Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors

Information

  • Patent Grant
  • 8841330
  • Patent Number
    8,841,330
  • Date Filed
    Wednesday, February 8, 2012
    12 years ago
  • Date Issued
    Tuesday, September 23, 2014
    9 years ago
Abstract
This invention relates to the use of a group of aryl ureas in treating raf mediated diseases, and pharmaceutical compositions for use in such therapy.
Description
FIELD OF THE INVENTION

This invention relates to the use of a group of aryl ureas in treating raf mediated diseases, and pharmaceutical compositions for use in such therapy.


BACKGROUND OF THE INVENTION

The p21ras oncogene is a major contributor to the development and progression of human solid cancers and is mutated in 30% of all human cancers (Bolton et al. Ann. Rep. Med. Chem. 1994, 29, 165-74; Bos. Cancer Res. 1989, 49, 4682-9). In its normal, unmutated form, the ras protein is a key element of the signal transduction cascade directed by growth factor receptors in almost all tissues (Avruch et al. Trends Biochem. Sci. 1994, 19, 279-83). Biochemically, ras is a guanine nucleotide binding protein, and cycling between a GTP-bound activated and a GDP-bound resting form is strictly controlled by ras' endogenous GTPase activity and other regulatory proteins. In the ras mutants in cancer cells, the endogenous GTPase activity is alleviated and, therefore, the protein delivers constitutive growth signals to downstream effectors such as the enzyme raf kinase. This leads to the cancerous growth of the cells which carry these mutants (Magnuson et al. Semin. Cancer Biol. 1994, 5, 247-53). It has been shown that inhibiting the effect of active ras by inhibiting the raf kinase signaling pathway by administration of deactivating antibodies to raf kinase or by co-expression of dominant negative raf kinase or dominant negative MEK, the substrate of raf kinase, leads to the reversion of transformed cells to the normal growth phenotype (see: Daum et al. Trends Biochem. Sci. 1994, 19, 474-80; Fridman et al. J. Biol. Chem. 1994, 269, 30105-8. Kolch et al. (Nature 1991, 349, 426-28) have further indicated that inhibition of raf expression by antisense RNA blocks cell proliferation in membrane-associated oncogenes. Similarly, inhibition of raf kinase (by antisense oligodeoxynucleotides) has been correlated in vitro and in vivo with inhibition of the growth of a variety of human tumor types (Monia et al., Nat. Med. 1996, 2, 668-75).


SUMMARY OF THE INVENTION

The present invention provides compounds which are inhibitors of the enzyme raf kinase. Since the enzyme is a downstream effector of p21ras, the inhibitors are useful in pharmaceutical compositions for human or veterinary use where inhibition of the raf kinase pathway is indicated, e.g., in the treatment of tumors and/or cancerous cell growth mediated by raf kinase. In particular, the compounds are useful in the treatment of human or animal solid cancers, e.g., murine cancer, since the progression of these cancers is dependent upon the ras protein signal transduction cascade and therefore susceptible to treatment by interruption of the cascade, i.e., by inhibiting raf kinase. Accordingly, the compounds of the invention are useful in treating cancers, including solid cancers, such as, for example, carcinomas (e.g., of the lungs, pancreas, thyroid, bladder or colon), myeloid disorders (e.g., myeloid leukemia) or adenomas (e.g., villous colon adenoma).


The present invention therefore provides compounds generally described as aryl ureas, including both aryl and heteroaryl analogues, which inhibit the raf kinase pathway. The invention also provides a method for treating a raf mediated disease state in humans or mammals. Thus, the invention is directed to compounds which inhibit the enzyme raf kinase and also compounds, compositions and methods for the treatment of cancerous cell growth mediated by raf kinase wherein a compound of Formula I is administered or pharmaceutically acceptable salt thereof.

A-D-B  (I)


In formula I, D is —NH—C(O)—NH—,


A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M-L1)q, where L is a 5 or 6 membered cyclic structure bound directly to D, L1 comprises a substituted cyclic moiety having at least 5 members, M is a bridging group having at least one atom, q is an integer of from 1-3; and each cyclic structure of L and L1 contains 0-4 members of the group consisting of nitrogen, oxygen and sulfur, and


B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur,


wherein L1 is substituted by at least one substituent selected from the group consisting of —SO2Rx, —C(O)Rx and —C(NRy)Rz,


Ry is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally halosubstituted, up to per halo,


Rz is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;


Rx is Rz or NRaRb where Ra and Rb are


a) independently hydrogen,

    • a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen, or
    • —OSi(Rf)3 where Rf is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or


b) Ra and Rb together form a 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or


c) one of Ra or Rb is —C(O)—, a C1-C5 divalent alkylene group or a substituted C1-C5 divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C1-C5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;


where B is substituted, L is substituted or L1 is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halo, and Wn, where n is 0-3;


wherein each W is independently selected from the group consisting of —CN, —CO2R7, —C(O)NR7R7, —C(O)—R7, —NO2, —OR7, —SR7, —NR7R7, —NR7C(O)OR7, —NR7C(O)R7, -Q-Ar, and carbon based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents independently selected from the group consisting of —CN, —CO2R7, —C(O)R7, —C(O)NR7R7, —OR7, —SR7, —NR7R7, —NO2, —NR7C(O)R7, —NR7C(O)OR7 and halogen up to per-halo; with each R7 independently selected from H or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen,


wherein Q is —O—, —S—, —N(R7)—, —(CH2)m—, —C(O)—, —CH(OH)—, —(CH2)mO—, —(CH2)mS—, —(CH2)mN(R7)—, —O(CH2)m—CHXa—, —CXa2—, —S—(CH2)m—, and —N(R7)(CH2)m—, where m=1-3, and Xa is halogen; and


Ar is a 5- or 6-member aromatic structure containing 0-2 members selected from the group consisting of nitrogen, oxygen and sulfur, which is optionally substituted by halogen, up to per-halo, and optionally substituted by Zn1, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of —CN, —CO2R7, —C(O)R7, —C(O)NR7R7, —NO2, —OR7, —SR7—NR7R7, —NR7C(O)OR7, —NR7C(O)R7, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents selected from the group consisting of —CN, —CO2R7, —COR7, —C(O)NR7R7, —OR7, —SR7, —NO2, —NR7R7, —NR7C(O)R7, and —NR7C(O)OR7, with R7 as defined above.


In formula I, suitable hetaryl groups include, but are not limited to, 5-12 carbon-atom aromatic rings or ring systems containing 1-3 rings, at least one of which is aromatic, in which one or more, e.g., 1-4 carbon atoms in one or more of the rings can be replaced by oxygen, nitrogen or sulfur atoms. Each ring typically has 3-7 atoms. For example, B can be 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or -5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,3,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5-6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8-isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or additionally optionally substituted phenyl, 2- or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, etc. For example, B can be 4-methyl-phenyl, 5-methyl-2-thienyl, 4-methyl-2-thienyl, 1-methyl-3-pyrryl, 1-methyl-3-pyrazolyl, 5-methyl-2-thiazolyl or 5-methyl-1,2,4-thiadiazol-2-yl.


Suitable alkyl groups and alkyl portions of groups, e.g., alkoxy, etc. throughout include methyl, ethyl, propyl, butyl, etc., including all straight-chain and branched isomers such as isopropyl, isobutyl, sec-butyl, tert-butyl, etc.


Suitable aryl groups which do not contain heteroatoms include, for example, phenyl and 1- and 2-naphthyl.


The term “cycloalkyl”, as used herein, refers to cyclic structures with or without alkyl substituents such that, for example, “C4 cycloalkyl” includes methyl substituted cyclopropyl groups as well as cyclobutyl groups. The term “cycloalkyl”, as used herein also includes saturated heterocyclic groups.


Suitable halogen groups include F, Cl, Br, and/or I, from one to per-substitution (i.e. all H atoms on a group replaced by a halogen atom) being possible where an alkyl group is substituted by halogen, mixed substitution of halogen atom types also being possible on a given moiety.


The invention also relates to compounds per se, of formula I.


The present invention is also directed to pharmaceutically acceptable salts of formula I. Suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of inorganic and organic acids, such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, and mandelic acid. In addition, pharmaceutically acceptable salts include acid salts of inorganic bases, such as salts containing alkaline cations (e.g., Li+ Na+ or K+), alkaline earth cations (e.g., Mg+2, Ca+2 or Ba+2), the ammonium cation, as well as acid salts of organic bases, including aliphatic and aromatic substituted ammonium, and quaternary ammonium cations, such as those arising from protonation or peralkylation of triethylamine, N,N-diethylamine, N,N-dicyclohexylamine, lysine, pyridine, N,N-dimethylaminopyridine (DMAP), 1,4-diazabiclo[2.2.2]octane (DABCO), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).


A number of the compounds of Formula I possess asymmetric carbons and can therefor exist in racemic and optically active forms. Methods of separation of enantiomeric and diastereomeric mixtures are well known to one skilled in the art. The present invention encompasses any isolated racemic or optically active form of compounds described in Formula I which possess raf inhibitory activity.


General Preparative Methods

The compounds of Formula I may be prepared by the use of known chemical reactions and procedures, some from starting materials which are commercially available. Nevertheless, general preparative methods are provided below to aid one skilled in the art in synthesizing these compounds, with more detailed examples being provided in the Experimental section which follows.


Substituted anilines may be generated using standard methods (March. Advanced Organic Chemistry, 3rd Ed.; John Wiley: New York (1985). Larock. Comprehensive Organic Transformations; VCH Publishers: New York (1989)). As shown in Scheme I, aryl amines are commonly synthesized by reduction of nitroaryls using a metal catalyst, such as Ni, Pd, or Pt, and H2 or a hydride transfer agent, such as formate, cyclohexadiene, or a borohydride (Rylander. Hydrogenation Methods; Academic Press: London, UK (1985)). Nitroaryls may also be directly reduced using a strong hydride source, such as LiAlH4 (Seyden-Penne. Reductions by the Alumino- and Borohydrides in Organic Synthesis; VCH Publishers: New York (1991)), or using a zero valent metal, such as Fe, Sn or Ca, often in acidic media. Many methods exist for the synthesis of nitroaryls (March. Advanced Organic Chemistry, 3rd Ed.; John Wiley: New York (1985). Larock. Comprehensive Organic Transformations; VCH Publishers: New York (1989)).




embedded image


Nitroaryls are commonly formed by electrophilic aromatic nitration using HNO3, or an alternative NO2+ source. Nitroaryls may be further elaborated prior to reduction. Thus, nitroaryls substituted with




embedded image



potential leaving groups (e.g. F, Cl, Br, etc.) may undergo substitution reactions on treatment with nucleophiles, such as thiolate (exemplified in Scheme II) or phenoxide. Nitroaryls may also undergo Ullman-type coupling reactions (Scheme II).




embedded image


Nitroaryls may also undergo transition metal mediated cross coupling reactions. For example, nitroaryl electrophiles, such as nitroaryl bromides, iodides or triflates, undergo palladium mediated cross coupling reactions with aryl nucleophiles, such as arylboronic acids (Suzuki reactions, exemplified below), aryltins (Stille reactions) or arylzincs (Negishi reaction) to afford the biaryl (5).




embedded image


Either nitroaryls or anilines may be converted into the corresponding arenesulfonyl chloride (7) on treatment with chlorosulfonic acid. Reaction of the sulfonyl chloride with a fluoride source, such as KF then affords sulfonyl fluoride (8). Reaction of sulfonyl fluoride 8 with trimethylsilyl trifluoromethane in the presence of a fluoride source, such as tris(dimethylamino)sulfonium difluorotrimethylsiliconate (TASF) leads to the corresponding trifluoromethylsulfone (9). Alternatively, sulfonyl chloride 7 may be reduced to the arenethiol (10), for example with zinc amalgum. Reaction of thiol 10 with CHClF2 in the presence of base gives the difluoromethyl mercaptam (11), which may be oxidized to the sulfone (12) with any of a variety of oxidants, including CrO3-acetic anhydride (Sedova et al. Zh. Org. Khim. 1970, 6, (568).




embedded image


As shown in Scheme IV, non-symmetrical urea formation may involve reaction of an aryl isocyanate (14) with an aryl amine (13). The heteroaryl isocyanate may be synthesized from a heteroaryl amine by treatment with phosgene or a phosgene equivalent, such as trichloromethyl chloroformate (diphosgene), bis(trichloromethyl) carbonate (triphosgene), or N,N′-carbonyldiimidazole (CDI). The isocyanate may also be derived from a heterocyclic carboxylic acid derivative, such as an ester, an acid halide or an anhydride by a Curtius-type rearrangement. Thus, reaction of acid derivative 16 with an azide source, followed by rearrangement affords the isocyanate. The corresponding carboxylic acid (17) may also be subjected to Curtius-type rearrangements using diphenylphosphoryl azide (DPPA) or a similar reagent.




embedded image


Finally, ureas may be further manipulated using methods familiar to those skilled in the art.


The invention also includes pharmaceutical compositions including a compound of Formula I, and a physiologically acceptable carrier.


The compounds may be administered orally, topically, parenterally, by inhalation or spray or rectally in dosage unit formulations. The term ‘administration by injection’ includes intravenous, intramuscular, subcutaneous and parenteral injections, as well as use of infusion techniques. One or more compounds may be present in association with one or more non-toxic pharmaceutically acceptable carriers and if desired other active ingredients.


Compositions intended for oral use may be prepared according to any suitable method known to the art for the manufacture of pharmaceutical compositions. Such compositions may contain one or more agents selected from the group consisting of diluents, sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; and binding agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. These compounds may also be prepared in solid, rapidly released form.


Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.


Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally occurring phosphatide, for example, lecithin, or condensation products or an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethylene oxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.


Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example, sweetening, flavoring and coloring agents, may also be present.


The compounds may also be in the form of non-aqueous liquid formulations, e.g., oily suspensions which may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or peanut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.


Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.


Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.


The compounds may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter and polyethylene glycols.


For all regimens of use disclosed herein for compounds of Formula I, the daily oral dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily dosage for administration by injection, including intravenous, intramuscular, subcutaneous and parenteral injections, and use of infusion techniques will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily rectal dosage regime will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily topical dosage regime will preferably be from 0.1 to 200 mg administered between one to four times daily. The daily inhalation dosage regime will preferably be from 0.01 to 10 mg/Kg of total body weight.


It will be appreciated by those skilled in the art that the particular method of administration will depend on a variety of factors, all of which are considered routinely when administering therapeutics. It will also be appreciated by one skilled in the art that the specific dose level for a given patient depends on a variety of factors, including specific activity of the compound administered, age, body weight, health, sex, diet, time and route of administration, rate of excretion, etc. It will be further appreciated by one skilled in the art that the optimal course of treatment, i.e., the mode of treatment and the daily number of doses of a compound of Formula I or a pharmaceutically acceptable salt thereof given for a defined number of days, can be ascertained by those skilled in the art using conventional treatment tests.


It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the condition undergoing therapy.


The entire disclosure of all applications, patents and publications cited above and below are hereby incorporated by reference, including provisional application Ser. No. 60/115,877, filed Jan. 13, 1999 and non-provisional application Ser. No. 09/257,266 filed Feb. 25, 1999.


The compounds can be produced from known compounds (or from starting materials which, in turn, can be produced from known compounds), e.g., through the general preparative methods shown below. The activity of a given compound to inhibit raf kinase can be routinely assayed, e.g., according to procedures disclosed below. The following examples are for illustrative purposes only and are not intended, nor should they be construed to limit the invention in any way.







EXAMPLES

All reactions were performed in flame-dried or oven-dried glassware under a positive pressure of dry argon or dry nitrogen, and were stirred magnetically unless otherwise indicated. Sensitive liquids and solutions were transferred via syringe or cannula, and introduced into reaction vessels through rubber septa. Unless otherwise stated, the term ‘concentration under reduced pressure’ refers to use of a Buchi rotary evaporator at approximately 15 mmHg. Unless otherwise stated, the term ‘under high vacuum’ refers to a vacuum of 0.4-1.0 mmHg.


All temperatures are reported uncorrected in degrees Celsius (° C.). Unless otherwise indicated, all parts and percentages are by weight.


Commercial grade reagents and solvents were used without further purification. N-cyclohexyl-N′-(methylpolystyrene)carbodiimide was purchased from Calbiochem-Novabiochem Corp. 3-tert-Butylaniline, 5-tert-butyl-2-methoxy aniline, 4-bromo-3-(trifluoromethyl)aniline, 4-chloro-3-(trifluoromethyl)aniline 2-methoxy-5-(trifluoromethyl)aniline, 4-tert-butyl-2-nitroaniline, 3-amino-2-naphthol, ethyl 4-isocyanatobenzoate, N-acetyl-4-chloro-2-methoxy-5-(trifluoromethyl)aniline and 4-chloro-3-(trifluoromethyl)phenyl isocyanate were purchased and used without further purification. Syntheses of 3-amino-2-methoxyquinoline (E. Cho et al. WO 98/00402; A. Cordi et al. EP 542,609; IBID Bioorg. Med. Chem. 3, 1995, 129), 4-(3-carbamoylphenoxy)-1-nitrobenzene (K. Ikawa Yakugaku Zasshi 79, 1959, 760; Chem. Abstr. 53, 1959, 12761b), 3-tert-butylphenyl isocyanate (O. Rohr et al. DE 2,436,108) and 2-methoxy-5-(trifluoromethyl)phenyl isocyanate (K. Inukai et al. JP 42,025,067; IBID Kogyo Kagaku Zasshi 70, 1967, 491) have previously been described.


Thin-layer chromatography (TLC) was performed using Whatman® pre-coated glass-backed silica gel 60A F-254 250 μm plates. Visualization of plates was effected by one or more of the following techniques: (a) ultraviolet illumination, (b) exposure to iodine vapor, (c) immersion of the plate in a 10% solution of phosphomolybdic acid in ethanol followed by heating, (d) immersion of the plate in a cerium sulfate solution followed by heating, and/or (e) immersion of the plate in an acidic ethanol solution of 2,4-dinitrophenylhydrazine followed by heating. Column chromatography (flash chromatography) was performed using 230-400 mesh EM Science® silica gel.


Melting points (mp) were determined using a Thomas-Hoover melting point apparatus or a Mettler FP66 automated melting point apparatus and are uncorrected. Fourier transform infrared spectra were obtained using a Mattson 4020 Galaxy Series spectrophotometer. Proton (1H) nuclear magnetic resonance (NMR) spectra were measured with a General Electric GN-Omega 300 (300 MHz) spectrometer with either Me4Si (δ 0.00) or residual protonated solvent (CHCl3 δ 7.26; MeOH δ 3.30; DMSO δ 2.49) as standard. Carbon (13C) NMR spectra were measured with a General Electric GN-Omega 300 (75 MHz) spectrometer with solvent (CDCl3 δ 77.0; MeOD-d3; δ 49.0; DMSO-d6 δ 39.5) as standard. Low resolution mass spectra (MS) and high resolution mass spectra (HRMS) were either obtained as electron impact (EI) mass spectra or as fast atom bombardment (FAB) mass spectra. Electron impact mass spectra (EI-MS) were obtained with a Hewlett Packard 5989A mass spectrometer equipped with a Vacumetrics Desorption Chemical Ionization Probe for sample introduction. The ion source was maintained at 250° C. Electron impact ionization was performed with electron energy of 70 eV and a trap current of 300 μA. Liquid-cesium secondary ion mass spectra (FAB-MS), an updated version of fast atom bombardment were obtained using a Kratos Concept 1-H spectrometer. Chemical ionization mass spectra (CI-MS) were obtained using a Hewlett Packard MS-Engine (5989A) with methane or ammonia as the reagent gas (1×10−4 torr to 2.5×10−4 torr). The direct insertion desorption chemical ionization (DCI) probe (Vacuumetrics, Inc.) was ramped from 0-1.5 amps in 10 sec and held at 10 amps until all traces of the sample disappeared (˜1-2 min). Spectra were scanned from 50-800 amu at 2 sec per scan. HPLC—electrospray mass spectra (HPLC ES-MS) were obtained using a Hewlett-Packard 1100 HPLC equipped with a quaternary pump, a variable wavelength detector, a C-18 column, and a Finnigan LCQ ion trap mass spectrometer with electrospray ionization. Spectra were scanned from 120-800 amu using a variable ion time according to the number of ions in the source. Gas chromatography—ion selective mass spectra (GC-MS) were obtained with a Hewlett Packard 5890 gas chromatograph equipped with an HP-1 methyl silicone column (0.33 mM coating; 25 m×0.2 mm) and a Hewlett Packard 5971 Mass Selective Detector (ionization energy 70 eV). Elemental analyses are conducted by Robertson Microlit Labs, Madison N.J.


All compounds displayed NMR spectra, LRMS and either elemental analysis or HRMS consistent with assigned structures.


List of Abbreviations and Acronyms:


AcOH acetic acid


anh anhydrous


atm atmosphere(s)


BOC tert-butoxycarbonyl


CDI 1,1′-carbonyl diimidazole


conc concentrated


d day(s)


dec decomposition


DMAC N,N-dimethylacetamide


DMPU 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone


DMF N,N-dimethylformamide


DMSO dimethylsulfoxide


DPPA diphenylphosphoryl azide


EDCI 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide


EtOAc ethyl acetate


EtOH ethanol (100%)


Et2O diethyl ether


Et3N triethylamine


h hour(s)


HOBT 1-hydroxybenzotriazole


m-CPBA 3-chloroperoxybenzoic acid


MeOH methanol


pet. ether petroleum ether (boiling range 30-60° C.)


temp. temperature


THF tetrahydrofuran


TFA trifluoroAcOH


Tf trifluoromethanesulfonyl


A. General Methods for Synthesis of Substituted Anilines
A1. General Method for Aryl Amine Formation via Ether Formation Followed by Ester Saponification, Curtius Rearrangement, and Carbamate Deprotection. Synthesis of 2-Amino-3-methoxynaphthalene



embedded image


Step 1. Methyl 3-methoxy-2-naphthoate

A slurry of methyl 3-hydroxy-2-naphthoate (10.1 g, 50.1 mmol) and K2CO3 (7.96 g, 57.6 mmol) in DMF (200 mL) was stirred at room temp. for 15 min., then treated with iodomethane (3.43 mL, 55.1 mmol). The mixture was allowed to stir at room temp. overnight, then was treated with water (200 mL). The resulting mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with a saturated NaCl solution (100 mL), dried (MgSO4), concentrated under reduced pressure (approximately 0.4 mmHg overnight) to give methyl 3-methoxy-2-naphthoate as an amber oil (10.30 g): 1H-NMR (DMSO-d6) δ 2.70 (s, 3H), 2.85 (s, 3H), 7.38 (app t, J=8.09 Hz, 1H), 7.44 (s, 1H), 7.53 (app t, J=8.09 Hz, 1H), 7.84 (d, J=8.09 Hz, 1H), 7.90 (s, 1H), 8.21 (s, 1H).




embedded image


Step 2. 3-Methoxy-2-naphthoic acid

A solution of methyl 3-methoxy-2-naphthoate (6.28 g, 29.10 mmol) and water (10 mL) in MeOH (100 mL) at room temp. was treated with a 1 N NaOH solution (33.4 mL, 33.4 mmol). The mixture was heated at the reflux temp. for 3 h, cooled to room temp., and made acidic with a 10% citric acid solution. The resulting solution was extracted with EtOAc (2×100 mL). The combined organic layers were washed with a saturated NaCl solution, dried (MgSO4) and concentrated under reduced pressure. The residue was triturated with hexane then washed several times with hexane to give 3-methoxy-2-naphthoic acid as a white solid (5.40 g, 92%): 1H-NMR (DMSO-d6) δ 3.88 (s, 3H), 7.34-7.41 (m, 2H), 7.49-7.54 (m, 1H), 7.83 (d, J=8.09 Hz, 1H), 7.91 (d, J=8.09 Hz, 1H), 8.19 (s, 1H), 12.83 (br s, 1H).




embedded image


Step 3. 2-(N-(Carbobenzyloxy)amino-3-methoxynaphthalene

A solution of 3-methoxy-2-naphthoic acid (3.36 g, 16.6 mmol) and Et3N (2.59 mL, 18.6 mmol) in anh toluene (70 mL) was stirred at room temp. for 15 min., then treated with a solution of DPPA (5.12 g, 18.6 mmol) in toluene (10 mL) via pipette. The resulting mixture was heated at 80° C. for 2 h. After cooling the mixture to room temp., benzyl alcohol (2.06 mL, 20 mmol) was added via syringe. The mixture was then warmed to 80° C. overnight. The resulting mixture was cooled to room temp., quenched with a 10% citric acid solution, and extracted with EtOAc (2×100 mL). The combined organic layers were washed with a saturated NaCl solution, dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (14% EtOAc/86% hexane) to give 2-(N-(carbobenzyloxy)amino-3-methoxynaphthalene as a pale yellow oil (5.1 g, 100%): 1H-NMR (DMSO-d6) δ 3.89 (s, 3H), 5.17 (s, 2H), 7.27-7.44 (m, 8H), 7.72-7.75 (m, 2H), 8.20 (s, 1H), 8.76 (s, 1H).




embedded image


Step 4. 2-Amino-3-methoxynaphthalene

A slurry of 2-(N-(carbobenzyloxy)amino-3-methoxynaphthalene (5.0 g, 16.3 mmol) and 10% Pd/C (0.5 g) in EtOAc (70 mL) was maintained under a H2 atm (balloon) at room temp. overnight. The resulting mixture was filtered through Celite® and concentrated under reduced pressure to give 2-amino-3-methoxynaphthalene as a pale pink powder (2.40 g, 85%): 1H-NMR (DMSO-d6) δ 3.86 (s, 3H), 6.86 (s, 2H), 7.04-7.16 (m, 2H), 7.43 (d, J=8.0 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H); EI-MS m/z 173 (M+).


A2. Synthesis of ω-Carbamyl Anilines via Formation of a Carbamylpyridine Followed by Nucleophilic Coupling with an Aryl Amine. Synthesis of 4-(2-N-Methylcarbamyl-4-pyridyloxy)aniline



embedded image


Step 1a. Synthesis of 4-chloro-N-methyl-2-pyridinecarboxamide via the Menisci reaction

Caution: this is a highly hazardous, potentially explosive reaction. To a stifling solution of 4-chloropyridine (10.0 g) in N-methylformamide (250 mL) at room temp. was added conc. H2SO4 (3.55 mL) to generate an exotherm. To this mixture was added H2O2 (30% wt in H2O, 17 mL) followed by FeSO4.7H2O (0.56 g) to generate another exotherm. The resulting mixture was stirred in the dark at room temp. for 1 h, then warmed slowly over 4 h to 45° C. When bubbling had subsided, the reaction was heated at 60° C. for 16 h. The resulting opaque brown solution was diluted with H2O (700 mL) followed by a 10% NaOH solution (250 mL). The resulting mixture was extracted with EtOAc (3×500 mL). The organic phases were washed separately with a saturated NaCl solution (3×150 mL), then they were combined, dried (MgSO4) and filtered through a pad of silica gel with the aid of EtOAc. The resulting brown oil was purified by column chromatography (gradient from 50% EtOAc/50% hexane to 80% EtOAc/20% hexane). The resulting yellow oil crystallized at 0° C. over 72 h to give 4-chloro-N-methyl-2-pyridinecarboxamide (0.61 g, 5.3%): TLC (50% EtOAc/50% hexane) Rf 0.50; 1H NMR (CDCl3) δ 3.04 (d, J=5.1 Hz, 3H), 7.43 (dd, J=5.4, 2.4 Hz, 1H), 7.96 (br s, 1H), 8.21 (s, 1H), 8.44 (d, J=5.1 Hz, 1H); CI-MS m/z 171 ((M+H)+).




embedded image


Step 1b. Synthesis of 4-chloropyridine-2-carbonyl chloride HCl salt via picolinic acid

Anhydrous DMF (6.0 mL) was slowly added to SOCl2 (180 mL) between 40° and 50° C. The solution was stirred in that temperature range for 10 min. then picolinic acid (60.0 g, 487 mmol) was added in portions over 30 min. The resulting solution was heated at 72° C. (vigorous SO2 evolution) for 16 h to generate a yellow solid precipitate. The resulting mixture was cooled to room temp., diluted with toluene (500 mL) and concentrated to 200 mL. The toluene addition/concentration process was repeated twice. The resulting nearly dry residue was filtered and the solids were washed with toluene (2×200 mL) and dried under high vacuum for 4 h to afford 4-chloropyridine-2-carbonyl chloride HCl salt as a yellow-orange solid (92.0 g, 89%).




embedded image


Step 2. Synthesis of methyl 4-chloropyridine-2-carboxylate HCl salt

Anh DMF (10.0 mL) was slowly added to SOCl2 (300 mL) at 40-48° C. The solution was stirred at that temp. range for 10 min., then picolinic acid (100 g, 812 mmol) was added over 30 min. The resulting solution was heated at 72° C. (vigorous SO2 evolution) for 16 h to generate a yellow solid. The resulting mixture was cooled to room temp., diluted with toluene (500 mL) and concentrated to 200 mL. The toluene addition/concentration process was repeated twice. The resulting nearly dry residue was filtered, and the solids were washed with toluene (50 mL) and dried under high vacuum for 4 hours to afford 4-chloropyridine-2-carbonyl chloride HCl salt as an off-white solid (27.2 g, 16%). This material was set aside.


The red filtrate was added to MeOH (200 mL) at a rate which kept the internal temperature below 55° C. The contents were stirred at room temp. for 45 min., cooled to 5° C. and treated with Et2O (200 mL) dropwise. The resulting solids were filtered, washed with Et2O (200 mL) and dried under reduced pressure at 35° C. to provide methyl 4-chloropyridine-2-carboxylate HCl salt as a white solid (110 g, 65%): mp 108-112° C.; 1H-NMR (DMSO-d6) δ 3.88 (s, 3H); 7.82 (dd, J=5.5, 2.2 Hz, 1H); 8.08 (d, J=2.2 Hz, 1H); 8.68 (d, J=5.5 Hz, 1H); 10.68 (br s, 1H); HPLC ES-MS m/z 172 ((M+H)+).




embedded image


Step 3a. Synthesis of 4-chloro-N-methyl-2-pyridinecarboxamide from methyl 4-chloropyridine-2-carboxylate

A suspension of methyl 4-chloropyridine-2-carboxylate HCl salt (89.0 g, 428 mmol) in MeOH (75 mL) at 0° C. was treated with a 2.0 M methylamine solution in THF (1 L) at a rate which kept the internal temp. below 5° C. The resulting mixture was stored at 3° C. for 5 h, then concentrated under reduced pressure. The resulting solids were suspended in EtOAc (1 L) and filtered. The filtrate was washed with a saturated NaCl solution (500 mL), dried (Na2SO4) and concentrated under reduced pressure to afford 4-chloro-N-methyl-2-pyridinecarboxamide as pale-yellow crystals (71.2 g, 97%): mp 41-43° C.; 1H-NMR (DMSO-d6) δ 2.81 (s, 3H), 7.74 (dd, J=5.1, 2.2 Hz, 1H), 8.00 (d, J=2.2, 1H), 8.61 (d, J=5.1 Hz, 1H), 8.85 (br d, 1H); CI-MS m/z 171 ((M+H)+).




embedded image


Step 3b. Synthesis of 4-chloro-N-methyl-2-pyridinecarboxamide from 4-chloropyridine-2-carbonyl chloride

4-Chloropyridine-2-carbonyl chloride HCl salt (7.0 g, 32.95 mmol) was added in portions to a mixture of a 2.0 M methylamine solution in THF (100 mL) and MeOH (20 mL) at 0° C. The resulting mixture was stored at 3° C. for 4 h, then concentrated under reduced pressure. The resulting nearly dry solids were suspended in EtOAc (100 mL) and filtered. The filtrate was washed with a saturated NaCl solution (2×100 mL), dried (Na2SO4) and concentrated under reduced pressure to provide 4-chloro-N-methyl-2-pyridinecarboxamide as a yellow, crystalline solid (4.95 g, 88%): mp 37-40° C.




embedded image


Step 4. Synthesis of 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline

A solution of 4-aminophenol (9.60 g, 88.0 mmol) in anh. DMF (150 mL) was treated with potassium tert-butoxide (10.29 g, 91.7 mmol), and the reddish-brown mixture was stirred at room temp. for 2 h. The contents were treated with 4-chloro-N-methyl-2-pyridinecarboxamide (15.0 g, 87.9 mmol) and K2CO3 (6.50 g, 47.0 mmol) and then heated at 80° C. for 8 h. The mixture was cooled to room temp. and separated between EtOAc (500 mL) and a saturated NaCl solution (500 mL). The aqueous phase was back-extracted with EtOAc (300 mL). The combined organic layers were washed with a saturated NaCl solution (4×1000 mL), dried (Na2SO4) and concentrated under reduced pressure. The resulting solids were dried under reduced pressure at 35° C. for 3 h to afford 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline as a light-brown solid 17.9 g, 84%): 1H-NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 5.17 (br s, 2H), 6.64, 6.86 (AA′BB′ quartet, J=8.4 Hz, 4H), 7.06 (dd, J=5.5, 2.5 Hz, 1H), 7.33 (d, J=2.5 Hz, 1H), 8.44 (d, J=5.5 Hz, 1H), 8.73 (br d, 1H); HPLC ES-MS m/z 244 ((M+H)+).


