This invention relates to equipment and methods for cleaning water of vessels such as swimming pools and spas and more particularly, although not necessarily exclusively, to automatic cleaners whose bodies need not necessarily turn in use and are less subject to directional influence of attached hoses, thus allowing the cleaners to, among other things, move and collect debris omnidirectionally.
Conventionally, an automatic pool cleaner (“APC”) may be considered either “hydraulic” or “electric” depending on the source of energy employed to effect its movement within a pool, spa, or other water-containing vessel. “Electric” cleaners, sometimes also called “robots,” typically use electricity to power motors used to drive wheels or treads to allow the cleaners to move throughout the vessel. Although on-board batteries are sometimes considered to supply electricity to the robots, more likely electricity from mains outside the vessels is conveyed via electrical cords to the robots within the vessels.
“Hydraulic” cleaners, by contrast, connect to external pumps and utilize water flow caused by operation of the pumps to effect their movement within a pool or spa. Some hydraulic cleaners connect to pump outlets; these devices are called “pressure-side” APCs, as pressurized water from pump outlets typically drives the cleaners. Alternatively, hydraulic cleaners may connect to inlets of pumps. These “suction-side” cleaners often include valves and supporting structure designed periodically to interrupt water flow through their bodies to the pumps. Periodic flow interruption creates a “water-hammer” effect, with the resulting energy used to move the APCs within pools.
U.S. Pat. No. 4,742,593 to Kallenbach discloses exemplary valves useful in water-interruption, suction-side hydraulic APCs. A flexible-walled, “diaphragm” valve of the Kallenbach '593 patent may be placed within a chamber of a body of an APC, with the chamber filling with water upon immersion of the APC within a pool. As noted therein:
Expansion of the valve and release for it to reassume its relaxed condition is by the creation of a pressure differential across the valve member walls, i.e., a pressure difference between the chamber and the interior of the valve member. This is created by the suction [of the external pump]. The valve is autonomously opened and closed. Applied suction initially causes the valve to open; but with water flow established, the pressure within [the] valve drops below that of [the] chamber. The valve thus closes. The cycle autonomously repeats.
See Kallenbach '593 at col. 2, 1. 64 to col. 3, 1. 6 (numerals omitted).
U.S. Pat. No. 5,014,382 to Kallenbach illustrates an exemplary suction-side APC in which, for example, a valve of the Kallenbach '593 patent may be positioned. As shown in the Kallenbach '382 patent, the APC includes a flexible disc designed periodically to contact the surface to be cleaned as well as a body and an extension pipe both having a water-flow passage therethrough. Well depicted in the sole FIGURE of the Kallenbach '593 patent is that, when the flexible disc contacts a pool floor or other generally horizontal surface, water flows through the water-flow passage at an angle of approximately forty-five degrees thereto. A flexible hose connected to the end of the extension pipe remote from the disc continues to convey the water toward an inlet of a pump.
Combined with the acutely-angled flow path, the water-hammer effect provided by the interrupt valve tends to lead the APC in the direction of the horizontal vector component of the flow path. The result is that the APC effectively “follows” the hose, decreasing the randomness of movement of the APC along the pool floor and thus inhibiting cleaner of the entire floor. Similarly, by “following” the hose with its movement, the APC may be led into a corner of a pool or behind an obstacle with no automatic means of escape.
The present invention provides APCs with both flexible discs and water flow paths oriented perpendicularly (or approximately so) to pool floors or other surfaces contacted by the discs. As a consequence, the flow path through a body of such an APC is substantially vertical, so that no material horizontal vector of the water flow within the body exists. This change dramatically reduces influence of a connected hose upon movement of the body within a pool or spa, as no longer can the hose lead the APC in any substantial way.
