Omni-positional adhesion device

Information

  • Patent Grant
  • 11535322
  • Patent Number
    11,535,322
  • Date Filed
    Tuesday, February 25, 2020
    4 years ago
  • Date Issued
    Tuesday, December 27, 2022
    2 years ago
Abstract
Aspects are provided for retaining components of an assembly to a support, including additively manufactured (AM) parts of a vehicle chassis to an assembly table. A cartridge for securing the component to the assembly table is provided which includes a housing including at least one compartment, an adhesive disposed within the at least one compartment, a fastener removably attached to the assembly table, and a membrane lid enclosing an opening of the housing. The membrane lid is configured to receive a protruding member from the component such that the protruding member becomes adhered to the adhesive upon penetrating the membrane lid. The cartridge thus allows the component to be quickly retained in any selected position while constraining movement of the component along six degrees of freedom, thereby allowing AM and non-AM parts to be securely retained to accommodate strict tolerance and precise fit between the components of the assembly.
Description
BACKGROUND
Field

The present disclosure relates generally to retention of assemblies, sub-assemblies, or parts during manufacture, and more specifically to retention of components of an additively manufactured vehicle chassis during assembly of the vehicle chassis.


Background

Additive manufacturing (AM) has provided a significant evolutionary step in the development and manufacture of vehicles and other transport structures. For nearly a century prior to the introduction of AM, manufacturers have been relegated to the assembly line technique of vehicle production using conventional machining to construct and assemble vehicle parts. Because the machined parts are generally specific to a vehicle model design, and as acquiring new tooling to construct modified parts can be cost prohibitive, manufacturers have had limited flexibility to implement modifications to an established vehicle design. As a result, a manufacturing facility often uses assembly lines that are limited to producing a single vehicle model.


Being non-design specific, AM is capable of enabling construction of an almost unlimited variety of structures having diverse geometrical shapes and material characteristics. Different AM printers can provide these structures using a variety of materials, including metals, alloys and thermoplastics. In a new infrastructure hereinbefore proposed by Applicant, AM becomes a primary means of developing custom parts. Parts made via traditional machining and casting, together with widely available commercial off-the-shelf (COTS) parts, can be linked together in a modular form via these custom AM structures to form a chassis of a vehicle, fuselage of an aircraft, body of a sea vessel, and the like. AM modular parts can also be printed that form the interior of the transport structure. Design modifications are straightforward and can be effected by printing modified AM structures, which avoids the expense of acquiring new tooling.


SUMMARY

Several aspects will be described more fully hereinafter with reference to various illustrative aspects of the present disclosure.


In one aspect of the disclosure, a cartridge for securing a component of an assembly to a support (e.g. an assembly table) is provided. The cartridge includes a housing including at least one compartment, an adhesive disposed within the at least one compartment, a fastener connected to the housing and removably attached to the assembly table, and a membrane lid enclosing an opening of the housing. The membrane lid is configured to receive a protruding member from the component such that the protruding member becomes adhered to the adhesive upon penetrating the membrane lid.


In another aspect of the disclosure, a vehicle chassis assembly is provided which includes a chassis comprising a plurality of components, each component of the plurality of components including a protruding member, and a plurality of cartridges for individually securing each component to an assembly table. Each cartridge includes a housing including at least one compartment, an adhesive disposed within the at least one compartment, a fastener connected to the housing and removably attached to the assembly table, and a membrane lid enclosing an opening of the housing. The membrane lid is configured to receive a protruding member from the component such that the protruding member becomes adhered to the adhesive upon penetrating the membrane lid.


In a further aspect of the disclosure, a method of securing a component of an assembly to an assembly table is provided. A cartridge is attached to the assembly table, where the cartridge includes a housing including at least one compartment, an adhesive disposed within the at least one compartment, a membrane lid enclosing an opening of the housing, and a fastener connected to the housing for removable attachment to the assembly table. A protruding member of the component is inserted into the cartridge, and the protruding member is retained in the cartridge using the adhesive.