A3. General Method for the Synthesis of Anilines by Nucleophilic Aromatic Addition Followed by Nitroarene Reduction. Synthesis of 5-(4-Aminophenoxy)isoindoline-1,3-dione



embedded image


Step 1. Synthesis of 5-hydroxyisoindoline-1,3-dione

To a mixture of ammonium carbonate (5.28 g, 54.9 mmol) in conc. AcOH (25 mL) was slowly added 4-hydroxyphthalic acid (5.0 g, 27.45 mmol). The resulting mixture was heated at 120° C. for 45 min., then the clear, bright yellow mixture was heated at 160° C. for 2 h. The resulting mixture was maintained at 160° C. and was concentrated to approximately 15 mL, then was cooled to room temp. and adjusted pH 10 with a 1N NaOH solution. This mixture was cooled to 0° C. and slowly acidified to pH 5 using a 1N HCl solution. The resultant precipitate was collected by filtration and dried under reduced pressure to yield 5-hydroxyisoindoline-1,3-dione as a pale yellow powder as product (3.24 g, 72%): 1H NMR (DMSO-d6) δ 7.00-7.03 (m, 2H), 7.56 (d, J=9.3 Hz, 1H).




embedded image


Step 2. Synthesis of 5-(4-nitrophenoxy)isoindoline-1,3-dione

To a stifling slurry of NaH (1.1 g, 44.9 mmol) in DMF (40 mL) at 0° C. was added a solution of 5-hydroxyisoindoline-1,3-dione (3.2 g, 19.6 mmol) in DMF (40 mL) dropwise. The bright yellow-green mixture was allowed to return to room temp. and was stirred for 1 h, then 1-fluoro-4-nitrobenzene (2.67 g, 18.7 mmol) was added via syringe in 3-4 portions. The resulting mixture was heated at 70° C. overnight, then cooled to room temp. and diluted slowly with water (150 mL), and extracted with EtOAc (2×100 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to give 5-(4-nitrophenoxy)isoindoline-1,3-dione as a yellow solid (3.3 g, 62%): TLC (30% EtOAc/70% hexane) Rf 0.28; 1H NMR (DMSO-d6) δ 7.32 (d, J=12 Hz, 2H), 7.52-7.57 (m, 2H), 7.89 (d, J=7.8 Hz, 1H), 8.29 (d, J=9 Hz, 2H), 11.43 (br s, 1H); CI-MS m/z 285 ((M+H)+, 100%).




embedded image


Step 3. Synthesis of 5-(4-aminophenoxy)isoindoline-1,3-dione

A solution of 5-(4-nitrophenoxy)isoindoline-1,3-dione (0.6 g, 2.11 mmol) in conc. AcOH (12 mL) and water (0.1 mL) was stirred under a stream of argon while iron powder (0.59 g, 55.9 mmol) was added slowly. This mixture stirred at room temp. for 72 h, then was diluted with water (25 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to give 5-(4-aminophenoxy)isoindoline-1,3-dione as a brownish solid (0.4 g, 75%): TLC (50% EtOAc/50% hexane) Rf 0.27; 1H NMR (DMSO-d6) δ 5.14 (br s, 2H), 6.62 (d, J=8.7 Hz, 2H), 6.84 (d, J=8.7 Hz, 2H), 7.03 (d, J=2.1 Hz, 1H), 7.23 (dd, 1H), 7.75 (d, J=8.4 Hz, 1H), 11.02 (s, 1H); HPLC ES-MS m/z 255 ((M+H)+, 100%).


A4. General Method for the Synthesis of Pyrrolylanilines. Synthesis of 5-tert-Butyl-2-(2,5-dimethylpyrrolyl)aniline



embedded image


Step 1. Synthesis of 1-(4-tert-butyl-2-nitrophenyl)-2,5-dimethylpyrrole

To a stifling solution of 2-nitro-4-tert-butylaniline (0.5 g, 2.57 mmol) in cyclohexane (10 mL) was added AcOH (0.1 mL) and acetonylacetone (0.299 g, 2.63 mmol) via syringe. The reaction mixture was heated at 120° C. for 72 h with azeotropic removal of volatiles. The reaction mixture was cooled to room temp., diluted with CH2Cl2 (10 mL) and sequentially washed with a 1N HCl solution (15 mL), a 1N NaOH solution (15 mL) and a saturated NaCl solution (15 mL), dried (MgSO4) and concentrated under reduced pressure. The resulting orange-brown solids were purified via column chromatography (60 g SiO2; gradient from 6% EtOAc/94% hexane to 25% EtOAc/75% hexane) to give 1-(4-tert-butyl-2-nitrophenyl)-2,5-dimethylpyrrole as an orange-yellow solid (0.34 g, 49%): TLC (15% EtOAc/85% hexane) Rf 0.67; 1H NMR (CDCl3) d 1.34 (s, 9H), 1.89 (s, 6H), 5.84 (s, 2H), 7.19-7.24 (m, 1H), 7.62 (dd, 1H), 7.88 (d, J=2.4 Hz, 1H); CI-MS m/z 273 ((M+H)+, 50%).




embedded image


Step 2. Synthesis of 5-tert-Butyl-2-(2,5-dimethylpyrrolyl)aniline

A slurry of 1-(4-tert-butyl-2-nitrophenyl)-2,5-dimethylpyrrole (0.341 g, 1.25 mmol), 10% Pd/C (0.056 g) and EtOAc (50 mL) under an H2 atmosphere (balloon) was stirred for 72 h, then filtered through a pad of Celite®. The filtrate was concentrated under reduced pressure to give 5-tert-butyl-2-(2,5-dimethylpyrrolyl)aniline as yellowish solids (0.30 g, 99%): TLC (10% EtOAc/90% hexane) Rf 0.43; 1H NMR (CDCl3) δ 1.28 (s, 9H), 1.87-1.91 (m, 8H), 5.85 (br s, 2H), 6.73-6.96 (m, 3H), 7.28 (br s, 1H).


A5. General Method for the Synthesis of Anilines from Anilines by Nucleophilic Aromatic Substitution. Synthesis of 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-methylaniline HCl Salt



embedded image


A solution of 4-amino-3-methylphenol (5.45 g, 44.25 mmol) in dry dimethylacetamide (75 mL) was treated with potassium tert-butoxide (10.86 g, 96.77 mmol) and the black mixture was stirred at room temp. until the flask had reached room temp. The contents were then treated with 4-chloro-N-methyl-2-pyridinecarboxamide (Method A2, Step 3b; 7.52 g, 44.2 mmol) and heated at 110° C. for 8 h. The mixture was cooled to room temp. and diluted with water (75 mL). The organic layer was extracted with EtOAc (5×100 mL). The combined organic layers were washed with a saturated NaCl solution (200 mL), dried (MgSO4) and concentrated under reduced pressure. The residual black oil was treated with Et2O (50 mL) and sonicated. The solution was then treated with HCl (1 M in Et2O; 100 mL) and stirred at room temp. for 5 min. The resulting dark pink solid (7.04 g, 24.1 mmol) was removed by filtration from solution and stored under anaerobic conditions at 0° C. prior to use: 1H NMR (DMSO-d6) δ 2.41 (s, 3H), 2.78 (d, J=4.4 Hz, 3H), 4.93 (br s, 2H), 7.19 (dd, J=8.5, 2.6 Hz, 1H), 7.23 (dd, J=5.5, 2.6 Hz, 1H), 7.26 (d, J=2.6 Hz, 1H), 7.55 (d, J=2.6 Hz, 1H), 7.64 (d, J=8.8 Hz, 1H), 8.55 (d, J=5.9 Hz, 1H), 8.99 (q, J=4.8 Hz, 1H).


A6. General Method for the Synthesis of Anilines from Hydroxyanilines by N-Protection, Nucleophilic Aromatric Substitution and Deprotection. Synthesis of 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline



embedded image


Step 1: Synthesis of 3-Chloro-4-(2,2,2-trifluoroacetylamino)phenol

Iron (3.24 g, 58.00 mmol) was added to stirring TFA (200 mL). To this slurry was added 2-chloro-4-nitrophenol (10.0 g, 58.0 mmol) and trifluoroacetic anhydride (20 mL). This gray slurry was stirred at room temp. for 6 d. The iron was filtered from solution and the remaining material was concentrated under reduced pressure. The resulting gray solid was dissolved in water (20 mL). To the resulting yellow solution was added a saturated NaHCO3 solution (50 mL). The solid which precipitated from solution was removed. The filtrate was slowly quenched with the sodium bicarbonate solution until the product visibly separated from solution (determined was using a mini work-up vial). The slightly cloudy yellow solution was extracted with EtOAc (3×125 mL). The combined organic layers were washed with a saturated NaCl solution (125 mL), dried (MgSO4) and concentrated under reduced pressure. The 1H NMR (DMSO-d6) indicated a 1:1 ratio of the nitrophenol starting material and the intended product 3-chloro-4-(2,2,2-trifluoroacetylamino)phenol. The crude material was taken on to the next step without further purification.




embedded image


Step 2: Synthesis of 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chlorophenyl (222-trifluoro)acetamide

A solution of crude 3-chloro-4-(2,2,2-trifluoroacetylamino)phenol (5.62 g, 23.46 mmol) in dry dimethylacetamide (50 mL) was treated with potassium tert-butoxide (5.16 g, 45.98 mmol) and the brownish black mixture was stirred at room temp. until the flask had cooled to room temp. The resulting mixture was treated with 4-chloro-N-methyl-2-pyridinecarboxamide (Method A2, Step 3b; 1.99 g, 11.7 mmol) and heated at 100° C. under argon for 4 d. The black reaction mixture was cooled to room temp. and then poured into cold water (100 mL). The mixture was extracted with EtOAc (3×75 mL) and the combined organic layers were concentrated under reduced pressure. The residual brown oil was purified by column chromatography (gradient from 20% EtOAc/pet. ether to 40% EtOAc/pet. ether) to yield 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chlorophenyl (222-trifluoro)acetamide as a yellow solid (8.59 g, 23.0 mmol).




embedded image


Step 3. Synthesis of 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline

A solution of crude 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chlorophenyl (222-trifluoro)acetamide (8.59 g, 23.0 mmol) in dry 4-dioxane (20 mL) was treated with a 1N NaOH solution (20 mL). This brown solution was allowed to stir for 8 h. To this solution was added EtOAc (40 mL). The green organic layer was extracted with EtOAc (3×40 mL) and the solvent was concentrated to yield 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline as a green oil that solidified upon standing (2.86 g, 10.30 mmol): 1H NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 5.51 (s, 2H), 6.60 (dd, J=8.5, 2.6 Hz, 1H), 6.76 (d, J=2.6 Hz, 1H), 7.03 (d, J=8.5 Hz, 1H), 7.07 (dd, J=5.5, 2.6, Hz, 1H), 7.27 (d, J=2.6 Hz, 1H), 8.46 (d, J=5.5 Hz, 1H), 8.75 (q, J=4.8, 1H).


A7. General Method for the Deprotection of an Acylated Aniline. Synthesis of 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline



embedded image


A suspension of 3-chloro-6-(N-acetyl)-4-(trifluoromethyl)anisole (4.00 g, 14.95 mmol) in a 6M HCl solution (24 mL) was heated at the reflux temp. for 1 h. The resulting solution was allowed to cool to room temp. during which time it solidified slightly. The resulting mixture was diluted with water (20 mL) then treated with a combination of solid NaOH and a saturated NaHCO3 solution until the solution was basic. The organic layer was extracted with CH2Cl2 (3×50 mL). The combined organics were dried (MgSO4) and concentrated under reduced pressure to yield 4-chloro-2-methoxy-5-(trifluoromethyl)aniline as a brown oil (3.20 g, 14.2 mmol): 1H NMR (DMSO-d6) δ 3.84 (s, 3H), 5.30 (s, 2H), 7.01 (s, 2H).


A8. General Method for Synthesis of ω-Alkoxy-ω-carboxyphenyl Anilines. Synthesis of 4-(3-(N-Methylcarbamoyl)-4-methoxyphenoxy)aniline



embedded image


Step 1. 4-(3-Methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene

To a solution of 4-(3-carboxy-4-hydroxyphenoxy)-1-nitrobenzene (prepared from 2,5-dihydroxybenzoic acid in a manner analogous to that described in Method A13, Step 1, 12 mmol) in acetone (50 mL) was added K2CO3 (5 g) and dimethyl sulfate (3.5 mL). The resulting mixture was heated at the reflux temp. overnight, then cooled to room temp. and filtered through a pad of Celite®. The resulting solution was concentrated under reduced pressure, absorbed onto SiO2, and purified by column chromatography (50% EtOAc/50% hexane) to give 4-(3-methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene as a yellow powder (3 g): mp 115-118° C.




embedded image


Step 2. 4-(3-Carboxy-4-methoxyphenoxy)-1-nitrobenzene

A mixture of 4-(3-methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene (1.2 g), KOH (0.33 g) and water (5 mL) in MeOH (45 mL) was stirred at room temp. overnight and then heated at the reflux temp. for 4 h. The resulting mixture was cooled to room temp. and concentrated under reduced pressure. The residue was dissolved in water (50 mL), and the aqueous mixture was made acidic with a 1N HCl solution. The resulting mixture was extracted with EtOAc (50 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure to give 4-(3-carboxy-4-methoxyphenoxy)-1-nitrobenzene (1.04 g).




embedded image


Step 3. 4-(3-(N-Methylcarbamoyl)-4-methoxyphenoxy)-1-nitrobenzene

To a solution of 4-(3-carboxy-4-methoxyphenoxy)-1-nitrobenzene (0.50 g, 1.75 mmol) in CH2Cl2 (12 mL) was added SOCl2 (0.64 mL, 8.77 mmol) in portions. The resulting solution was heated at the reflux temp. for 18 h, cooled to room temp., and concentrated under reduced pressure. The resulting yellow solids were dissolved in CH2Cl2 (3 mL) then the resulting solution was treated with a methylamine solution (2.0 M in THF, 3.5 mL, 7.02 mmol) in portions (CAUTION: gas evolution), and stirred at room temp. for 4 h. The resulting mixture was treated with a 1N NaOH solution, then extracted with CH2Cl2 (25 mL). The organic layer was dried (Na2SO4) and concentrated under reduced pressure to give 4-(3-(N-methylcarbamoyl)-4-methoxyphenoxy)-1-nitrobenzene as a yellow solid (0.50 g, 95%).




embedded image


Step 4. 4-(3-(N-Methylcarbamoyl)-4-methoxyphenoxy)aniline

A slurry of 4-(3-(N-methylcarbamoly)-4-methoxyphenoxy)-1-nitrobenzene (0.78 g, 2.60 mmol) and 10% Pd/C (0.20 g) in EtOH (55 mL) was stirred under 1 atm of H2 (balloon) for 2.5 d, then was filtered through a pad of Celite®. The resulting solution was concentrated under reduced pressure to afford 4-(3-(N-methylcarbamoly)-4-methoxyphenoxy)aniline as an off-white solid (0.68 g, 96%): TLC (0.1% Et3N/99.9% EtOAc) Rf 0.36.


A9. General Method for Preparation of ω-Alkylphthalimide-containing Anilines. Synthesis of 5-(4-Aminophenoxy)-2-methylisoindoline-1,3-dione



embedded image


Step 1. Synthesis of 5-(4-Nitrophenoxy)-2-methylisoindoline-1,3-dione

A slurry of 5-(4-nitrophenoxy)isoindoline-1,3-dione (A3 Step 2; 1.0 g, 3.52 mmol) and NaH (0.13 g, 5.27 mmol) in DMF (15 mL) was stirred at room temp. for 1 h, then treated with methyl iodide (0.3 mL, 4.57 mmol). The resulting mixture was stirred at room temp. overnight, then was cooled to ° C. and treated with water (10 mL). The resulting solids were collected and dried under reduced pressure to give 5-(4-nitrophenoxy)-2-methylisoindoline-1,3-dione as a bright yellow solid (0.87 g, 83%): TLC (35% EtOAc/65% hexane) Rf 0.61.




embedded image


Step 2. Synthesis of 5-(4-Aminophenoxy)-2-methylisoindoline-1,3-dione

A slurry of nitrophenoxy)-2-methylisoindoline-1,3-dione (0.87 g, 2.78 mmol) and 10% Pd/C (0.10 g) in MeOH was stirred under 1 atm of H2 (balloon) overnight. The resulting mixture was filtered through a pad of Celite® and concentrated under reduced pressure. The resulting yellow solids were dissolved in EtOAc (3 mL) and filtered through a plug of SiO2 (60% EtOAc/40% hexane) to afford 5-(4-aminophenoxy)-2-methylisoindoline-1,3-dione as a yellow solid (0.67 g, 86%): TLC (40% EtOAc/60% hexane) Rf 0.27.


A10. General Method for Synthesis of ω-Carbamoylaryl Anilines Through Reaction of ω-Alkoxycarbonylaryl Precursors with Amines. Synthesis of 4-(2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline



embedded image


Step 1. Synthesis of 4-Chloro-2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridine

To a solution of methyl 4-chloropyridine-2-carboxylate HCl salt (Method A2, Step 2; 1.01 g, 4.86 mmol) in THF (20 mL) was added 4-(2-aminoethyl)morpholine (2.55 mL, 19.4 mmol) dropwise and the resulting solution was heated at the reflux temp. for 20 h, cooled to room temp., and treated with water (50 mL). The resulting mixture was extracted with EtOAc (50 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure to afford 4-chloro-2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridine as a yellow oil (1.25 g, 95%): TLC (10% MeOH/90% EtOAc) Rf 0.50.




embedded image


Step 2. Synthesis of 4-(2-(N-(2-Morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline

A solution of 4-aminophenol (0.49 g, 4.52 mmol) and potassium tert-butoxide (0.53 g, 4.75 mol) in DMF (8 mL) was stirred at room temp. for 2 h, then was sequentially treated with 4-chloro-2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridine (1.22 g, 4.52 mmol) and K2CO3 (0.31 g, 2.26 mmol). The resulting mixture was heated at 75° C. overnight, cooled to room temp., and separated between EtOAc (25 mL) and a saturated NaCl solution (25 mL). The aqueous layer was back extracted with EtOAc (25 mL). The combined organic layers were washed with a saturated NaCl solution (3×25 mL) and concentrated under reduced pressure. The resulting brown solids were purified by column chromatography (58 g; gradient from 100% EtOAc to 25% MeOH/75% EtOAc) to afford 4-(2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline (1.0 g, 65%): TLC (10% MeOH/90% EtOAc) Rf 0.32.


A11. General Method for the Reduction of Nitroarenes to Arylamines. Synthesis of 4-(3-Carboxyphenoxy)aniline



embedded image


A slurry of 4-(3-carboxyphenoxy)-1-nitrobenzene (5.38 g, 20.7 mmol) and 10% Pd/C (0.50 g) in MeOH (120 mL) was stirred under an H2 atmosphere (balloon) for 2 d. The resulting mixture was filtered through a pad of Celite®, then concentrated under reduced pressure to afford 4-(3-carboxyphenoxy)aniline as a brown solid (2.26 g, 48%): TLC (10% MeOH/90% CH2Cl2) Rf 0.44 (streaking).


A12. General Method for the Synthesis of Isoindolinone-Containing Anilines. Synthesis of 4-(1-Oxoisoindolin-5-yloxy)aniline



embedded image


Step 1. Synthesis of 5-hydroxyisoindolin-1-one

To a solution of 5-hydroxyphthalimide (19.8 g, 121 mmol) in AcOH (500 mL) was slowly added zinc dust (47.6 g, 729 mmol) in portions, then the mixture was heated at the reflux temp. for 40 min., filtered hot, and concentrated under reduced pressure. The reaction was repeated on the same scale and the combined oily residue was purified by column chromatography (1.1 Kg SiO2; gradient from 60% EtOAc/40% hexane to 25% MeOH/75% EtOAc) to give 5-hydroxyisoindolin-1-one (3.77 g): TLC (100% EtOAc) Rf 0.17; HPLC ES-MS m/z 150 ((M+H)+).




embedded image


Step 2. Synthesis of 4-(1-isoindolinon-5-yloxy)-1-nitrobenzene

To a slurry of NaH (0.39 g, 16.1 mmol) in DMF at 0° C. was added 5-hydroxyisoindolin-1-one (2.0 g, 13.4 mmol) in portions. The resulting slurry was allowed to warm to room temp. and was stirred for 45 min., then 4-fluoro-1-nitrobenzene was added and then the mixture was heated at 70° C. for 3 h. The mixture was cooled to 0° C. and treated with water dropwise until a precipitate formed. The resulting solids were collected to give 4-(1-isoindolinon-5-yloxy)-1-nitrobenzene as a dark yellow solid (3.23 g, 89%): TLC (100% EtOAc) Rf 0.35.




embedded image


Step 3. Synthesis of 4-(1-oxoisoindolin-5-yloxy)aniline

A slurry of 4-(1-isoindolinon-5-yloxy)-1-nitrobenzene (2.12 g, 7.8 mmol) and 10% Pd/C (0.20 g) in EtOH (50 mL) was stirred under an H2 atmosphere (balloon) for 4 h, then filtered through a pad of Celite®. The filtrate was concentrated under reduced pressure to afford 4-(1-oxoisoindolin-5-yloxy)aniline as a dark yellow solid: TLC (100% EtOAc) Rf 0.15.


A13. General Method for the Synthesis of ω-Carbamoyl Anilines via EDCI-Mediated Amide Formation Followed by Nitroarene Reduction. Synthesis of 4-(3-N-Methylcarbamoylphenoxy)aniline



embedded image


Step 1. Synthesis of 4-(3-ethoxycarbonylphenoxy)-1-nitrobenzene

A mixture of 4-fluoro-1-nitrobenzene (16 mL, 150 mmol), ethyl 3-hydroxybenzoate 25 g, 150 mmol) and K2CO3 (41 g, 300 mmol) in DMF (125 mL) was heated at the reflux temp. overnight, cooled to room temp. and treated with water (250 mL). The resulting mixture was extracted with EtOAc (3×150 mL). The combined organic phases were sequentially washed with water (3×100 mL) and a saturated NaCl solution (2×100 mL), dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by column chromatography (10% EtOAc/90% hexane) to afford 4-(3-ethoxycarbonylphenoxy)-1-nitrobenzene as an oil (38 g).




embedded image


Step 2. Synthesis of 4-(3-carboxyphenoxy)-1-nitrobenzene

To a vigorously stirred mixture of 4-(3-ethoxycarbonylphenoxy)-1-nitrobenzene (5.14 g, 17.9 mmol) in a 3:1 THF/water solution (75 mL) was added a solution LiOH.H2O (1.50 g, 35.8 mmol) in water (36 mL). The resulting mixture was heated at 50° C. overnight, then cooled to room temp., concentrated under reduced pressure, and adjusted to pH 2 with a 1M HCl solution. The resulting bright yellow solids were removed by filtration and washed with hexane to give 4-(3-carboxyphenoxy)-1-nitrobenzene (4.40 g, 95%).




embedded image


Step 3. Synthesis of 4-(3-(N-methylcarbamoyl)phenoxy)-1-nitrobenzene

A mixture of 4-(3-carboxyphenoxy)-1-nitrobenzene (3.72 g, 14.4 mmol), EDCI.HCl (3.63 g, 18.6 mmol), N-methylmorpholine (1.6 mL, 14.5 mmol) and methylamine (2.0 M in THF; 8 mL, 16 mmol) in CH2Cl2 (45 mL) was stirred at room temp. for 3 d, then concentrated under reduced pressure. The residue was dissolved in EtOAc (50 mL) and the resulting mixture was extracted with a 1M HCl solution (50 mL). The aqueous layer was back-extracted with EtOAc (2×50 mL). The combined organic phases were washed with a saturated NaCl solution (50 mL), dried (Na2SO4), and concentrated under reduced pressure to give 4-(3-(N-methylcarbamoyl)phenoxy)-1-nitrobenzene as an oil (1.89 g).




embedded image


Step 4. Synthesis of 4-(3-(N-methylcarbamoyl)phenoxy)aniline

A slurry of 4-(3-(N-methylcarbamoyl)phenoxy)-1-nitrobenzene (1.89 g, 6.95 mmol) and 5% Pd/C (0.24 g) in EtOAc (20 mL) was stirred under an H2 atm (balloon) overnight. The resulting mixture was filtered through a pad of Celite® and concentrated under reduced pressure. The residue was purified by column chromatography (5% MeOH/95% CH2Cl2). The resulting oil solidified under vacuum overnight to give 4-(3-(N-methylcarbamoyl)phenoxy)aniline as a yellow solid (0.95 g, 56%).


A14. General Method for the Synthesis of ω-Carbamoyl Anilines via EDCI-Mediated Amide Formation Followed by Nitroarene Reduction. Synthesis of 4-3-(5-Methylcarbamoyl)pyridyloxy)aniline



embedded image


Step 1. Synthesis of 4-(3-(5-methoxycarbonyl)pyridyloxy)-1-nitrobenzene

To a slurry of NaH (0.63 g, 26.1 mmol) in DMF (20 mL) was added a solution of methyl 5-hydroxynicotinate (2.0 g, 13.1 mmol) in DMF (10 mL). The resulting mixture was added to a solution of 4-fluoronitrobenzene (1.4 mL, 13.1 mmol) in DMF (10 mL) and the resulting mixture was heated at 70° C. overnight, cooled to room temp., and treated with MeOH (5 mL) followed by water (50 mL). The resulting mixture was extracted with EtOAc (100 mL). The organic phase was concentrated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/70% hexane) to afford 4-(3-(5-methoxycarbonyl)pyridyloxy)-1-nitrobenzene (0.60 g).




embedded image


Step 2. Synthesis of 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline

A slurry of 4-(3-(5-methoxycarbonyl)pyridyloxy)-1-nitrobenzene (0.60 g, 2.20 mmol) and 10% Pd/C in MeOH/EtOAc was stirred under an H2 atmosphere (balloon) for 72 h. The resulting mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (gradient from 10% EtOAc/90% hexane to 30% EtOAc/70% hexane to 50% EtOAc/50% hexane) to afford 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline (0.28 g, 60%): 1H NMR (CDCl3) δ 3.92 (s, 3H), 6.71 (d, 2H), 6.89 (d, 2H), 7.73 (1H), 8.51 (d, 1H), 8.87 (d, 1H).


A15. Synthesis of an Aniline via Electrophilic Nitration Followed by Reduction. Synthesis of 4-(3-Methylsulfamoylphenoxy)aniline



embedded image


Step 1. Synthesis of N-methyl-3-bromobenzenesulfonamide

To a solution of 3-bromobenzenesulfonyl chloride (2.5 g, 11.2 mmol) in THF (15 mL) at 0° C. was added methylamine (2.0 M in THF; 28 mL, 56 mmol). The resulting solution was allowed to warm to room temp. and was stirred at room temp. overnight. The resulting mixture was separated between EtOAc (25 mL) and a 1 M HCl solution (25 mL). The aqueous phase was back-extracted with EtOAc (2×25 mL). The combined organic phases were sequentially washed with water (2×25 mL) and a saturated NaCl solution (25 mL), dried (MgSO4) and concentrated under reduced pressure to give N-methyl-3-bromobenzenesulfonamide as a white solid (2.8 g, 99%).




embedded image


Step 2. Synthesis of 4-(3-(N-methylsulfamoyl)phenyloxy)benzene

To a slurry of phenol (1.9 g, 20 mmol), K2CO3 (6.0 g, 40 mmol), and CuI (4 g, 20 mmol) in DMF (25 mL) was added N-methyl-3-bromobenzenesulfonamide (2.5 g, 10 mmol), and the resulting mixture was stirred at the reflux temp. overnight, cooled to room temp., and separated between EtOAc (50 mL) and a 1 N HCl solution (50 mL). The aqueous layer was back-extracted with EtOAc (2×50 mL). The combined organic phases were sequentially washed with water (2×50 mL) and a saturated NaCl solution (50 mL), dried (MgSO4), and concentrated under reduced pressure. The residual oil was purified by column chromatography (30% EtOAc/70% hexane) to give 4-(3-(N-methylsulfamoyl)phenyloxy)benzene (0.30 g).




embedded image


Step 3. Synthesis of 4-(3-(N-methylsulfamoyl)phenyloxy)-1-nitrobenzene

To a solution of 4-(3-(N-methylsulfamoyl)phenyloxy)benzene (0.30 g, 1.14 mmol) in TFA (6 mL) at −10° C. was added NaNO2 (0.097 g, 1.14 mmol) in portions over 5 min. The resulting solution was stirred at −10° C. for 1 h, then was allowed to warm to room temp., and was concentrated under reduced pressure. The residue was separated between EtOAc (10 mL) and water (10 mL). The organic phase was sequentially washed with water (10 mL) and a saturated NaCl solution (10 mL), dried (MgSO4) and concentrated under reduced pressure to give 4-(3-(N-methylsulfamoyl)phenyloxy)-1-nitrobenzene (0.20 g). This material carried on to the next step without further purification.




embedded image


Step 4. Synthesis of 4-(3-(N-methylsulfamoyl)phenyloxy)aniline

A slurry of 4-(3-(N-methylsulfamoyl)phenyloxy)-1-nitrobenzene (0.30 g) and 10% Pd/C (0.030 g) in EtOAc (20 mL) was stirred under an H2 atmosphere (balloon) overnight. The resulting mixture was filtered through a pad of Celite®. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/70% hexane) to give 4-(3-(N-methylsulfamoyl)phenyloxy)aniline (0.070 g).


A16. Modification of ω-ketones. Synthesis of 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt



embedded image


To a slurry of 4-(4-acetylphenoxy)aniline HCl salt (prepared in a manner analogous to Method A13, step 4; 1.0 g, 3.89 mmol) in a mixture of EtOH (10 mL) and pyridine (1.0 mL) was added O-methylhydroxylamine HCl salt (0.65 g, 7.78 mmol, 2.0 equiv.). The resulting solution was heated at the reflux temperature for 30 min, cooled to room temperature and concentrated under reduced pressure. The resulting solids were triturated with water (10 mL) and washed with water to give 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt as a yellow solid (0.85 g): TLC (50% EtOAc/50% pet. ether) Rf 0.78; 1H NMR (DMSO-d6) δ 3.90 (s, 3H), 5.70 (s, 3H); HPLC-MS m/z 257 ((M+H)+).


A17. Synthesis of N-(ω-Silyloxyalkyl)amides. Synthesis of 4-(4-(2-(N-(2-Triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline



embedded image


Step 1. 4-Chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide

To a solution of 4-chloro-N-(2-hydroxyethyl)pyridine-2-carboxamide (prepared in a manner analogous to Method A2, Step 3b; 1.5 g, 7.4 mmol) in anh DMF (7 mL) was added triisopropylsilyl chloride (1.59 g, 8.2 mmol, 1.1 equiv.) and imidazole (1.12 g, 16.4 mmol, 2.2 equiv.). The resulting yellow solution was stirred for 3 h at room temp, then was concentrated under reduced pressure. The residue was separated between water (10 mL) and EtOAc (10 mL). The aqueous layer was extracted with EtOAc (3×10 mL). The combined organic phases were dried (MgSO4), and concentrated under reduced pressure to afford 4-chloro-2-(N-(2-triisopropylsilyloxy)ethyl)pyridinecarboxamide as an orange oil (2.32 g, 88%). This material was used in the next step without further purification.




embedded image


Step 2. 4-(4-(2-(N-(2-Triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline

To a solution of 4-hydroxyaniline (0.70 g, 6.0 mmol) in anh DMF (8 mL) was added potassium tert-butoxide (0.67 g, 6.0 mmol, 1.0 equiv.) in one portion causing an exotherm. When this mixture had cooled to room temperature, a solution of 4-chloro-2-(N-(2-triisopropylsilyloxy)ethyl)pyridinecarboxamide (2.32 g, 6 mmol, 1 equiv.) in DMF (4 mL) was added followed by K2CO3 (0.42 g, 3.0 mmol, 0.50 equiv.). The resulting mixture was heated at 80° C. overnight. An additional portion of potassium tert-butoxide (0.34 g, 3 mmol, 0.5 equiv.) was then added and the mixture was stirred at 80° C. an additional 4 h. The mixture was cooled to 0° C. with an ice/water bath, then water (approx. 1 mL) was slowly added dropwise. The organic layer was extracted with EtOAc (3×10 mL). The combined organic layers were washed with a saturated NaCl solution (20 mL), dried (MgSO4) and concentrated under reduced pressure. The brown oily residue was purified by column chromatography (SiO2; 30% EtOAc/70% pet ether) to afford 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline as a clear light brown oil (0.99 g, 38%).


A18. Synthesis of 2-Pryidinecarboxylate Esters via Oxidation of 2-Methylpyridines. Synthesis of 4-(5-(2-methoxycarbonyl)pyridyloxy)aniline



embedded image


Step 1. 4-(5-(2-Methyl)pyridyloxy)-1-nitrobenzene

A mixture of 5-hydroxy-2-methylpyridine (10.0 g, 91.6 mmol), 1-fluoro-4-nitrobenzene (9.8 mL, 91.6 mmol, 1.0 equiv.), K2CO3 (25 g, 183 mmol, 2.0 equiv.) in DMF (100 mL) was heated at the reflux temperature overnight. The resulting mixture was cooled to room temperature, treated with water (200 mL), and extracted with EtOAc (3×100 mL). The combined organic layers were sequentially washed with water (2×100 mL) and a saturated NaCl solution ((100 mL), dried (MgSO4) and concentrated under reduced pressure to give 4-(5-(2-methyl)pyridyloxy)-1-nitrobenzene as a brown solid (12.3 g).




embedded image


Step 2. Synthesis of 4-(5-(2-Methoxycarbonyl)pyridyloxy)-1-nitrobenzene

A mixture of 4-(5-(2-methyl)pyridyloxy)-1-nitrobenzene (1.70 g, 7.39 mmol) and selenium dioxide (2.50 g, 22.2 mmol, 3.0 equiv.) in pyridine (20 mL) was heated at the reflux temperature for 5 h, then cooled to room temperature. The resulting slurry was filtered, then concentrated under reduced pressure. The residue was dissolved in MeOH (100 mL). The solution was treated with a conc HCl solution (7 mL), then heated at the reflux temperature for 3 h, cooled to room temperature and concentrated under reduced pressure. The residue was separated between EtOAc (50 mL) and a 1N NaOH solution (50 mL). The aqueous layer was extracted with EtOAc (2×50 mL). The combined organic layers were sequentially washed with water (2×50 mL) and a saturated NaCl solution (50 mL), dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO2; 50% EtOAc/50% hexane) to afford 4-(5-(2-methoxycarbonyl)pyridyloxy)-1-nitrobenzene (0.70 g).




embedded image


Step 3. Synthesis of 4-(5-(2-Methoxycarbonyl)pyridyloxy)aniline

A slurry of 4-(5-(2-methoxycarbonyl)pyridyloxy)-1-nitrobenzene (0.50 g) and 10% Pd/C (0.050 g) in a mixture of EtOAc (20 mL) and MeOH (5 mL) was placed under a H2 atmosphere (balloon) overnight. The resulting mixture was filtered through a pad of Celite®, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (SiO2; 70% EtOAc/30% hexane) to give 4-(5-(2-methoxycarbonyl)pyridyloxy)aniline (0.40 g).


A19. Synthesis of ω-Sulfonylphenyl Anilines. Synthesis of 4-(4-Methylsulfonylphenoxy)aniline



embedded image


Step 1. 4-(4-Methylsulfonylphenoxy)-1-nitrobenzene

To a solution of 4-(4-methylthiophenoxy)-1-nitrobenzene (2.0 g, 7.7 mmol) in CH2Cl2 (75 mL) at 0° C. was slowly added m-CPBA (57-86%, 4.0 g), and the reaction mixture was stirred at room temperature for 5 h. The reaction mixture was treated with a 1N NaOH solution (25 mL). The organic layer was sequentially washed with a 1N NaOH solution (25 mL), water (25 mL) and a saturated NaCl solution (25 mL), dried (MgSO4), and concentrated under reduced pressure to give 4-(4-methylsulfonylphenoxy)-1-nitrobenzene as a solid (2.1 g).


Step 2. 4-(4-Methylsulfonylphenoxy)-1-aniline

4-(4-Methylsulfonylphenoxy)-1-nitrobenzene was reduced to the aniline in a manner analogous to that described in Method A18, step 3.