Absent leadership by connected hoses, no mechanism exists to move conventional disc-containing, suction-side APCs within pools. The present invention hence also provides movement means for the APCs. Presently preferred is that such movement means comprise collapsible feet formed as part of, or directly or indirectly connected to, the APC bodies. The feet may be oriented at a small angle (e.g. twenty degrees) to the pool floor and collapse slightly about a hinge point at their bases so as to produce horizontal movement of the bodies. Operation of the diaphragm or other water-interrupt valve of an APC causes collapse and straightening of the feet at the valve frequency, with each cycle producing “forward” movement of the cleaner.
Moreover, the feet may be arrayed circularly (or substantially so) on an underside of the body of the APC and pivotable about a (vertical) axis generally perpendicular to the disc and pool floor. Some or all of the feet may be linked one to another so that they may be rotated or otherwise moved together and may point in the same direction for movement. This array of rotatable feet further lowers the energy needed to alter direction of the APC, as the entire APC need not be turned around the hose. Instead, any desirable direction of the APC may be achieved merely by changing the direction of the array of feet.
Preferred feet are largely rigid, with softer, rubber-like tips present where they contact floor of pools and spas. Each foot may be hinged at its base about an axis intended to be generally parallel to the pool floor when the APC is in use. Stops may be employed to limit the hinging movement.
As noted earlier, when extended to its most vertical position relative to the pool floor, contact angle of a foot with the floor relative to the hinge preferably is approximately ten degrees. Conversely, the contact angle when a foot is collapsed is preferably approximately twenty-five degrees. Of course, persons skilled in relevant fields will understand that neither contact angle is critical and thus may differ from the preferred values identified herein. A compression spring or other means may bias each foot toward its extended position.
One manner of interconnecting the arrayed feet is by mounting each hinge on a circular flange, mounting each flange on a circular gear, and engaging each circular gear by a master circular gear. Rotation axes of both the circular gears and the master circular gear are designed to be perpendicular to the pool floor when the APC is in use, and each foot may rotate about the rotation axis of its corresponding circular gear. By mechanically or electrically turning either a foot or the master circular gear, all of the arrayed feet are turned. Alternatively, feet of the array may communicate electrically with a controller able to command rotation or collapse (or both) of the feet via electrical signals.
Features of the invention thus include (but are not limited to) turning feet, rather than entire bodies, of APCs, collecting debris on a pool floor omnidirectionally, and providing water-flow paths through bodies of disc-based APCs that are essentially vertically oriented. APCs consistent with the present invention need not have any discernible “fronts,” “rears,” or “sides,” although they may have fronts, rears, and sides if desired. Their structures additionally may minimize, if not substantially avoid, movement as influenced by connected hoses.
It thus is an optional, non-exclusive object of the present invention to provide disc-based APCs that, when in use, have water flow paths oriented substantially perpendicularly to pool floors.
It is another optional, non-exclusive object of the present invention to provide such APCs that are not, or are only minimally, influenced in their movement by connected hoses.
It is a further optional, non-exclusive object of the present invention to provide APCs with movement means in the form of collapsible feet.
It is also an optional, non-exclusive object of the present invention to provide means for mechanically or electrically linking some or all of the feet so that they rotate simultaneously.
It is, moreover, an optional, non-exclusive object of the present invention to provide APCs that need not have any discernible fronts, rears, and sides and that may collect debris from a pool floor omnidirectionally.
Other objects, features, and advantages of the present invention will be apparent to persons skilled in the relevant art with reference to the remaining text and the drawings of this application.
Illustrated especially in
Body 14 preferably includes a ring or fitting 42. Although not shown in the drawings, a hose typically may be attached to fitting 42 so as to convey—to a debris filter or elsewhere—water exiting outlet 22. Fitting 42 desirably allows the hose to swivel (rotate) relative to body 14, as is conventional.
Clear from
Because not materially subject to motive force and tendencies of a hose, APC 10 requires some other means for moving within a swimming pool or spa.