It will be understood that other aspects of the disclosure will become readily apparent to those skilled in the art based on the following detailed description, wherein they are shown and described in only several embodiments by way of illustration. As will be appreciated by those skilled in the art, these features, structures, methods and techniques can be realized with other embodiments without departing from the spirit and scope of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various illustrations of aspects of the present disclosure will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIG. 1 is a schematic of a frame or chassis of a vehicle and serving as an example of an assembly having multiple components.



FIG. 2 is a schematic of an assembly table and serving as an example of a support to which a component of the assembly of FIG. 1 is secured by a cartridge in accordance with one aspect of the present disclosure.



FIG. 3A is a schematic of the cartridge for securing the component of the assembly to the support as illustrated in FIG. 2.



FIG. 3B is a cross-sectional side view of the cartridge of FIG. 3A.



FIG. 3C is a top perspective view of the cartridge of FIG. 3A.



FIG. 4 is a flow diagram of an exemplary process for securing a component of an assembly to an assembly table.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the drawings is intended to provide a description of exemplary embodiments of the present invention. The description is not intended to represent the only embodiments in which the invention may be practiced. The terms “exemplary” and “example” used throughout this disclosure mean “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or may be shown not drawn to scale, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.


In manufacturing assemblies that include AM structures, individual AM structures will often need to be connected together, or connected to machined or COTS parts, to provide combined structures, e.g., to realize the above modular network or to form a complex interior assembly in a vehicle. Examples include node-to-node connections, node-to-panel connections, node-to-tube connections, and node-extrusion connections, among others. For connecting these parts, a strict tolerance is often required, meaning that the parts must be positioned to fit precisely in an established orientation. For example, to connect an AM joint member with a vehicle body panel, these two parts may need to be positioned to avoid direct contact with each other in order to mitigate possible galvanic corrosion problems. Moreover, the connection between the AM joint member and panel should result in an accurate fit. Thus, the AM joint member should not be misaligned with or offset from the body panel, for example, and the parts should remain properly oriented when permanently bonded together.


Given these requirements for strict tolerance, proper orientation and precise fit when connecting AM and/or non-AM parts or components, a need exists to securely retain these components in their selected positions to prevent their movement during assembly. Aspects of the present disclosure provided hereinafter are disclosed which meet this need.


The present disclosure is directed to apparatus, systems, and methods for retaining components of an assembly to a support. For example, the assembly may comprise a frame of a vehicle, and the component may comprise a part, sub-assembly, or assembly of the frame. Examples of a frame of a vehicle may include, but are not limited to, a chassis, a space frame, a three-dimensional frame, an internal frame, an outer frame, a partially inner and partially outer frame, or a supporting structure of the vehicle. Examples of a component of the frame may include, but are not limited to, a part such as a node, tube, panel, or extrusion; a sub-assembly including one or more node-to-node connections, node-to-panel connections, node-to-tube connections, and node-extrusion connections; a plurality of sub-assemblies; or an assembly of the frame. While the aforementioned examples describe assemblies and components of a vehicle, the present disclosure is not limited to vehicles, but may encompass assemblies and components of any article of manufacture (e.g. consumer electronics devices). The components may encompass 3D-printed AM parts, sub-assemblies, or assemblies, conventionally manufactured non-AM parts, sub-assemblies, or assemblies, COTS parts, or a combination of AM, non-AM, and/or COTS parts, sub-assemblies, or assemblies. Examples of a support for the assembly may include, but are not limited to, an assembly table, a wall, a platform, and the like.


In one aspect, the assembly may be performed in a manufacturing cell. The assembly may be manually performed by workers, or the assembly may be automatically performed using one or more assembly robots. For example, the manufacturing cell may be a vertical assembly cell which includes a positioner, a robot carrier, and an assembly robot. In the vertical assembly cell, the positioner may be configured to receive an assembly table, where the assembly table is configured to hold the assembly (e.g. a frame of a vehicle). The robot may be mounted on the robot carrier and is configured to assemble the frame. The positioner may be configured to support the frame in a vertical position during an assembling process of the frame. Alternatively, the manufacturing cell may not be a vertical assembly cell, but may generally be any environment in which the assembly is manufactured. For example, the positioner may be configured to only support the frame in a horizontal position, or the positioner may not be present and the fixture table is horizontally mounted in the manufacturing cell. The manufacturing cell may thus not be limited to a vertical assembly cell.


