This invention relates generally to omni-directional antennas and, in particular, to an omni-directional antenna including a parasitic disc spaced apart from a ground plane to improve omni-directionality.
Directional antennas are preferred where the relationship between the sender and receiver are known geographically. In such arrangements, directionality maximizes the power of transmission from sender to receiver.
Omni-directional antennas are a better choice where the location of the recipient is either not known a priori, or in situations where the sender and/or receiver may be mobile. Omni-directional antennas are therefore typically used in local-area network (LAN) and wireless (i.e., wi-fi) environments.
Broadly speaking, an omni-directional antenna radiates power substantially uniformly in all directions. The only three-dimensional omni-directional antenna is the isotropic antenna, a theoretical construct derived from actual radiation patterns and used as a reference for specifying antenna gain and effective radiated power. Practical antennas approach omni-directionality by providing uniform radiation or response only in one reference plane, usually the horizontal plane parallel to the earth's surface. Common omni-directional antennas include the whip antenna, the vertically oriented dipole antenna, the discone antenna and the horizontal loop antenna. While these designs perform adequately in some situations, the need always remains for new configurations for emerging applications.
This invention resides in an omni-directional antenna particularly suited to wi-fi, mesh networks and other applications. The preferred embodiment includes an electrically conductive ground plane, an electrically conductive parasitic disc spaced upwardly apart from the ground plane and parallel thereto, and an electrically conductive vertical antenna element extending up through the center of the ground plane and parasitic disc. The vertical element terminates in a tip defining a length above the parasitic disc that is matched to a frequency of interest.
In the preferred embodiment the parasitic disc and ground plane are both circular. In typical configurations the diameter of the parasitic disc is smaller than the length of the vertical element, while the diameter of the ground plane is larger than the length of the vertical element. The invention is not constrained to these relationships, however.
To prevent electrical connection, the vertical element extends through separate insulators in the parasitic disc and ground plane. The length of the vertical element is matched to a microwave frequency; in particular, the length of the vertical element is proportioned to one-quarter wavelength of the frequency of interest. The invention is particularly suited to microwave frequencies. The vertical element is preferably perpendicular to the parasitic disc and ground plane. The vertical element may be used for transmitting, receiving, or both.
This invention resides in a novel omni-directional antenna utilizing a vertical post and a plurality of discs. The preferred embodiment is illustrated in
An important aspect of the invention is the use of the parasitical floating plate 104, spaced at a distance S above the ground plane 108. It has been found experimentally that utilizing the configurations and proportions shown in the figure, results in a true omni-directional broadband mesh centered around the frequency of interest. S may be varied, particularly in conjunction with a field-strength meter, to optimize radiation profile for a given application. The various components may be made of any suitable electrically conductive material, such as aluminum, copper, and so forth, with the exception of the spacers 106, which are nylon or an alternative electrical insulator.
The antenna finds many applications including wi-fi, mesh networks and other uses. For example, the element 102 may be sized for a center frequency at 2.4 gigahertz or other microwave frequencies of interest. Importantly, low-temperature additive manufacturing processes may be used to embed electronics into the ground plane 108, for example. Specifically, ultrasonic consolidation may be used to embed switches, preamplifiers, or other electronics directly into the plane 108 to control amplification immediately before transmission or reception. A send-receive switch may also be embedded in this manner.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/809,257, filed May 30, 2006, the entire content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60809257 | May 2006 | US |