B. Synthesis of Urea Precursors
B1. General Method for the Synthesis of Isocyanates from Anilines Using CDI. Synthesis of 4-Bromo-3-(trifluoromethyl)phenyl Isocyanate



embedded image


Step 1. Synthesis of 4-bromo-3-(trifluoromethyl)aniline HCl salt

To a solution of 4-bromo-3-(trifluoromethyl)aniline (64 g, 267 mmol) in Et2O (500 mL) was added an HCl solution (1 M in Et2O; 300 mL) dropwise and the resulting mixture was stirred at room temp. for 16 h. The resulting pink-white precipitate was removed by filtration and washed with Et2O (50 mL) and to afford 4-bromo-3-(trifluoromethyl)aniline HCl salt (73 g, 98%).




embedded image


Step 2. Synthesis of 4-bromo-3-(trifluoromethyl)phenyl isocyanate

A suspension of 4-bromo-3-(trifluoromethyl)aniline HCl salt (36.8 g, 133 mmol) in toluene (278 mL) was treated with trichloromethyl chloroformate dropwise and the resulting mixture was heated at the reflux temp. for 18 h. The resulting mixture was concentrated under reduced pressure. The residue was treated with toluene (500 mL), then concentrated under reduced pressure. The residue was treated with CH2Cl2 (500 mL), then concentrated under reduced pressure. The CH2Cl2 treatment/concentration protocol was repeated and resulting amber oil was stored at −20° C. for 16 h, to afford 4-bromo-3-(trifluoromethyl)phenyl isocyanate as a tan solid (35.1 g, 86%): GC-MS m/z 265 (M+).


C. Methods of Urea Formation
C1a. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


A solution of 4-chloro-3-(trifluoromethyl)phenyl isocyanate (14.60 g, 65.90 mmol) in CH2Cl2 (35 mL) was added dropwise to a suspension of 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (Method A2, Step 4; 16.0 g, 65.77 mmol) in CH2Cl2 (35 mL) at 0° C. The resulting mixture was stirred at room temp. for 22 h. The resulting yellow solids were removed by filtration, then washed with CH2Cl2 (2×30 mL) and dried under reduced pressure (approximately 1 mmHg) to afford N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea as an off-white solid (28.5 g, 93%): mp 207-209° C.; 1H-NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 7.16 (m, 3H), 7.37 (d, J=2.5 Hz, 1H), 7.62 (m, 4H), 8.11 (d, J=2.5 Hz, 1H), 8.49 (d, J=5.5 Hz, 1H), 8.77 (br d, 1H), 8.99 (s, 1H), 9.21 (s, 1H); HPLC ES-MS m/z 465 ((M+H)+).


C1b. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Bromo-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


A solution of 4-bromo-3-(trifluoromethyl)phenyl isocyanate (Method B1, Step 2; 8.0 g, 30.1 mmol) in CH2Cl2 (80 mL) was added dropwise to a solution of 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (Method A2, Step 4; 7.0 g, 28.8 mmol) in CH2Cl2 (40 mL) at 0° C. The resulting mixture was stirred at room temp. for 16 h. The resulting yellow solids were removed by filtration, then washed with CH2Cl2 (2×50 mL) and dried under reduced pressure (approximately 1 mmHg) at 40° C. to afford N-(4-bromo-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea as a pale-yellow solid (13.2 g, 90%): mp 203-205° C.; 1H-NMR (DMSO-d6) δ 2.77 (d, J=4.8 Hz, 3H), 7.16 (m, 3H), 7.37 (d, J=2.5 Hz, 1H), 7.58 (m, 3H), 7.77 (d, J=8.8 Hz, 1H), 8.11 (d, J=2.5 Hz, 1H), 8.49 (d, J=5.5 Hz, 1H), 8.77 (br d, 1H), 8.99 (s, 1H), 9.21 (s, 1H); HPLC ES-MS m/z 509 ((M+H)+).


C1c. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(2-methyl-4-(2-(N-methylcarbamoyl)(4-pyridyloxy))phenyl) Urea



embedded image


A solution of 2-methyl-4-(2-(N-methylcarbamoyl)(4-pyridyloxy))aniline (Method A5; 0.11 g, 0.45 mmol) in CH2Cl2 (1 mL) was treated with Et3N (0.16 mL) and 4-chloro-3-(trifluoromethyl)phenyl isocyanate (0.10 g, 0.45 mmol). The resulting brown solution was stirred at room temp. for 6 d, then was treated with water (5 mL). The aqueous layer was back-extracted with EtOAc (3×5 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to yield N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(2-methyl-4-(2-(N-methylcarbamoyl)(4-pyridyloxy))phenyl)urea as a brown oil (0.11 g, 0.22 mmol): 1H NMR (DMSO-d6) δ 2.27 (s, 3H), 2.77 (d, J=4.8 Hz, 3H), 7.03 (dd, J=8.5, 2.6 Hz, 1H), 7.11 (d, J=2.9 Hz, 1H), 7.15 (dd, J=5.5, 2.6, Hz, 1H), 7.38 (d, J=2.6 Hz, 1H), 7.62 (app d, J=2.6 Hz, 2H), 7.84 (d, J=8.8 Hz, 1H), 8.12 (s, 1H), 8.17 (s, 1H); 8.50 (d, J=5.5 Hz, 1H), 8.78 (q, J=5.2, 1H), 9.52 (s, 1H); HPLC ES-MS m/z 479 ((M+H)+).


C1d. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(4-aminophenyl) Urea



embedded image


To a solution of 4-chloro-3-(trifluoromethyl)phenyl isocyanate (2.27 g, 10.3 mmol) in CH2Cl2 (308 mL) was added p-phenylenediamine (3.32 g, 30.7 mmol) in one part. The resulting mixture was stirred at room temp. for 1 h, treated with CH2Cl2 (100 mL), and concentrated under reduced pressure. The resulting pink solids were dissolved in a mixture of EtOAc (110 mL) and MeOH (15 mL), and the clear solution was washed with a 0.05 N HCl solution. The organic layer was concentrated under reduced pressure to afford impure N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-aminophenyl)urea (3.3 g): TLC (100% EtOAc) Rf 0.72.


C1e. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(4-ethoxycarbonylphenyl) Urea



embedded image


To a solution of ethyl 4-isocyanatobenzoate (3.14 g, 16.4 mmol) in CH2Cl2 (30 mL) was added 4-chloro-3-(trifluoromethyl)aniline (3.21 g, 16.4 mmol), and the solution was stirred at room temp. overnight. The resulting slurry was diluted with CH2Cl2 (50 mL) and filtered to afford N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-ethoxycarbonylphenyl)urea as a white solid (5.93 g, 97%): TLC (40% EtOAc/60% hexane) Rf 0.44.


C1f. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(3-carboxyphenyl) Urea



embedded image


To a solution of 4-chloro-3-(trifluoromethyl)phenyl isocyanate (1.21 g, 5.46 mmol) in CH2Cl2 (8 mL) was added 4-(3-carboxyphenoxy)aniline (Method A11; 0.81 g, 5.76 mmol) and the resulting mixture was stirred at room temp. overnight, then treated with MeOH (8 mL), and stirred an additional 2 h. The resulting mixture was concentrated under reduced pressure. The resulting brown solids were triturated with a 1:1 EtOAc/hexane solution to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(3-carboxyphenyl)urea as an off-white solid (1.21 g, 76%).


C2a. General Method for Urea Synthesis by Reaction of an Aniline with N,N′-Carbonyl Diimidazole Followed by Addition of a Second Aniline. Synthesis of N-(2-Methoxy-5-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


To a solution of 2-methoxy-5-(trifluoromethyl)aniline (0.15 g) in anh CH2Cl2 (15 mL) at 0° C. was added CDI (0.13 g). The resulting solution was allowed to warm to room temp. over 1 h, was stirred at room temp. for 16 h, then was treated with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (0.18 g). The resulting yellow solution was stirred at room temp. for 72 h, then was treated with H2O (125 mL). The resulting aqueous mixture was extracted with EtOAc (2×150 mL). The combined organics were washed with a saturated NaCl solution (100 mL), dried (MgSO4) and concentrated under reduced pressure. The residue was triturated (90% EtOAc/10% hexane). The resulting white solids were collected by filtration and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residual oil purified by column chromatography (gradient from 33% EtOAc/67% hexane to 50% EtOAc/50% hexane to 100% EtOAc) to give N-(2-methoxy-5-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea as a light tan solid (0.098 g, 30%): TLC (100% EtOAc) Rf 0.62; 1H NMR (DMSO-d6) δ 2.76 (d, J=4.8 Hz, 3H), 3.96 (s, 3H), 7.1-7.6 and 8.4-8.6 (m, 11H), 8.75 (d, J=4.8 Hz, 1H), 9.55 (s, 1H); FAB-MS m/z 461 ((M+H)+).


C2b. General Method for Urea Synthesis by Reaction of an Aniline with N,N′-Carbonyl Diimidazole Followed by Addition of a Second Aniline. Symmetrical Urea's as Side Products of a N,N′-Carbonyl Diimidazole Reaction Procedure. Synthesis of Bis(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


To a stifling solution of 3-amino-2-methoxyquinoline (0.14 g) in anhydrous CH2Cl2 (15 mL) at 0 C was added CDI (0.13 g). The resulting solution was allowed to warm to room temp. over 1 h then was stirred at room temp. for 16 h. The resulting mixture was treated with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (0.18 g). The resulting yellow solution stirred at room temp. for 72 h, then was treated with water (125 mL). The resulting aqueous mixture was extracted with EtOAc (2×150 mL). The combined organic phases were washed with a saturated NaCl solution (100 ml), dried (MgSO4) and concentrated under reduced pressure. The residue was triturated (90% EtOAc/10% hexane). The resulting white solids were collected by filtration and washed with EtOAc to give bis(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea (0.081 g, 44%): TLC (100% EtOAc) Rf 0.50; 1H NMR (DMSO-d6) δ 2.76 (d, J=5.1 Hz, 6H), 7.1-7.6 (m, 12H), 8.48 (d, J=5.4 Hz, 1H), 8.75 (d, J=4.8 Hz, 2H), 8.86 (s, 2H); HPLC ES-MS m/z 513 ((M+H)+).


C2c. General Method for the Synthesis of Ureas by Reaction of an Isocyanate with an Aniline. Synthesis of N-(2-Methoxy-5-(trifluoromethyl)phenyl-N′-(4-(1,3-dioxoisoindolin-5-yloxy)phenyl) Urea



embedded image


To a stifling solution of 2-methoxy-5-(trifluoromethyl)phenyl isocyanate (0.10 g, 0.47 mmol) in CH2Cl2 (1.5 mL) was added 5-(4-aminophenoxy)isoindoline-1,3-dione (Method A3, Step 3; 0.12 g, 0.47 mmol) in one portion. The resulting mixture was stirred for 12 h, then was treated with CH2Cl2 (10 mL) and MeOH (5 mL). The resulting mixture was sequentially washed with a 1N HCl solution (15 mL) and a saturated NaCl solution (15 mL), dried (MgSO4) and concentrated under reduced pressure to afford N-(2-methoxy-5-(trifluoromethyl)phenyl-N′-(4-(1,3-dioxoisoindolin-5-yloxy)phenyl)urea as a white solid (0.2 g, 96%): TLC (70% EtOAc/30% hexane) Rf 0.50; 1H NMR (DMSO-d6) δ 3.95 (s, 3H), 7.31-7.10 (m, 6H), 7.57 (d, J=9.3 Hz, 2H), 7.80 (d, J=8.7 Hz, 1H), 8.53 (br s, 2H), 9.57 (s, 1H), 11.27 (br s, 1H); HPLC ES-MS 472.0 ((M+H)+, 100%).


C2d. General Method for Urea Synthesis by Reaction of an Aniline with N,N′-Carbonyl Diimidazole Followed by Addition of a Second Aniline. Synthesis of N-(5-(tert-Butyl)-2-(2,5-dimethylpyrrolyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


To a stifling solution of CDI (0.21 g, 1.30 mmol) in CH2Cl2 (2 mL) was added 5-(tert-butyl)-2-(2,5-dimethylpyrrolyl)aniline (Method A4, Step 2; 0.30 g, 1.24 mmol) in one portion. The resulting mixture was stirred at room temp. for 4 h, then 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (0.065 g, 0.267 mmol) was then added in one portion. The resulting mixture was heated at 36° C. overnight, then cooled to room temp. and diluted with EtOAc (5 mL). The resulting mixture was sequentially washed with water (15 mL) and a 1N HCl solution (15 mL), dried (MgSO4), and filtered through a pad of silica gel (50 g) to afford N-(5-(tert-butyl)-2-(2,5-dimethylpyrrolyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea as a yellowish solid (0.033 g, 24%): TLC (40% EtOAc/60% hexane) Rf 0.24; 1H NMR (acetone-d6) δ 1.37 (s, 9H), 1.89 (s, 6H), 2.89 (d, J=4.8 Hz, 3H), 5.83 (s, 2H), 6.87-7.20 (m, 6H), 7.17 (dd, 1H), 7.51-7.58 (m, 3H), 8.43 (d, J=5.4 Hz, 1H), 8.57 (d, J=2.1 Hz, 1H), 8.80 (br s, 1H); HPLC ES-MS 512 ((M+H)+, 100%).


C3. Combinatorial Method for the Synthesis of Diphenyl Ureas Using Triphosgene

One of the anilines to be coupled was dissolved in dichloroethane (0.10 M). This solution was added to a 8 mL vial (0.5 mL) containing dichloroethane (1 mL). To this was added a bis(trichloromethyl) carbonate solution (0.12 M in dichloroethane, 0.2 mL, 0.4 equiv.), followed by diisopropylethylamine (0.35 M in dichloroethane, 0.2 mL, 1.2 equiv.). The vial was capped and heated at 80° C. for 5 h, then allowed to cool to room temp for approximately 10 h. The second aniline was added (0.10 M in dichloroethane, 0.5 mL, 1.0 equiv.), followed by diisopropylethylamine (0.35 M in dichloroethane, 0.2 mL, 1.2 equiv.). The resulting mixture was heated at 80° C. for 4 h, cooled to room temperature and treated with MeOH (0.5 mL). The resulting mixture was concentrated under reduced pressure and the products were purified by reverse phase HPLC.


C4. General Method for Urea Synthesis by Reaction of an Aniline with Phosgene Followed by Addition of a Second Aniline. Synthesis of N-(2-Methoxy-5-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) Urea



embedded image


To a stifling solution of phosgene (1.9 M in toluene; 2.07 mL 0.21 g, 1.30 mmol) in CH2Cl2 (20 mL) at 0° C. was added anh pyridine (0.32 mL) followed by 2-methoxy-5-(trifluoromethyl)aniline (0.75 g). The yellow solution was allowed to warm to room temp during which a precipitate formed. The yellow mixture was stirred for 1 h, then concentrated under reduced pressure. The resulting solids were treated with anh toluene (20 mL) followed by 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline (prepared as described in Method A2; 0.30 g) and the resulting suspension was heated at 80° C. for 20 h, then allowed to cool to room temp. The resulting mixture was diluted with water (100 mL), then was made basic with a saturated NaHCO3 solution (2-3 mL). The basic solution was extracted with EtOAc (2×250 mL). The organic layers were separately washed with a saturated NaCl solution, combined, dried (MgSO4), and concentrated under reduced pressure. The resulting pink-brown residue was dissolved in MeOH and absorbed onto SiO2 (100 g). Column chromatography (300 g SiO2; gradient from 1% Et3N/33% EtOAc/66% hexane to 1% Et3N/99% EtOAc to 1% Et3N/20% MeOH/79% EtOAc) followed by concentration under reduced pressure at 45° C. gave a warm concentrated EtOAc solution, which was treated with hexane (10 mL) to slowly form crystals of N-(2-methoxy-5-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea (0.44 g): TLC (1% Et3N/99% EtOAc) Rf 0.40.


D. Interconversion of Ureas
D1a. Conversion of ω-Aminophenyl Ureas into ω-(Arylamino)phenyl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methoxycarbonylphenyl)carboxyaminophenyl) Urea



embedded image


To a solution of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-aminophenyl)urea (Method C1d; 0.050 g, 1.52 mmol), mono-methyl isophthalate (0.25 g, 1.38 mmol), HOBT.H2O (0.41 g, 3.03 mmol) and N-methylmorpholine (0.33 mL, 3.03 mmol) in DMF (8 mL) was added EDCI.HCl (0.29 g, 1.52 mmol). The resulting mixture was stirred at room temp. overnight, diluted with EtOAc (25 mL) and sequentially washed with water (25 mL) and a saturated NaHCO3 solution (25 mL). The organic layer was dried (Na2SO4) and concentrated under reduced pressure. The resulting solids were triturated with an EtOAc solution (80% EtOAc/20% hexane) to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methoxycarbonylphenyl)carboxyaminophenyl)urea (0.27 g, 43%): mp 121-122; TLC (80% EtOAc/20% hexane) Rf 0.75.


D1b. Conversion of ω-Carboxyphenyl Ureas into ω-(Arylcarbamoyl)phenyl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methylcarbamoylphenyl)carbamoylphenyl) Urea



embedded image


To a solution of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methylcarbamoylphenyl) carboxyaminophenyl)urea (0.14 g, 0.48 mmol), 3-methylcarbamoylaniline (0.080 g, 0.53 mmol), HOBT.H2O (0.14 g, 1.07 mmol), and N-methylmorpholine (0.5 mL, 1.07 mmol) in DMF (3 mL) at 0° C. was added EDCI.HCl (0.10 g, 0.53 mmol). The resulting mixture was allowed to warm to room temp. and was stirred overnight. The resulting mixture was treated with water (10 mL), and extracted with EtOAc (25 mL). The organic phase was concentrated under reduced pressure. The resulting yellow solids were dissolved in EtOAc (3 mL) then filtered through a pad of silica gel (17 g, gradient from 70% EtOAc/30% hexane to 10% MeOH/90% EtOAc) to give N-(4-chloro-3-((trifluoro methyl)phenyl)-N′-(4-(3-methylcarbamoylphenyl)carbamoylphenyl)urea as a white solid (0.097 g, 41%): mp 225-229; TLC (100% EtOAc) Rf 0.23.


D1c. Combinatorial Approach to the Conversion of ω-Carboxyphenyl Ureas into ω-(Arylcarbamoyl)phenyl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N % (4-(N-(3-(N-(3-pyridyl)carbamoyl)phenyl)carbamoyl)phenyl) Urea



embedded image


A mixture of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(3-carboxyphenyl)urea (Method C1f; 0.030 g, 0.067 mmol) and N-cyclohexyl-N′-(methylpolystyrene)carbodiimide (55 mg) in 1,2-dichloroethane (1 mL) was treated with a solution of 3-aminopyridine in CH2Cl2 (1 M; 0.074 mL, 0.074 mmol). (In cases of insolubility or turbidity, a small amount of DMSO was also added.) The resulting mixture was heated at 36° C. overnight. Turbid reactions were then treated with THF (1 mL) and heating was continued for 18 h. The resulting mixtures were treated with poly(4-(isocyanatomethyl)styrene) (0.040 g) and the resulting mixture was stirred at 36° C. for 72 h, then cooled to room temp. and filtered. The resulting solution was filtered through a plug of silica gel (1 g). Concentration under reduced pressure afforded N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(N-(3-(N-(3-pyridyl)carbamoyl)phenyl)carbamoyl)phenyl)urea (0.024 g, 59%): TLC (70% EtOAc/30% hexane) Rf 0.12.


D2. Conversion of ω-Carboalkoxyaryl Ureas into ω-Carbamoylaryl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methylcarbamoylphenyl)carboxyaminophenyl) Urea



embedded image


To a sample of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-carbomethoxyphenyl) carboxyaminophenyl)urea (0.17 g, 0.34 mmol) was added methylamine (2 M in THF; 1 mL, 1.7 mmol) and the resulting mixture was stirred at room temp. overnight, then concentrated under reduced pressure to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(3-methylcarbamoylphenyl)carboxyaminophenyl)urea as a white solid: mp 247; TLC (100% EtOAc) Rf 0.35.


D3. Conversion of ω-Carboalkoxyaryl Ureas into ω-Carboxyaryl Ureas. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-carboxyphenyl) Urea



embedded image


To a slurry of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-ethoxycarbonylphenyl)urea (Method C1e; 5.93 g, 15.3 mmol) in MeOH (75 mL) was added an aqueous KOH solution (2.5 N, 10 mL, 23 mmol). The resulting mixture was heated at the reflux temp. for 12 h, cooled to room temp., and concentrated under reduced pressure. The residue was diluted with water (50 mL), then treated with a 1 N HCl solution to adjust the pH to 2 to 3. The resulting solids were collected and dried under reduced pressure to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-carboxyphenyl)urea as a white solid (5.05 g, 92%).


D4. General Method for the Conversion of ω-Alkoxy Esters into ω-Alkyl Amides. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-((4-(3-(5-(2-dimethylaminoethyl)carbamoyl)pyridyl)oxyphenyl) Urea



embedded image


Step 1. Synthesis of N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-carboxypyridyl)oxyphenyl) Urea

N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-methoxycarbonylpyridyl)oxyphenyl)urea was synthesized from 4-chloro-3-(trifluoromethyl)phenyl isocyanate and 4-(3-(5-methoxycarbonylpyridyl)oxyaniline (Method A14, Step 2) in a manner analogous to Method C1a. A suspension of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-methoxycarbonylpyridyl)oxyphenyl)urea (0.26 g, 0.56 mmol) in MeOH (10 mL) was treated with a solution of KOH (0.14 g, 2.5 mmol) in water (1 mL) and was stirred at room temp. for 1 h. The resulting mixture was adjusted to pH 5 with a 1 N HCl solution. The resulting precipitate was removed by filtration and washed with water. The resulting solids were dissolved in EtOH (10 mL) and the resulting solution was concentrated under reduced pressure. The EtOH/concentration procedure was repeated twice to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-carboxypyridyl)oxyphenyl)urea (0.18 g, 71%).




embedded image


Step 2. Synthesis of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-(2-dimethylaminoethyl)carbamoyl)pyridyl)oxyphenyl)urea

A mixture of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-carboxypyridyl)oxyphenyl)urea (0.050 g, 0.011 mmol), N,N-dimethylethylenediamine (0.22 mg, 0.17 mmol), HOBT (0.028 g, 0.17 mmol), N-methylmorpholine (0.035 g, 0.28 mmol), and EDCI.HCl (0.032 g, 0.17 mmol) in DMF (2.5 mL) was stirred at room temp. overnight. The resulting solution was separated between EtOAc (50 mL) and water (50 mL). The organic phase was washed with water (35 mL), dried (MgSO4) and concentrated under reduced pressure. The residue was dissolved in a minimal amount of CH2Cl2 (approximately 2 mL). The resulting solution was treated with Et2O dropwise to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-((4-(3-(5-(2-dimethylaminoethyl)carbamoyl)pyridyl)oxyphenyl)urea as a white precipitate (0.48 g, 84%: 1H NMR (DMSO-d6) δ 2.10 s, 6H), 3.26 (s, H), 7.03 (d, 2H), 7.52 (d, 2H), 7.60 (m, 3H), 8.05 (s, 1H), 8.43 (s, 1H), 8.58 (t, 1H), 8.69 (s, 1H), 8.90 (s, 1H), 9.14 (s, 1H); HPLC ES-MS m/z 522 ((M+H)+).


D5. General Method for the Deprotection of N-(ω-Silyloxyalkyl)amides. Synthesis of N-(4-Chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-hydroxy)ethylcarbamoyl)pyridyloxyphenyl) Urea



embedded image


To a solution of N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyphenyl)urea (prepared in a manner analogous to Method C1a; 0.25 g, 0.37 mmol) in anh THF (2 mL) was tetrabutylammonium fluoride (1.0 M in THF; 2 mL). The mixture was stirred at room temperature for 5 min, then was treated with water (10 mL). The aqueous mixture was extracted with EtOAc (3×10 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (SiO2; gradient from 100% hexane to 40% EtOAc/60% hexane) to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-hydroxy)ethylcarbamoyl)pyridyloxyphenyl)urea as a white solid (0.019 g, 10%).


Listed below are compounds listed in the Tables below which have been synthesized according to the Detailed Experimental Procedures given above:


Syntheses of Exemplified Compounds
See Tables for Compound Characterization

Entry 1: 4-(3-N-Methylcarbamoylphenoxy)aniline was prepared according to Method A13. According to Method C3, 3-tert-butylaniline was reacted with bis(trichloromethyl)carbonate followed by 4-(3-N-Methylcarbamoylphenoxy)aniline to afford the urea.


Entry 2: 4-Fluoro-1-nitrobenzene and p-hydroxyacetophenone were reacted according to Method A13, Step 1 to afford the 4-(4-acetylphenoxy)-1-nitrobenzene. 4-(4-Acetylphenoxy)-1-nitrobenzene was reduced according to Method A13, Step 4 to afford 4-(4-acetylphenoxy)aniline. According to Method C3, 3-tert-butylaniline was reacted with bis(trichloromethyl) carbonate followed by 4-(4-acetylphenoxy)aniline to afford the urea.


Entry 3: According to Method C2d, 3-tert-butylaniline was treated with CDI, followed by 4-(3-N-methylcarbamoyl)-4-methoxyphenoxy)aniline, which had been prepared according to Method A8, to afford the urea.


Entry 4: 5-tert-Butyl-2-methoxyaniline was converted to 5-tert-butyl-2-methoxyphenyl isocyanate according to Method B1. 4-(3-N-Methylcarbamoylphenoxy)aniline, prepared according to Method A13, was reacted with the isocyanate according to Method C1a to afford the urea.


Entry 5: According to Method C2d, 5-tert-butyl-2-methoxyaniline was reacted with CDI followed by 4-(3-N-methylcarbamoyl)-4-methoxyphenoxy)aniline, which had been prepared according to Method A8, to afford the urea.


Entry 6: 5-(4-Aminophenoxy)isoindoline-1,3-dione was prepared according to Method A3. According to Method 2d, 5-tert-butyl-2-methoxyaniline was reacted with CDI followed by 5-(4-aminophenoxy)isoindoline-1,3-dione to afford the urea.


Entry 7: 4-(1-Oxoisoindolin-5-yloxy)aniline was synthesized according to Method A12. According to Method 2d, 5-tert-butyl-2-methoxyaniline was reacted with CDI followed by 4-(1-oxoisoindolin-5-yloxy)aniline to afford the urea.


Entry 8: 4-(3-N-Methylcarbamoylphenoxy)aniline was synthesized according to Method A13. According to Method C2a, 2-methoxy-5-(trifluoromethyl)aniline was reacted with CDI followed by 4-(3-N-methylcarbamoylphenoxy)aniline to afford the urea.


Entry 9: 4-Hydroxyacetophenone was reacted with 2-chloro-5-nitropyridine to give 4-(4-acetylphenoxy)-5-nitropyridine according to Method A3, Step 2. According to Method A8, Step 4, 4-(4-acetylphenoxy)-5-nitropyridine was reduced to 4-(4-acetylphenoxy)-5-aminopyridine. 2-Methoxy-5-(trifluoromethyl)aniline was converted to 2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. The isocyanate was reacted with 4-(4-acetylphenoxy)-5-aminopyridine according to Method C1a to afford the urea.


Entry 10: 4-Fluoro-1-nitrobenzene and p-hydroxyacetophenone were reacted according to Method A13, Step 1 to afford the 4-(4-acetylphenoxy)-1-nitrobenzene. 4-(4-Acetylphenoxy)-1-nitrobenzene was reduced according to Method A13, Step 4 to afford 4-(4-acetylphenoxy)aniline. According to Method C3, 5-(trifluoromethyl)-2-methoxybutylaniline was reacted with bis(trichloromethyl) carbonate followed by 4-(4-acetylphenoxy)aniline to afford the urea.


Entry 11: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. According to Method C4, 2-methoxy-5-(trifluoromethyl)aniline was reacted with phosgene followed by 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 12: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with ammonia according to Method A2, Step 3b to form 4-chloro-2-pyridinecarboxamide. 4-Chloro-2-pyridinecarboxamide was reacted with 3-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 3-(2-carbamoyl-4-pyridyloxy)aniline. According to Method C2a, 2-methoxy-5-(trifluoromethyl)aniline was reacted with phosgene followed by 3-(2-carbamoyl-4-pyridyloxy)aniline to afford the urea.


Entry 13: 4-Chloro-N-methyl-2-pyridinecarboxamide was synthesized according to Method A2, Step 3b. 4-Chloro-N-methyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. According to Method C2a, 2-methoxy-5-(trifluoromethyl)aniline was reacted with CDI followed by 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 14: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with ammonia according to Method A2, Step 3b to form 4-chloro-2-pyridinecarboxamide. 4-Chloro-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 4-(2-carbamoyl-4-pyridyloxy)aniline. According to Method C4, 2-methoxy-5-(trifluoromethyl)aniline was reacted with phosgene followed by 4-(2-carbamoyl-4-pyridyloxy)aniline to afford the urea.


Entry 15: According to Method C2d, 5-(trifluoromethyl)-2-methoxyaniline was reacted with CDI followed by 4-(3-N-methylcarbamoyl)-4-methoxyphenoxy)aniline, which had been prepared according to Method A8, to afford the urea.


Entry 16: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-methylaniline was synthesized according to Method A5. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. The isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-methylaniline according to Method C1c to afford the urea.


Entry 17: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline was synthesized according to Method A6. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline according to Method C1a to afford the urea.


Entry 18: According to Method A2, Step 4, 5-amino-2-methylphenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline according to Method C1a to afford the urea.


Entry 19: 4-Chloropyridine-2-carbonyl chloride was reacted with ethylamine according to Method A2, Step 3b. The resulting 4-chloro-N-ethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline according to Method C1a to afford the urea.


Entry 20: According to Method A2, Step 4, 4-amino-2-chlorophenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline according to Method C1a to afford the urea.


Entry 21: 4-(4-Methylthiophenoxy)-1-nitrobenzene was oxidized according to Method A19, Step 1 to give 4-(4-methylsulfonylphenoxy)-1-nitrobenzene. The nitrobenzene was reduced according to Method A19, Step 2 to give 4-(4-methylsulfonylphenoxy)-1-aniline. According to Method C1a, 5-(trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(4-methylsulfonylphenoxy)-1-aniline to afford the urea.


Entry 22: 4-(3-carbamoylphenoxy)-1-nitrobenzene was reduced to 4-(3-carbamoylphenoxy)aniline according to Method A15, Step 4. According to Method C1a, 5-(trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-carbamoylphenoxy)aniline to afford the urea.


Entry 23: 5-(4-Aminophenoxy)isoindoline-1,3-dione was synthesized according to Method A3. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 5-(4-aminophenoxy)isoindoline-1,3-dione according to Method C1a to afford the urea.


Entry 24: 4-Chloropyridine-2-carbonyl chloride was reacted with dimethylamine according to Method A2, Step 3b. The resulting 4-chloro-N,N-dimethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline according to Method C1a to afford the urea.


Entry 25: 4-(1-Oxoisoindolin-5-yloxy)aniline was synthesized according to Method A12. 5-(Trifluoromethyl)-2-methoxyaniline was treated with CDI, followed by 4-(1-oxoisoindolin-5-yloxy)aniline according to Method C2d to afford the urea.


Entry 26: 4-Hydroxyacetophenone was reacted with 4-fluoronitrobenzene according to Method A13, Step 1 to give 4-(4-acetylphenoxy)nitrobenzene. The nitrobenzene was reduced according to Method A13, Step 4 to afford 4-(4-acetylphenoxy)aniline, which was converted to the 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt according to Method A16. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt to Method C1a to afford the urea.


Entry 27: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 4-aminothiophenol according to Method A2, Step 4 to give 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline according to Method C1a to afford the urea.


Entry 28: 5-(4-Aminophenoxy)-2-methylisoindoline-1,3-dione was synthesized according to Method A9. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 5-(4-aminophenoxy)-2-methylisoindoline-1,3-dione according to Method C1a to afford the urea.


Entry 29: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 3-aminothiophenol according to Method A2, Step 4 to give 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline according to Method C1a to afford the urea.


Entry 30: 4-Chloropyridine-2-carbonyl chloride was reacted with isopropylamine according to Method A2, Step 3b. The resulting 4-chloro-N-isopropyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-isopropylcarbamoyl)-4-pyridyloxy)aniline. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(2-(N-isopropylcarbamoyl)-4-pyridyloxy)aniline according to Method C1a to afford the urea.


Entry 31: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N′-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl)urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with 4-(2-aminoethyl)morpholine to afford the amide according to Method D4, Step 2.


Entry 32: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N′-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl)urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with methylamine according to Method D4, Step 2 to afford the amide.


Entry 33: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 5-(Trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N′-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl)urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with N,N-dimethylethylenediamine according to Method D4, Step 2 to afford the amide.


Entry 34: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl)urea, which was coupled with 3-aminopyridine according to Method D1c.


Entry 35: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl)urea, which was coupled with N-(4-fluorophenyl)piperazine according to Method D1c.


Entry 36: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl)urea, which was coupled with 4-fluoroaniline according to Method D1c.


Entry 37: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl)urea, which was coupled with 4-(dimethylamino)aniline according to Method D1c.


Entry 38: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl)urea, which was coupled with 5-amino-2-methoxypyridine according to Method D1c.


Entry 39: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl)urea, which was coupled with 4-morpholinoaniline according to Method D1c.


Entry 40: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 5-(Trifluoromethyl)-2-methoxyaniline was converted into 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method B1. 4-(3-Carboxyphenoxy)aniline was reacted with 5-(trifluoromethyl)-2-methoxyphenyl isocyanate according to Method C1f to afford N-(5-(trifluoromethyl)-2-methoxyphenyl)-N′-(3-carboxyphenyl)urea, which was coupled with N-(2-pyridyl)piperazine according to Method D1c.


Entry 41: 4-(3-(N-Methylcarbamoyl)phenoxy)aniline was synthesized according to Method A13. According to Method C3, 4-chloro-3-(trifluoromethyl)aniline was converted to the isocyanate, then reacted with 4-(3-(N-Methylcarbamoyl)phenoxy)aniline to afford the urea.


Entry 42: 4-(2-N-Methylcarbamyl-4-pyridyloxy)aniline was synthesized according to Method A2. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-N-methylcarbamyl-4-pyridyloxy)aniline according to Method C1a to afford the urea.


Entry 43: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with ammonia according to Method A2, Step 3b to form 4-chloro-2-pyridinecarboxamide. 4-Chloro-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to form 4-(2-carbamoyl-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-carbamoyl-4-pyridyloxy)aniline to afford the urea.


Entry 44: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with ammonia according to Method A2, Step 3b to form 4-chloro-2-pyridinecarboxamide. 4-Chloro-2-pyridinecarboxamide was reacted with 3-aminophenol according to Method A2, Step 4 to form 3-(2-carbamoyl-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(2-carbamoyl-4-pyridyloxy)aniline to afford the urea.