In one aspect of the present disclosure, a component (e.g. a part) of the assembly (e.g. a vehicle chassis) is retained to the support (e.g. an assembly table) using an Omni-Positional Adhesion Device (OPAD). The OPAD comprises a cartridge including a housing including at least one compartment, an adhesive disposed in the compartment, a fastener connected to the housing and a penetrable membrane lid enclosing the housing. In one aspect, the housing includes two compartments together containing two parts of a low-viscosity, quick set adhesive (e.g. a resin and a hardener), and a breakable or displaceable divider separating the two compartments for mixing the parts of the adhesive. Alternatively, the housing may include a single compartment containing the adhesive, or any number of compartments containing multiple parts of the adhesive and/or the adhesives.


Each component of the assembly may include a feature capable of being received in and retained by the cartridge. In one aspect, the component may have a feature protruding from the component which may be inserted into the cartridge to retain the component in a selected position. This protruding member may be integral with the component, for example, it may be 3D printed to a node or other AM part. Alternatively, the protruding member may be a printed, fabricated, or otherwise manufactured feature which is separately attached, fastened, adhered or otherwise connected to the component.


In one aspect, the membrane lid of the cartridge receives the protruding member of the component to retain the component to the assembly table. For example, the protruding member may be a rod, pin, or piston of a 3D printed node of a vehicle chassis which may break through the membrane lid into the adhesive contained within the compartment(s). Where the cartridge includes two compartments of a two part adhesive as previously described, the protruding member in this aspect may break or displace the divider between the two adhesive compartments after penetrating the membrane lid, causing rapid mixing of the two parts and adhesion of the component to the cartridge. The component may thus be securely retained in a selected position during assembly of the chassis once the fastener connected to the housing of the cartridge is attached to the support.


As a result, the cartridge allows the component of the assembly to be quickly retained in any selected position (e.g. within 2 minutes), while constraining movement of the component along six degrees of freedom. More specifically, the cartridge of the present disclosure allows the component to be restricted from translating in three perpendicular axes x, y, z (e.g. moving forward/backward, up/down, and left/right), and from rotating about the three axes x, y, z (e.g. undergoing yaw, pitch, and roll), allowing the components to maintain their position, alignment, and/or fit during assembly without the need for numerous vises, clamps, or other expensive retention mechanisms. The present disclosure thus advantageously allows AM and non-AM parts to be securely retained during assembly in a selected position to accommodate strict tolerance and accurate and precise fit between the various components of the assembly.


The cartridge also provides other advantages. For instance, the cartridge has a small form factor which enables it to be strategically and independently placed to securely hold numerous components of the assembly (e.g. in the order of tens or hundreds or even thousands of cartridges per assembly). The cartridges may also be 3D printed with plastic or metal components, are disposable after use and serve as a cost-effective retention mechanism for components of the assembly, in contrast to conventionally used vises which can be expensive, unwieldy, and time-consuming to develop for an assembly. Moreover, the cartridge is flexibly designed; it can be placed, oriented, and/or sized depending on its use (e.g. larger for heavier components). The cartridge is also self-contained, thereby allowing it to be oriented as needed with limited to no spilling of the adhesive.



FIG. 1 illustrates an example of an assembly 100. While FIG. 1 illustrates the assembly as a frame 102 of a vehicle, the assembly 100 is not limited to a vehicle, but may alternatively be any article of manufacture which may be assembled (e.g. a consumer electronics device). For purposes of the present disclosure, an example assembly 100 will be hereafter described in the context of a frame 102 or chassis of a vehicle. However, this description is not intending to be limiting; various aspects hereinafter described may be used for assemblies 100 which may not necessarily be a frame of a vehicle. For example, the assembly 100 may encompass other types of frames or structures having components such as nodes, tubes, panels, extrusions, or sub-assemblies of the foregoing, for use in various applications besides vehicles (e.g. consumer electronics).


