One or more embodiments of the present invention generally relate to safety equipment, and more particularly for example, to protective helmets that protect the human head against repetitive impacts, moderate impacts and severe impacts so as to significantly reduce the likelihood of both translational and rotational brain injury and concussions.
Action sports (e.g., skateboarding, snowboarding, bicycle motocross (BMX), downhill mountain biking, and the like), motorsports (e.g., off-road and on-road motorcycle riding and racing) and traditional contact sports (e.g., football and hockey) continue to grow at a significant pace throughout the world as each of these sports expands into wider participant demographics. While technology and sophisticated training regimes continue to improve the performance capabilities for such athletes/participants, the risk of injury attendant to these activities also increases. Current “state of the art” helmets are not keeping pace with the evolution of sports and the capabilities of athletes. At the same time, science is providing alarming data related to the traumatic effects of both repetitive but moderate, and severe impacts to the head. While concussions are at the forefront of current concerns, rotational brain injuries from the same concussive impacts are no less of a concern, and in fact, are potentially more troublesome.
In accordance with one or more embodiments of the present disclosure, omnidirectional impact energy management systems are provided for protective helmets that can significantly reduce both rotational and linear forces generated from impacts to the helmets over a broad spectrum of energy levels.
The novel techniques, for one or more embodiments, enable the production of hard-shelled safety helmets that can provide a controlled internal omnidirectional relative displacement capability, including relative rotation and translation, between the internal components thereof. The systems enhance modern helmet designs for the improved safety and well-being of athletes and recreational participants in sporting activities in the event of any type of impact to the wearer's head. These designs specifically address, among other things, the management, control, and reduction of angular acceleration forces, while simultaneously reducing linear impact forces acting on the wearer's head during such impacts.
In accordance with an embodiment, a helmet may be provided. The helmet may include an outer shell, an outer liner disposed within and coupled to the outer shell, an inner liner disposed within and coupled to the outer liner, an aligner coupled to the outer liner and the inner liner and configured to position the outer liner relative to the inner liner, and a damper configured to allow omnidirectional movement of the inner liner relative to the outer liner and the outer shell.
The scope of this invention is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description of one or more embodiments. Reference will be made to the appended sheets of drawings that will first be described briefly, and within which like reference numerals are used to identify like elements illustrated in one or more of the figures thereof.
In accordance with one or more embodiments of this disclosure, omnidirectional impact energy management systems for helmets are provided that can significantly reduce both rotational and linear forces generated from impacts imparted to the helmets. The systems enable a controlled internal omnidirectional relative displacement capability, including relative rotational and translational movement, between the internal components of a hard shelled safety helmet.
One or more embodiments disclosed herein are particularly well suited to helmets that can provide improved protection from both potentially catastrophic impacts and repetitive impacts of varying force that, while not causing acute brain injury, can cause cumulative harm. The problem of cumulative brain injury, i.e., Second Impact Syndrome (SIS), is increasingly recognized as a serious problem in certain sports, such as American football, where much of the force of non-catastrophic contact is transferred to the head of the wearer. In various example embodiments, helmets are configured with dampers of specific flex and compression characteristics to manage a wide range of repetitive and severe impacts from all directions, thus addressing the multitude of different risks associated with diverse sports, such as football, baseball, bicycle riding, motorcycle riding, skateboarding, rock climbing, hockey, snowboarding, snow skiing, auto racing, and the like.
Head injuries result from two types of mechanical forces—contact and non-contact. Contact injuries arise when the head strikes or is struck by another object. Non-contact injuries are occasioned by cranial accelerations or decelerations caused by forces acting on the head other than through contact with another object, such as whiplash-induced forces. Two types of cranial acceleration are recognized, which can act separately or in combination with each other. “Translational” acceleration occurs when the brain's center of gravity (CG), located approximately at the pineal gland, moves in a generally straight line. “Rotational” or angular acceleration occurs when the head turns about its CG without linear movement of the CG.