Entry 45: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 to form 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 46: 5-(4-Aminophenoxy)isoindoline-1,3-dione was synthesized according to Method A3. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 5-(4-aminophenoxy)isoindoline-1,3-dione to afford the urea.


Entry 47: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-methylaniline was synthesized according to Method A5. According to Method C1c, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 5-(4-aminophenoxy)isoindoline-1,3-dione to afford the urea.


Entry 48: 4-(3-N-Methylsulfamoyl)phenyloxy)aniline was synthesized according to Method A15. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-N-methylsulfamoyl)phenyloxy)aniline to afford the urea.


Entry 49: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline was synthesized according to Method A6. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline to afford the urea.


Entry 50: According to Method A2, Step 4, 5-amino-2-methylphenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline to afford the urea.


Entry 51: 4-Chloropyridine-2-carbonyl chloride was reacted with ethylamine according to Method A2, Step 3b. The resulting 4-chloro-N-ethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 52: According to Method A2, Step 4, 4-amino-2-chlorophenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline to afford the urea.


Entry 53: 4-(4-Methylthiophenoxy)-1-nitrobenzene was oxidized according to Method A19, Step 1 to give 4-(4-methylsulfonylphenoxy)-1-nitrobenzene. The nitrobenzene was reduced according to Method A19, Step 2 to give 4-(4-methylsulfonylphenoxy)-1-aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-methylsulfonylphenoxy)-1-aniline to afford the urea.


Entry 54: 4-Bromobenzenesulfonyl chloride was reacted with methylamine according to Method A15, Step 1 to afford N-methyl-4-bromobenzenesulfonamide. N-Methyl-4-bromobenzenesulfonamide was coupled with phenol according to Method A15, Step 2 to afford 4-(4-(N-methylsulfamoyl)phenoxy)benzene. 4-(4-(N-Methylsulfamoyl)phenoxy)benzene was converted into 4-(4-(N-methylsulfamoyl)phenoxy)-1-nitrobenzene according to Method A15, Step 3. 4-(4-(N-Methylsulfamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(4-N-methylsulfamoyl)phenyloxy)aniline according to Method A15, Step 4. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-N-methylsulfamoyl)phenyloxy)aniline to afford the urea.


Entry 55: 5-Hydroxy-2-methylpyridine was coupled with 1-fluoro-4-nitrobenzene according to Method A18, Step 1 to give 4-(5-(2-Methyl)pyridyloxy)-1-nitrobenzene. The methylpyridine was oxidized according to the carboxylic acid, then esterified according to Method A18, Step 2 to give 4-(5-(2-methoxycarbonyl)pyridyloxy)-1-nitrobenzene. The nitrobenzene was reduced according the Method A18, Step 3 to give 4-(5-(2-methoxycarbonyl)pyridyloxy)aniline. The aniline was reacted with 4-chloro-3-(trifluoromethyl)phenyl isocyanate according to Method C1a to afford the urea.


Entry 56: 5-Hydroxy-2-methylpyridine was coupled with 1-fluoro-4-nitrobenzene according to Method A18, Step 1 to give 4-(5-(2-Methyl)pyridyloxy)-1-nitrobenzene. The methylpyridine was oxidized according to the carboxylic acid, then esterified according to Method A18, Step 2 to give 4-(5-(2-methoxycarbonyl)pyridyloxy)-1-nitrobenzene. The nitrobenzene was reduced according the Method A18, Step 3 to give 4-(5-(2-methoxycarbonyl)pyridyloxy)aniline. The aniline was reacted with 4-chloro-3-(trifluoromethyl)phenyl isocyanate according to Method C1a to give N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(methoxycarbonyl)-5-pyridyloxy)phenyl)urea. The methyl ester was reacted with methylamine according to Method D2 to afford N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-5-pyridyloxy)phenyl)urea.


Entry 57: N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-aminophenyl)urea was prepared according to Method C1d. N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-aminophenyl)urea was coupled with mono-methyl isophthalate according to Method D1a to afford the urea.


Entry 58: N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-aminophenyl)urea was prepared according to Method C1d. N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-aminophenyl)urea was coupled with mono-methyl isophthalate according to Method D1a to afford N-(4-chloro-3-(trifluoromethyl)phenyl-N′-(4-(3-methoxycarbonylphenyl)carboxyaminophenyl)urea. According to Method D2, N-(4-chloro-3-(trifluoromethyl)phenyl-N′-(4-(3-methoxycarbonylphenyl)carboxyaminophenyl)urea was reacted with methylamine to afford the corresponding methyl amide.


Entry 59: 4-Chloropyridine-2-carbonyl chloride was reacted with dimethylamine according to Method A2, Step 3b. The resulting 4-chloro-N,N-dimethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 60: 4-Hydroxyacetophenone was reacted with 4-fluoronitrobenzene according to Method A13, Step 1 to give 4-(4-acetylphenoxy)nitrobenzene. The nitrobenzene was reduced according to Method 13, Step 4 to afford 4-(4-acetylphenoxy)aniline, which was converted to the 4-(4-(1-(N-methoxy)iminoethyl)phenoxyaniline HCl salt according to Method A16. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-acetylphenoxy)aniline to afford the urea.


Entry 61: 4-(3-Carboxyphenoxy)-1-nitrobenzene was synthesized according to Method A13, Step 2. 4-(3-Carboxyphenoxy)-1-nitrobenzene was coupled with 4-(2-aminoethyl)morpholine according to Method A13, Step 3 to give 4-(3-(N-(2-morpholinylethyl)carbamoyl)phenoxy)-1-nitrobenzene. According to Method A13 Step 4, 4-(3-(N-(2-morpholinylethyl)carbamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(3-(N-(2-morpholinylethyl)carbamoyl)phenoxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(N-(2-morpholinylethyl)carbamoyl)phenoxy)aniline to afford the urea.


Entry 62: 4-(3-Carboxyphenoxy)-1-nitrobenzene was synthesized according to Method A13, Step 2. 4-(3-Carboxyphenoxy)-1-nitrobenzene was coupled with 1-(2-aminoethyl)piperidine according to Method A13, Step 3 to give 4-(3-(N-(2-piperidylethyl)carbamoyl)phenoxy)-1-nitrobenzene. According to Method A13 Step 4, 4-(3-(N-(2-piperidylethyl)carbamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(3-(N-(2-piperidylethyl)carbamoyl)phenoxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(N-(2-piperidylethyl)carbamoyl)phenoxy)aniline to afford the urea.


Entry 63: 4-(3-Carboxyphenoxy)-1-nitrobenzene was synthesized according to Method A13, Step 2. 4-(3-Carboxyphenoxy)-1-nitrobenzene was coupled with tetrahydrofurfurylamine according to Method A13, Step 3 to give 4-(3-(N-(tetrahydrofurylmethyl)carbamoyl)phenoxy)-1-nitrobenzene. According to Method A13 Step 4, 4-(3-(N-(tetrahydrofurylmethyl)carbamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(3-(N-(tetrahydrofurylmethyl)carbamoyl)phenoxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(N-(tetrahydrofurylmethyl)carbamoyl)phenoxy)aniline to afford the urea.


Entry 64: 4-(3-Carboxyphenoxy)-1-nitrobenzene was synthesized according to Method A13, Step 2. 4-(3-Carboxyphenoxy)-1-nitrobenzene was coupled with 2-aminomethyl-1-ethylpyrrolidine according to Method A13, Step 3 to give 4-(3-(N-((1-methylpyrrolidinyl)methyl)carbamoyl)phenoxy)-1-nitrobenzene. According to Method A13 Step 4, 4-(3-(N-((1-methylpyrrolidinyl)methyl)carbamoyl)phenoxy)-1-nitrobenzene was reduced to 4-(3-(N-((1-methylpyrrolidinyl)methyl)carbamoyl)phenoxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(N-((1-methylpyrrolidinyl)methyl)carbamoyl)phenoxy)aniline to afford the urea.


Entry 65: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 4-aminothiophenol according to Method A2, Step 4 to give 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline to afford the urea.


Entry 66: 4-Chloropyridine-2-carbonyl chloride was reacted with isopropylamine according to Method A2, Step 3b. The resulting 4-chloro-N-isopropyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-isopropylcarbamoyl)-4-pyridyloxy)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-isopropylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 67: N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-ethoxycarbonylphenyl)urea was synthesized according to Method C1e. N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-ethoxycarbonylphenyl)urea was saponified according to Method D3 to give N-(4-chloro-3-(trifluoromethyl)phenyl-N′-(4-carboxyphenyl)urea. N-(4-Chloro-3-(trifluoromethyl)phenyl-N′-(4-carboxyphenyl)urea was coupled with 3-methylcarbamoylaniline according to Method D1b to give N-(4-chloro-3-(trifluoromethyl)phenyl-N′-(4-(3-methylcarbamoylphenyl)carbamoylphenyl)urea.


Entry 68: 5-(4-Aminophenoxy)-2-methylisoindoline-1,3-dione was synthesized according to Method A9. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 5-(4-aminophenoxy)-2-methylisoindoline-1,3-dione to afford the urea.


Entry 69: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 3-aminothiophenol according to Method A2, Step 4 to give 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline to afford the urea.


Entry 70: 4-(2-(N-(2-Morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline was synthesized according to Method A10. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-(2-morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline to afford the urea.


Entry 71: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 4-Chloro-3-(trifluoromethyl)-2-methoxyphenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(4-Chloro-3-(trifluoromethyl)phenyl)-N′-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl)urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with 4-(2-aminoethyl)morpholine to afford the amide.


Entry 72: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N′-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl)urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with methylamine according to Method D4, Step 2 to afford the amide.


Entry 73: 4-(3-(5-Methoxycarbonyl)pyridyloxy)aniline was synthesized according to Method A14. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1a to afford the urea. N-(5-(Trifluoromethyl)-2-methoxyphenyl)-N′-(4-(3-(5-methoxycarbonylpyridyl)oxy)phenyl)urea was saponified according to Method D4, Step 1, and the corresponding acid was coupled with N,N-dimethylethylenediamine according to Method D4, Step 2 to afford the amide.


Entry 74: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with 2-hydroxyethylamine according to Method A2, Step 3b to form 4-chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide. 4-Chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide was reacted with triisopropylsilyl chloride, followed by 4-aminophenol according to Method A17 to form 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline to afford N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyphenyl)urea.


Entry 75: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-(5-methoxycarbonyl)pyridyloxy)aniline according to Method C1f to afford the urea, which was coupled with 3-aminopyridine according to Method D1c.


Entry 76: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with N-(4-acetylphenyl)piperazine according to Method D1c.


Entry 77: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 4-fluoroaniline according to Method D1c.


Entry 78: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method 1f to afford the urea, which was coupled with 4-(dimethylamino)aniline according to Method D1c.


Entry 79: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with N-phenylethylenediamine according to Method D1c.


Entry 80: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 2-methoxyethylamine according to Method D1c.


Entry 81: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 5-amino-2-methoxypyridine according to Method D1c.


Entry 82: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with 4-morpholinoaniline according to Method D1c.


Entry 83: 4-(3-Carboxyphenoxy)aniline was synthesized according to Method A11. 4-Chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(3-carboxyphenoxy)aniline according to Method C1f to afford the urea, which was coupled with N-(2-pyridyl)piperazine according to Method D1c.


Entry 84: 4-Chloropyridine-2-carbonyl chloride HCl salt was reacted with 2-hydroxyethylamine according to Method A2, Step 3b to form 4-chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide. 4-Chloro-N-(2-triisopropylsilyloxy)ethylpyridine-2-carboxamide was reacted with triisopropylsilyl chloride, followed by 4-aminophenol according to Method A17 to form 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline. According to Method C1a, 4-chloro-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyaniline to give N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-triisopropylsilyloxy)ethylcarbamoyl)pyridyloxyphenyl)urea. The urea was deprotected according to Method D5 to afford N-(4-chloro-3-((trifluoromethyl)phenyl)-N′-(4-(4-(2-(N-(2-hydroxy)ethylcarbamoyl)pyridyloxyphenyl)urea.


Entry 85: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)aniline was synthesized according to Method A2. 4-Bromo-3-(trifluoromethyl)aniline was converted to 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 86: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline was synthesized according to Method A6. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline to afford the urea.


Entry 87: According to Method A2, Step 4, 4-amino-2-chlorophenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline to afford the urea.


Entry 88: 4-Chloropyridine-2-carbonyl chloride was reacted with ethylamine according to Method A2, Step 3b. The resulting 4-chloro-N-ethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 89: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 to form 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 90: According to Method A2, Step 4, 5-amino-2-methylphenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(2-(N-methylcarbamoyl)-4-pyridyloxy)-4-methylaniline to afford the urea.


Entry 91: 4-Chloropyridine-2-carbonyl chloride was reacted with dimethylamine according to Method A2, Step 3b. The resulting 4-chloro-N,N-dimethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 92: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 4-aminothiophenol according to Method A2, Step 4 to give 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(4-(2-(N-methylcarbamoyl)phenylthio)aniline to afford the urea.


Entry 93: 4-Chloro-N-methylpyridinecarboxamide was synthesized as described in Method A2, Step 3b. The chloropyridine was reacted with 3-aminothiophenol according to Method A2, Step 4 to give 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 3-(4-(2-(N-methylcarbamoyl)phenylthio)aniline to afford the urea.


Entry 94: 4-(2-(N-(2-Morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline was synthesized according to Method A10. 4-Bromo-3-(trifluoromethyl)aniline was converted into 4-bromo-3-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-bromo-3-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-(2-Morpholin-4-ylethyl)carbamoyl)pyridyloxy)aniline to afford the urea.


Entry 95: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)aniline was synthesized according to Method A2. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 96: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline was synthesized according to Method A6. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-2-chloroaniline afford the urea.


Entry 97: According to Method A2, Step 4, 4-amino-2-chlorophenol was reacted with 4-chloro-N-methyl-2-pyridinecarboxamide, which had been synthesized according to Method A2, Step 3b, to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)-3-chloroaniline to afford the urea.


Entry 98: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 to form 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate as was reacted with 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 99: 4-Chloropyridine-2-carbonyl chloride was reacted with ethylamine according to Method A2, Step 3b. The resulting 4-chloro-N-ethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N-ethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 100: 4-Chloropyridine-2-carbonyl chloride was reacted with dimethylamine according to Method A2, Step 3b. The resulting 4-chloro-N,N-dimethyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 to give 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was synthesized according to Method A7. 4-Chloro-2-methoxy-5-(trifluoromethyl)aniline was converted into 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate according to Method B1. According to Method C1a, 4-chloro-2-methoxy-5-(trifluoromethyl)phenyl isocyanate was reacted with 4-(2-(N,N-dimethylcarbamoyl)-4-pyridyloxy)aniline to afford the urea.


Entry 101: 4-Chloro-N-methyl-2-pyridinecarboxamide, which was synthesized according to Method A2, Step 3a, was reacted with 3-aminophenol according to Method A2, Step 4 to form 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. 2-Amino-3-methoxynaphthalene was synthesized as described Method A1. According to Method C3, 2-amino-3-methoxynaphthalene was reacted with bis(trichloromethyl) carbonate followed by 3-(-2-(N-methylcarbamoyl)-4-pyridyloxy)aniline to form the urea.


Entry 102: 4-(2-(N-Methylcarbamoyl)-4-pyridyloxy)aniline was synthesized according to Method A2. 5-tert-Butyl-2-(2,5-dimethylpyrrolyl)aniline was synthesized according to Method A4. 5-tert-Butyl-2-(2,5-dimethylpyrrolyl)aniline was reacted with CDI followed by 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline according to Method C2d to afford the urea.


Entry 103: 4-Chloro-N-methyl-2-pyridinecarboxamide was synthesized according to Method A2, Step 3b. 4-Chloro-N-methyl-2-pyridinecarboxamide was reacted with 4-aminophenol according to Method A2, Step 4 using DMAC in place of DMF to give 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline. According to Method C2b, reaction of 3-amino-2-methoxyquinoline with CDI followed by 4-(2-(N-methylcarbamoyl)-4-pyridyloxy)aniline afforded bis(4-(2-(N-methylcarbamoyl)-4-pyridlyoxy)phenyl)urea.


Listed in the Tables below are compounds which have been synthesized according to the Detailed Experimental Procedures given above:


TABLES

The compounds listed in Tables 1-6 below were synthesized according to the general methods shown above, and the more detailed exemplary procedures are in the entry listings above and characterizations are indicated in the tables.









TABLE 1







3-tert-Butylphenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





1


embedded image




0.22
50% EtOAc/ 50% hexane
418 (M + H)+ (HPLC ES-MS)
A13 C3





2


embedded image




0.58
50% EtOAc/ 50% hexane
403 (M + H)+ (HPLC ES-MS)
A13 C3





3


embedded image


133- 135

0.68
100% EtOAc
448 (M + H)+ (FAB)
A8 C2d
















TABLE 2







5-tert-Butyl-2-methoxyphenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





4


embedded image



5.93


448 (M + H)+ (HPLC ES-MS)
A13 B1 C1a





5


embedded image


120- 122

0.67
100% EtOAc
478 (M+ H)+ (FAB)
A8 C2d





6


embedded image




0.40
50% EtOAc/ 50% hexane
460 (M + H)+ (HPLC ES-MS)
A3 C2d





7


embedded image




0.79
50% EtOAc/ 50% hexane
446 (M + H)+ (HPLC ES-MS)
A12 C2d
















TABLE 3







5-(Trifluoromethyl)-2-methoxyphenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





 8


embedded image


250 (dec)



460 (M + H)+ (FAB)
A13 C2a





 9


embedded image


206- 208

0.54
10% MeOH/ 90% CH2Cl2
446 (M + H)+ (HPLC ES-MS)
A3 step 2, A8 step 4, B1, C1a





10


embedded image




0.33
50% EtOAc/ 50% pet ether
445 (M + H)+ (HPLC ES-MS)
A13 C3





11


embedded image




0.20
2% Et3N/ 98% EtOAc
461 (M + H)+ (HPLC ES-MS)
A2 C4





12


embedded image




0.27
1% Et3N/ 99% EtOAc
447 (M + H)+ (HPLC ES-MS)
A2 C4





13


embedded image




0.62
100% EtOAc
461 (M + H)+ (FAB)
A2 C2a





14


embedded image


114- 117

0.40
1% Et3N/ 99% EtOAc
447 (M + H)+ (FAB)
A2 C4





15


embedded image


232- 235

0.54
100% EtOAc
490 (M + H)+ (FAB)
A8 C2d





16


embedded image


210- 213

0.29
5% MeOH/ 45% EtOAc/ 50% pet ether
475 (M + H)+ (HPLC ES-MS)
A5 B1 C1c





17


embedded image


187- 188

0.17
50% EtOAc/ 50% pet ether
495 (M + H)+ (HPLC ES-MS)
A6 B1 C1a





18


embedded image




0.48
100% EtOAc
475 (M + H)+ (HPLC ES-MS)
A2 step 4, B1 C1a





19


embedded image


194- 196

0.31
5% MeOH/ 45% EtOAc/ 50% pet ether
475 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





20


embedded image


214- 216

0.25
5% MeOH/ 45% EtOAc/ 50% pet ether
495 (M + H)+ (HPLC ES-MS)
A2 C1a





21


embedded image


208- 210

0.30
50% EtOAc/ 50% hexane
481 (M + H)+ (HPLC ES-MS)
A19 C2a





22


embedded image


188- 190

0.30
70% EtOAc/ 50% hexane
447 (M + H)+ (HPLC ES-MS)
A15, step 4, C1a





23


embedded image




0.50
70% EtOAc/ 30% hexane
472 (M + H)+ (FAB)
A3 B1 C1a





24


embedded image


203- 205

0.13
100% EtOAc
479 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





25


embedded image




0.09
75% EtOAc/ 25% hexane
458 (M + H)+ (HPLC ES-MS)
A12 C2d





26


embedded image


169- 171

0.67
50% EtOAc/ 50% pet ether
474 (M + H)+ (HPLC ES-MS)
A13 step 1, A13 step 4, A16, B1 C1a





27


embedded image


218- 219

0.40
50% EtOAc/ 50% pet ether
477 (M + H)+ (HPLC ES-MS)
A2 step 3b, A2 step 4, B1, C1a





28


embedded image


212- 214

0.30
40% EtOAc/ 60% hexane

A9 B1 C1a





29


embedded image




0.33
50% EtOAc/ 50% pet ether
474 (M + H)+ (HPLC ES-MS)
A2 step 3b, A2 step 4, B1, C1a





30


embedded image


210 211




A2 B1 C1a





31


embedded image


210- 204

0.43
10% MeOH/ CH2Cl2

A14 B1 C1a D4





32


embedded image


247- 249

0.57
10% MeOH/ CH2Cl2

A14 B1 C1a D4





33


embedded image


217- 219

0.07
10% MeOH/ CH2Cl2

A14 B1 C1a D4





34


embedded image




0.11
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





35


embedded image




0.38
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





36


embedded image




0.77
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





37


embedded image




0.58
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





38


embedded image




0.58
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





39


embedded image




0.17
70% EtOAc/ 30% hexane

A11 B1 C1f D1c





40


embedded image




0.21
70% EtOAc/ 30% hexane

A11 B1 C1f D1c
















TABLE 4







3-(Trifluoromethyl)-4-chlorophenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





41


embedded image


163- 165

0.08
50% EtOAc/ 50% pet ether
464 (M + H)+ (HPLC ES-MS)
A13 C3





42


embedded image


215

0.06
50% EtOAc/ 50% pet ether
465 (M + H)+ (HPLC ES-MS)
A2 C1a





43


embedded image




0.10
50% EtOAc/ 50% pet ether
451 (M + H)+ (HPLC ES-MS)
A2 C1a





44


embedded image




0.25
30% EtOAc/ 70% pet ether
451 (M + H)+ (HPLC ES-MS)
A2 C1a





45


embedded image




0.31
30% EtOAc/ 70% pet ether
465 (M + H)+ (HPLC ES-MS)
A2 C1a





46


embedded image


176- 179

0.23
40% EtOAc/ 60% hexane
476 (M + H)+ (FAB)
A3 C1a





47


embedded image




0.29
5% MeOH/ 45% EtOAc/ 50% pet ether
478 (M + H)+ (HPLC ES-MS)
A5 C1c





48


embedded image


206- 209




A15 C1a





49


embedded image


147- 151

0.22
50% EtOAc/ 50% pet ether
499 (M + H)+ (HPLC ES-MS)
A6 C1a





50


embedded image




0.54
100% EtOAc
479 (M + H)+ (HPLC ES-MS)
A2 C1a





51


embedded image


187- 189

0.33
5% MeOH/ 45% EtOAc/ 50% pet ether
479 (M + H)+ (HPLC ES-MS)
A2 C1a





52


embedded image


219

0.18
5% MeOH/ 45% EtOAc/ 50% pet ether
499 (M + H)+ (HPLC ES-MS)
A2 C1a





53


embedded image


246- 248

0.30
50% EtOAc/ 50% hexane
485 (M + H)+ (HPLC ES-MS)
A19, C1a





54


embedded image


196- 200

0.30
70% EtOAc/ 30% hexane)
502 (M + H)+ (HPLC ES-MS)
A15 C1a





55


embedded image


228- 230

0.30
30% EtOAc/ 70% CH2Cl2
466 (M + H)+ (HPLC ES-MS)






56


embedded image


238- 245










57


embedded image


221- 222

0.75
80% EtOAc/ 20% hexane
492 (M + H)+ (FAB)
C1d D1a





58


embedded image


247

0.35
100% EtOAc

C1d D1a D2





59


embedded image


198- 200

0.09
100% EtOAc
479 (M + H)+ (HPLC ES-MS)
A2 C1a





60


embedded image


158- 160

0.64
50% EtOAc/ 50% pet ether







61


embedded image


195- 197

0.39
10% MeOH/ CH2Cl2

A13 C1a





62


embedded image


170- 172

0.52
10% MeOH/ CH2Cl2

A13 C1a





63


embedded image


168- 171

0.39
10% MeOH/ CH2Cl2

A13 C1a





64


embedded image


176- 177

0.35
10% MeOH/ CH2Cl2

A13 C1a





65


embedded image


130- 133



487 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





66


embedded image


155




A2 C1a





67


embedded image


225- 229

0.23
100% EtOAc

C1e D3 D1b





68


embedded image


234- 236

0.29
40% EtOAc/ 60% hexane

A9 C1a





69


embedded image




0.48
50% EtOAc/ 50% pet ether
481 (M + H)+ (HPLC ES-MS)






70


embedded image




0.46
5% MeOH/ 95% CH2Cl2
564 (M + H)+ (HPLC ES-MS)
A10 C1a





71


embedded image


199- 201

0.50
10% MeOH/ CH2Cl2

A14 C1a D4





72


embedded image


235- 237

0.55
10% MeOH/ CH2Cl2

A14 C1a D4





73


embedded image


200- 201

0.21
50% MeOH/ CH2Cl2

A14 C1a D4





74


embedded image


145- 148










75


embedded image




0.12
70% EtOAc/ 30% hexane
527 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





76


embedded image




0.18
70% EtOAc/ 30% hexane

A11 C1f D1c





77


embedded image




0.74
70% EtOAc/ 30% hexane

A11 C1f D1c





78


embedded image




0.58
70% EtOAc/ 30% hexane

A11 C1f D1c





79


embedded image




0.47
70% EtOAc/ 30% hexane
569 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





80


embedded image




0.18
70% EtOAc/ 30% hexane
508 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





81


embedded image




0.58
70% EtOAc/ 30% hexane
557 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





82


embedded image




0.37
70% EtOAc/ 30% hexane
611 (M + H)+ (HPLC ES-MS)
A11 C1f D1c





83


embedded image




0.19
70% EtOAc/ 30% hexane

A11 C1f D1c





84


embedded image


179- 183




A2 A17 C1a D5
















TABLE 5







3-(Trifluoromethyl)-4-bromophenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





85


embedded image


186- 187

0.13
50% EtOAc/ 50% pet ether
509 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





86


embedded image


150- 152

0.31
50% EtOAc/ 50% pet ether
545 (M + H)+ (HPLC ES-MS)
A6 B1 C1a





87


embedded image


217- 219

0.16
50% EtOAc/ 50% pet ether
545 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





88


embedded image


183- 184

0.31
50% EtOAc/ 50% pet ether
525 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





89


embedded image




0.21
50% EtOAc/ 50% pet ether
511 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





90


embedded image




0.28
50% EtOAc/ 50% pet ether
525 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





91


embedded image


214- 216

0.28
50% EtOAc/ 50% pet ether
522 (M + H)+ (HPLC ES-MS)
A2 B1 C1a





92


embedded image




0.47
50% EtOAc/ 50% pet ether
527 (M + H)+ (HPLC ES-MS)
A2 step 3b, A2 step 4, B1, C1a





93


embedded image




0.46
50% EtOAc/ 50% pet ether
527 (M + H)+ (HPLC ES-MS)
A2 step 3b, A2 step 4, B1, C1a





94


embedded image


145- 150

0.41
5% MeOH/ 95% CH2Cl2

A10 B1 C1a
















TABLE 6







5-(Trifluoromethyl)-4-chloro-2-methoxyphenyl Ureas




embedded image
























TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method

















95


embedded image


140- 144

0.29
5% MeOH/ 45% EtOAc/ 50% pet ether
495 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





96


embedded image


244- 245

0.39
5% MeOH/ 45% EtOAc/ 50% pet ether
529 (M + H)+ (HPLC ES-MS)
A6 A7 B1 C1a





97


embedded image


220- 221

0.25
5% MeOH/ 45% EtOAc/ 50% pet ether
529 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





98


embedded image




0.27
5% MeOH/ 45% EtOAc/ 50% pet ether
495 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





99


embedded image


180- 181

0.52
5% MeOH/ 45% EtOAc/ 50% pet ether
509 (M + H)+ (HPLC ES-MS)
A2 A7 B1 C1a





100


embedded image


162- 165




A2 A7 B1 C1a
















TABLE 7







Additional Ureas



















TLC
Mass





mp
HPLC
TLC
Solvent
Spec.
Synth.


Entry
R
(° C.)
(min.)
Rf
System
[Source]
Method





101


embedded image


162- 165




A1 A2 C3





102


embedded image




0.10
50% EtOAc/ 50% hexane
442 (M + H)+ (HPLC ES-MS)
A2 A4 C2d





103


embedded image


125- 130

0.24
40% EtOAc/ 60% hexane
512 (M + H)+ (FAB)
A2 C2b









Biological Examples
In Vitro raf Kinase Assay

In an in vitro kinase assay, raf was incubated with MEK in 20 mM Tris-HCl, pH 8.2 containing 2 mM 2-mercaptoethanol and 100 mM NaCl. This protein solution (20 μL) was mixed with water (5 μL) or with compounds diluted with distilled water from 10 mM stock solutions of compounds dissolved in DMSO. The kinase reaction was initiated by adding 25 μL [λ-33P]ATP (1000-3000 dpm/pmol) in 80 mM Tris-HCl, pH 7.5, 120 mM NaCl, 1.6 mM DTT, 16 mM MgCl2. The reaction mixtures were incubated at 32° C., usually for 22 min. Incorporation of 33P into protein was assayed by harvesting the reaction onto phosphocellulose mats, washing away free counts with a 1% phosphoric acid solution and quantitating phosphorylation by liquid scintillation counting. For high throughput screening, 10 μM ATP and 0.4 μM MEK was used. In some experiments, the kinase reaction was stopped by adding an equal amount of Laemmli sample buffer. Samples were boiled 3 min and the proteins resolved by electrophoresis on 7.5% Laemmli gels. Gels were fixed, dried and exposed to an imaging plate (Fuji). Phosphorylation was analyzed using a Fujix Bio-Imaging Analyzer System.


All compounds exemplified displayed IC50s of between 1 nM and 10 μM.


Cellular Assay:


For in vitro growth assay, human tumor cell lines, including but not limited to HCT116 and DLD-1, containing mutated K-ras genes were used in standard proliferation assays for anchorage dependent growth on plastic or anchorage independent growth in soft agar. Human tumor cell lines were obtained from ATCC (Rockville Md.) and maintained in RPMI with 10% heat inactivated fetal bovine serum and 200 mM glutamine. Cell culture media and additives were obtained from Gibco/BRL (Gaithersburg, Md.) except for fetal bovine serum (JRH Biosciences, Lenexa, Kans.). In a standard proliferation assay for anchorage dependent growth, 3×103 cells were seeded into 96-well tissue culture plates and allowed to attach overnight at 37° C. in a 5% CO2 incubator. Compounds were titrated in media in dilution series and added to 96-well cell cultures. Cells were allowed to grow 5 days typically with a feeding of fresh compound containing media on day three. Proliferation was monitored by measuring metabolic activity with standard XTT colorimetric assay (Boehringer Mannheim) measured by standard ELISA plate reader at OD 490/560, or by measuring 3H-thymidine incorporation into DNA following an 8 h culture with 1 μCu 3H-thymidine, harvesting the cells onto glass fiber mats using a cell harvester and measuring 3H-thymidine incorporation by liquid scintillant counting.


For anchorage independent cell growth, cells were plated at 1×103 to 3×103 in 0.4% Seaplaque agarose in RPMI complete media, overlaying a bottom layer containing only 0.64% agar in RPMI complete media in 24-well tissue culture plates. Complete media plus dilution series of compounds were added to wells and incubated at 37° C. in a 5% CO2 incubator for 10-14 days with repeated feedings of fresh media containing compound at 3-4 day intervals. Colony formation was monitored and total cell mass, average colony size and number of colonies were quantitated using image capture technology and image analysis software (Image Pro Plus, media Cybernetics).


In Vivo Assay:


An in vivo assay of the inhibitory effect of the compounds on tumors (e.g., solid cancers) mediated by raf kinase can be performed as follows:


CDI nu/nu mice (6-8 weeks old) are injected subcutaneously into the flank at 1×106 cells with human colon adenocarcinoma cell line. The mice are dosed i.p., i.v. or p.o. at 10, 30, 100, or 300 mg/Kg beginning on approximately day 10, when tumor size is between 50-100 mg. Animals are dosed for 14 consecutive days once a day; tumor size was monitored with calipers twice a week.


The inhibitory effect of the compounds on raf kinase and therefore on tumors (e.g., solid cancers) mediated by raf kinase can further be demonstrated in vivo according to the technique of Monia et al. (Nat. Med. 1996, 2, 668-75).


The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.


From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims
  • 1. A method for the treatment of a tumor of the prostate, breast, liver, ovary or cervix in a human or animal comprising administering an effective amount of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula:
  • 2. A method as in claim 1 wherein the tumor is of the prostate.
  • 3. A method of claim 1 wherein the tumor is of the breast.
  • 4. A method of claim 1 wherein the tumor is of the liver.
  • 5. A method of claim 1 wherein the tumor is of the ovary.
  • 6. A method of claim 1 wherein the tumor is of the cervix.
  • 7. A method for the treatment of a tumor of the prostate, breast, liver, ovary or cervix in a human or animal comprising administering an effective amount of a tosylate salt of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula:
  • 8. A method as in claim 7 wherein the tumor is of the prostate.
  • 9. A method of claim 7 wherein the tumor is of the breast.
  • 10. A method of claim 7 wherein the tumor is of the liver.
  • 11. A method of claim 7 wherein the tumor is of the ovary.
  • 12. A method of claim 7 wherein the tumor is of the cervix.
  • 13. A method for the treatment of liver cancer in a human or animal in need thereof comprising administering an effective amount of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula:
  • 14. A method of claim 13 wherein a tosylate salt of N-(4-chloro-3-(trifluoromethyl)phenyl)-N′-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea of the formula:
Parent Case Info

This is a continuation application of U.S. patent application Ser. No. 09/993,647, filed Nov. 27, 2001, which claims the benefit of the filing date of U.S. Provisional Application Ser. No. 60/367,346, filed Nov. 28, 2000, all of which are incorporated by reference herein.