The frame 102 (e.g. assembly 100) may include a plurality of connecting elements 104a, 104b, 104c, and a plurality of joint members or nodes 106. For example, the joint members or nodes may be produced by a 3-D printer. Each joint member may be sized and shaped to mate with at least a subset of the plurality of the connecting elements 104a, 104b, 104c to form a three-dimensional frame structure 102. The plurality of joint members 106 include mounting features, which provide panel mounts for mounting of panels on the three-dimensional frame structure 102. For example, the mounting features may be produced by a 3-D printer.


In one example, the frame 102 may form the framework of a vehicle. The vehicle may be a passenger vehicle capable of carrying at least one or more passengers, examples of which may include, but are not limited to sedans, trucks, buses, vans, minivans, station wagons, RVs, trailers, tractors, go-carts, automobiles, trains, or motorcycles, boats, spacecraft, or airplanes. The frame 102 may provide the structure for placement of body panels of the vehicle, where body panels may be door panels, roof panels, floor panels, or any other panels forming the vehicle enclosure. Furthermore, the frame 102 may be the structural support for the wheels, drive train, engine block, electrical components, heating and cooling systems, seats, storage space, and other systems.



FIG. 2 is an illustration of a support 200 configured to support and hold the assembly 100. For example, the support 200 may be an assembly table 202, and the assembly 100 may be a frame 102 of a vehicle. In one aspect, the assembly table 202 may be contained within a vertical assembly cell (not shown), in which the assembly table 202 is coupled to a positioner 204 configured to hold the frame 102 in a vertical position during assembly. The positioner 204 may be configured to support the assembly table 202 and to perform one or more of lifting, tilting, and rotating the assembly table 202. The positioner 204 may also include a 3-point kinematic mount 206 through which the assembly table 202 may be secured to the positioner 204. Alternatively, the support 200 may not be contained within a vertical assembly cell; for example, the assembly 100 may be held in a horizontal position to the assembly table 202 (e.g. by clamps), with or without positioner 204. For purposes of the present disclosure, the support 200 will be hereafter described in the context of an assembly table 202 contained within a vertical assembly cell for supporting a frame 102 (FIG. 1) of a vehicle. However, this description is not intending to be limiting; various aspects hereinafter described may be present in assembly locations which are not vertical assembly cells, and the assembly may not necessarily be a frame of a vehicle.


According to an aspect of the present disclosure, a cartridge 250 is provided which may securely retain a component 252 of assembly 100 to the support 200. For example, individual cartridges 250 may retain connecting elements 104a, 104b, 104c and/or nodes 106 (e.g. components 252) of the chassis or frame 102 to assembly table 202. Each cartridge 250 may include a fastener 253 (e.g. a screw, bolt, or any other removable, mechanical fastening member) which may be removably attached to the assembly table 202. Thus, fastener 253 may serve as a chassis table attachment in one example for the component.


In one aspect, each component 252 of the assembly 100 may have an integrally or separately attached protruding member 254 which is used to retain the component inside the cartridge 250. For example, FIG. 2 illustrates a component 252 (e.g. a connecting element) of chassis/frame 102 which includes a protruding member 254 which is received and retained inside cartridge 250 via an adhesive bond. Using fastener 253, cartridge 250 may securely retain component 252 to the assembly table 202 in a selected position during assembly of frame 102.


Other components 252, e.g. parts, sub-assemblies, or assemblies of chassis or frame 102, may be similarly retained to support 200 by individual cartridges 250 depending on load requirements. For example, components 252a′, 252b′ (e.g. connecting elements 104a, 104b, 104c and/or nodes 106) may each include a protruding member 254 which may be received and retained inside respective cartridges fastened to the assembly table 202. Thus, a plurality of cartridges 250 may securely retain components 252 of the assembly 100 to the assembly table 202 in selected positions during assembly of frame 102.



FIGS. 3A-3C illustrate an example of cartridge 300 (e.g. cartridge 250) according to an aspect of the present disclosure. Each cartridge 300 includes a housing 302 including at least one compartment 304. In one aspect, the housing may include multiple compartments, for example a first compartment 306 and a second compartment 308. The compartments may be vertically arranged as illustrated in FIG. 3B, may be horizontally arranged, or may be arranged in other orientations. The compartments may be equivalent in size as illustrated in FIG. 3B, or may include different sizes.