Translational accelerations/decelerations can result in so-called “coup” and “contrecoup” head injuries that respectively occur directly under the site of impact with an object and on the side of the head opposite the area that was impacted. By contrast, studies of the biomechanics of brain injury have established that forces applied to the head which result in a rotation of the brain about its CG cause diffuse brain injuries. It is this type of movement that is responsible for subdural hematomas and diffuse axonal injury (DAI), one of the most devastating types of traumatic brain injury.
Referring to
Safety helmets generally use relatively hard exterior shells and relatively soft, flexible, compressible interior padding, e.g., fit padding, foam padding, air filled bladders, or other structures, to manage impact forces. When the force applied to the helmet exceeds the capability of the combined resources of the helmet to reduce impacts, energy is transferred to the head and brain of the user. This can result in moderate concussion or severe brain injury, including a rotational brain injury, depending on the magnitude of the impact energy.
Safety helmets are designed to absorb and dissipate as much energy as possible over the greatest amount of time possible. Whether the impact causes direct linear or translational acceleration/deceleration forces or angular acceleration/deceleration forces, the helmet should eliminate or substantially reduce the amount of energy transmitted to the user's head and brain.
The inner and outer liners 104 and 102 are coupled to each other so as to form an internal subassembly by the use of a plurality of resilient, e.g., elastomeric, structures referred to herein as “isolation dampers.” As illustrated in
In an embodiment, one or both of the concave and convex features of the isolation dampers 108 can be complementary in shape to one or both of those of the concave and convex features of the inner and outer liners 104 and 102, respectively. The isolation dampers 108 are disposed between the inner and outer liners 104 and 102 such that their concave recesses 110 are respectively disposed over a corresponding one of the convex protrusions 116 on the inner liner 104, and the convex protrusions on the isolation dampers 108 are respectively disposed within corresponding ones of the concave recesses 114 in the outer liner 102.
As illustrated in
In some embodiments, limits or “stops” can be designed into and between the liners to prevent over-rotation or over-displacement between the layers during an impact incident. Referring again to
In other embodiments, one or more additional layers or liners can be inserted between an inner liner and outer liner. Such “intermediate” liners can be formed of, for example, EPS, EPP, EPU, or any other suitable materials. For example, as illustrated in
As illustrated in
In other embodiments, a similar system of lugs 136 and isolation dampers 130 can be implemented using only two layers or liners 138, 142, or alternatively, using three or more liners. It will be readily understood by those of skill in the art that a wide range of different configurations can be devised for the lugs 136 and isolation dampers 130 described herein. Indeed, the lugs 136 and isolation dampers 130 can take on a wide range of shapes, sizes, materials, and specific physical properties. They can also be configured to engage different layers differently than as illustrated and described herein.
In some embodiments, the isolation dampers 130 can be configured with specific physical properties that enable them to couple an inner liner 138 with an outer layer 142 and maintain a predetermined gap there between, or otherwise control the spatial relationship between the two liners 138, 142. Where a space is maintained between different layers, the space can comprise an air gap, or can be completely or partially filled with any suitable material in any form, including without limitation, a liquid, gel, foam, or gas cushion.
As illustrated in, e.g.,
As described above, in some embodiments, the isolation dampers 108 are configured so as to return the inner and outer liners 104 and 102 back to their respective initial or “neutral” resting positions relative to each other, once the rotational or translational force of an impact is removed from them. Thus, the outer shell 144 and internal liners of a helmet incorporating such an arrangement will quickly and automatically re-align themselves relative to each other after an impact. In this regard, it should be understood that the dimensions, shape, positioning, alignment, and materials of the isolation dampers 130 can be varied widely to tune the helmet to the specific application at hand.
As those of some skill will understand, the specific shape and material properties of an isolation damper 200 are the primary control elements that affect its spring rate. As the geometry and/or material specifications of the isolation damper 200 are changed, the associated spring rate will change accordingly, following basic physical property relationships. For example, if only the length is increased, the spring rate will decrease, and the isolation damper 200 will become less resistant, in force per displacement, over a particular range of values. Further, if the geometric shape of the isolation damper is changed from one shape to another, for example, from a cylinder to an hourglass shape, the spring rate of the isolation damper 200 in axial compression versus its spring rate in a direction orthogonal to the direction of the axial compression can be altered and significantly changed to effect the desired performance requirements.