US Referenced Citations (349)
Number Name Date Kind
502504 Thorns Aug 1893 A
1792156 Fitzky Feb 1931 A
2046375 Goldstein et al. Jul 1936 A
2093265 Coffey et al. Sep 1937 A
2288422 Rohm Jun 1942 A
2649476 Martin Aug 1953 A
2683082 Hill et al. Jul 1954 A
2722544 Martin Nov 1955 A
2745874 Schetty et al. May 1956 A
2781330 Downey Feb 1957 A
2797214 Bossard Jun 1957 A
2867659 Model et al. Jan 1959 A
2877268 Applegath et al. Mar 1959 A
2960488 Tamblyn et al. Nov 1960 A
2973386 Weldon Feb 1961 A
3151023 Martin Sep 1964 A
3200035 Martin et al. Aug 1965 A
3230141 Frick et al. Jan 1966 A
3284433 Becker et al. Nov 1966 A
3424760 Helsley et al. Jan 1969 A
3424761 Helsley et al. Jan 1969 A
3424762 Helsley Jan 1969 A
3547940 Brantley Dec 1970 A
3639668 Alles et al. Feb 1972 A
3646059 Brantley Feb 1972 A
3668222 Hauser Jun 1972 A
3689550 Schellenbaum et al. Sep 1972 A
3743498 Brantley Jul 1973 A
3754887 Brantley Aug 1973 A
3823161 Lesser Jul 1974 A
3828001 Broad et al. Aug 1974 A
3860645 Nikawitz Jan 1975 A
3990879 Soper Nov 1976 A
4001256 Callahan et al. Jan 1977 A
4009847 Aldrich et al. Mar 1977 A
4042372 Harper Aug 1977 A
4062861 Yukinaga et al. Dec 1977 A
4063928 Johnston Dec 1977 A
4071524 Banitt Jan 1978 A
4103022 Sirrenberg et al. Jul 1978 A
4111680 Yukinaga et al. Sep 1978 A
4111683 Singer Sep 1978 A
4116671 Yukinaga et al. Sep 1978 A
4173637 Nishiyama et al. Nov 1979 A
4173638 Nishiyama et al. Nov 1979 A
4183854 Crossley Jan 1980 A
4212981 Yukinaga et al. Jul 1980 A
4240820 Dickore et al. Dec 1980 A
4279639 Okamoto et al. Jul 1981 A
4293328 Yukinaga et al. Oct 1981 A
4358596 Krüger Nov 1982 A
4405644 Kabbe et al. Sep 1983 A
4410697 Törok et al. Oct 1983 A
4437878 Acker et al. Mar 1984 A
4468380 O'Doherty et al. Aug 1984 A
4473579 Devries et al. Sep 1984 A
4499097 Tomcufcik et al. Feb 1985 A
4511571 Böger et al. Apr 1985 A
4514571 Nakai et al. Apr 1985 A
4526997 O'Doherty et al. Jul 1985 A
4540566 Davis et al. Sep 1985 A
4546191 Nishiyama et al. Oct 1985 A
4587240 Hider et al. May 1986 A
4623662 DeVries Nov 1986 A
4643849 Hirai et al. Feb 1987 A
4740520 Hallenbach et al. Apr 1988 A
4760063 Hallenbach et al. Jul 1988 A
4775763 Dalton et al. Oct 1988 A
4808588 King Feb 1989 A
4820871 Kissener et al. Apr 1989 A
4863924 Haga et al. Sep 1989 A
4921525 Grossman et al. May 1990 A
4973675 Israel et al. Nov 1990 A
4977169 Häusermann et al. Dec 1990 A
4983605 Kondo et al. Jan 1991 A
4985449 Haga et al. Jan 1991 A
4996325 Kristinsson Feb 1991 A
5036072 Nakajima et al. Jul 1991 A
5059614 Lepage et al. Oct 1991 A
5063247 Sekiya et al. Nov 1991 A
5098907 Kondo et al. Mar 1992 A
5100883 Schiehser Mar 1992 A
5118677 Caufield Jun 1992 A
5118678 Kao et al. Jun 1992 A
5120842 Failli et al. Jun 1992 A
5130331 Pascual Jul 1992 A
5151344 Abe et al. Sep 1992 A
5151413 Caufield et al. Sep 1992 A
5162360 Creswell et al. Nov 1992 A
5177110 Oechslein et al. Jan 1993 A
5185358 Creswell et al. Feb 1993 A
5256790 Nelson Oct 1993 A
5258389 Goulet et al. Nov 1993 A
5270458 Lemischka Dec 1993 A
5283354 Lemischka Feb 1994 A
5312820 Ashton et al. May 1994 A
5319099 Kamata et al. Jun 1994 A
5378725 Bonjouklian et al. Jan 1995 A
5399566 Katano et al. Mar 1995 A
5423905 Fringeli Jun 1995 A
5429918 Seto et al. Jul 1995 A
5432468 Moriyama et al. Jul 1995 A
5441947 Dodge et al. Aug 1995 A
5447957 Adams et al. Sep 1995 A
5456920 Matoba et al. Oct 1995 A
5468773 Dodge et al. Nov 1995 A
5470882 Dixon et al. Nov 1995 A
5480906 Creemer et al. Jan 1996 A
5500424 Nagamine et al. Mar 1996 A
5508288 Forbes et al. Apr 1996 A
5547966 Atwal et al. Aug 1996 A
5559137 Adams et al. Sep 1996 A
5596001 Hamanaka Jan 1997 A
5597719 Freed et al. Jan 1997 A
5624937 Reel et al. Apr 1997 A
5656612 Monia Aug 1997 A
5658903 Adams et al. Aug 1997 A
5667226 Janich Sep 1997 A
5696138 Olesen et al. Dec 1997 A
5698581 Kleemann et al. Dec 1997 A
5710094 Minami et al. Jan 1998 A
5721237 Myers et al. Feb 1998 A
5726167 Dodge et al. Mar 1998 A
5747498 Schnur et al. May 1998 A
5773459 Tang et al. Jun 1998 A
5777097 Lee et al. Jul 1998 A
5780262 Brent et al. Jul 1998 A
5780483 Widdowson et al. Jul 1998 A
5783664 Lee et al. Jul 1998 A
5786362 Krongrad Jul 1998 A
5801794 Lehureau et al. Sep 1998 A
5807876 Armistead et al. Sep 1998 A
5807891 Bold et al. Sep 1998 A
5808080 Bell et al. Sep 1998 A
5814646 Heinz et al. Sep 1998 A
5869043 McDonnell et al. Feb 1999 A
5871934 Lee et al. Feb 1999 A
5886044 Widdowson et al. Mar 1999 A
5891895 Shiraishi et al. Apr 1999 A
5908865 Doi et al. Jun 1999 A
5919773 Monia et al. Jul 1999 A
5929250 Widdowson et al. Jul 1999 A
5955366 Lee et al. Sep 1999 A
5965573 Petrie et al. Oct 1999 A
6004965 Breu et al. Dec 1999 A
6005008 Widdowson et al. Dec 1999 A
6015908 Widdowson et al. Jan 2000 A
6017692 Brent et al. Jan 2000 A
6020345 Vacher et al. Feb 2000 A
6022884 Mantlo et al. Feb 2000 A
6025151 Peterson Feb 2000 A
6033873 McDonnell et al. Mar 2000 A
6040339 Yoshida et al. Mar 2000 A
6043374 Widdowson et al. Mar 2000 A
6080763 Regan et al. Jun 2000 A
6093742 Salituro et al. Jul 2000 A
6103692 Avruch et al. Aug 2000 A
6114517 Monia et al. Sep 2000 A
6130053 Thompson et al. Oct 2000 A
6133319 Widdowson Oct 2000 A
6136779 Foulkes et al. Oct 2000 A
6143764 Kubo et al. Nov 2000 A
6147107 Dent et al. Nov 2000 A
6147116 Barbachyn et al. Nov 2000 A
6150415 Hammock et al. Nov 2000 A
6159901 Kanno et al. Dec 2000 A
6174901 Mantlo et al. Jan 2001 B1
6177401 Ullrich et al. Jan 2001 B1
6178399 Takebayashi et al. Jan 2001 B1
6180631 McMahon et al. Jan 2001 B1
6180675 Widdowson et al. Jan 2001 B1
6187799 Wood et al. Feb 2001 B1
6193965 Karin et al. Feb 2001 B1
6204267 Tang et al. Mar 2001 B1
6210710 Skinner Apr 2001 B1
6211373 Widdowson et al. Apr 2001 B1
6218539 Widdowson Apr 2001 B1
6228881 Regan et al. May 2001 B1
6235764 Larson et al. May 2001 B1
6236125 Oudet et al. May 2001 B1
6242601 Breu et al. Jun 2001 B1
6262113 Widdowson et al. Jul 2001 B1
6271261 Widdowson Aug 2001 B1
6294350 Peterson Sep 2001 B1
6297381 Cirillo et al. Oct 2001 B1
6310068 Bottcher et al. Oct 2001 B1
6316462 Bishop et al. Nov 2001 B1
6319921 Cirillo et al. Nov 2001 B1
6329415 Cirillo et al. Dec 2001 B1
6333341 Mantlo et al. Dec 2001 B1
6339045 Kanno et al. Jan 2002 B1
6344476 Ranges et al. Feb 2002 B1
6352977 Astles et al. Mar 2002 B1
6358525 Guo et al. Mar 2002 B1
6358945 Breitfelder et al. Mar 2002 B1
6361773 Lee et al. Mar 2002 B1
6372773 Regan Apr 2002 B1
6372933 Baine et al. Apr 2002 B1
6380218 Marfat et al. Apr 2002 B1
6383734 Marshall et al. May 2002 B1
6387900 Pevarello et al. May 2002 B1
6391917 Petrie et al. May 2002 B1
6403588 Hayakawa et al. Jun 2002 B1
6414011 Hogenkamp et al. Jul 2002 B1
6444691 Oremus et al. Sep 2002 B1
6448079 Monia et al. Sep 2002 B1
6479519 Astles et al. Nov 2002 B1
6492393 Breitfelder et al. Dec 2002 B1
6495331 Gelfand et al. Dec 2002 B1
6500863 Jin et al. Dec 2002 B1
6511800 Singh Jan 2003 B1
6511997 Minami et al. Jan 2003 B1
6521407 Warenius et al. Feb 2003 B1
6521592 Ko et al. Feb 2003 B2
6524832 Kufe et al. Feb 2003 B1
6525046 Cirillo et al. Feb 2003 B1
6525065 Caldwell et al. Feb 2003 B1
6525091 Robinson et al. Feb 2003 B2
6583282 Zhang et al. Jun 2003 B1
6608052 Breitfelder et al. Aug 2003 B2
6617324 Naraian et al. Sep 2003 B1
6635421 Klagsbrun et al. Oct 2003 B1
6653320 Hayakawa et al. Nov 2003 B2
6656963 Firestone et al. Dec 2003 B2
6673777 Tracey et al. Jan 2004 B1
6689560 Rapp et al. Feb 2004 B1
6797823 Kubo et al. Sep 2004 B1
6958333 Hayama et al. Oct 2005 B1
7070968 Kufe et al. Jul 2006 B2
7235576 Riedl et al. Jun 2007 B1
7253286 Funahashi et al. Aug 2007 B2
7307071 Lyons et al. Dec 2007 B2
7329670 Dumas et al. Feb 2008 B1
7351834 Riedl et al. Apr 2008 B1
7371763 Dumas et al. May 2008 B2
7517880 Miller et al. Apr 2009 B2
7528255 Riedl et al. May 2009 B2
7547695 Hoelzemann et al. Jun 2009 B2
7557129 Scott et al. Jul 2009 B2
7605261 Deprez et al. Oct 2009 B2
7612092 Funahashi et al. Nov 2009 B2
7678811 Dumas et al. Mar 2010 B2
20010006975 Wood et al. Jul 2001 A1
20010011135 Riedl et al. Aug 2001 A1
20010011136 Riedl et al. Aug 2001 A1
20010016659 Riedl et al. Aug 2001 A1
20010027202 Riedl et al. Oct 2001 A1
20010034447 Riedl et al. Oct 2001 A1
20010038842 Achen et al. Nov 2001 A1
20020037276 Ptasznik et al. Mar 2002 A1
20020042517 Uday et al. Apr 2002 A1
20020062763 Macholdt et al. May 2002 A1
20020065283 McMahon et al. May 2002 A1
20020065296 Dumas et al. May 2002 A1
20020082255 Eastwood Jun 2002 A1
20020085857 Kim et al. Jul 2002 A1
20020085859 Hashimoto et al. Jul 2002 A1
20020103253 Ranges et al. Aug 2002 A1
20020111495 Magee et al. Aug 2002 A1
20020128321 Widdowson et al. Sep 2002 A1
20020137774 Riedl et al. Sep 2002 A1
20020161014 Sadhu et al. Oct 2002 A1
20020165275 Wu et al. Nov 2002 A1
20020165349 Kirsch et al. Nov 2002 A1
20020165394 Dumas et al. Nov 2002 A1
20020173507 Santora et al. Nov 2002 A1
20020188027 Robinson et al. Dec 2002 A1
20020197256 Grewal Dec 2002 A1
20030069284 Keegan et al. Apr 2003 A1
20030105091 Riedl et al. Jun 2003 A1
20030125359 Lyons et al. Jul 2003 A1
20030130309 Moss et al. Jul 2003 A1
20030139605 Riedl et al. Jul 2003 A1
20030144278 Riedl et al. Jul 2003 A1
20030157104 Waksal Aug 2003 A1
20030181442 Riedl et al. Sep 2003 A1
20030207870 Dumas et al. Nov 2003 A1
20030207872 Riedl et al. Nov 2003 A1
20030207914 Dumas et al. Nov 2003 A1
20030216396 Dumas et al. Nov 2003 A1
20030216446 Dumas et al. Nov 2003 A1
20030232400 Radka et al. Dec 2003 A1
20030232765 Carter et al. Dec 2003 A1
20040023961 Dumas et al. Feb 2004 A1
20040052880 Kobayashi et al. Mar 2004 A1
20040096855 Stratton et al. May 2004 A1
20040147541 Lane et al. Jul 2004 A1
20040192770 Kozikowski et al. Sep 2004 A1
20040197256 Rogers et al. Oct 2004 A1
20040209905 Kubo et al. Oct 2004 A1
20040224937 Furness et al. Nov 2004 A1
20040229937 Dumas et al. Nov 2004 A1
20040235829 Scott et al. Nov 2004 A1
20050032798 Boyer et al. Feb 2005 A1
20050038031 Dumas et al. Feb 2005 A1
20050038080 Boyer et al. Feb 2005 A1
20050059703 Wilhelm et al. Mar 2005 A1
20050069963 Lokshin et al. Mar 2005 A1
20050096344 Fraley et al. May 2005 A1
20050175737 Knobel Aug 2005 A1
20050256174 Wood et al. Nov 2005 A1
20050288286 Flynn et al. Dec 2005 A1
20060058358 Dumas et al. Mar 2006 A1
20060078617 Schueckler Apr 2006 A1
20060211738 Mitchell et al. Sep 2006 A1
20060234931 Biggs, III et al. Oct 2006 A1
20060241301 Hoelzemann et al. Oct 2006 A1
20060247186 Carter et al. Nov 2006 A1
20060281762 Staehle et al. Dec 2006 A1
20070020704 Wilhelm et al. Jan 2007 A1
20070037224 Hamer et al. Feb 2007 A1
20070066660 Stahle et al. Mar 2007 A1
20070105142 Wilhelm May 2007 A1
20070149594 Finsinger et al. Jun 2007 A1
20070173514 Moss et al. Jul 2007 A1
20070178494 Elting et al. Aug 2007 A1
20070244120 Dumas et al. Oct 2007 A1
20070254295 Harvey et al. Nov 2007 A1
20070265315 Dumas et al. Nov 2007 A1
20080009527 Dumas et al. Jan 2008 A1
20080027061 Riedl et al. Jan 2008 A1
20080032979 Riedl et al. Feb 2008 A1
20080045546 Bouchon et al. Feb 2008 A1
20080045589 Kelley Feb 2008 A1
20080085902 Bold et al. Apr 2008 A1
20080108672 Riedl et al. May 2008 A1
20080153823 Riedl et al. Jun 2008 A1
20080194580 Dumas et al. Aug 2008 A1
20080207699 Hoelzemann et al. Aug 2008 A1
20080214545 Lee et al. Sep 2008 A1
20080227828 Dumas et al. Sep 2008 A1
20080242707 Schuckler et al. Oct 2008 A1
20080262236 Logers et al. Oct 2008 A1
20080269265 Miller et al. Oct 2008 A1
20080300281 Dumas et al. Dec 2008 A1
20080311601 Elting et al. Dec 2008 A1
20080311604 Elting et al. Dec 2008 A1
20090068146 Wilhelm Mar 2009 A1
20090093526 Miller et al. Apr 2009 A1
20090118268 Riedl et al. May 2009 A1
20090176791 Sandner et al. Jul 2009 A1
20090192127 Scheuring et al. Jul 2009 A1
20090215833 Grunenberg et al. Aug 2009 A1
20090215835 Wilhelm Aug 2009 A1
20090221010 Elting et al. Sep 2009 A1
20090227637 Weber et al. Sep 2009 A1
20090306020 Scheuring et al. Dec 2009 A1
20100035888 Sandner et al. Feb 2010 A1
20100063088 Wood et al. Mar 2010 A1
Foreign Referenced Citations (318)
Number Date Country
2028536 Apr 1991 CA
2 146 707 Oct 1995 CA
479557 Nov 1969 CH
38688 Jun 1993 CL
487014 Nov 1929 DE
511468 Oct 1930 DE
523437 Apr 1931 DE
2436179 Feb 1975 DE
2501648 Jul 1975 DE
3305866 Aug 1984 DE
2436179 Apr 1986 DE
3529247 Nov 1986 DE
3540377 May 1987 DE
253997 Feb 1988 DE
0016371 Oct 1980 EP
0107214 May 1984 EP
0116932 Aug 1984 EP
0192263 Aug 1986 EP
0202538 Nov 1986 EP
0230400 Jul 1987 EP
0233559 Aug 1987 EP
0242666 Oct 1987 EP
0264904 Apr 1988 EP
0314615 May 1989 EP
0335156 Oct 1989 EP
0359148 Mar 1990 EP
0371876 Jun 1990 EP
0379915 Aug 1990 EP
0380048 Aug 1990 EP
0381987 Aug 1990 EP
0405233 Jan 1991 EP
0425443 May 1991 EP
0459887 Dec 1991 EP
0233559 May 1992 EP
0192263 Jul 1992 EP
0502504 Sep 1992 EP
0509795 Oct 1992 EP
0676395 Oct 1995 EP
0690344 Jan 1996 EP
0709220 May 1996 EP
0709225 May 1996 EP
0709225 Aug 1998 EP
0860433 Aug 1998 EP
1056725 Dec 2000 EP
1199306 Apr 2002 EP
1256587 Nov 2002 EP
1537075 Jun 2005 EP
1457172 Sep 1966 FR
771333 Mar 1957 GB
828231 Feb 1960 GB
921682 Mar 1963 GB
1110099 Apr 1968 GB
1111554 May 1968 GB
1 590 870 Jun 1981 GB
P0004437 Jun 2001 HU
26555 Jan 2000 IR
44-2569 Feb 1969 JP
50-76072 Jun 1975 JP
50-77375 Jun 1975 JP
50-149668 Nov 1975 JP
51-63170 Jun 1976 JP
51-80862 Jul 1976 JP
53-86033 Jul 1978 JP
54-32468 Sep 1979 JP
55-98152 Jul 1980 JP
55-124763 Sep 1980 JP
55-162772 Dec 1980 JP
57-53785 Nov 1982 JP
58-21626 May 1983 JP
61-20039 Jan 1986 JP
63-214752 Sep 1988 JP
64-9455 Jan 1989 JP
1-102461 Apr 1989 JP
1-132550 May 1989 JP
1-200254 Aug 1989 JP
1-259360 Oct 1989 JP
2-22650 Jan 1990 JP
2-23337 Jan 1990 JP
2-35450 Feb 1990 JP
2-105146 Apr 1990 JP
2-108048 Apr 1990 JP
2-150840 Jun 1990 JP
3-53247 Mar 1991 JP
3-144634 Jun 1991 JP
3-198049 Aug 1991 JP
6-75172 Sep 1994 JP
8-301841 Nov 1996 JP
10-306078 Nov 1998 JP
6124 Jan 2000 LB
WO 9002112 Mar 1990 WO
WO 9203413 Mar 1992 WO
WO 9205179 Apr 1992 WO
WO 9304170 Mar 1993 WO
WO 9318028 Sep 1993 WO
WO 9324458 Dec 1993 WO
WO 9402136 Feb 1994 WO
WO 9402485 Feb 1994 WO
WO 9404541 Mar 1994 WO
WO 9414801 Jul 1994 WO
WO 9418170 Aug 1994 WO
WO 9422807 Oct 1994 WO
WO 9423755 Oct 1994 WO
WO 9425012 Nov 1994 WO
WO 9502136 Jan 1995 WO
WO 9502591 Jan 1995 WO
WO 9507922 Mar 1995 WO
WO 9513067 May 1995 WO
WO 9514023 May 1995 WO
WO 9516691 Jun 1995 WO
WO 9519169 Jul 1995 WO
WO 9531451 Nov 1995 WO
WO 9533458 Dec 1995 WO
WO 9533460 Dec 1995 WO
WO 9602112 Jan 1996 WO
WO 9610559 Apr 1996 WO
WO 9613632 May 1996 WO
WO 9625157 Aug 1996 WO
WO 9640673 Dec 1996 WO
WO 9640675 Dec 1996 WO
WO 9641807 Dec 1996 WO
WO 9703069 Jan 1997 WO
WO 9709973 Mar 1997 WO
WO 9717267 May 1997 WO
WO 9717329 May 1997 WO
WO 9729743 Aug 1997 WO
WO 9730992 Aug 1997 WO
WO 9734146 Sep 1997 WO
WO 9740028 Oct 1997 WO
WO 9740842 Nov 1997 WO
WO 9745400 Dec 1997 WO
WO 9749399 Dec 1997 WO
WO 9749400 Dec 1997 WO
WO 9817207 Apr 1998 WO
WO 9817267 Apr 1998 WO
WO 9820868 May 1998 WO
WO 9822103 May 1998 WO
WO 9822432 May 1998 WO
WO 9832439 Jul 1998 WO
WO 9834929 Aug 1998 WO
WO 9845268 Oct 1998 WO
WO 9849150 Nov 1998 WO
WO 9852558 Nov 1998 WO
WO 9852559 Nov 1998 WO
WO 9852937 Nov 1998 WO
WO 9852941 Nov 1998 WO
WO 9856377 Dec 1998 WO
WO 9900357 Jan 1999 WO
WO 9900370 Jan 1999 WO
WO 9920617 Apr 1999 WO
WO 9921835 May 1999 WO
WO 9923091 May 1999 WO
WO 9924035 May 1999 WO
WO 9924398 May 1999 WO
WO 9924635 May 1999 WO
WO 9926657 Jun 1999 WO
WO 9928305 Jun 1999 WO
WO 9932106 Jul 1999 WO
WO 9932109 Jul 1999 WO
WO 9932110 Jul 1999 WO
WO 9932111 Jul 1999 WO
WO 9932436 Jul 1999 WO
WO 9932437 Jul 1999 WO
WO 9932455 Jul 1999 WO
WO 9932463 Jul 1999 WO
WO 9933458 Jul 1999 WO
WO 9935132 Jul 1999 WO
WO 9940673 Aug 1999 WO
WO 9958502 Nov 1999 WO
WO 9962890 Dec 1999 WO
WO 0012497 Mar 2000 WO
WO 0017175 Mar 2000 WO
WO 0019205 Apr 2000 WO
WO 0026203 May 2000 WO
WO 0027414 May 2000 WO
WO 0031238 Jun 2000 WO
WO 0034303 Jun 2000 WO
WO 0035454 Jun 2000 WO
WO 0035455 Jun 2000 WO
WO 0039101 Jul 2000 WO
WO 0039116 Jul 2000 WO
WO 0041698 Jul 2000 WO
WO 0042012 Jul 2000 WO
WO 0043366 Jul 2000 WO
WO 0043384 Jul 2000 WO
WO 0047577 Aug 2000 WO
WO 0050425 Aug 2000 WO
WO 0055139 Sep 2000 WO
WO 0055152 Sep 2000 WO
WO 0056331 Sep 2000 WO
WO 0071506 Nov 2000 WO
WO 0071532 Nov 2000 WO
WO 0104115 Jan 2001 WO
WO 0107411 Feb 2001 WO
WO 0109088 Feb 2001 WO
WO 0112188 Feb 2001 WO
WO 0136403 May 2001 WO
WO 0147892 Jul 2001 WO
WO 0154723 Aug 2001 WO
WO 0154727 Aug 2001 WO
WO 0157008 Aug 2001 WO
WO 0163403 Aug 2001 WO
WO 0166099 Sep 2001 WO
WO 0166540 Sep 2001 WO
WO 0180843 Nov 2001 WO
WO 0206382 Jan 2002 WO
WO 0207747 Jan 2002 WO
WO 0207772 Jan 2002 WO
WO 0210141 Feb 2002 WO
WO 0214281 Feb 2002 WO
WO 0214311 Feb 2002 WO
WO 0218346 Mar 2002 WO
WO 0224635 Mar 2002 WO
WO 0225286 Mar 2002 WO
WO 0232872 Apr 2002 WO
WO 0240445 May 2002 WO
WO 0242012 May 2002 WO
WO 0244156 Jun 2002 WO
WO 0244158 Jun 2002 WO
WO 0250091 Jun 2002 WO
WO 0259081 Aug 2002 WO
WO 02059102 Aug 2002 WO
WO 02062763 Aug 2002 WO
WO 02070008 Sep 2002 WO
WO 02076930 Oct 2002 WO
WO 02076977 Oct 2002 WO
WO 02083628 Oct 2002 WO
WO 02083642 Oct 2002 WO
WO 02085857 Oct 2002 WO
WO 02085859 Oct 2002 WO
WO 02088090 Nov 2002 WO
WO 02092576 Nov 2002 WO
WO 03004523 Jan 2003 WO
WO 03005999 Jan 2003 WO
WO 03047523 Jun 2003 WO
WO 03047579 Jun 2003 WO
WO 03056036 Jul 2003 WO
WO 03059373 Jul 2003 WO
WO 03060111 Jul 2003 WO
WO 03065995 Aug 2003 WO
WO 03068223 Aug 2003 WO
WO 03068228 Aug 2003 WO
WO 03068229 Aug 2003 WO
WO 03068746 Aug 2003 WO
WO 03082272 Oct 2003 WO
WO 03094626 Nov 2003 WO
WO 03097854 Nov 2003 WO
WO 03099771 Dec 2003 WO
WO 2004004720 Jan 2004 WO
WO 2004019941 Mar 2004 WO
WO 2004037789 May 2004 WO
WO 2004043374 May 2004 WO
WO 2004045578 Jun 2004 WO
WO 2004052880 Jun 2004 WO
WO 2004078128 Sep 2004 WO
WO 2004078746 Sep 2004 WO
WO 2004078747 Sep 2004 WO
WO 2004078748 Sep 2004 WO
WO 2004085399 Oct 2004 WO
WO 2004085425 Oct 2004 WO
WO 2004108713 Dec 2004 WO
WO 2004108715 Dec 2004 WO
WO 2004113274 Dec 2004 WO
WO 2005000284 Jan 2005 WO
WO 2005002673 Jan 2005 WO
WO 2005004863 Jan 2005 WO
WO 2005004864 Jan 2005 WO
WO 2005005389 Jan 2005 WO
WO 2005005434 Jan 2005 WO
WO 2005009367 Feb 2005 WO
WO 2005009961 Feb 2005 WO
WO 2005011700 Feb 2005 WO
WO 2005016252 Feb 2005 WO
WO 2005019192 Mar 2005 WO
WO 2005032548 Apr 2005 WO
WO 2005037273 Apr 2005 WO
WO 2005037285 Apr 2005 WO
WO 2005037829 Apr 2005 WO
WO 2005042520 May 2005 WO
WO 2005047283 May 2005 WO
WO 2005048948 Jun 2005 WO
WO 2005049603 Jun 2005 WO
WO 2005056764 Jun 2005 WO
WO 2005058832 Jun 2005 WO
WO 2005059179 Jun 2005 WO
WO 2005075425 Aug 2005 WO
WO 2005089443 Sep 2005 WO
WO 2005110994 Nov 2005 WO
WO 2006026500 Mar 2006 WO
WO 2006026501 Mar 2006 WO
WO 2006027346 Mar 2006 WO
WO 2006034797 Apr 2006 WO
WO 2006094626 Sep 2006 WO
WO 2006105844 Oct 2006 WO
WO 2006125540 Nov 2006 WO
WO 2007015947 Feb 2007 WO
WO 2007039403 Apr 2007 WO
WO 2007039404 Apr 2007 WO
WO 2007047955 Apr 2007 WO
WO 2007053573 May 2007 WO
WO 2007054215 May 2007 WO
WO 2007056011 May 2007 WO
WO 2007056012 May 2007 WO
WO 2007059094 May 2007 WO
WO 2007059154 May 2007 WO
WO 2007059155 May 2007 WO
WO 2007064872 Jun 2007 WO
WO 02060900 Aug 2007 WO
WO 2007087575 Aug 2007 WO
WO 2007096393 Aug 2007 WO
WO 2007096395 Aug 2007 WO
WO 2007123722 Nov 2007 WO
WO 2007139930 Dec 2007 WO
WO 2008055966 May 2008 WO
WO 2008079968 Jul 2008 WO
WO 2008079972 Jul 2008 WO
WO 2008089389 Jul 2008 WO
WO 2009034308 Mar 2009 WO
WO 2009054004 Apr 2009 WO
Non-Patent Literature Citations (593)
Entry
Kolch et al., Raf-1 protein kinase is required for growth of induced NIH/3T3 cells, Nature, vol. 349, pp. 426-428, Jan. 31, 1991.
Simone, Oncology: Introduction, Cecil Textbook of Medicine, 20th Edition, vol. 1, pp. 1004-1010, 1996.
Gura et al., Systems for identifying new drugs are often faulty, Science, 278:1041-1042, 1997.
Johnson et al., Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials, British Journal of Cancer, 84(10):1424-1431, 2001.
Monia et al., Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase, Nature Medicine, vol. 2, No. 6, pp. 668-675, Jun. 1996.
Pearce et al., Failure modes in anticancer drug discovery and development, Cancer Drug Design and Discovery Edited by Stephen Neidle, Chapter 18, pp. 424-435 (2008).
Adjei et al., “A Phase I study of Bay 43-9006 and gefitinib in patients with refractory or recurrent non-small-cell lung cancer (NSCLC),” Abstract #3067, Meeting: 2005 ASCO Annual Meeting, Category: Developmental Therapeutics: Molecular Therapeutics, Subcategory: Antiangiogenic or Antimetastatic agents.
Ahmad et al., “Kinase Inhibition with BAY 43-9006 in Renal Cell Carcinoma,” Clinical Cancer Research, Sep. 15, 2004, vol. 10(suppl.), pp. 6388s-6392s.
Amornphimoltham et al., “Persistent Activation of the Akt Pathway in Head and Neck Squamous Cell Carcinoma: A Potential Target for UCN-01,” Clinical Cancer Research, vol. 10, Jun. 15, 2004, pp. 4029-4037.
Arzneimitteltherapie, “Sorafenib” Oct. 6, 2006, Auflage 18498, 7 pages.
Arnone et al, “Selectivities in the Oxidation of Tertiary Amines and Pyridine Derivatives by Perfluoro Cis-2,3-dialkyloxaziridines,” Tetrahedron, vol. 54, 1998, pp, 7831-7842.
Arora et al., “Stromelysin 3, Ets-1, and Vascular Endothelial Growth Factor Expression in Oral Precancerous and Cancerous Lesions: Correlation with Microvessel Density Progression, and Prognosis,” Clinical Cancer Research. 11: 2272-2284 (Mar. 15, 2005).
Ascierto et al., “Prognostic Value of Serum VEGF in Melanoma Patients: a Pilot Study” Anticancer Research, 24: 4255-4258 (2004).
Auclair et al., “BAY 43-9006 (Sorafenib) is a potent inhibitor of FLT3 tyrosine kinase signaling and proliferation in AML cells,” Abstract #5991, 96th Annual Meeting, Anaheim/Orange County, CA, Apr. 16-20, 2005.
Audia et al., “Potent, Selective Tetrahydro-β-carboline Antagonists of the Serotonin 2B (5HT2B) Contractile Receptor in the Rat Stomach Fundus,” J. Med. Chem. 1996. 39, pp. 2773-2780.
Avruch et al., “Raf meets Ras: completing the framework of a signal transduction pathway,” TIBS 19; Jul. 1994; pp. 279-283.
Awada et al., “Phase 1 safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours” British Journal of Cancer 92, pp. 1855-1861 (2005).
Bachelot et al., “Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients,” British Journal of Cancer, 88: 1721-1726 (2003).
Badger et al., “Pharmacological Profile of SB 203580, a Selective Inhibitor of Cytokine Suppressive Binding Protein/p38 Kinase, in Animal Models of Arthritis, Bone Resorption, Endotoxin Shock and immune Function,” JPET 279: pp. 1453-1461 (1996).
Baka et al., “A review of the latest clinical compounds to inhibit Vege in pathological angiogenesis,” Expert Opinion Therapeutic Targets, 2006, vol. 10, No. 6, pp. 867-876.
Balant et al., “Metabolic Considerations in Prodrug Design,” Chapter Twenty-Ehree In: Burger's Medicinal Chemistry and Drug Discovery, 5th ed. John Wiley & Sons, Inc., New York, 1995: vol. 1,pp. 949-982.
Bando et al., “Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer” British Journal of Cancer, 2005, vol. 92, pp. 553-561.
Banerjee et al., “Murine Coronavirus Replication-Induced p38 Mitogen-Activated Protein Kinase Activation Promotes Interleukin-6 Production and Virus Replication in Cultured Cells,” Journal of Virology. American Society for Microbiology, 2002: vol. 76, pp. 5937-5948.
Bankston et al., “A Scaleable Synthesis of BAY 43-9006: A Potent Raf Kinase Inhibitor for the Treatment of Cancer,” Organic Process Research & Development, 2002, vol. 6, pp, 777-781.
Barnett et al., “Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors,” Biochem J., vol. 385, 2005, pp. 399-408.
Baumann et al., “Raf induces NF-kb by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation,” Proc. Natl. Acad. Sci. USA, vol. 97: No. 9: 4615-4620 (Apr. 25, 2000).
Bayer Corporation et al., “Trial of BAY 43-9(8)6 in Patients with Relapsed or Refractory Advanced Non-Small Cell Lung Carcinoma”, NCT0010413, clinicaltrials.gov, 3 pages.
Bellacosa et al., “Molecular Alterations of the AKT2 Oncogene in Ovarian and Breast Carcinomas,” Int. J. Cancer (Pred. Oncol.), vol. 64, 1995, pp. 280-285.
Berge et al., “Pharmaceutical Salts.” Journal of Pharmaceutical Sciences. Jan. 1977:1-19, vol. 66, No. 1.
Bergstralh et al., “Microtubule stars stabilizing agents: Their molecular signaling consequences and the potential for enhancement by drug combination,” Cancer Treatment Reviews, 2006, vol. 32, pp. 166-179.
Bertrand et al., “Inhibition of PI3K, mTOR and MEK signaling pathways promotes rapid apoptosis in B-Lineage ALL in the presence of stromal cell support”, Leukemia, vol. 19, pp. 98-102 (published online Oct. 21, 2004).
Bhagwat et al., “The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis,” Blood, vol. 101, No. 5, pp. 1818-1826, (Mar. 1, 2003).
Bianchi et al., “A Phase II multi-center uncontrolled trial of sorafenib (BAY 43-9006) in patients with metastatic breast cancer” Journal of Clinical Oncology, Draft 33 pages (presented previously Oct. 30-Nov. 3, 2005).
Martín-Blanco, “p38 MAPK signalling cascades: ancient roles and new functions,” BioEssays, 22:637-645, 2000.
Foussard-Blanpi, Odette, “Comparative pharmacological study of substituted carboxamides upon central nervous system,” Ann. Pharm. Fr. (1982), 40 (4), pp. 339-350.
Board et al., “Platelet-derived growth factor receptor (PDGFR): A target for anticancer therapeutics,” Drug Resistance Updates 8 (2005) 75-83.
Bok et al.. “Vascular :Endothelial Growth Factor and Basic Fibroblast Growth Factor Urine Levels as Predictors of Outcome in Hormone-refractory Prostate Cancer Patients: A Cancer and leukemia Group B Study.” Cancer Research, 61: 2533-2536 (Mar. 15, 2001).
Bollag et al., “Raf pathway inhibitors in oncology,” Current Opinion in investigational Drugs (2003) 4(12): pp. 1436-1441.
Bolton et al., “Chapter 17, Ras Oncogene Directed Approaches in Cancer Chemotherapy,” Annual Reports in Medicinal Chemistry, vol. 29, 1994, pp. 165-174.
Bono et al., “Serum KIT and KIT ligand levels in patients with gastrointestinal stromal tumors treated with imatinib,” Blood 103:2929-2935 (2004).
Bos, J.L. “ras Oncogenes in Human Cancer: A Review,” Cancer Research, vol. 49, Sep. 1, 1989, pp. 4682-4689.
Boulton et al,, “Heterocyclic Rearrangements, Part X. A Generalised Monocyclic Rearrangement,” J. Chem. Soc. (C), 1967, pp. 2005-2007.
Boyer, S.J., “Small Molecule inhibitors of KDR (VEGFR-2) Kinase: An Overview of Structure Activity Relationships,” Current Topics in Medicinal Chemistry, 2002, vol. 2, pp. 973-1000.
Boyd, et al. “Arene Oxides of Quinoline: Epoxidation, N-Oxidation and N-Methylation Reactions,” J. Chem. Soc. Perkin Trans. 1, 1991: pp. 2189-2192.
Braybrooke et al., “A Phase II Study of Razoxane, an Antiangiogenic Topoisomerase 11 Inhibitor, in Renal Cell Cancer with Assessment of Potential Surrogate Markers of Angiogenesis,” Clin. Canc. Res. 6:4697-4704 (2000).
Broll et al., “Vascular endothelial growth, factor (VEGF)—a valuable serum tumour marker in patients with colorectal cancer?” Eur. J. Surg. Oncol. 27:37-42 (2001).
Bruder et al., “Adenovirus Infection Stimulates the Raf/MAPK Signaling Pathway and induces Interleukin-8 Expression” Journal of Virology. vol. 71, pp. 398-404, 1997.
Bundgaard, Hans. “Design of prodrugs: Bioreversible derivatives for various .functional groups and chemical entities.” pp. 1-92, in Design of Prodrugs, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1985.
Campbell et al., “Increasing complexity of Ras signaling,” Oncogene, 1998, vol. 17, pp. 1395-1413.
Cancer Weekly, “Antisense Technology (Clinical Trial). Phase II Trial of Second Antisense Cancer Drug Begins.” Cancer Weekly, p. 4 (Dec. 8, 1997).
Canetta et al., “Carboplatin: current status and future prospects,” Cancer Treatment. Reviews, 1998, pp. 17-32, vol. 15(Supplennent B).
Caponigro et al., “Epidermal growth factor receptor as a major anticancer drug target,” Exp. Opin. Thera. Targets, 2006, vol. 10, No. 6, pp. 877-888.
Carey et al., “Contents of Part A,” pp. vii-xi and “Contents of Part B,” pp. xiii-xviii, in Advanced Organic Chemistry. Second Edition, Part A: Structure and Mechanisms. Plenum Press, NY (1984).
Carling et al, “1-(3-Cyatiobenzylpiperidin-4-yl)-5-methyl-4-phenyl-1,3-dihydroimidazol-2-one: A Selective High-Affinity Antagonist for the Human Dopamine D4 Receptor with Excellent Selectivity over Ion Channels,” J. Med. Chem., 1999, 42, pp. 2706-2715.
Carlomagno et al., “BAY 43-9006 Inhibition of Oncogenic RET Mutants,” Journal of the National Cancer Institute, 2006, vol. 98, No. 5, pp. 326-334.