An adhesive 310 is disposed within the compartment which adheres the protruding member to the cartridge. For example, the adhesive may be a two part adhesive including a resin 312 and a hardener 314. The resin 312 may be disposed in the first compartment, and the hardener 314 may be disposed in the second compartment, or vice-versa. The adhesive 310 is preferably a low-viscosity, quick set adhesive which allows the resin and hardener to mix and quickly allow the component 252 to adhere to the cartridge 250.


The housing 302 includes a membrane lid 316 enclosing an opening 317 of the housing. The membrane lid may prevent the adhesive 310 from spilling and may isolate the at least one compartment 304 from the environment, including elements such as rain or wind. The membrane lid 316 is configured to receive the protruding member 254 from the component 252 such that the protruding member becomes adhered to the adhesive 310 upon penetrating the membrane lid. For example, the membrane lid 316 may be easily punctured when the protruding member 254 applies a force to the membrane lid 316, allowing the protruding member to penetrate the membrane lid 316 into the at least one compartment 304 and become adhered to the adhesive 310 disposed within the compartment.


In an exemplary embodiment, the membrane lid 316 initially prevents the adhesive 310 from spilling out the at least one compartment 304. For example, if the cartridge 300 is rotated, the adhesive and/or resin 312 and hardener 314 may be contained by the membrane lid. However, once the protruding member 254 of the component 252 breaks the seal caused by the membrane lid, the membrane lid 316 may no longer be able to independently prevent the adhesive from spilling from the compartment upon rotation of the cartridge. To resolve this problem, in one example, the protruding member 254 may include saw-tooth edges 318 (FIG. 3B) configured to grip and form a seal against the membrane lid after insertion of the protruding member 254 into the at least one compartment 304. For example, after the protruding member penetrates the membrane lid, the saw tooth edges 318 may seal against the membrane lid as illustrated in FIG. 3B such that adhesive is prevented from exiting the compartment upon rotation of the cartridge 300. Since the saw tooth edges 318 of the protruding member 254 have a larger surface area than the smooth surface of the component 252, the protruding member 254 may form a better grip against the surface of the membrane lid 316, and thereby form a more effective seal, than the component 252 may possibly alone. However, this example is not intended to be limiting; for example, the protruding member 254 may have other features besides saw tooth edges configured to seal against the membrane lid for preventing or mitigating the occurrence of leaks.


In an aspect where the housing 302 includes two compartments, a divider 320 may be disposed between and separating the first compartment 306 and the second compartment 308. The divider may form a seal 321 against the housing to prevent the resin 312 and hardener 314 from prematurely mixing through the divider. Moreover, at least one divider guide 322 may be disposed within either or both compartments 306, 308 for holding the divider 320 in place within the housing.


In one aspect, the divider 320 may comprise a film sheathing 324 (FIG. 3B), and the resin 312 and the hardener 314 may be configured to mix upon breakage of the film sheathing by the protruding member 254 of the component 252. For example, the sheathing 324 of the divider 320 may be designed to easily break when the protruding member 254 applies a force to the divider 320, eliminating the barrier between the resin 312 and the hardener 314 and allowing the two-part adhesive to mix. Accordingly, once the divider 320 breaks, the resin and hardener may mix, forming the adhesive 310 which adheres the protruding member 254 to the cartridge 300.


In some aspects, the resin 312 and hardener 314 may mix in response to some agitation caused by the breaking of the divider. In one example, a small compressed air bubble (not shown) may be present in the resin and/or the hardener which may burst in response to puncturing of the divider 320, causing the resin and hardener to mix in response to the release of compressed air. In another example, a loaded mechanical spring (not shown) may be included in either compartment 306, 308 which may be triggered to spin in response to breaking of the divider 320, mixing the resin 312 and the hardener 314 in response to the spinning. In a further example, the divider 320 may be pressurized to allow the resin 312 and the hardener 314 to volatilely mix upon breakage of the divider. For example, the first and second compartments 306, 308 may be sized such that a pressure differential exists between the compartments for the resin 312 and the hardener 314, and when the divider 320 breaks upon insertion of the protruding member 254, a turbulent flow and mixture of the resin and/or hardener may result to obtain equilibrium in pressure, which can in turn facilitate quick bonding of the resulting adhesive mixture with the protruding member 254.