Each foot 54 may comprise tip 58, base 62, hinge 66, flange 70, and spring 74. Tip 58 is configured to contact the to-be-cleaned surface for support and motive purposes. It advantageously may be made of softer material than some or all of the remainder of foot 54, although use of such softer material is not mandatory.
Base 62 and hinge 66 mount to flange 70, which may be circular (annular) or generally so. Flange 70 in turn fixedly mounts to a gear 50. Thus, if master gear 46 turns, each gear 50 will turn and each flange 70 will turn, thereby turning foot 54. Because tip 58 normally is angled (e.g. ten degrees) to the pool floor relative to flange 70, turning foot 54 causes base 62 to pivot about the hinge 66, overcoming the bias force of spring 74 and further increasing the angle (to, e.g., twenty-five degrees) tip 58 forms relative to the pool floor as foot 54 collapses. As multiple feet 54 act in the same manner simultaneously, body 14 moves linearly (“walks”) along the pool floor in a direction effectively opposite the collapse. Ceasing turning of master gear 46 stops the force causing the collapse, allowing spring 74 to return feet 54 to their extended (uncollapsed) positions. Repeating this process over time allows APC 10 to move well within a pool or spa.
Indeed, because feet 54 may turn throughout three-hundred sixty degrees of rotation, body 14 of APC 10 may move in any direction at any time—effectively “pulling,” rather than being “pulled by,” a connected hose. Consequently, APC 10 need not have any discernible “forward” or “rearward” movement, nor need it necessarily have any discernible “front,” “rear,” or “sides.” This omnidirectional movement capability of APC 10 likewise allows omnidirectional collection of debris from a pool floor, increasing its functionality over conventional APCs.
Turning of master gear 46 may occur mechanically as, for example, through connection to another gearing mechanism. Electrical signals alternatively or additionally may be used, together with solenoids or other switches, to cause master gear 46 to turn. Although hydraulic APCs conventionally lack any on-board source of electrical power, such power may be provided by the equipment described in U.S. patent application Ser. No. 14/205,408, now U.S. Pat. No. 9,488,154, of van der Meijden, for example.
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of the present invention. Modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of the invention. For example, although much of the foregoing description relates to a suction-side, disc-containing, hydraulic APC, in some cases aspects of the invention may be utilized in connection with other equipment including, but not limited to, electric APCs, pressure-side hydraulic APCs, and suction-side hydraulic APCs that might not contain discs. Similarly, although gears may be employed to turn feet 54, crank arms or other devices may be used instead. Moreover, “pool,” “swimming pool,” and their plurals may include within their definitions spas and other water-containing vessels used for recreational or therapeutic bathing or swimming. The entire contents of the Kallenbach '593 and Kallenbach '382 patents and the van der Meijden application are incorporated herein by this reference.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/812,755, filed Apr. 17, 2013, entitled “Suction Pool Cleaner,” the entire contents of which are incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3321787 | Myers | May 1967 | A |
3324492 | Myers | Jun 1967 | A |
4521933 | Raubenheimer | Jun 1985 | A |
4536908 | Raubenheimer | Aug 1985 | A |
4742593 | Kallenbach | May 1988 | A |
5014382 | Kallenbach | May 1991 | A |
5093950 | Heier | Mar 1992 | A |
5379473 | Rief et al. | Jan 1995 | A |
5706539 | Fukuda | Jan 1998 | A |
5802653 | Roumagnac et al. | Sep 1998 | A |
6237175 | Phillipson | May 2001 | B1 |
6463614 | Supra | Oct 2002 | B1 |
20070056124 | Wichmann | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
2635068 | Feb 1990 | FR |
Entry |
---|
U.S. Appl. No. 14/205,408, filed Mar. 12, 2014. |
International Search Report and Written Opinion dated Nov. 4, 2014 in Application No. PCT/US2014/034297. |
European Patent Application No. 16171510.7, Extended European Search Report, mailed Sep. 26, 2016, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20140310894 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61812755 | Apr 2013 | US |