Carney et al., “Monitoring the Circulating Levels of the HER2lneu Oncoprotein in Breast Cancer,” Clin Breast Cancer 5(2): 105-116, (2004).
Carter et al, “Anti-Tumor Efficacy of the Orally Active Raf Kinase Inhibitor BAY 43-9006 in Human Tumor Xenograft Models,” Proceedings of the American Association for Cancer Res., vol. 42: p. 923, Mar. 2001, Abstract #4954.
Carter et al., “Drug Tumor interactions” pp. 362-365, in: Chemotherapy of Cancer, Second Edition, John Wiley & Sons. NY (1981).
Carter et al., “Sorafenib is efficacious and tolerated in combination with cytotoxic or cytostatic agents in preclinical models of human non-small cell lung carcinoma,” Cancer Chemotherapy and Pharmacology. Springer Berlin/Heidelberg, vol. 59, No. 2. pp. 183-195 (Feb. 2007). Abstract.
Chang et al., “BAY 43-9006 (Sorafenib) inhibits ectopic (s.c.) and orthotopic growth of a murine model of renal adenocarcinoma (Renca) predominantly through inhibition of tumor angiogenesis,” 96th Annual Meeting, Anaheim/Orange County, CA, Apr. 16-20, 2005, 1 page.
Chang et al., “Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models,” Cancer Chemother. Pharmacol., 2007, vol. 59. pp. 561-574.
Chen et al., “Role of Regulatory Elements and the MAPK/ERK OR p38 MAPK Pathways for Activation of Human Cytomegalovirus Gene Expression,” Journal of Virology, 2002: vol. 76, No. 10, pp. 4873-4885.
Chen et al., “Suppression of Japanese encephalitis virus infection by non-steroidial, anti-inflammatory drugs,” Journal of General Virology, 2002, vol. 83. pp. 1897-1905.
Chen et al., “Expression of Proinflammatory and Proangiogenic Cytokines in Patients with Head and Neck Cancer,” Cinical Cancer Research 5:1369-1379 (Jun. 1999).
Chialda et al., “Inhibitors of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia.” Respiratory Research 2005, 6:36, pp. 1-19.
Chin et al., “Vascular endothelial growth factor and soluble Tie-2 receptor in colorectal cancer: associations with disease recurrence,” European Journal of Surgical Oncology, 29:497-505 (2003).
Choi et al , “Imatinib-Resistant Cell Lines Are Sensitive to the Raf Inhibitor BAY 43-9006,” Blood, W.E.B. Saunders Company, Orlando, FL, US, vol. 100, No. 11, Abstract # 1427 (Dec. 10, 2002).
Choong et al., “Forthcoming receptor tyrosine kinase inhibitors,” Exp. Opin. Ther. Targets, 2000, vol. 10, No. 6, pp. 793-797.
Chow et al., “Measurement of MAP Kinase Activation by Flow Cytometry Using Phospho-Specific Antibodies to MEK and ERK: Potential for Pharmacodynamic Monitoring of Signal Transduction Inhibitors,” Cytometry (Communications in Clinical Cytometry) 46:72-78 (2001).
Christensen, et al., “Plasma vascular endothelial growth factor and interleukin-8 as biomarkers of antitumor efficacy of a prototypical erbB family tyrosine kinase inhibitor,” Mol. Cancer Ther., 4(6):938-947 (Jun. 2005).
Chu et al., “Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib,” Lancet, 2007, vol. 370, pp. 2011-2019.
Chustecka et al., “Bortezonnib and Sorafenib Show ctivity in Thyroid Cancer,” Medscape. 2 pages (Nov. 2, 2006).
Clark et al., “Safety and Pharmacokinetics of the Dual Action Raf Kinase and Vascular Endothelial Growth Factor Receptor Inhibitor, BAY 43-9006, in Patients with Advanced, Refractory Solid Tumors,” Clinical Cancer Res., Aug. 1, 2005, vol. 11, No. 15, pp, 5472-5480.
Garbe, “Auch ein Therapieplatz für Sorafenib?” Medical Special (2006) 2 pages.
Copéret et al., “A Simple and Efficient Method for the Preparation of Pyridine-N-oxides II,” Tetrahedron Letters, Elsevier Science Ltd., Pergamort Press, Oxford, UK 1998: vol. 39, pp. 761-764.
Cortes et al., “Targeting the Microtubules in Breast Cancer Beyond Taxanes: The Epothilones,” The Oncologist, 2007, vol. 12, pp. 271-280.
Craig, “The mechanisms of drug release from solid dispersions in water-soluble polymers.” International Journal of Pharmaceutics 231 (2002) 131-144, Elsevier Science B.V.
Le Cras et at., “Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure.” Am. J. Physiol. Lung. Cell. Mol. Physiol. vol. 283. pp. L555-L562, 2002.
Crump, Micheal, “Inhibition of raf kinase in the treatment of acute myeloid leukemia,” Medline Abstract ISSN:1381-6128, Current Pharmaceutical Design, vol. 8. Issue 25, 2002, pp. 2243-2248.
Cunningham et al., “A Phase I Trial of H-ras Antisense Oligonucleotide ISIS 2503 Administered as a Continuous Intravenous Infusion in Patients with Advanced Carcinoma,” Cancer, 2001, American Cancer Society, vol. 92, No. 5, pp. 1265-1271.
Danson et al., “Improving Outcomes in Advanced Malignant Melanoma. Update on Systemic Therapy,” Drugs, 2005, vol. 65, No. 6, pp. 733-743.
Dasmahapatra et al., “In vitro Combination Treatment with Perifosine and UCN-01 Demonstrates Synergism against Prostate (PC-3) and Lung (A549) Epithelial Adenocarcinoma Cell Lines,” Clinical Cancer Research, vol. 10, Aug. 1, 2004, pp. 5242-5252.
Daum et al., “The ins and outs of Raf kinases,” TIBS 19, Nov. 1994, pp. 474-480.
Dayan et al., “Tertiary Amine Oxidation using HOF-CH3CN: A Novel Synthesis of N-Oxides,” Synthesis, 1999, No. SI, pp. 1427-1430.
DeGrendele, “Activity of the leaf Kinase inhibitor BAY 43/9006 in Patients with Advanced Solid Tumors,” Clinical Colorectal Cancer, May 2003, vol. 3, pp. 16-18.
Dehtling, J. “GroBe Onkologie-Pipeline” Medizinische Monatsschrift für Pharmazeuten, 2006, Auflage 12914, 2 pages.
Denny, “Prodrug strategies in cancer therapy,” European Journal of Medicinal Chemistry. 2001: vol. 36, pp. 577-595.
DeVita et al., “Elevated Perioperative Serum Vascular Endothelial Growth Factor Levels in Patients with Colon Carcinoma,” Cancer, 100 (2) pp. 270-278 (2004).
Devlin et al., “Gatt and Discovery: Significant Changes in U.S. Patent Law” Screening Forum. vol. 3, No. 4, pp. 1, 3 and 6 (Dec. 1995).
Doanes et al, “Vege Stimulates MAPK through a Pathway That Is Unique for Receptor Tyrosine Kinases,” Biochem Biophys. Res. Commun. 255: pp. 545-548, 1999.
Dörwald, “Preface,” p. IX, in Side Reactions in Organic Synthesis: A Guide to Successful Synthesis Design, Wiles-VCH: Verlag GmbH & Co. KGaA (2005).
Downward, J., “Mechanisms and consequence of activation of protein kinase B/Akt,” Current Opinion in Cell Biology, vol. 10, 1998, pp. 262-267.
Drevs et al., “Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials,” Annals of Oncology, 16: 558-565 (2005).
Drevs, J “Soluble Markers for the Detection of Hypoxia under Antiangiogenic Treatment,” Anticancer Research, 23: 1159-1162 (2003).
Drevs, J., Die Medizinische Welt, 2006. pp. 3/5, 4/5, 5/5.
“Doxorubicin HCI (ADR),” in drugs: facts and comparisons, 1994 Ed., pp. 2703-2705.
Dudek et al “Circulating Angiogenic Cytokines in Patients with Advanced Non-Small Cell Lung Cancer: Correlation with Treatment Response and Survival,” Cancer Investigation, 23: 193-200 (2005).
Dumas, J. “Protein kinase inhibitors from the urea class,” Curr. Opin. in Drug Discovery and Dev., 5(s):718-727, 2002.
Dumas et al., “Discovery of a New Class of p38 Kinase Inhibitors,” Bioorganic & Medicinal Chemistry Letters vol. 10, (2000), pp. 2047-2050.
Dumas et al., “1-Phenyl-5-pyrazolyl Ureas. Potent and Selective p38 Kinase Inhibitors,” Bioorganic & Medicinal Chemistry Letters, 2000, vol. 10, pp. 2051-2054.
Dumas, J., “Growth factor receptor kinase inhibitors: Recent progress and clinical impact,” Current Opinion in Drug Discovery & Development, 2001, vol. 4, No. 4, pp, 378-389.
Dumas, J., “Protein kinase inhibitors: emerging pharmacophores 1997-2000,” Expert Opinion on Therapeutic Patents (2001) vol. 11, No. 3, pp. 405-429.
Dumas et al., “Orally Active p38 Kinase inhibitors from the Urea Class.” Poster, 222nd American Cancer Society National Meeting 2001, Med 1256, 1 page.
Dumas, J., “Raf Kinase Inhibitors,” Expert Opinion on Therapeutic Patients, vol. 8, No. 12, pp. 1749-1750, 1998.
Dumas et al., “Recent developments in the discovery of protein kinase inhibitors from the urea class,” Current Opinion in Drug Discovery & Development, 2004, vol. 7, No. 5, pp. 600-616.
Dumas et al., “Synthesis and Pharmacological Characterization of a Potent, Orally Active p38 Kinase Inhibitor,” Bioorganic & Medicinal Chemistry Letters, 2002, vol. 12, pp. 1559-1562.
Dunst et al., “Tumor Hypoxia and Systemic Levels of Vascular Endothelial Growth Factor (VEGF) in Head and Neck Cancers,” Strahlentherapie und Onkologie, 177(9): 469-473 (2001).
Ebos et al., “Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlated with antitumor efficacy” PNAS vol. 104, No. 43, pp. 17069-17074 (Oct. 23, 2007).
Ebrahimi et al., “Cytokines in Pancreatic Carcinoma. Correlation with Phenotypic Characteristics and Prognosis,” Cancer, 101(12): 2727-2736 (Published on-line Nov. 3, 2004).
Eisen et al., “Phase I trial of BAY 43-9006 (Sorafenib) combined with dacarbazine (DTIC) in metastatic melanoma patients,” Abstract #7508, Meeting: 2005 ASCO Annual Meeting, Category: Melamona, Subcategory: Melamona.
Eisen et al., “Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis” British Journal of Cancer 95, 581-586 (2006).
Eisenhauer et al., “Impact of new non-cytotoxics in the treatment in ovarian cancer,” International J. Gynecol. Cancer, 2001, vol. 11, Supplement 1, pp. 68-72.
El-Deiry, Wafik S., “Meeting Report: The International Conference on Tumor Progression and Therapeutic Resistance”, Cancer Research, 2005; vol. 65, No. 11, pp. 4475-4484.
Elting et al., “Biomarkers associated with clinical outcomes in TARGETs, a Phase III single-agent, placebo-controlled study of sorafenib in advanced renal cell carcinoma,” Proc. Amer. Assoc. Cancer Res. vol. 47. Abstract # 2909, 2006, pp. 683-684.
Escudier et al., “Randomized Phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC),” Meeting: 2005 ASCO Annual Meeting, Category: Genitourinary Cancer, Subcategory: Kidney Cancer, 1 page.
Escudier et al., “Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma” New England Journal of Medicine vol. 356: 125-134 (Jan. 11, 2007).
European Medicines Agency, “CHMP Assessment Report for Nexavar” Doc Ref: EMEA/CHMP/140610/2006, 63 pages.
Fabian et al., “A small molecule kinase interaction map for clinical kinase inhibitors,” Nature Biotechnology, 2005, vol. 23, No. 3, pp. 329-336, 4 supplementary pages.
Faderi et al., “Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia,” Blood, 2005 vol. 106 No. 13, pp. 4303-4307.
Faivre et al., “Molecular basis for sunitinib efficacy and future clinical development” Nature Reviews Drug Discovery, Nature Publishing Group, pp. 734-745, vol. 6 (Sep. 2007).
Fakhari et al., “Upregulation of Vascular Endothelial Growth Factor Receptors is Associated with Advanced Neuroblastoma,” Journal of Pediatric Surgery, 37(4): 582-587 (Apr. 2002).
Favaro et al., “Targeted therapy in renal cell carcinoma,” Expert Opin. Investig. Drugs 14(10):1251-1258 (2005).
Fiedler et al. “A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia,” Blood, 102(8): 2763-2767(prepublished online Jul. 3, 2003).
Feldmann, “Pathogenesis of arthritis: recent research progress,” Nature Immunology 2001, vol. 2, No. 9, pp. 771-773.
Fields Virology Second Editon,“Contents,”:vol. 1, pp. ix-xiv, Raven Press, NY (1990).
Flaherty et al., “A Phase I Trial of the Oral, Multikinase Inhibitor Sorafenib in Combination with Carboplatin and Paclitaxel” Clin Cancer Res 41(15):4836-4842 (Aug. 1, 2008).
Flaherty et al., “Phase I/II trial of Bay 43-9006 carboplatin (C) and paclitaxel (P) demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma,” Journal of Clinical Oncology, 2004 ASCO annual meeting proceedings, vol. 22, No. 14S (2004) Supplement: 7507, 4 pages.
Flaherty et al., “Antisense therapeutics: lessons from early clinical trials.” Current Opin. in Oncol. 13: 499-505 (2001).
Foekens et al,, “High Tumor Levels of Vascular Endothelial Growth Factor Predict Poor Response to Systemic Therapy in Advanced Breast Cancer,” Cancer Research, 2001, vol. 61, pp. 5407-5414.
Forbes et al., “N-(1-Methyl-5-indolyl)-N'-(3-methyl-5-isothiazolyl)urea: A Novel, High-Affinity 5-HT2b Receptor Antagonist,” Journal of Medicinal Chemistry, 1995, vol. 38, No. 6, pp, 855-857.
Franco et al., “Dissolution properties and anticonvulsant activity of phenytoin-polyethylene glycol 6000 and -polyvinylpyrrolidone K-30 solid dispersions,” International Journal of Pharmaceutics 225 (2001) pp. 63-73.
Fridman et al., “The Minimal Fragments of c-Raf-1 and NF1 That Can Suppress v-Ha-Ras-induced Malignant Phenotype,” The Journal of Biological Chemistry, vol. 269, No. 48, 1994, pp. 30105-30108.
Garcia-Lòpez et al., “New Routes for the Synthesis of Pyrrolo[3,2-d]- and [2,3-d]-pyrimidine Systems starting from a Common Pyrrole Derivative,” Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999), 1978, pp. 483-487.
Gatzemeier et al., “Phase II trial of single-agent sorafenib in patients with advanced non-small cell lung carcinoma,” Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings Part I, vol. 24, No. 18S (Jun. 20 Supplement) 2006, abstract No. 7002, 4 pages.
Geiger et al., “Antitumor Activity of a C-raf Antisense Oligonucleotide in Combination with Standard Chemotherapeutic Agents against Various Human Tumors Transplanted Subcutaneously into Nude Mice,” Clinical Cancer Research vol. 3, 1179-1185, Jul. 1997.
Geng et al., “A Specific Antagonist of the p1108 Catalytic Component of Phosphatidylinositol 3′-Kinase, IC486068, Enhances Radiation-Induced Tumor Vascular Destruction,” Cancer Research, 64, Jul. 2004, pp. 4893-4899.
Gennaro, Alfonso R. “Table of Contents,” pp. xiv-xv, in Remington: The Science and Practice of Pharmacy, 20th Ed. Remington. Lippincott Williams & Wilkins. 2000.
George et al., “VEGF-A VEGF-C and VEGF-D in Colorectal Cancer Progression,” Neoplasia, 3(5): 420-427 (2001).
George et al., “Prognostic Significance of Plasma Vascular Endothelial Growth Factor Levels in Patients with Hormone-refractory Prostate Cancer Treated on Cancer and Leukemia Group B 9480.” Clinical Cancer Research, 7: 1932-1936 (Jul. 2001).
Abou-Alfa et al., “Phase 11 Study of Sorafenib in Patients with Advanced Hepatocellular Carcinoma” Journal of Clinical Oncology, vol. 24, No. 26, pp. 4293-4300 (Sep. 10, 2006).
Giambartolomei et al., “Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein,” Oncogene, Nature Publishing Group, 2001: vol. 20, pp. 2606-2610.
Gills et al., “The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt,” Expert Opin. Investig. Drugs, vol. 13, No. 7, 2004, pp. 787-797.
Gollob, “Sorafenib: scientific rationales for single-agent and combination therapy in clear-cell renal cell carcinoma” Pub Med PMID: 16425993, Chin. Genitourin. Cancer 4(3):167-174 (2005) abstract.
Gòmez-Esquer et al., “mRNA expression of the angiogenesis markers VEGF and CD105 (endoglin) in human breast cancer,” Anticancer Res., 2004, vol. 24, No. 3a, pp. 1581-1585, XP-002455577, abstract.
Grant et al., “Some Hypotensive Thiadiazoles,” J. Med. Chem. (1972), 15(10), pp. 1082-1054.
Greene et al,, “Contents,” pp. xi-xii, in: Protective Groups in Organic Synthesis, 3rd Ed. John Wiley & Sons, Inc., New York, 1999.
Gelasser, “The Importance of Solvates,” in: Polymorphism in the Pharmaceutical Industry, Chapter 8, p. 211, 2006, Wiley-VCH Verlug GmbH & Co., KGaA, Weinhelm.
Gridelli et al., “Sorafenib and Sunitinib in the Treatment of Advanced Non-Small Cell Lung Cancer” The Oncologist (2007) 12:191-200.
Guan et al., “H5N1 influenza: A protean pandemic threat,” Proc. Natl. Acad. Sci. USA, May 25, 2004; vol. 101, pp. 8156-8161.
Gupta et al., “Sorafenib targets BRAF anti VEGFR in metastatic thyroid carcinoma” Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings (Post-Meeting Edition) vol. 25, No. 18S (Jun. 20 Supplement), 2007: 6019 abstract.
Gura, “Systems for identifying new drugs are often faulty.” Science, 1997, vol. 278, (5340), pp. 1041-1042, MEDLINE with Full text.
Hahn et al., “Sorafenib,” Curr. Opin. Oncol., 18:615-621 (2006).
Hall-Jackson et al., “Paradoxical activation of Raf by a novel Raf inhibitor,” Chemistry & Biology, 6: 559-568 (Jul. 1999).
Han et al., “Targeted Prodrug Design to Optimize Drug Delivery.” AAPS Pharmsci. 2000: vol. 2, No. 1, Article 6, 1-11.
Hanna, “Second-Line Treatment of Non-small Cell Lung Cancer: Big Targets, Small Progress; Small Targets, Big Progress?” Journal of Thoracic Oncology vol. 1, No. 9, pp. 927-928 (Nov. 2006).
Hansch et al., “Contents,” 21 pages, in: Comprehensive Medicinal Chemistry. The Rational Design, Mechanistic Study & Therapeutic Application of Chemical Compounds, Pergamon Press, Oxford, Uk, 1990.
Hanson, “Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis, Inhibitors of p38 kinase,” Exp. Opin. Ther. Patents, 1997, vol. 7, No. 7, pp. 729-733.
Hardman et al., excerpts from chapter 3. Principles of Therapeutics, in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th ed., 1996, pp. 51 and 57-58.
Harris et al., “Soluble Tie2 and Flt1 Extracellular Domains in Serum of Patients with Renal Cancer and Response to Antiangiogenic Therapy,” Clin. Cancer Res. 7:1992-1997 (2001).
Hayes et al., “Serum vascular endothelial growth factor as a tumour marker in soft tissue sarcoma,” British Journal of Surgery, 91:242-247 (Published on-line Nov. 24, 2003).
Hegedus, L.S. “Contents,” 4 pages in: Transition Metals in the Synthesis of Complex Organic Molecules, University Science Books, Mill Valley, California, 1994.
Heim et al., “Antitumor effect and potentiation or reduction in cytotoxic drug activity in human colon carcinoma cells by the Raf kinase inhibitor (RKI BAY 43-9006,” International Journal of Clinical Pharmacology and Therapeutics, 2003, vol. 41, No. 12, pp. 616-617.
Heim et al., “The Raf kinase inhibitor BAY 43-9006 reduces cellular uptake of platinum compounds and ctotoxity in human colorectal carcinoma cell lines,”Anti-Cancer Drugs, 2005, vol. 16, pp. 129-136.
Herlaar et al., “p38 MAPK signalling cascades in inflammatory disease,” Molecular Medicine Today, vol. 5, pp. 439-447 (Oct. 1999).
Herrera et al., “Linraveling the complexities of the Raf/MAP kinase pathway for pharmacological intervention,” Trends in Molecular Medicine, 2002, vol. 8, No. 4 (Suppl.), pp. S27-S31.
Higuchi T. et al., “Contents,” . Prodrugs as Novel Drug Delivery Systems, ACS Symposium Series 14, American Chemical Society, Washington, DC. 1975, p. vii.
Higuchi et al., “Mitochondrial DNA determines androgen dependence in prostate cancer cell lines,” Oncogene, 2006, vol. 25, pp. 1437-1445.
Hilger et al., “Correlation of ERK-phosphorylation and toxicities in patients treated with the Raf kinase inhibitor BAY 43-9006” International Journal of Clinical Pharmacology and Therapeutics. vol. 42, No. 11, pp. 648-649 (2004).
Hilger et al., “ERK1/2 phosphorylation: a biomarker analysis within a phase I study with the new Raf kinase inhibitor Bay 43-9006” International Journal of Clinical Pharmacology and Therapeutics, vol. 40, No. 12, pp. 567-568 (2002).
Hilger et al., “Inhibition of ERK phosphorylation and clinical outcome in patients treated with the Raf kinase inhibitor BAY 43-9006” Proc Am Soc Clin Oncol 21: 2002 (abstr 1916), 3 pages.
Hirasawa et al., “Effect of p38 Mitogen-Activateo Protein Kinase on the Replication of Encephalomyocarditis Virus.” Journal of Virology, May 2003: vol. 77, No. 10, pp. 5649-5656.
Holmlund et al., “Phase I Trial of C-raf Antisense Oligonucleotide ISIS 5132 (CGP 69846A) By 21-Day Continuous Intravenous Infusion (CIV) in Patients With Advanced Cancer,” (Meeting abstract), 1998 ASCO Annual Meeting, Abstract No. 811, 2 pages.
Hotte et al., “Bay 43-9006: Early clinical data in patients with advanced solid malignancies,” Current Pharmaceutical Design, 8: 2249-2253, 2002.
Hu et al., “Soluble Vascular Endothelial Growth Factor Receptor 1, and Not Receptor 2, Is an independent Prognostic Factor in Acute Myeloid Leukemia and Myelodyslastic Syndromes,” Cancer. 100(9): 1884-1891 (Published on-line Mar. 29, 2004).
Hubbard, “Oncogenic Mutations in B-Raf: Some Losses Yield Gains,” Cell vol. 116, Issue 6. 764-766 (2004).
Hyodo et al., “Clinical Significance of Plasma Vascular Endothelial Growth Factor in Gastrointestinal Cancer,” European Journal of Cancer, 34(13): 2041-2045 (1998).
Ihle et al., “Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinostide-3-kinase signaling,” Molecular Cancer Therapy, vol. 3, No. 7, 2004, pp. 763-772.
Ishigami et al., “Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer,” British Journal of Cancer, 78(10): 1379-1384 (1998).
Jacobsen et al., “Vascular Endothelial Growth Factor as Prognostic Factor in Renal Cell Carcinoma,” Journal of Urology, 163(1): 343-347 (Jan. 2000).
Jacobsen et al., “Prognostic importance of serum vascular endothelial growth factor in relation to platelet and leukocyte counts in human renal cell carcinoma,” European Journal of Cancer Prevention, 2002, 11(3) pp. 245-252.
Jain et al., “Randomized Discontinuation Trial of Sorafenib (BAY 43-9006),” Cancer Biology & Therapy, vol. 5, Issue 10, pp, 1270-1272 (2006).
Jeffcoat et al., “The Metabolism and Toxicity of Halogenated Carbanilides” Drug Metabolism and Disposition, vol. 5, No. 2, pp. 157-166 (1977).
Jimeno et al., “Analysis of Biologic Surrogate Markers from a Children's Oncology Group Phase 1 Trial of Gefitinib in Pediatric Patients with Solid Tumors,” Pediatr. Blood Cancer, 49(3): 352-357 (2007).
Jin et al., “Inhibition of AKT survival pathway by a small molecule inhibitor in human endometrial cancer cells.” British Journal of Cancer, vol. 91, 2004. pp. 1808-1812.
Johnson et al., “Relationships between drug activity in NCI preclinical in vitro and in vivo models and n. early clinical trials,” British Journal of Cancer. 2001, vol. 84, No. 10, pp. 1424-1431.
Johnston, D, et al, “Elevation of the Epidermal Growth Factor Receptor and Dependent Signaling in Human Papillomavirus-infected Laryngeal Papillomas.” Cancer Research, 1999: vol. 59, pp. 968-974.
Jungmayr, P., “Aktueller Stand der Krehstherapie,” Deutsche Apotheker Zeitung, Sep. 30, 2004, Auflage ca. 36.000.
Kapoun et al., “TGFβR1 kinase activity, but not p38 activation is required for TGFβR1-induced myofibroblast differentiation and pro-fibrotic gene expression,” Molecular Pharmacology Fast Forward, abstract, 2006, www.molpharmaspetjournals.org, 2 pages.
Karayiannakis et al., “Circulating VEGF Levels in the Serum of Gastric Cancer Patients,” Annals of Surgery, 236(1): 37-42 (Jul. 2002).
Karayiannakis et al., “Clinical significance of preoperative serum vascular endothelial growth factor levels in patients with colorectal cancer and the effect of tumor surgery,” Surgery, 131(5): 548-555 (May 2002).
Karp et al., “Targeting Vascular Endothelial Growth Factor for Relapsed and Refractory Adult Acute Myelogenous Leukemias: Therapy with Sequential 1-β-D Arabinofuranosylcytosine, Mitoxantrone, and Bevacizumab,” Clinical Cancer Research, 10: 3577-3585 (Jun. 1, 2004).
Katritzky et al., “1.18. Azetidines, Azetines, and Azetes: Monocylcic” pp. 507-508 in: Comprehensive Heterocyclic Chemistry II, A Review of the Literature 1982-1995: The Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds, Pergamon Press. Oxford, UK. 1996.
Katritzky, Alan R., Tables of Content, in: Comprehensive Organic Functional Group Transformations. Pergamon Press, Oxford, UK, 1995, 25 pages.
Katritzky et al., “Contents,” 2 pages, in: Comprehensive Heterocyclic Chemistry, The Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds, Pergamon Press, Oxford, UK, 1984.
Keller et al., “'The role of Raf kinase inhibitor protein (RKIP) in health and disease.” Biochemical Pharmacology 68; pp. 1049-1053 (2004).
Kempter et al., “Synthese potentieller Pflanzenschutz- und Schädlingsbekamyfungsmittel aus substituierten Anilinen,” Padagogsische Hochschule, Eingegangen am Jan. 7, 1982, vol. 27, Issue 1, 101-120 (1983).
Kessler et al., “Use of the DNA Flow-Thru Chip, a Three Dimensional Biochip, for Typing and Subtyping of Influenza Viruses.” Journal of Clinical Microbiology. May 2004: vol. 42, pp. 2173-2185.
Khire et al., “Omega-carboxypyridyl substituted ureas as Raf kinase inhibitors: SAR of the amide substituent,” Bioorg, Med, Chem. Lett., 2004, vol. 14, pp. 783-786.
Kido, Y., “Vascular Endothelial Growth Factor (VEGF) Serum Concentration Changes during Chemotherapy in Patients with Lung Cancer,” Kurume Medical Journal, 48(1): 43-47 (2001).
Klemm et al., “Chemistry of Thienopyridines. XXXVII. Syntheses in the Cyclopenta, Cyclohexa-, and Cycloheptathieno[2,3-b]pyridine Series. Threee Analogs of 9-Amino-1,2,3,4-tetrahydroacridine [1],” J. Heterocyclic Chem., 27, 1990, pp. 1537-1541.
van Muijlwijk-Koezen et al., “Isoquinoline and Quinazohne Urea Analogues as Antagonists for the Human Adenosine A3 Receptor,” J. Med. Chem. 2000, 43, pp. 2227-2238.
Kolch et al., “Raf-1 protein kinase is required for growth of induced NIH/3T3 cells,” Nature, vol. 349, Jan. 31, 1991, pp. 426-428.
Kolch et al., “The role of Raf kinases in malignant transformation” Expert reviews in molecular medicine (Apr. 25, 2002) ISSN: 1462-3994 © Cambridge University Press, 18 pages.
Konecny et al., “Association between HER-2/neu and Vascular Endothelial Growth Factor Expression Predicts Clinical Outcome in Primary Breast Cancer Patients,” Clinical Cancer Research, 10: 1706-1716 (Mar. 1, 2004).
Korfee et al., “New targeted treatments in lung cancer-overview of clinical trials,” Lung Cancer.45 (Suppl. 2): S199-S208 (2004).
Kraft et al., “Vascular Endothelial Growth Factor in the Sera and Effusions of Patients with Malignant and Nonmalignant Disease,” Cancer, 85(1): 178-187 (Jan. 1, 1999).
Kubo et al., “Herbicidal Activity of 1,34-Thiadiazole Derivatives,” J. Agr, Food Chem. (1970). 18(1), pp. 60-65.
Kubo et al., “Synthesis and structure-activity relationship of quinazoline-urea derivatives as novel orally active Vege receptor tyrosine kinase selective inhibitors,” Proceedings of the American Association of Cancer Res., 2002, vol. 43, p. 182, abstract No. 913.
Kuefer et al., “Translational research in renal cell cancer. Illustrated by the example of the vascular endothelial growth factor pathway,” Der Urologe, 2006, vol. 45, No. 3, pp. 328, 330-335.
Kumar et al., “Drugs targeted against protein kinases” Expert Opin. Emerging Drugs 6(2):303-315 (2001).
Kupsch et al., “Results of a Phase I Trial. Of Sorafenib (BAY 43-9006) in Combination with Oxalipiatin in Patients with Refractory Solid Tumors, Including Colorectal Cancer,” Clinical Colorectal Cancer, Cancer Information Group Journal, vol. 5 Issue 3, pp. 188-196, abstract (Sep. 2005).
Kurik et al., “Optical Properties of Segmented Oligourethane with Azomethine Terminal Fragments,” Polymer Science, series B. 1996, vol. 38 pp. 2038-2041.
Kyriakis et al., “Raf-1 activates MAP kinase-kinase” Nature, 358, 6385, pp. 417-421 (Jul. 30, 1992).
Laack et al., “Pretreatment serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in non-small-cell lung cancer,” Annals of Oncology, 13(10): 1550-1557 (Oct. 2002).
Dal Lago et al., “Selected Combination Therapy with Sorafenib: A Review of Clinical Data and Perspectives in Advanced. Solid Tumors” The Oncologist, vol. 13, No. 8, pp. 845-858 (Aug. 11, 2008).
Lau et al., “Abrogation of c-Raf expression induces apoptosis in tumor cells,” Oncogene 16, 1899-1902 (1998).
Lee et al., “BAY-43-9006 Bayer/Onyx,” Current Opinion in Investigational Drugs, 2003, vol. 4, No. 6, pp. 757-763.
Lee et al., “Bicyclic imidazoles as a Novel Class of Cytokine Biosynthesis inhibitors,” Annals N.Y. Academy of Science, 1993, vol. 696, pp. 149-170.
Lee et al.: “FTY720 induces apoptosis of human hepatoma cell lines through P13-K-mediated Akt dephosphorylation,” Carcinogenesis, vol. 25, No. 12, 2004, pp. 2397-2405.
Lee et al., “Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients,” European Journal of Cancer, 36(6): 748-753 (Apr. 2000).
Lee and Heymach, “Emerging Antiangiogenic Agents in Lung Cancer,” Clinical Lung Cancer, 7(5): 304-308 (Mar. 2006).
Legros et al., “Imatinib mesylate (STI571) decreases the vascular endothelial growth factor plasma concentration in patients with chronic myeloid leukemia,” Blood, 104(2): 495-501 (Prepublished on-line Feb. 19, 2004).
Lemoine, “Overview of ras oncogenes and their clinical potential,” Chapter 10, In: Mutant Oncogenes: Targets for Therapy (eds. Lemoine NR & Epenetos A), Chapman & Hall, London. pp. 85-91; 1992.
Lepage et al.. “New N-aryl isoxazolecarboxamides and N-isoxazolybenzamides as anticonvulsant agents,” Eur. J. Med. Chem, vol. 27, 1992, pp. 581-593.