Other mechanisms for agitating the resin and/or hardener to homogenously mix and effectively bind the component 252 to the cartridge 300 are also possible. For instance, where the cartridge only includes one compartment 304, the adhesive 310 may be cured using inductive heating coils disposed around the compartment 304 which may be controllably heated to cure the adhesive within a predetermined time. Conductive metal may be placed inside the adhesive to speed up the heating process. Thus, the adhesive 310 and/or resin 312, hardener 314 may be designed to solidify within a predetermined time (for example, two minutes) to quickly retain the component before moving to the next process of the assembly. This effect may be obtained regardless of the number of compartments in the cartridge.


In an alternative aspect, the divider 320 may not be configured to break, but may instead be configured to displace (or move) to result in mixture of the resin 312 and hardener 314. In one aspect referring additionally to FIG. 3C, the divider 320 may include a plurality of orifices 326, and the resin 312 and the hardener 314 may be configured to mix through the plurality of orifices upon displacement of the divider by the protruding member 254 of the component 252. For example, the divider may be designed to be displaceable, or movable towards either end 328, 330 of the housing 302 (FIG. 3A), in response to a force applied by the protruding member 254 against the divider 320. When the divider 320 is displaced by the protruding member 254, the resulting pressure differential effected by the shrinking in size of either compartment 306, 308 causes the hardener or resin (whichever is contained in the shrinking compartment) to flow through the plurality of orifices 326 towards the other compartment. The displacement thus allows the resin 312 and hardener 314 to mix, forming the adhesive 310 which adheres the protruding member 254 to the cartridge 300.


Therefore, when the protruding member 254 of the component 252 of the assembly 100 is inserted into the at least one compartment 304 of the cartridge 300, the cartridge may constrain the component against movement along six degrees of freedom. For example, after the protruding member penetrates the membrane lid 316 and adheres to compartment 306 or 308, for example after breaking or displacing the divider 320 and mixing resin 312 and hardener 314 to form adhesive 310, the protruding member may be constrained in movement (e.g. translation and rotation) along the three perpendicular axes x, y, and z. The component-cartridge combination may be subsequently attached to the assembly table 202 via fastener 253. Alternatively, the cartridge 300 may be previously attached to the assembly table 202 via fastener 253 prior to insertion of the protruding member 254. Thus, the cartridge allows AM and non-AM parts to be securely retained during assembly in a selected position to accommodate strict tolerance and accurate and precise fit between the various components of the assembly.



FIG. 4 is a flow diagram illustrating a method 400 of securing a component of an assembly to a support. Component (e.g. component 252) may be a connecting element 104a, 104b, 104c, a node 106, a panel, extrusion or other AM, non-AM, or COTS part, a sub-assembly of parts, or plurality of sub-assemblies. Assembly (e.g. assembly 100) may be a frame 102 of a vehicle, for example a vehicle chassis or other structure. Support (e.g. support 200) may be an assembly table 202 or any other type of support for the assembly (e.g. a wall, platform, or the like). Optional aspects are illustrated in dashed lines. The method allows the component 252 to be securely retained in a selected position during production of assembly 100 to allow for strict tolerance, proper orientation, and precise fit between components of the assembly 100.


At 402, a cartridge is attached to the support. The cartridge may include a housing including at least one compartment, an adhesive disposed within the at least one compartment, a membrane lid enclosing an opening of the housing, and a fastener connected to the housing for removable attachment to the support. For example, as illustrated in FIGS. 2 and 3A-3C, a cartridge 250, 300 may be attached to assembly table 202. Each component 252 of the assembly 100 may have an integrally or separately attached protruding member 254 which is used to retain the component inside the cartridge 250. The cartridge includes a housing 302 including at least one compartment 304. An adhesive 310 is disposed within the compartment which adheres the protruding member to the cartridge. The housing 302 includes a membrane lid 316 enclosing an opening 317 of the housing. The membrane lid 316 receives the protruding member 254 from the component 252 such that the protruding member becomes adhered to the adhesive 310 upon penetrating the membrane lid. Each cartridge 250 may further include a fastener 253 (e.g. a screw, bolt, or any other removable, fastening) which may be removably attached to the assembly table 202.