In addition to the physical shape of the isolation damper 200 and its material properties, the method by which the isolation damper 200 is constrained and allowed to deform, or prevented from deforming, is another design technique that can be used to control the dynamic interactions of an impact force acting on a helmet and how it is transferred from one liner to another liner. The opposing frusto-conical recesses 220 in opposing faces of the liners 202 and/or 204 described above are only one technique by which the dynamic movement characteristics of the isolation dampers 200 can be managed to control and modify the ability of the outer liner 204 to move in a desired fashion in both compression and shear directions relative to the inner layer 202.
If the volume of the isolation damper 200 cannot be reduced to zero, it must be displaced into another volume when it is compressed. If the spring rate of the isolation damper 200 is a function of its material properties and its ratio of compressibility into itself, then its spring rate will be nonlinear and will increase at an increasing rate. This increasing spring rate will grow as the isolation damper 200 is compressed and deformed, until it can no longer deform freely, at which time, the spring rate of the isolation damper 200 will increase rapidly such that it becomes virtually incompressible and exhibits an almost infinite resistance thereto. The frusto-conical recesses 200 in each liner 202, 204 at the respective attachment points of the isolation dampers 200 can be used to optimize these desired functions of movement in linear compression, shear movement and the point of contact of one liner with another liner by their geometric relationships to those of the associated isolation dampers 200, and also reducing the damage to the outer and inner liners that would be imposed onto them by the dampers as an additional control element.
The inserts 308 can be held in the associated liner 304 or 306 by, for example, friction, or alternatively, by any other suitable means, including adhesives, heat bonding and/or welding, and similarly, the respective ends of the isolation dampers 310 can held in the corresponding inserts 308 by friction, or alternatively, be fixed in the inserts 308 by any suitable method or means. The inserts 308 can be made of any suitable material, including thermosetting or thermoforming plastics, such as acrylonitrile butadiene styrene (ABS), polyvinylchloride (PVC), polyurethane (PU), polycarbonates, nylon, various alloys of metals, and the like.
Similarly, the isolation dampers 200 can be formed of a wide variety of elastomeric materials, including MCU (micro-cellular urethane), EPU, natural rubber, synthetic rubbers, foamed elastomers of various chemical constituents, solid cast elastomers of various chemical constituents, encased liquids, gels or gasses providing flexible structures, and any flexible assembly of any other kind that will provide the desired degree of omnidirectional movement.
The specific thicknesses of the various liners and gaps, if any, between them can be varied widely depending on the particular application of the helmet. The geometries and relative arrangement of the various liners and any gaps between them can also be varied to manage the characteristics of the helmet in response to impacts from a range of different directions and magnitudes. For example, in one specific example embodiment, inner and outer EPS liners with respective thicknesses of about twenty (20) millimeters and twelve (12) millimeters can be used with an air gap of about six (6) millimeter between them.
The outer liner 802 may be disposed of or contained within an outer shell (not shown) of the helmet 800. The outer shell may be a relatively hard outer shell (i.e., harder than the liners of the helmet 800) and may be made from, for example, polycarbonate, ABS plastic, PVC plastic, nylon, fiberglass, carbon fiber, carbon fiber reinforced plastic, other plastics, wood, metals, or other suitable materials. The outer shell may contain the various components highlighted in
The outer liner 802 may be disposed between the outer shell and any inner liners, dampers, or other components. The outer liner 802, in various embodiments, may be formed of any suitable material, including energy absorbing materials of the types commonly used in the industry, such as expanded polystyrene (EPS) or expanded polypropylene (EPP).