Leuner et al., “Improving drug solubility for oral delivery using solid dispersions,” European Journal of Pharmaceutics and Biopharmaceutics, 50, 2000, pp. 47-60.
Liang et al., “Differential Expression of VEGF and Its Receptors in the Primary Cells of Various Risk Classified Acute Lymphoblastic Leukemia Patients,” Blood 104: Abstract 4446 (2004).
Li et al. “Correlation of Serum VEGF Levels with Clinical Stage,Therapy Efficacy, Tumor Metastasis and Patient Survival in Ovarian Cancer,” Anticancer Research, 24: 1973-1980 (2004).
Lin, “Synthesis of 1-(2-Pyridine-1-oxide)-2-(1-Methyl-2-Pyridinium)-Ethane Chloride,” OPPI Briefs, vol. 23, No. 1, 1991, pp. 114-115.
Linderholm et al., “Correlation of Vascular Endothelial Growth Factor Content with Recurrences, Survival, and First Relapse Site in Primary Node-Positive Breast Carcinoma After Adjuvant Treatment,” Journal of Clinical Oncology, 18(7): 1423-1431 (Apr. 2000).
Linderholm et al., “p53 and Vascular-Endothelial-Growth-Factor (VEGF) Expression Predicts Outcome in 833 Patients with Primary Breast Carcinoma,” Int. J. Cancer (Fred. Oncol.): 89(1): 51-62 (2000).
Lissoni et al., “Anti-angiogenic activity of melatonin in advanced cancer patients,” Neuroendocrinology Letters, 2001, 22:45-47.
Lissoni et al., “Chemotherapy and angiogenesis in advanced cancer: vascular endothelial growth factor (VEGF) decline as predictor of disease control during taxol therapy in metastatic breast cancer,” International Journal of Biological Markers, 15(4): 308-311 (Oct. 1, 2000).
Lissoni et al., “Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1,” Journal of Biological Regulators and Homeostatic Agents, 15(2): 140-144 (Apr. 2001).
Lissoni et al., “Changes in circulating VEGF levels in relation to clinical response during chemotherapy for metastatic cancer,” International Journal of Biological Markers, 18(2): 152-155 (2003).
Llovet et al., “Molecular Targeted Therapies in Hepatocellular Carcinoma,” Hepatology, vol. 48, No. 4, pp. 1312-1327, 2008.
Lockhart et al., “Phase I/Pilot Study of SU5416 (Semaxinib) in Combination With Irinotecan/Bolus 5-FU/LV (IFL) in Patients With Metastatic Colorectal Cancer,” American Journal of Clinical Oncology, 29(2):109-115 (Apr. 2006).
Lorigan et al., “Phase II trial of sorafenib combined with dacarbazine in metastatic melanoma patients” ASCO 2006 DTIC abstract, 2 pages (Jan. 11, 2006).
Lowinger et al., “Design and Discovery of Small Molecules Targeting Raf-1 Kinase,” Current Pharmaceutical Design, 2002, vol. 8, pp. 2269-2278.
Lowinger et al., “Discovery of novel class of potent Raf kinase in-hibitors: structure activity relationships,” Clinical Cancer Research, Nov. 2000, vol. 6 (Suppl.), p. 4533s, abstract No. 335.
Lowy et al., “Function and Regulation of RAS” Annual Review of Biochemistry, vol. 62, pp. 851-891, 1993.
Ludwig et al., “MEK inhibition impairs influenza B virus propagation without emergence of resistant variants,” FEBS Letters, 2004, vol. 561, pp. 37-43.
Luo et al, “Enhancement of radiation effects by pXLG-mENDO in a lung carcinoma model,” Int. J. Radiation Oncology Biol. Phys., 2005, vol. 63, No. 2, pp. 553-564.
Lyons et al., “Discovery of a novel Raf kinase inhibitor,” Endocrine-Related Cancer, 2001, vol. 8, pp. 219-225.
Madwed et M., “Pharmacological evaluation of BIRB 796, a selective inhibitor of p38 MAP kinase (MAPK), in animal models of endotoxic shock, inflammation and arthritis,” Inflammation Res., 50:S184, abstract No. W22/03, 2001.
Magnuson et al., “The Raf-1 serine/threonine protein kinase,” Cancer Biology, vol. 5, 1994, pp. 247-253.
Manenti et al., “Circulating plasma vascular endothelial growth factor in mice bearing human ovarian carcinoma xengraft correlates with tumor progression and response to therapy,” Molecular Cancer Therapeutics, 4(5): 715-725 (May 2005).
Mannová et al., “Activation of the N-Ras-PI3K-Akt-mTOR Pathway by Hepatitis C Virus: Control of Cell Survival and Viral Replication,” Journal of Virology, Jul. 2005, vol. 79. No. 14, pp. 8742-8749.
Markgraf et al., “Strained Heterocyclic Systems. 19. 1-Azatriptycene and Derivatives,” Tetrahedron, vol. 47, No. 2, 1991, pp. 183-188.
Map Marshall, “MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase,” Curr. Opin. Genet. Dev. 4: 82-89, 1994.
Marx, 7.,“Why a New Cancer Drug Works Well, in Some Patients.” Science, vol. 304, pp. 658-659, 2004.
McGoon et al., “Screening, Early Detection, and Diagnosis of Pulmonary Arterial Hypertension,” CHEST, 2004: 126, pp. 14S-34S.
Medinger et al., “Hemmung der Tumorangiogenese Neue Therapieoptionen in der Onkologie,” Med Welt. 2006, 57, pp. 437-441.
Med Report Deutschland, “Sorafenib zur Therapie des fortgeschrittenen Nierenzelikarzitioms zugelassen,” (2006), 1 page.
Meuillet et al., “In Vivo Molecular Pharmacology and Antitumor Activity of the Targeted Akt Inhibitor PX-316,” Oncology Research, vol. 14, 2004, pp. 513-527.
Michaelis, “Phenylharnstoff des 1-Phenyl-3-methyl-5-aminopyrazols,”Justus Liebigs Ann. Chem. (JLACBF) 397, 1913, p. 143.
Milanini et al., “p42/p44 MAP Kinase Module Plays a Key Role in the Transcriptional Regulation of the Vascular Endothelial Growth Factor Gene in Fibroblasts,” Journal of Biological Chemistry, 273(29): 18165-18172 (Jul. 17, 1998).
Milano et al., “New molecular targeted therapies in thyroid cancer” Anti-Cancer Drugs (2006) © Lippincott Williams & Wilkins, vol. 17:869-879.
Mills et al., “The Effects of Standard Anthracycline-Based Chemotherapy on Soluble ICAM-1 and Vascular Endothelial Growth Factor Levels in Breast Cancer,” Clinical Cancer Research, 10: 4998-5003 (Aug. 1, 2004).
Milojokovic et al,, “Immunohistochemical Characterisation of Vascular Endothelial Growth Factor (VEGF) and its Receptors Flt-1 and KDR in Chronic Myeloid Leukaemia (CML) Patients Treated with Imatinib Mesylate,” Blood, 104 Abstract 1999 (2004).
Minna et al “A Bull's Eye for Targeted Lung Cancer Therapy,” Science, vol. 304, pp. 1458-1460, 2004.
Mita et al., “The Molecular Target of Rapamycin (mTOR) as a Therapeutic Target Against Cancer.” Cancer Biology & Therapy 2:4 Suppl. 1, S169-S177 (Jul./Aug. 2003).
Moelling et al., “Signal Transuction as Target of Gene Therapy,” Institute of Medical Virology, University of Zürich, Recent Results in Cancer Research, vol. 142, pp. 63-71 (1996).
Molhoek et al., “Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY 43-9006 and mTOR inhibitor rapamycin,” Journal of Translational Medicine (2005) 3:39, pp. 1-11.
Monia, “First-and second-generation antisense oligonucleotide inhibitors targeted against human c-raf kinase,” (1997) Oligonucleotides as therapeutic agents Wiley, Chichester (Ciba Foundation Symposium 209) pp. 107-123.
Monia et al., “Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase,” Nature Medicine, vol. 2, No. 6, Jun. 1996, pp. 668-675.
Monia et al., “Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports and antisense mechanism of action in vivo,” Proc. Natl. Acad. Sci USA, vol. 93, 15481-15484 (Dec. 1996).
Morabito et al., Tyrosine Kinase Inhibitors of Vascular Endothelial Growth Factor Receptors I Clinical Trials: Current Status anti Future Directions, The Oncologist, 11: 753-764 (2006).
Mori et al., “Differential activation of the c-Jun N-terminal kinase/stress-activated protein kinase and p38 mitogen-activated protein kinase signal transduction pathways in the mouse brain upon infection with neurovirulent influenza A virus,” Journal of General Virology, 2003, 84, pp. 2401-2408.
Moore et al., “Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors,” Annals of Oncology, 2005, vol. 16, pp. 1688-1694.
Motzer et al. “Survival and Prognostic Stratification of 670 Patients With Advanced Renal Cell Carcinoma”, J. Clin. Oncol., 17(8):pp. 2530-2540 (1999).
Mross et al., “Drug-drug interaction pharmacokinetic study with the Raf kinase inhibitor (RKI) BAY 43-9006 administered in combination with irinotecan (CPT-11) in patients with solid tumors,” International Journal of Clinical Pharmacology and Therapeutics, 2003, vol. 41, No. 12, pp. 618-619.
Mross et al., “Results from an in vitro and a clinical/pharmacological phase I study with the combination irinotecan and sorafenib” European Journal of Cancer 43, pp. 55-63 (2007).
Murata et al., “Facile Synthesis of New Pyrrolo[3,4—d]pyrimidine-2,4—diones,” Chemical and Pharmaceutical Bulletin, vol. 22, No. 5, 1974, pp. 1212-1213.
Murphy et al., “BAY 43-9006 controls tumor growth through inhibition of vascular development,” 96th Annual Meeting, Anaheim/Orange County, CA, Apr. 16-20, 2005, abstract No. 2985.
Muthumani et al., “Suppression of HIV-1 viral replication anti cellular pathogensis by a novel p38/JNK kinase inhibitor,” AIDS. Lippincott Williams & Wilkins, 2004: vol. 18, pp. 739-748.
National Cancer Institute, “Carboplatin and Paclitaxel With or Without Sorafenib in Treating Patients With Unresectable Stage III or Stage IV Melanoma”, 7 pages, NCT00110019, clinicaltrials.gov. (2005).
National Cancer Institute, “Paclitaxel, Carboplatin, and Radiation Therapy in Treating Patients Who Are Undergoing Surgery for Stage III Non-Small Cell Lung Cancer,” 5 pages, NCT00096226, (2005).
National Cancer Institute, “Sorafenib With or Without Paclitaxel and Carboplatin in Treating Patients With Recurrent Ovarian Cancer, Primary Peritoneal Cancer, or Fallopian Tube Cancer,” 5 pages, NCT00096200, (2005).
National Cancer Institute, Clinical Trials (PDQ®), “Phase II Randomized Study of ISIS 5132 or ISIS 3521 in Women with Previously Treated Metastatic Breast Cancer,” 3 pages, www.cancer.gov website (1998).
National Cancer Institute, Clinical Trials (PDQ®), “Phase II Randomized Study of ISIS 3521 and ISIS 5132 for Locally Advanced or Metastatic Colorectal Cancer,” 3 pages, www.cancer.gov website (1998).
National Cancer Institute. Clinical Trials (PDQ®), “Phase II Randomized Study of ISIS 3521 and ISIS 5132 in Patients with Hormone Refractory Prostate Cancer,” 3 pages, www.cancer.gov website (1998).
National Cancer Institute, Clinical Trials (PDQ®), “Phase II Study of ISIS 5132 in Patients with Advanced Pancreatic Cancer,” 3 pages, www.cancer.gov website (1999).
National Institutes of Health Clinical Center, “BAY 43-9006 (Sorafenib) to Treat Relapsed Non-Small Cell Lung Cancer”, 4 pages, NCT00098254, clinicaltrials.gov (2005).
Naumann et al., “Raf protein serine/threonine kinases” in: Protein Phosphorylation, VCH Verlagsgesellschaft mbH Chapter 7, pp. 203-236 (1996).
Naumann et al., “The Role of Raf Kinases in Development and Growth of Tumors” Recent Results in Cancer Research. vol. 143, pp. 237-244 (1997).
Nemunaitis et al., “Phase I Evaluation of ISIS 3521, an Antisense Oligodeoxynucicotide to Protein Kinase C-Alpha, in Patients with Advanced Cancer” Journal of Clinical Oncology, vol. 17, No. 11, pp. 3586-3595 (Nov. 1999).
Neufeld et al., Vascular endothelial growth factor (VEGF) and its receptors, The FASEB Journal, 13: 9-22 (Jan. 1999).
“Nexavar Receives FDA Fast Track Designation for Skin Cancer” 4 pages, (Jul. 21, 2006) http://www.medicalnewstoday.com/articles/47793.php (last visited on Jun. 16, 2008).
Nicholson, K. M. et al.: “The protein kinase B/Akt signalling pathway in human malignancy.” Cellular Signalling 14, 2004, pp. 381-395.
Nickel et al., “Carboxylic acid analogues of suramin, potential filaricides,” Indian Journal of Chemistry Feb. 1991. vol. 30B, pp. 182-187.
Nilsson et al., “Vascular Endothelial Growth Factor (VEGF) Pathway,” Journal of Thoracic Oncology, 1(8): 768-770 (Oct. 2006).
Noble et al., “Protein Kinase inhibitors: Insights into Drug Design From Structure,” Science. (2004), vol. 303, pp. 1800-1805.
O'Dwyer et al., “c-raf-1 Depletion and Tumor Responses in Patients Treated with the c-raf-1 Antisense Oligodeoxynucleotide ISIS 5132 (CGP 69846A),” Clinical Cancer Research vol. 5, pp. 3977-3982 (Dec. 1999).
Oka et al., “Constitutive Activation of Mitogen-activated Protein (MAP) Kinases in Human Renal Cell Carcinoma,” Cancer Research 55, pp. 4182-4187, (Sep. 15, 1995).
Gollob et al., “Phase II trial of sorafenib (BAY 43-9006) in combination with interferon alpha 2b in patients with metastatic renal cell carcinoma,” European Journal of Cancer, 2005, vol. 3, No. 2, pp. 226-227, abstract No. 795.
Osella-Abate et al., “VEGF-165 serum levels tyrosinase expression in melanoma patients: correlation with the clinical course,” Melanoma Research, 12: 325-334 (Aug. 2002).
Oza et al,, “Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND .116),” PubMed Abstract 12694666, Gynecol. Oncol. Apr. 2003 89(1):129-133.
Ozols, “New Developments With Carboplatin in the Treatment of Ovarian Cancer,” Seminars in Oncology, vol. 19, No. 1, Supplement 2, Feb. 1992, pp. 85-89.
Panka et al., “BAY 43-9006 induces apoptosis in melanoma cell lines,” 96th Annual Meeting, Anaheim/Orange County, CA, Apr. 16-20, 2005, abstract No. 5328.
Panteva et al., “Hepatitis viruses and the Mapk pathway: is this a survival strategy?” Virus Research, 2003, vol. 92: 131-140.
Paquette, Table of Contents for the Encyclopedia of Reagents for Organic Synthesis, John Wiley, New York, 1994 Table of Contents.
Pavlović-La{hacek over (z)}etić et al., “Bioinformatics analysis of SARS corona-virus genome polymorphism,” May 25, 2004, BMC Bioinformatics, vol. 5:65, 14 pages.
Pederson et al., “Early changes in serum IL-6 and VEGF levels predict clinical outcome following first-line therapy in aggressive non-Hodgkin's lymphoma,” Ann. Hematol., 84:510-516 (2005).
Peters, H.D., “Sorafenib bei soliden Tumoren,” Focus Onkologie, 2007, Auflage 12000, 6 pages.
Robert et al., “Phase I trial of sorafenib (BAY 43-9006) in combination with interferon alpha-2a in patients with unresectable and/or metastatic renal cell carcinoma and malignant melanoma,” European Journal of Cancer, 2005, vol. 3, No. 2, p. 254, Abstract 883.
Hu et al., “Soluble Vascular Endothelial Growth Factor Receptor 1, and Not Receptor 2, Is an Independent Prognostic Factor in Acute Myeloid Leukemia and Myelodysplastic Syndromes,” Cancer 2004, vol. 100, No. 9, pp. 1884-1891.
Raez et al., “New developments in chemotherapy erapy for advanced non small cell lung cancer,” Current Opin. Oncol., vol. 18, 2006, pp. 156-161.
Rahmani et al., “Apoptosis Induced by the Kinase Inhibitor BAY 43-9006 in Human Leukemia Cells Involves Down-regulation of Mc1-1 through Inhibition of Translation,” J. Biol. Chem. 280(42):35217-35227 (2005).
Rak et al., “Oncogenes and Angiogenesis: Signaling Three-Dimensional Tumor Growth,” Journal of Investigative Dermatology Symposium Proceedings (2000) 5, 24-33.
Rak et al., “Oncogenes and Tumor Angiogenesis: Differential Modes of Vascular Endothelial Growth Factor Up-Regulation in ras-transformed Epithelial Cells and Fibroblasts,” Cancer Research 60, pp. 490-498, (Jan. 15, 2000).
Rak et al., “Oncogenes as inducers of tumor angiogenesis,” Cancer and Metastasis Reviews 14: 263-277, 1995.
Sturm-Ramirez et al., “Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 Are Highly Pathogenic to Ducks,” Journal of Virology, May 2004, 78(9):4892-4901.
Raposo et al, “Catalysis of Nucleophilic Addition of Pyrrolidine to 2-(5H)-Furanone through Chromenone (Cleft-Type Receptors,” Tetrahedron Letters vol. 37, No. 38, pp. 6947-6950, 1996.
Ratain et al. “Phase II Placebo-Controlled Randomized Discontinuation Trial of Sorafenib in Patients with Metastatic Renal Cell Carcinoma,” Journal of Clinical Oncology vol. 24 No. 16, pp. 2505-2512 (Jun. 1, 2006).
Ravi et al., “Activated Raf-1 Causes Growth Arrest in Human Small Cell Lung Cancer Cells,” J. Clin. Invest., vol. 10:1, No. 1, pp. 153-159 (1998).
Reddy et al., “Sorafenib: recent update on activity as a single agent and in combination with interferon-alpha2 in patients with advanced-stage renal cell carcinoma,” Clin. Genitourin. Cancer 4:246-248 (2006) abstract.
Redman et al, “p38 Kinase Inhibitors for the Treatment of Arthritis and Osteoporosis: Thienyl, Furyl, and Pyrrolyl Ureas,” Bioorganic & Medicinal Chemistry Letters 11 (2001) 9-12.
Regan et al., “Pyrazole t lrea-Based Inhibitors of p38 MAP kinase: From Lead Compound to Clinical Candidate,” J. Med. Chem. 45:2994-3008, 2002.
Richly et al., “A phase I clinical and pharmacokinetic study of the Raf kinase inhibitor (RKI) BAY 43-9006 administered in combination with doxorubicin in patients with solid tumors,” International Journal of Clinical Pharmacology and Therapeutics, 2003, vol. 41, No. 12, pp. 620-621.
Richly et al., “Results of a Phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors,” Annals of Oncology, 2006, 17, pp. 866-873.
Richly et al., “Results of a phase I trial of BAY 43-9006 in combination with doxorubicin in patients with primary hepatic cancer,” International Journal of Clinical Pharmacology and Therapeutics, 2004, vol. 42, No. 11, pp. 650-651.
Ridley et al., “Actions of IL-1 are Selectively Controlled by p38 Mitogen-Activated Protein Kinase, Regulation of Prostaglandin H Synthase-2, Metalloproteinases, and IL-6 at Different Levels,” The American Association of Immunologists, 1997, J. Immunol. vol. 158, pp. 3165-3173.
Rini and Small, “Biology and Clinical Development of Vascular Endothelial Growth Factor Targeted Therapy in Renal Cell Carcinoma,” Journal of Clinical Oncology, 23(5): 1028-10-43 (Feb. 10, 2005).
Robak et al., “Vascular endothelial growth factor and its soluble receptors VEGFR-1 and VEGFR-2 in the serum of patients with systemic lupus erythematosus.” Mediators of Inflammation 1200:293-298 (Oct. 2003).
Robertson et al. “HIV-1 Nomenclature Proposal,” Science, Apr. 7, 2000, pp. 55-57, vol. 288.
Robinson et al., “Enhanced Radiosensitization with Gemcitabine in Mismatch Repair-Deficient HCT116 Cells,” Cancer Research 63, 6935-6941 (Oct. 15, 2003).
Robke et al., “Conversion of Aminopyridines into N-Oxides by Caro's Acid Anion (Peroxymonosulfate),” J. Chem. Research (8), 1993, pp. 412-413.
Roche, E. B., “Structural Aspects of Selective Distribution,” Chapter 3, in: Design of Biopharmaceutical Properties Through Prodrugs and Analogs, American Pharmaceutical Association, Washington, D.C., 1977, pp. 27-46.
Rodriguez et al., “A sensitive fluorometric enzyme-linked immunosorbent assay that measures vascular endothelial growth factor165 in human plasma.” Journal of Immunological Methods, 219(1-2): 45-55 (Oct. 1998).
Roman et al., “Human Papillomaviruses: Are We Ready to Type?” Clinical Microbiology Reviews. Apr. 1989: vol. 2, pp. 166-190.
Rowinsky et al., “Sequences of Taxol and Cisplatin: A Phase 1 and Pharmacologic Study,” Journal of Clinical Oncology, vol. 9, No. 9, Sep. 1991, pp. 1692-1703.
Rowinsky et al., “Taxol: The First of the Taxaties, an Important New Class of Antitumor Agents,” Seminars in Oncology, vol. 19, No. 6, Dec. 1992. pp. 646-662.
Rubin, Lewis J., “Primary Pulmonary Hypertension,” New England Journal of Medicine, vol. 336, No. 2, pp. 111-117 (1997).
Rudin et al., “Phase I Trial of ISIS 5132, an Antisense Oligonucleotide inhibitor of c-raf-1, Administered by 24-hour Weekly Infusion to Patients with Advanced Cancer” Clinical Cancer Research vol. 7, pp. 1214-1220 (May 2001).
Russo et al., “Sintesi Di Derivati 2,6-Sostituiti Del 5H-1 3,4-Tiadiazolo[3,2-a]-s-Triazina-5,7-Dione,” Il Farmaco, Ed.Sci, (1978), 33(12), 972-983.
Rydén et al., “Tumor specific VEGF-A and VEGFR2/KDR protein are co-expressed in breast cancer,” Breast Cancer Research and Treatment, 82(3):147-154 (Dec. 2003).
Salvatore et al., “BRAF Is a Therapeutic Target in Aggressive Thyroid Carcinoma,” Clin. Cancer Res. pp. 1623-1629; 12(5) (Mar. 1, 2006).
Sarkar et al., “Indole-3-Carbinol and Prostate Cancer,” Journal of Nutrition 134, 2004, pp. 3413S-3498S.
Serajuddin, “Solid Dispersion of Poorly Water-Soluble Drugs: Early Promises Subsequent Problems, and Recent Breakthroughs,” Journal of Pharmaceutical Sciences vol. 88, No. 10, pp. 1058-1066 (Oct. 1999).
Shaked et al., “Cellular and Molecular Surrogate Markers to Monitor Targeted and Non-Targeted Antiangiogenic Drug Activity and Determine Optimal Biologic Dose,” Current Cancer Drug Targets, 5:551-559 (Nov. 2005).
Shelton et al., “Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells.” Oncogene, vol. 22, No. 16, Apr. 2003; pp. 2478-2492.
Shi et al., “Constitutive and Inducible interleukin 8 Expression by Hypoxia and Acidosis Renders Human Pancreatic Cancer Cells More Tumorigenic and Metastatic,” Clinical Cancer Research, 1999, vol. 5, pp. 3711-3721.
Shimanuki et al., “Role of Serum Vascular Endothelial Growth Factor in the Prediction of Angiogenesis and Prognosis fur Non-small Cell Lung Cancer,” Lung, 183: 29-42 (2005).
Simone, Joseph. V., “Part XIV. Oncology,” in: Cecil Textbook of Medicine, 20th Edition, vol. 1, Feb. 3, 1997. W.B. Saunders Company, pp. 1004-1010.
Sinkula et al.. “Rationale for Design of Biologically Reversible Drug Derivatives: Prodrugs,” Journal of Pharmaceutical Sciences, vol. 64, No. 2, Feb. 1975. pp. 181-210.
Sin et al., Phase I study of oral kinase inhibitor Bay 43-9006 with gemcitabine in patients with advanced solid tumors, Abstract No. 828, Proc. Am. Soc. Clin. Oncol., 2003, vol. 22, p. 207.
Sin et al., “Phase I Trial of Sorafenib and Gemcitabine in Advanced Solid Tumors with an Expanded Cohort in Advanced Pancreatic Cancer.” C1M. Cancer Res. 12(1):144-151 (2006).
Smith et al., “Discovery of Heterocyclic Ureas as a New Class of Raf Kinase Inhibitors: Identification of a Second Generation Lead by a Combinatorial Chemistry Approach,” Bioorganic & Medicinal Chemistry Letters, 2001, vol. 11, pp. 2775-2778.
Smith et al., (Abstract) “Recent Advances in the Research and Development of RAF Kinase Inhibitors,” Current Topics in Medicinal Chemistry 6(11):1071-1089 (2006).
Smyth, R.M. et al., “Anchimeric Assistance in the Specific Acid-catalysed Hydration of Benzonitriles” J. Chem. Soc. Perkin Trans. 2 1993 pp. 2171-2174.
Song, Huai-Dong et al., “Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human,” Proc. Natl. Acad. Sci. USA 102(7):2430-2435 (2005).
Sorbara et al., “BAY-43-9006,” Drugs of the Future, 2002, vol. 27, No. 12, pp. 1141-1147.
van Spronsen et al., “Novel treatment strategies in clear-cell metastatic renal cell carcinoma,” Anti-Cancer Drugs, 2005, vol. 16, pp. 709-717.
Stadler et al., “A Randomized Phase II Trial of the Antiangiogenic Agent SU5416 in Hormone-Refractory Prostate Cancer,” Clinical Cancer Research, 10: 3365-3370 (May 15, 2004).
Stahl et al., “Deregulated Akt3 Activity Promotes Development of Malignant Cancer Melanoma,” Cancer Research, vol. 64, No. 19; Oct. 2004; pp. 7002-7010.
Stavchansky et al., “Evaluation of the Bioavailability of a Solid Dispersion of Phenytoin in Polyethylene Glycol 6000 and a Commercial Phenytoin Sodium Capsule in the Dog,” Journal of Pharmaceutical Sciences, vol. 73 , No. 6, Jun. 1984, pp. 733-736.
Krontiris, “Chapter 71. Molecular and Cellular Biology of Cancer,” and Capizzi, “Chapter 72, Principles of Treatment of Cancer,” in: Internal Medicine, 4th Edition, Stein, Jay H., MD, Ed., Mosby, 1994, pp. 699-715.
Sternberg et al., “Conspiracy Theory: RAS and RAF Do Not Act Alone” Cell, vol. 95, pp. 447-450 (Nov. 13, 1998).
Stella et al., “Prodrugs and Site-Specific Drug Delivery,” Journal of Medicinal Chemistry, vol. 23, No. 12, Dec. 1980, pp. 1275-1282.
Stella et al “Prodrugs as therapeutics.” Exp. Opin. Ther. Patents 14(3): 277-280 (2004).
Stella et al “Prodrugs. Do They Have Advantages in Clinical Practice?” Drugs, vol. 29, 1985, pp. 455-473.
Stevenson et al., “Phase I Clinical/Pharmacokinetic and Pharmacodynamic Trial of the c-raf-1 Antisense Oligonucleotide ISIS 5132 (CGP 69846A),” The Journal of Clinical Oncology, vol. 17, No. 7: pp. 2227-2236 (Jul. 1999).
Stocki et al., “Integrity of c-Raf-I/MEK signal transduction cascade is essential for hepatitis B virus gene expression,” Oncogene. Nature Publishing Group, 2003: vol. 22, pp. 2604-2610.
Stokoe et al., “Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro,” The Embo Journal, vol. 16 No. 9 pp. 2384-2396 (1997).
Storm et al., “raf Oncogenes in Carcinogenesis” Critical Reviews in Oncogenesis, vol. 2, Issue 1, pp. 1-8 (1990).
Strumberg, D., “Preclinical and Clinical Development of the Oral Multikinase inhibitor Sorafenib in Cancer Treatment,” Drugs of Today, 41(12): 773-784 (2005).
Strumberg et al., “Phase 1 Clinical and Pharmacokinetic Study of the Novel Raf Kinase and Vascular Endothelial Growth Factor Receptor Inhibitor BAY 43-9006 in Patients With Advanced Refractory Solid Tumors,” Journal of Clinical Oncology, Feb. 10, 2005, vol. 23, No. 5, pp. 965-972.
Strumberg et al., “Phase I Clinical. Pharmacokinetic and Pharmacodynamic Study of the Raf Kinase Inhibitor Bay 43-9006 in Patients with Locally Advanced or Metastatic Cancer,” Proc. Am. Soc. Clin. Oncol. 20: 2001 (abstr 330).
Strumberg et al., “Results of phase I pharmacokinetic and pharmacodynamic studies of the Raf kinase inhibitor BAY 43-9006 in patients with solid tumors,” International Journal of Clinical Pharmacology and Therapeutics, 2002, vol. 40, No. 12, pp. 580-581.
Strumberg et al., “Sorafenib Neue Therapieoption in der Onkologie,” Krankenhauspharmazie, 2007, vol. 28, pp. 93-97, pp. 1/5, 2/5, 3/5 and 4/5.
Suzuki et al., “The role of p38 mitogenavated protein kinase in IL-6 and IL-8 production from the TNF-α- or IL-1β-stimulated rheumatoid synovial fibroblasts,” FEBS Letters (2000), vol. 465, pp. 23-27.
Swarbrick et al., “Contents. pp. xvii-xviii in: Encyclopedia of Pharmaceutical Technology.” 2nd Edition, Marcel Dekker, Inc. 2002.
Swart, Guido W.M., “International Melanoma Research Congress—Foundation for Melanoma Research,” IDRUGS: The Investigational Drugs Journal, Aug. 2003; vol. 6, No. 8, pp. 752-754.
Tabellini et al., “Novel 2′-substituted, 3′-deoxy-phosphatidyl-myo-inositiol analogues reduce drug resistance in human leukaemia cell lines with an activated phosphoinositide 3-kinase/Akt pathway,” British Journal of Haematology, 126, 2004, pp. 574-582.
Takimoto et al., “Safety and an mior activity of sorafenib (Nexavar®) in combination with other anti-cancer agents: a review of clinical trials,” Cancer Chemotherapy and Pharmacology (2008) 61.535-548.
Tamm et al., “Hypoxia-Induced Interleukin-6 and interleukin-8 Production Is Mediated by Platelet Activation Factor and Platelet-Derived Factor in Primary Human Lung Cells,” Am. J. Respir. Cell Mol. Biol. vol. 19, pp. 653-661, (1998).
Tanaka et al., Current status and perspective of antiangiogenic therapy for cancer: hepatocellular carcinoma, Int. J. Clin. Oncol. (2006) 11:82-89 (2006).
Tang et al., “Inhaled nitric oxide attenuates pulmonary hypertension and improves lung growth in infant: rats after neonatal treatment with a VEGF receptor inhibitor.” Am. J. Physiol. Lung Cell. Mol. Physiol. 287:L344-L351 (2004).
Tarzia et al., “Synthesis and anti-inflammatory properties of some pyrrolo(1H,3H)[3,4-d]pyrimidin-2-ones and pyrrolo=(1H,6H)[3,4-d]pyrimidin-2-ones,” Chemical Abstracts, vol. 91, 1979, 91:74558p.
Teknos et al., “Elevated Serum Vascular Endothelial Growth Factor and Decreased Survival in Advanced Laryngeal Carcinoma,” Head & Neck, 24: 1004-1011 (Nov. 2002).
Thaimattam et al., “3D-QSAR CoMFA, CoMSIA studies on substituted ureas as Raf-1 kinase inhibitors and its confirmation with structure based studies,” Bioarganic & Medicinal Chemistry, 2004, vol. 12, pp. 6415-6425.
Thelen et al “VEGF-D promotes tumor growth and lymphatic spread in a mouse model of hepatocellular carcinoma” Int. J. Cancer 122. 2471-2481 (2008) © 2008 Wiley-Liss, Inc.
Thompson et al., “Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery,” Curr. Opin. Pharmacol., Aug. 2005, vol. 5, No. 4, pp. 350-356.
Tong et al., “Pharmacodynamic Monitoring of BAY 43-9006 (Sorafenib) in Phase I Clinical Trials involving Solid Tumor and AML/MDS Patients, Using Flow Cytometry to Monitor Activation of the ERK Pathway in Peripheral Blood Cells,” Cytometry Part B (Clinical Cytometry) 700: 107-114 (2006).
Trost et al., “Contents,” vol. 1-9. 36 pages in: Comprehensive Organic Synthesis: Selectivity, Strategy & Efficiency in Modern Organic Chemistry, Pergamon Press, Oxford, UK. 1991.
Gupta-Abramson et al., “Phase II Trial of Sorafenib in Advanced Thyroid Cancer” Journal of Clinical Oncology vol. 26, No. 29, pp. 4714-4719 (Oct. 10, 2008).
Veronese et al ec , “Mechanisms of Hypertension Associated with BAY 43-9006,” Journal of Clinical Oncology, 2006, vol. 24, No. 9, pp. 1363-1369.
Vivanco et al., “The Phosphatidylinositol 3-Kinase-AKT Pathway in Human Cancer,” Nature Reviews Cancer. vol. 2, Jul. 2002. pp. 489-501.