At 404, a protruding member of the component is inserted into the cartridge. For example, referring to FIGS. 2 and 3A-3C, component 252 may include a protruding member 254 which is inserted into the cartridge 250, 300. The protruding member may penetrate the membrane lid 316 of the cartridge into the at least one compartment 304 containing adhesive 310.


At 406, the protruding member is retained in the cartridge using the adhesive. For example, referring to FIGS. 2 and 3A-3C, the protruding member 254 may be retained in cartridge 250, 300 using adhesive 310. Where the cartridge 250, 300 only includes one compartment 304, the protruding member may be retained upon contact with the adhesive 310. The cartridge may be removably attached to the assembly table 202 using fastener 253, thereby securely retaining the component to the support and constraining its movement in six degrees of freedom during assembly of the frame 102.


Where the cartridge 250, 300 includes two compartments 306, 308, including first compartment 306 and second compartment 308, the adhesive may be a two-part adhesive comprising a resin 312 and a hardener 314. A divider 320 may be disposed between and separating the first and second compartments, where one of the resin or hardener is disposed within the first compartment while the other is disposed within the second compartment.


At 408, the divider may be broken or displaced with the protruding member of the component, and at 410, the resin and the hardener may be mixed into adhesive upon breaking or displacing the divider in order to retain the protruding member in the cartridge. For example, referring to FIG. 3B, the divider 320 may include a thin sheathing 324 which the protruding member 254 may break to cause mixing of the resin 312 and the hardener 314 into adhesive 310. The resin 312 and hardener 314 may mix in response to some agitation caused by the breaking of the divider. Alternatively, the divider 320 may include a plurality of orifices 326 through which the resin or hardener may flow and mix into adhesive 310 upon displacement of the divider by the protruding member. The component 252 may subsequently be retained to the cartridge by the formed adhesive 310.


