:
Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. Further, these patents and publications are incorporated by reference herein to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
This non-provisional patent application claims benefit of provisional patent application U.S. Ser. No. 60/371,113, filed Apr. 9, 2002, now abandoned.
Number | Date | Country | |
---|---|---|---|
20040111221 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
60371113 | Apr 2002 | US |