In addition to the properties of the material of the outer liner 802, the outer liner 802 may also include various features that may absorb force. For example, in a certain embodiment, the outer liner 802 may include the lug 808. The lug 808 may be a protrusion from a side of the outer liner 802. In various embodiments, the lug 808 may be on the outside (i.e., the side closer to the outer shell) or may be on the inside (i.e., the side closer to the inner liner 804) of the outer liner 802. The lug 808 may deform when subjected to a force. The force may be an axial force, a lateral force, a rotational motion, another type of force, or a combination of such forces. In various embodiments, the lug 808 may be molded from the same material as the outer liner 802 and may be a part of the outer liner 802 (that is, for example, manufactured from the same mold). In the embodiment shown in
The inner liner 804 may be disposed of or contained within the outer liner 802. The inner liner 804 may, similar to the outer liner 802, be formed of any suitable material, including energy absorbing materials of the types commonly used in the industry, such as expanded polystyrene (EPS) or expanded polypropylene (EPP). In various embodiments, the inner liner 804 may also be bonded, attached via mechanical fasteners such as screws, rivets, and mechanical attachment features, and/or placed inside the outer liner 802 and allowed to translate and/or rotate. In certain embodiments, the inner liner 804 may also be attached to the outer shell.
In certain embodiments, the inner liner 804 may include a lug or a plurality of lugs. The lugs may be similar to the lug 808. In embodiments when the inner liner 804 includes a lug or a plurality of lugs, a component the lug 808 may be configured to contact, such as the outer liner 802, the outer shell, or an intermediate liner, may not include detents or cup-like features to contact and/or locate the lug. Other embodiments of such components may include such features or there may be a separate layer with such features.
The substrate 806 may be an intermediate layer between the outer liner 802 and the inner liner 804. The substrate 806 may, in certain embodiments, be a support for the isolation damper 822 or a plurality of isolation dampers. The isolation damper 822 may, in certain embodiments, be an elastomeric structure and be designed to absorb shock and/or allow controlled movement of the inner liner 804 relative to the outer liner 802. The isolation damper 822 may allow the inner liner 804 to translate and/or rotate relative to the outer liner 802. Thus, the isolation damper 822 may allow omnidirectional movement of the inner liner 804 relative to the outer liner 802, or vice versa. Such allowed movement may better absorb translation and/or rotational movement of a helmet wearer's head and thus offer improved protection. The isolation damper 822 may be formed of a wide variety of elastomeric materials, including MCU (micro-cellular urethane), EPU, natural rubber, synthetic rubbers, foamed elastomers of various chemical constituents, solid cast elastomers of various chemical constituents, encased liquids, gels or gasses providing flexible structures, and any flexible assembly of any other kind that will provide the desired degree of omnidirectional movement.
Additionally, the isolation damper 822 may include one or more protrusions. In certain embodiments, the protrusions may be optional features. The protrusions may include features to, for example, absorb shock or couple various components together. Accordingly, the isolation damper 822 may also include conical, spherical, partially spherical or conical, rectangular, or other such geometric features. Features and/or with corresponding geometries (e.g., configured to receive a conical or spherical shape) may be fitted into the corresponding liners or other components that may receive the isolation damper 822. Other embodiments of the isolation damper 822 may not include protrusions and/or may be substantially cylindrical in profile.
In certain embodiments, the isolation damper 822 may be a part of an assembly to couple together the outer liner 802 and the inner liner 804. In such an embodiment, the isolation damper 822 may, for example, mechanically couple to one or both of the outer liner 802 or the inner liner 804. The isolation damper 822 may also, alternatively or in addition to, be coupled to the substrate 806. The substrate 806 may then be coupled to one or both of the outer liner 802 and the inner liner 804. In the helmet 800, the isolation damper 822 may be coupled to the substrate 806 on one end and the outer liner 802 on another end. The substrate 806 may then be coupled to the inner liner 804.
The outer liner 802 may include the insert 824 to receive the isolation damper 822. The insert 824 may be a recess or aperture within the inner liner 804 and/or outer liner 802. The recess or aperture may be fitted with inserts or cup-like inserts that locate and retain the isolation dampers 822 in place, provide additional support for the isolation dampers 822 within the liners, and/or help to manage and disburse impact forces acting on the helmet 800. The insert 824 may be configured with any suitable geometry and can include flanges of appropriate sizes and/or shapes to distribute forces over a larger area of a corresponding one of the liners.