Thus, aspects of the present disclosure advantageously allow components of an assembly to be quickly retained in any selected position during manufacture of the assembly through use of a cartridge which constrains movement of the component along six degrees of freedom. Components may thus maintain their position, alignment, and/or fit during connection and/or assembly without the need for numerous vises, clamps, or other expensive retention mechanisms, accommodating the strict tolerance between the various components of the assembly. Moreover, the design of these cartridges (which may also be small, disposable AM parts) allows them to be strategically and independently placed to securely hold numerous components of the assembly (e.g. in the order of tens or hundreds or even thousands of cartridges per assembly), while also being flexible, self-contained, and cost-effective retention mechanisms for various components of the assembly.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to the exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other objects besides vehicles. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. A cartridge for securing a component of an assembly to a support, the cartridge comprising: a housing including a first compartment and a second compartment;a two-part adhesive comprising a resin and a hardener, the resin disposed within the first compartment and the hardener disposed within the second compartment;a fastener connected to the housing and removably attached to the support; anda membrane lid enclosing an opening of the housing and configured to receive a protruding member from the component such that the protruding member becomes adhered to the two-part adhesive upon penetrating the membrane lid.
  • 2. The cartridge of claim 1, wherein the cartridge includes, for mixing the resin and the hardener, one of: compressed air within the resin or the hardener,a loaded mechanical spring in the first compartment or the second compartment, ora pressure differential between the first compartment and the second compartment.
  • 3. The cartridge of claim 1, wherein the assembly is within a vertical assembly cell.
  • 4. The cartridge of claim 1, wherein the two-part adhesive comprises a low-viscosity, quick set adhesive.
  • 5. The cartridge of claim 1, further comprising a divider disposed between and separating the first compartment and the second compartment, the divider forming a seal against the housing.
  • 6. The cartridge of claim 5, wherein the divider comprises a film sheathing, and wherein the resin and the hardener are configured to mix upon breakage of the film sheathing by the protruding member of the component.
  • 7. The cartridge of claim 5, wherein the divider includes a plurality of orifices, and wherein the resin and the hardener are configured to mix through the plurality of orifices upon displacement of the divider by the protruding member of the component.
  • 8. The cartridge of claim 5, wherein the divider is pressurized to allow the resin and the hardener to volatilely mix upon breakage of the divider.
  • 9. The cartridge of claim 5, further comprising at least one divider guide disposed within the first compartment or the second compartment for holding the divider in place within the housing.
  • 10. The cartridge of claim 1, wherein the component is constrained in movement along six degrees of freedom when inserted into the first compartment or the second compartment.
  • 11. The cartridge of claim 1, wherein the protruding member includes saw-tooth edges configured to grip and form a seal against the membrane lid.
  • 12. A vehicle chassis assembly comprising: a chassis comprising a plurality of components, each component including a protruding member; anda plurality of cartridges for individually securing each component to a support, each cartridge comprising: a housing including at least one compartment;an adhesive within the at least one compartment;a fastener connected to the housing and removably attached to the support; anda membrane lid enclosing an opening of the housing and configured to receive a protruding member from the component such that the protruding member becomes adhered to the adhesive upon penetrating the membrane lid.
  • 13. The vehicle chassis assembly of claim 12, wherein the chassis is within a vertical assembly cell.
  • 14. The vehicle chassis assembly of claim 12, wherein the at least one compartment comprises a first compartment and a second compartment, wherein the adhesive is a two-part adhesive comprising a resin and a hardener, and wherein the resin is disposed within the first compartment and the hardener is disposed within the second compartment.
  • 15. The vehicle chassis assembly of claim 14, further comprising a divider disposed between and separating the first compartment and the second compartment, the divider forming a seal against the housing.
  • 16. The vehicle chassis assembly of claim 15, wherein the divider comprises a film sheathing, and wherein the resin and the hardener are configured to mix upon breakage of the film sheathing by the protruding member of the component.
  • 17. The vehicle chassis assembly of claim 15, wherein the divider includes a plurality of orifices, and wherein the resin and the hardener are configured to mix through the plurality of orifices upon displacement of the divider by the protruding member of the component.
  • 18. A cartridge for securing a component of an assembly to a support, the cartridge comprising: a housing including at least one compartment;an adhesive within the at least one compartment;a fastener connected to the housing and removably attached to the support; anda membrane lid enclosing an opening of the housing and configured to receive a protruding member from the component such that the protruding member becomes adhered to the adhesive upon penetrating the membrane lid, the protruding member including saw-tooth edges configured to grip and form a seal against the membrane lid.
  • 19. The cartridge of claim 18, wherein the cartridge includes, for curing the adhesive within a predetermined time, at least one of: inductive heating coils disposed around the at least one compartment, orconductive metal placed inside the adhesive.
  • 20. The cartridge of claim 18, wherein the assembly is within a vertical assembly cell.
  • 21. The cartridge of claim 18, wherein the adhesive comprises a low-viscosity, quick set adhesive.
  • 22. The cartridge of claim 18, wherein the at least one compartment comprises a first compartment and a second compartment, wherein the adhesive is a two-part adhesive comprising a resin and a hardener, and wherein the resin is disposed within the first compartment and the hardener is disposed within the second compartment.
  • 23. The cartridge of claim 18, wherein the component is constrained in movement along six degrees of freedom when inserted into the at least one compartment.
US Referenced Citations (352)
Number Name Date Kind
4033484 Ornsteen Jul 1977 A
4974752 Sirek Dec 1990 A
5203226 Hongou et al. Apr 1993 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7344186 Hausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwärzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
20060108783 Ni et al. May 2006 A1
20140277669 Nardi et al. Sep 2014 A1
20170113344 Schönberg Apr 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
20210261210 Rawas Aug 2021 A1
Foreign Referenced Citations (38)
Number Date Country
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (3)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
Related Publications (1)
Number Date Country
20210261210 A1 Aug 2021 US