Vlahos et al., “A Specific Inhibitor of Phosphatidylinositol 3-Kinase, 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002),” The Journal of Biological Chemistry, vol. 269, No. 7, 1994, pp. 5241-5248.
Wakelee et al., “Targeting Angiogenesis with Vascular Endothelial Growth Factor Receptor Small-Molecular inhibitors: Novel Agents with Potential in Lung Cancer,” Clinical Lung Cancer, 7(Suppl 1): S31-S38 (Sep. 2005).
Wald et al., “Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus,” Eur. J. Immunol., vol. 34, p. 1164-1174 (2004).
Wan et al., “Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF,” Cell, Mar. 19, 2004, vol. 116, pp. 855-867.
Weekly Epidemiological Record, “Influenza.” World Health Organization. 04-1999; vol. 14, pp. 111-112.
Wermuth, C. G., “Designing Prodrugs and Bioprecursors II: Bioprecursor Prodrugs,” in: The Practice of Medicinal Chemistry, Academic Press Limited 1996, pp. 697-715.
White et al., “Heterocyclic Ureas: Inhibitors of Acyl-CoA:Cholesterol O-Acyltransferase as Hypocholesterolennic Agents,” J. Med. Chem. 1996, 39, pp. 4382-4395.
Wiezbowska et al., “Circulating VEGF and its soluble receptors sVEGFR-1 and sVEGFR-2 in patients with acute leukemia,” Eur. Cytokine Netw., 14(3): 149-153 (Sep. 2003).
Wilhelm et al., “A Novel RAF Kinase Inhibitor Blocks the RAF/MEK/ERK Pathway in Tumor Cells,” Poster, 92nd Annual Meeting of the American Association for Cancer Research, Mar. 24-28, 2001, New Orleans, LA USA, 1 page.
Wilhelm et al., “BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis,” Cancer Research, Oct. 1, 2004, vol. 64, pp. 7099-7109.
Wilhelm et , “BAY 43-9006: Preclinical Data,” Curr Pharm Des, 2002, vol. 8, No. 25, pp. 2255-2257.
Wilhelm et al., “Discover and development of sorafenib: a multikinase inhibitor for treating cancer,” Nature Reviews, Drug Discovery, 2006, vol. 5, pp. 835-844.
Wilhelm et al., “Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase ignaling,” Mol. Cancer Ther., 2008, vol. 7, No. 10, pp. 3129-3140.
Wilkinson Geoffrey, “Contents,” 7 pages in: Comprehensive Organometallic Chemistry. The Synthesis, Reactions, and Structures of Organometallic Compounds, Pergamon Press, Oxford, U.K. 1982: vol. 1-3.
Wilson et al., “The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase,” Chemistry & Biology, 1997, vol. 4, No. 6, pp. 423-431.
Stollorz, “Die Krebsformel, die der Zufall fand,” Frankfurter Allgemeine Sonntagszeitung, Jul. 2, 2006, NR 26, pp. 68-69.
Wissner et al., “Analogues of Platelet Activating Factor. 7. Bis-Aryl Amide and Bis-Aryl Urea Receptor Antagonists of PAF,” J. Med. Chem., 1992, vol. 35, pp. 4779-4789.
Wojnowski et al., Endothelial apoptosis in Braf-deficient mice, Nature Genetics vol. 16, pp. 293-297 (Jul. 1997).
Onyx Pharmaceuticals, Inc., “Novel RAF Kinase Inhibitor Bay 43-9006 Shows Early Signs of Tolerability and Activity in Phase 1B Combination Trials Reported at ASCO,” 1 page, (Press Release Jun. 2, 2003).
Wright et al., “Bovine Immunodeficiency Virus :Expression in Vitro is Reduced in the Presence of βChemokines, MIP-lα, MIP-1βand RANTES.” Veterinary Research Communications. 2002: vol. 26, pp. 239-250.
Wright et al., “Clinical Trials Referral Resource. Current Clinical Trials of BAY 43-9006, Part 1,” Oncology, Apr. 2005, vol. 19, No. 4: pp. 499-502.
Wu et al., “Plasma vascular endothelial growth factor is useful in assessing progression of breast cancer post surgery and during adjuvant treatment,” International Journal of Oncology, 20: 509-516 (2002).
Xu et al., “Hypoxia-induced Elevation in Interleukin-8 Expression by Human Ovarian Carcinoma Cells,” Cancer Research. 1999, vol. 59, pp. 5822-5829.
He et al., “Oral Formulation of a Novel Antiviral Agent, PG301029, in a Mixture of Gelucire 44/14 and DMA (2:1, wt/wt),” AAPS PharmSciTech 2005; vol. 6 (1) Article 1, 5 pages, (http://www.aapsharmscitech.org).
Yamaguchi et al., “Expression of Vascular Endothelial Growth Factor in Human Hepatocellular Carcinoma,” Hepatology, 28(1) pp. 68-77 (1998).
Yang et al. “Akt/Protein Kinase B Signaling Inhibitor-2, a Selective Small Molecule inhibitor of a Akt Signaling with Antitumor Activity in Cancer Cells Overexpressing Akt,” Cancer Research, 64, Jul. 1, 2004, pp. 4394-4399.
Yang et al., “Antiviral chemotherapy control of poxvirus infections through inhibition of cellular signal transduction,” The Journal of Clinical Investigation, 2005: 115(2):pp. 379-387.
Yeh et al., “Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: Molecular epidemiology and genome evolution,” Proc. Natl. Acad. Sci, USA Feb. 24, 2004, 101(8):2542-2547.
Yu et al., “The role of Mc1-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006,” Oncogene 24:6861-6869 (2005).
Zachos et al,, “Herpes Simplex Virus Type 1 Infection Stimulates p38/c-Jun N-terminal Mitogen-activated Protein Kinase Pathways and activates Transcription Factor AP-1,” Journal of Biological Chemistry, The American Society for Biochemistry and Molecular Biology, Inc. 1999: vol. 274, pp. 5097-5103.
Zangari et al., “Phase II Study of SU5416, a Small Molecule Vascular Endothelial Growth Factor Tyrosine Kinase Receptor Inhibitor, in Patients with Refractory Multiple Myeloma,” Clinical Cancer Research, 10:88-95 (Jan. 1, 2004).
Norden-Zfoni, Anat “Blood-Based Biomarkers of SU11248 Activity and Clinical Outcome in Patients with Metastatic Imatinib-Resistant Gastrointestinal Stromal Tumor,” Clin. Cancer. Res. 2007; 13(9):2643-2650 May 1, 2007.
Zhao et al., “Moderate mutation rate in the SARS coronavirus genome and its implications,” BMC Evolutionary Biology, 2004, 4:21, 9 pages.
Zhu et al., “From the Cyclooxygenase-2 Inhibitor Celecoxib to a Novel Class of 3-Phosphoinositide-Dependent Protein Kinase-1 Inhibitors,” Cancer Research 64, Jun. 15, 2004, pp. 4309-4318.
Carter et al., “Anti-tumor Efficacy of the Orally Active Raf Kinase Inhibitor Bay 43-90006 in Human Tumor Xenograft Model,” #4954. Proceedings of the American Association for Cancer Res., 2001, vol. 42. p. 923.
Iwadate et al., MEDLINE/NLM, NLM8336809 “Intra-arterial ACNU, CDDP chemotherapy for brain metastases from lung cancer: comparison of cases with and without intra-arterial mannitol infusion,” 1 page, abstract.
Kubo et al., “Synthesis and Structure-Activity Relationship of Quinazoline-Urea Derivatives as Novel Orally Active VEGF Receptor Tyrosine Kinase Selective Inhibitors,” Proceedings of the American Association of Cancer Res., 2002, vol. 43, p. 182, abstract No. 913.
Riedl et al., # 4956 “Potent Raf Kinase inhibitors from the Diphenylurea Class: Structure Activity Relationships,” Proceedings of the American Association for Cancer Research, vol. 42, Mar. 2001, p. 923, 92nd Annual Meeting of the American Association for Cancer Research; New Orleans, LA, USA; Mar. 24-28, 2001.
Strumberg et al., abstract No. #2921 “Phase I and Pharmacokinetic Study of the Raf Kinase Inhibitor Bay 43-9006 in Patients with Locally Advanced or Metastic Cancer,” Proceedings of the American Association for Cancer Research, vol. 42, Mar. 2001, p. 543, 92nd Annual Meeting of the American Association for Cancer Research;New Orleans, LA, USA; Mar. 24-28, 2001.
Abstract of DE 3305866 A1, Aug. 23, 1984, BASF AG et al.
Abstract of EP 4931 A (Equivalent 4,240,820), Bayer AG, 1 page.
Abstract of EP 16371 (1980), 1 page, Hoffmann-La Roche AG.
Abstract of EP 16371, Oct. 1, 1980, 1 page.
Abstract of EP 116932, Aug. 29, 1984, 2 pages.
Abstract of EP 116932, (1984), 2 pages, BASF AG.
Abstract of EP 0202538, (1986), 3 pages.
Abstract of EP 0202538 A1, Growth Promoting Agents, Nov. 26, 1986, 4 pages, Bayer AG.
Abstract of EP 0405233A1. Mitsubishi Kasei Corp., 2 pages.
Abstract of EP 0405233A1, Tetsuo Sekiya et al., 1 page.
Abstract of EP 0676395A2, (1995), 3 pages, Hoechst AG.
Abstract of EP 676395, (U.S. equivalent 5,698,581), Dec. 16, 1997, 1 page.
Patent Abstracts of Japan 02-022650, Jan. 25, 1990, 2 pages, Konica Corp.
esp#cenet Abstracts of Japan 02-022650, Jan. 25, 1990. 1 page.
Patent Abstracts of Japan 02-023337, Jan. 25, 1990, 2 pages, Konica Corp.
Patent Abstracts of Japan 63-214752, Sep. 7, 1988, 2 pages, family member of JP 6-07512 B4, Fuji Photo Film Co. Ltd.
esp@cenet Abstract of Japan 02-023337, 1 page.
Abstract of JP 55162772 A2, Preparation of Substituted Acetic Acid Derivatives, Shiongi & Co., Ltd. Dec. 1980, 1 page.
Esp@cenet Abstract of WO 9822103, May 28, 1998, Philip Hedge et al.
Abstract of WO 9822098 A2, QLT Phototherapeutics Inc. et al., May 28, 1998, 1 page.
Abstract of WO 9522103 A1, Zeneca Limited, published May 28, 1998, 1 page.
Abstract of WO 9852559 A1, Bayer Corp. et al., published Nov. 26, 1998, 1 page.
Abstract of WO 9852562 A1, Verkaik, MSE, et al., published Nov. 26, 1998, 1 page.
Abstract of WO 9900357 A1, Vertex Pharm. Inc., published Jan. 7, 1999, 1 page.
Abstract of WO 9900364 A1, Pharmacia & Upjohn S.P.A. et al., published Jan. 7, 1999, 1 page.
Abstract of WO 9932098 A2, Janssen Pharm NV, published Jul. 1, 1999, 1 page.
Abstract of WO 9932106 A1, Bayer Corp., published Jul. 1, 1999, 1 page.
Abstract of WO 9932148 A1, Beth Israel Deaconess Medical Center et al., pub. Jul. 1, 1999, 1 page.
Abstract of WO 9932436 A1, Bayer Corp., published Jul. 1, 1999, 1 page.
Abstract of WO 9932455 A1, Bayer Corp., published Jul. 1, 1999, 1 page.
Abstract of WO 9932457 A1, Hoechst Marion Roussel Deutschland GmbH et al., published Jul. 1, 1999, 1 page.
Caplus 72:79046, Abstract of CH 479557, “Tuberculostatic and cancerostatic poly-basic ureas,” Dr. A. Wander, Oct. 15, 1969, 6 pages.
Caplus 84:180049, Abstract JP 56029871, “Substituted acetic acid derivatives,” Hamada, Yoshinori et al., Jul. 10, 1981, 1 page.
Caplus 84:43857, Abstract JP 58021626. “Alkanoic acid derivatives containing a pyridine ring,” Maeda, Ryozo et al., May 2, 1983, 1 page.
Caplus 86:72448, Abstract JP 57053785, “Pyridine derivatives,” Maeda, Ryozo et al., Nov. 15, 1982, 1 page.
Caplus 87:62295, “The metabolism and toxicity of halogenated carbanilides. Biliary metabolites of 3,4,4′-trichlorocarbanilide and 3-trifluoromethyl-4,4′-dichlorocarbanilide in the rat,” Chemical Life Science, pp. 157-166, 1977, 1 page.
Caplus 98:78152, Abstract of JP 57185219, “Antitumor benzophenone derivatives,” Nov. 15, 1982, 1 page, Chugai Pharmaceutical. Co., Ltd.
Caplus 113:106314, Abstract of JP 2022650, “Silver halide color photographic material containing a cyan coupler of 2-ureido-phenol type to improve dye developability and remove lecuo cyan dye,” Noboru Mizukura et al. Jan. 25, 1990, 1 page.
Caplus 113:142130, Abstract of JP 2023337, “Silver halide photographic material containing phenolic cyan coupler a colorless cyan coupler,” Toshihiko Yagi et al., Jan. 25, 1990. 1 page.
Caplus 125:245169, “Production of murine monoclonal antibodies against sulcofuron and flucofuron by in vitro immunization,” G. A. lBonwick et al., J. Immunol. Methods, 196(2), pp. 163-173, 1996, 1 page.
Caplus 126:166:148, “Inhibitors of coenzyme A-independent transacylase induce apoptosis in human HL-60 cells,” James D. Winkler et al., J. Pharmacol. Exp. Ther. 279(2), pp. 956-966, 1996, 2 pages.
Dearden et al.,“Quantitative structure-biodegradability studies: an investigation of the MITI aromatic compound data-base,” in: Biodegradability Prediction, Edited by Willie J.G.M. Peijnenburg et al., NATO ASI Series, 2. Environment—vol. 23, pp. 93-104, 1996.
Caplus 127:293717, “Optical properties of segmented oligourethane with azomethine terminal fragments,” National Academy of Science of Ukraine. M. V. Kurik et al., pp. 2038-2041, 1996, 2 pages.
Caplus 127:34137f, “Preparation of quinoline and quinazoline derivatives inhibiting platelet-derived growth factor receptor autophosphorylation,” Kazuo Kubo et al., May 15, 1997, WO 97/17329.
Caplus 131:58658k, “Inhibition of rat kinase using symmetrical and unsymmetrical substituted diphenyl ureas,” Miller, Scott, et al. Jul. 1, 1999, WO 99 32,436.
Caplus 131:73649b, “Preparation of pyrazoly1 aryl ureas and related compounds as p38 kinase inhibitors,” Jacques Dumas et al., Jul. 1, 1999, WO 99/32110.
Caplus 131:87909y, “Inhibition of p38 kinase activity using substituted heterocyclic ureas,” Jacques Dumas et al., Jul. 1, 1999, WO 99/32111.
Caplus 146:265643 Abstract of Strumberg et al., “Sorafenib—A novel opportunity in oncology,” Arzneimitteltherapie 25(1):2-6 (2007) abstract, 1 page.
Kujundzic et al., “Synthesis of 8-methyl-1-1,2,3,4-tetrahydropyrido[3,4-d] pyrimidine-2,4-diones,” Croat. Chem. Acta (1991) 64(4):599-606, Chemical Abstracts vol. 116, No. 21, May 25, 1992, (pp. 741-742) No. 116:214456.
Badran et al., “Novel piperazinyl-substituted pyrimidines as antihypertensive and vasodilators,” Revue Roumaine de Chimie (1992), 37(2):238-288, Chemical Abstracts vol. 117:251318.
“Beilstein number” Collection, 28 pp. (1997).
“Beilstein number” Collection, 4 pp. (1997).
Derwent World Patents Index Search, pp. 20-26. (1997).
Dumas, J. “CAS Substructure,” May 6, 1997, pp. 1-29.
Scott, Bill, “Substructure (Patent Families),” Aug. 11, 1997, pp. 1-19.
Scott, Bill, “Substructure #2,” Nov. 25, 1997, pp. 1-3.
Scott, Bill, “Substructure Search,” Dec. 2, 1997, pp. 1-49.
Substructure Search, pp. 1-29, (1997).
Wild, Hanno, “Substructure #1,” search, pp. 1-150, 1996.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 08/995,749, filed Dec. 22, 1997, Inhibition of P38 Kinase Using Symmetrical and Unsymmetrical Diphenyl Ureas, 2 pages.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/083,399, filed May 22, 1998, Patent 6187799 issued Feb. 13, 2001, Inhibition of Raf Kinase Activity Using Aryl Ureas, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/425,228, filed Oct. 22, 1999, Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinase Inhibitors. 3 pages.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/425,229, filed Oct. 22, 1999, Omega-Carboxy Aryl Substituted Diphenyl ureas As p38 Kinase inhibitors, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/458,015, filed Dec. 10, 1999, Inhibition of p38 Kinase Using Symmetrical and Unsymmetrical Diphenyl Ureas, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/472,232, filed Dec. 27, 1999, Patent 7329670 issued Feb. 12, 2008, Inhibition of Raf Kinase Using Aryl and Heteroaryl Substituted Heterocyclic Ureas. 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/472,232, filed Dec. 27, 1999, Patent 7329670 issued Feb. 12, 2008, Inhibition of Raf Kinase Using Aryl and Heteroaryl Substituted Heterocyclic Ureas, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/773,604, filed Feb. 2, 2001, Publication No. US 2001-0034447-A1, Publication Date Oct. 25, 2001, Omega-carboxyaryl Substituted Diphenyl Ureas as Raf Kinase Inhibitors, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/773,659, filed Feb. 2, 2001, Publication No. US 2001-0011135 A1, Publication Date: Aug. 2, 2001, Omega-carboxyaryl Substituted Diphenyl Ureas As Raf Kinase Inhibitors, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/773,672, filed Feb. 2, 2001, Publication No. US 2001-0016659 A1, Publication Date: Aug. 23, 2001, Omega-carboxyaryl substituted Diphenyl Ureas as Raf Kinase inhibitors, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/773,675, filed Feb. 2, 2001, Publication No. US 2001-0011136-A1 , Publication Date: Aug. 2, 2001, Omega-Carboxyaryl Substituted Diphenyl Ureas as Raf Kinase Inhibitors, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/776,935 filed of Dec. 22, 1998, Inhibition of p38 Kinase licing Aryl and Heteroaryl Substituted Heterocyclic iareas, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/776,936, filed of Dec. 22, 1998, Inhibition nhibition of Raf Kinase Using Symmetrical and Unsymmetrical Substituted Diphenyl Ureas, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/777,920, filed Feb. 7, 2001, Inhibition of Raf kinase using quinolyl, isoquinolyl or pyridvl ureas, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 09/948,915, filed Sep. 10, 2001, Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinase Inhibitors, 1 page.
A “Notice of References Cited” from the USPTO for U.S. Appl. No. 10/042,226, filed Jan. 11, 2002, Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinase Inhibitors, 1 page.
Co-pending U.S. Appl. No. 09/458,014, filed Dec. 10, 1999, Dumas et al.
Abandoned U.S. Appl. No. 09/776,935, filed Dec. 22, 1998, Dumas et al.
Co-pending U.S. Appl. No. 09/776,936, filed Dec. 22, 1998, Miller et al.
Co-pending U.S. Appl. No. 09/993,647, filed Nov. 27, 2001, Riedl et al., published as 2003-0181442, Sep. 25, 2003.
Co-Pending U.S. Appl. No. 11/932,548, filed Oct. 31. 2007, Dumas et al.
Co-Pending U.S. Appl. No. 12/086,454, filed Jun. 12, 2008, Weber et al.
Co-Pending U.S. Appl. No. 12/093,515, filed Nov. 2008,Wilhelm et al.
Co-Pending U.S. Appl. No. 12/095,611, filed May 30, 2008, Smith et al.
Co-Pending U.S. Appl. No. 12/158,524, filed Jun. 20, 2008, Smith et al.
Co-Pending U.S. Appl. No. 12/294,979, filed Sep. 29, 2008, Wilhelm et al.
Co-Pending U.S. Appl. No. 12/421,690, filed Apr. 10, 2009, Dumas et al.
Co-Pending U.S. Appl. No. 12/444,974, filed Apr. 9, 2009, Grunenberg et al.
Co-Pending U.S. Appl. No. 12/514,129, filed May 8, 2009, Grunenberg et al.
Co-Pending U.S. Appl. No. 12/514,715, filed May 13, 2009, Stiehl et al.
Co-Pending U.S. Appl. No. 12/520,618, filed Jun. 22, 2009, Smith et al.
Co-Pending U.S. Appl. No. 12/520,609, filed Jun. 22, 2009, Smith et al.
Co-pending U.S. Appl. No. 12/523,652, filed Jul. 17, 2009, Wilhelm et al.
Co-pending U.S. Appl. No. 12/523,697, filed Jul. 17, 2009, Wilhelm et al.
Co-Pending U.S. Appl. No. 12/628,735, filed Dec. 1, 2009, Dumas et al.
Co-Pending U.S. Appl. No. 12/692,845, filed Jan. 25, 2010, Dumas et al.
Co Pending Application PCT/US09/61506, filed Oct. 21, 2009, Carol Pena.
International search report for International Application No. PCT/US98/10375 dated Sep. 3, 1998, Inhibition of p38 Kinase Activity by Aryl Ureas, publication No. 98/52558, publication date Nov. 26, 1998, 1 page.
International search report for International Application No. PCT/US9S/10376 dated Jul. 30, 1998, Raf Kinase Inhibitors, publication No. WO 98/52559, publication date Nov. 26, 1998, 1 page.
International search report for international Application No. PCT/US98/26078 dated Apr. 2, 1999, Inhibition of Raf Kinase Using Substituted Heterocyclic Ureas, publication No. WO 99/32106, publication date Jul. 1, 1999, 2 pages.
International search report for International Application No. PCT/US98/26079 dated Apr. 12, 1999, Inhibition of p38 Kinase Activity Using Aryl and Heteroaryl Substituted Heterocyclic Ureas, publication No. WO 99/32110, publication date Jul. 1, 1999, 1 page.
International search report for International Application No. PCT/US98/26080 dated Apr. 12, 1999, Inhibition of p38 Kinase Using Substituted Heterocyclic Ureas, publication No. WO 99/32111, publication date Jul. 1, 1999, 1 page.
International search report for international Application No. PCT/US98/26081 dated Apr. 2, 1999, Inhibition of Raf Kinase Using Symmetrical and Unsymmetrical Substituted Diphenyl Ureas, publication No. WO 99/32436, publication date Jul. 1, 1999, 1 page.
International search report for International Application No. PCT/US98/26082 dated May 12, 1999, Inhibition of Raf Kinase Using Aryl and Heteroaryl Substituted Heterocyclic Ureas, publication No. WO 99/32455, publication date Jul. 1, 1999, 1 page.
International search report for International Application No. PCT/US98/27265, dated Mar. 2, 1999, Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas, publication No. WO 99/32463, publication date Jul. 1, 1999, 1 page.
International search report for International Application No. PCT/US00/00648 dated Jul. 29, 2000, Omega-Carboxyaryl Substituted DiphenyitIreas as RAF Kinase Inhibitors, publication No. WO 00/42012 A1, publication date Jul. 20, 2000, 2 pages.
International search report for International Application No. PCT/US00/00768 dated May 16, 2000, Omega-Carboxy Aryl Substituted Diphenyl Ureas As p38 Kinase Inhibitors, publication No. WO 00/41698 A1, publication date Jul. 20, 2000, 1 page.
International search report for International Application No. PCT/US02/12064 dated Sep. 20, 2002, Heteroaryl Ureas Containing Nitrogen Hetero-Atoms as p38 Kinase Inhibitors, publication No. 02/085859, publication date Oct. 31, 2002, 2 pages.
International search report for International Application No. PCT/US02/12066 dated Sep. 27, 2002, Inhibition of Raf Kinase Quinolyl, Isoquinolyl or Pyridyl Ureas, publication No. 02/085857, publication date Oct. 31, 2002, 2 pages.
Supplemental search report from the EPO for European application EP 98963809.3 dated Mar. 30, 2001, Inhibition of Raf Kinase Lasing Symmetrical and Unsymmetrical Substituted Diphenyl Ureas, publication No. 1049664, publication date Jul. 1, 1999, granted Mar. 16, 2005, 4 pages.
Supplemental search report from the EPO for European application EP 98963810.1 dated Dec. 21, 2000, Inhibition of Raf Kinase Using Aryl and Heteroaryl Substituted Heterocyclic Ureas, publication No. 1056725, publication date Jul. 1, 1999, granted Jun. 7, 2006, 4 pages.
Supplemental search report from the EPO for European application EP 98965981.8 dated Dec. 21, 2000, Inhibition of Raf Kinase Using Substituted Heterocyclic Ureas, publication No. 1047418, publication date Jul. 1, 1999, granted Jul. 27, 2005, 8 pages.
Supplemental search report from the EPO for European application EP 00903239.2 dated Aug. 7, 2002, Omega-Carboxyaryl Substituted Diphenyl Ureas As Raf Kinase Inhibitors, publication No. EP 1140840, published Jul. 20, 2000, granted Mar. 22, 2006, 6 pages.
Supplemental search report from the EPO for European application EP 00905597.1 dated Feb. 7, 2008, Omega-Carboxyaryl Substituted Diphenyl Ureas As p38 Kinase Inhibitors, publication No. EP 1158985, Jul. 20, 2000, 9 pages.
Belgore et al., “Measurement of free and complexed soluble vascular endothelial growth factor receptor, Fit-1, in fluid samples: development and application of two new immunoassays,” Clinical Science, 100: 567-575 (2001).
Belgore et al., “Plasma Levels of Vascular Endothelial Growth Factor (VEGF) and Its Receptor, Flt-1, in Haematological Cancers: A Comparison With Breast Cancer,” American Journal of Hematology, 66:59-61 (2001).
Coskun et al., “Significance of serum vascular endothelial growth factor, insulin-like growth factor-I levels and nitric oxide activity in breast cancer patients,” The Breast, 12, 104-110 (2003).
Kaya et al., “The prognostic significance of vascular endothelial growth factor levels in sera of non-small cell lung cancer patients,” Respiratory Medicine, 98:632-636 (2004).
Kumar et al., “Soluble FLT-1 is Detectable in the Sera of Colorectal and Breast Cancer Patients,” Anticancer Research, 22:1877-1880 (2002).
Pasieka et al., “Evaluation of the Levels of bFGF. VEGF, sICAM-1, and sVCAM-1 in Serum of Patients with Thyroid Cancer,” Recent Results in Cancer Research, 162:189-194 (2003).
Pegram et al., “Combined Biological Therapy of Breast Cancer Using Monoclonal Antibodies Directed Against HER2/neu Protein and Vascular Endothelial Growth Factor,” Seminars in Oncology, 29(Suppl. 11):29-37 (2002).
Poon et al., “Prognostic significance of serum vascular endothelial growth factor an endostatin in patients with hepatocellular carcinoma,” British Journal of Surgery, 91:1354-1360 (2004).
Ria et al., “Serum levels of angiogenic cytokines decrease after antineoplastic radiotherapy,” Cancer Letters, 216:103-107 (2004).
Secord et al., “The relationship between serum vascular endothelial growth factor, persistent disease, and survival at second—look laparotomy in ovarian cancer,” Gynecologic Oncology, 94:74-79 (2004).
English abstract of JP 10-306078, 1998-11-17, Patent Abstracts of Japan, 2 pages.
English abstract of JP 08-301841, Nov. 19, 1996, Patent Abstracts of Japan, 2 pages.
English abstract of JP 03-198049, Aug. 29, 1991, Patent Abstracts of Japan, 1 page.
English abstract of JP 03-144634, Jun. 20, 1991, Patent Abstracts of Japan, 1 page.
English abstract of JP 03-053247, Mar. 7, 1991, Patent Abstracts of Japan, 1 page.
English abstract of JP 02-150840, Jun. 11, 1990, Patent Abstracts of Japan, 1 page.
English abstract of JP 02-108048, Apr. 19, 1990, Patent Abstracts of Japan, 1 page.
English abstract of JP 02-105146, Apr. 17, 1990, Patent Abstracts of Japan, 1 page.
English abstract of JP 02-035450, Feb. 6, 1990, Patent Abstracts of Japan, 1 page.
English abstract of JP 01-200254, Aug. 11, 1989, Patent Abstracts of Japan, 1 page.
English abstract of JP 01-259360, Oct. 17, 1989, Patent Abstracts of Japan, 2 pages.
English abstract of JP 01-102461, Apr. 20, 1989, Patent Abstracts of Japan, 1 page.
English abstract of JP 06-120039, Apr. 28, 1994, Patent Abstracts of Japan. 1 page.
English abstract of JP 05-180862, Jul. 23, 1993, Patent. Abstracts of Japan, 1 page.
English abstract of JP 05-163170, Jun. 29, 1993, Patent Abstracts of Japan, 1 page.
English abstract of JP 05-077375, Mar. 30, 1993, Patent Abstracts of Japan, 1 page.
English abstract of JP 05-076072, Mar. 26, 1993, Patent Abstracts of Japan, 2 pages.
English abstract of JP 50-149668 A and JP 56-29871 B, Derwent World Patents Index, Dialog File No. 351. Acc. No. 1488399, 3 pages, (1975).
English abstract of JP 53-086033, Jul. 29, 1978, Patent Abstracts of Japan, 1 page.
English abstract of JP 54-032468, Mar. 9, 1979, Patent Abstracts of Japan, 1 page.
English abstract of JP 55-098152, Jul. 25, 1980, Patent Abstracts of Japan, 1 page.
English abstract of JP 64-009455, Jan. 12, 1989, Patent Abstracts of Japan, 1 page.
English abstract of JP 02-023337, Mar. 9, 1979, Patent Abstracts of Japan, 2 pages.
English abstract of EPA 0379915/EP-A1, Aug. 1. 1990, 2 pages.
English abstract of DD 253997 A, Feb. 10, 1998. 1 page.
English abstract of DE511468, European Patent Office, 2 pages; Oct. 30, 1930.
Co-Pending U.S. Appl. No. 12/619,913, filed Nov. 17, 2009, Ranges et al.
Abandoned application U.S. Appl. No. 09/640,780, filed Aug. 18, 2000, Dumas et al.
Arzneimitteltherapie, “Sorafenib” Oct. 6, 2006, Auflage 18498. 7 pages English translation.
Foussard-Blanpin, Odette, “Comparative pharmacological study of substituted carboxamides upon central nervous system.” Ann. Pharm. Fr. (1982),40 (4), H. 339-350 English translation.
Garbe, “Auch ein Therapieplatz für Sorafenib?” Medical Special (2006) 2 pages English translation.
Dehtling, J. “Groβe Onkologie-Pipeline” Medizinische Monatsschrift für Pharmazeuten, 2006, Autlage 12914, 2 pages English translation.
Drevs, J., Die Medizinische Welt, 2006, pp. 1/5,2/5, 3/5, 4/5, 5/5 English translation.
Jungmayr, P., “Aktueller Stand der Krebstherapie,” Deutsche Apotheker Zeitung, Sep. 30, 2004, Auflage ca. 36.000 English translation.
Kempter et al,, “Synthese potentieller Pflanzerischutz- und Schtidlingsbekiimpfungsmittel aus substituierten Anilinen,” Ptidagogsische Hochschule, Eingegangen am Jan. 7, 1982, vol. 27, Issue 1, 101-120 (1983) English translation.
Kuefer et al., “Translational research in renal cell cancer. Illustrated by the example of the vascular endothelial growth factor pathway,” Der Urologe, 2006, Vol, 45, No. 3, pp. 328, 330-335 English translation.
Kurik et al., “Optical Properties of Segmented Oligourethane with Azomethine Terminal Fragments,” Polymer Science, series B, 1996, vol. 38 pp. 2038-2041 English translation.
Medinger et al., “Hemmung der Tumorangiogeriese Neue Therapieoptionen in der Onkologie,”Med Welt, 2006, 57, pp. 437-441 English translation.
Med Report Deutschland, “Sorafenib zur Therapie des fortgeschrittenen Nierenzellkarzinoms zugelassen,” (2006), 1 page English translation.
Michaelis, “Phenylharnstoff des 1-Phenyl-3-methyl-5 minopyrazols,”Justus Liebigs Ann. Chem. (JLACBF) 397, 1913, p. 143 English translation.
Peters, H.D., “Sorafenib bei soliden Tumoren,” Focus Onkologie, 2007, Auflage 12000, 6 pages English translation.
Strumberg et al., “Sorafenib Neue Therapieoption in der Onkologie,” Krankenliauspliarmazie, 2007 vol. 28, pp. 93-97, pp. 1/5, 2/5, 3/5 and 4/5 English translation.
Stollorz, “Die Krebsformel, die der Zufall fand,” Frankfurter Allgemeine Sonntagszeitung, Jul. 2, 2006, NR 26, pp. 68-69 English translation.
Related Publications (1)
Number Date Country
20120142742 A1 Jun 2012 US
Provisional Applications (1)
Number Date Country
60367346 Nov 2000 US
Continuations (1)
Number Date Country
Parent 09993647 Nov 2001 US
Child 13368812 US