In some embodiments, the insert(s) respectively disposed on the inner and/or outer liners 804 and/or 802 may be over-molded into the associated liner for attachment purposes, and may utilize a circumferential flange or multiple circumferential flanges in various sizes and configurations to help retain and distribute forces within the material of the associated liner.
The insert 824 may be held in the associated liner by, for example, friction, or alternatively, by any other suitable means, including adhesives, heat bonding and/or welding, and similarly, the respective ends of the isolation damper 822 may be held in the corresponding insert 824 by friction, or alternatively, be fixed in the insert 824 by any other suitable method or means. The insert 824 may be made of any suitable material, including thermosetting or thermoforming plastics, such as acrylonitrile butadiene styrene (ABS), polyvinylchloride (PVC), polyurethane (PU), polycarbonates, nylon, various alloys of metals, and the like.
In addition to impact absorbing features, the helmet 800 may also include features to improve comfort. For example, the inner liner 804 may include a vent 820 to improve ventilation within the helmet 800. The vent 820 may be a cutout of various geometries within the inner liner 804 to allow air to flow through the inner liner 804. In other embodiments, vents may also be present on the outer liner, on intermediate liners, or on other components within the helmet 800.
Referring back to the substrate 806, the substrate 806 may be coupled to the inner liner 804 through various different methods and components.
In
In addition to the components of
The attachment feature 826 may also be other features. For example, the attachment features 826 may be a stand-off or pin rising from the inner liner 804. The substrate 806 may include a feature, such as a hole, that may receive the stand-off or pin. The stand-off or pin may then be inserted into the hole. In certain embodiments of the substrate 806, the substrate 806 may include multiple holes and the inner liner 804 may include a corresponding number of stand-offs or pins. In such an embodiment, the substrate 806 may be stretched over the stand-offs or pins of the inner liner 804 during assembly. Once assembled, the substrate 806 may then be contained on the inner liner 804 through the shape of the substrate 806 alone, through fasteners such as screws, bolts, adhesives, or Velcro, or through a combination of multiple different methods of securing the substrate 806 to the inner liner 804.
In addition to the liner and isolation damper configuration shown in
The impact absorbing system 900 includes an outer liner 902, an inner liner 904, a damper array 910, and an outer shell 918. The outer liner 902, the inner liner 904, and the outer shell 918 may be similar to their respective components described in
The first substrate 912 may be a substrate made from the same material as the damper 914 or may be made from a different material. In certain embodiments, the first substrate may be harder than the damper 914 and may be, for example, polycarbonate, nylon, ABS plastic, PVC plastic, graphite, wood, metal, fiberglass, carbon fiber, Kevlar, or other suitable materials. In such embodiments, dampers 914 may be bonded or coupled to the first substrate 912. For example, the dampers 914 may be bonded through an adhesive such as glue or through mechanical fasteners such as screws and push-pins. The first substrate 912 may aid in more evenly distributing force to the dampers 914 and/or to a substrate. Additionally, the first substrate 912 may also be coupled to the inner liner 904 through any appropriate way. For example, the first substrate 912 may be bonded to, molded, or fastened to the inner liner 904.
The damper 914 may be an impact absorbing damper and may include any or all features of an isolation damper. The damper 914 may allow for omnidirectional movement of the inner liner 904 relative to the outer liner 902 and/or the outer shell 918 and may be of any appropriate material or geometry. Examples of suitable materials include MCU (micro-cellular urethane), EPU, natural rubber, synthetic rubbers, foamed elastomers of various chemical constituents, solid cast elastomers of various chemical constituents, encased liquids, gels or gasses providing flexible structures, and any flexible assembly of any other kind that will provide the desired degree of omnidirectional movement. The suitable materials may be isotropic or anisotropic.
In various embodiments, the number of dampers 914 may be varied depending on the desired deformation characteristics. In certain embodiments, including a plurality of dampers may more evenly distribution force across the dampers and, thus, reduce the likelihood of damage, such as tearing, permanent deformation, or other gouges, to the dampers 914, the first substrate 912, the second substrate 916, the inner liner 904, and/or the outer liner 902.
The damper 914 may be of a geometry shaped to absorb shock. For example, the damper 914 may include a generally circular disk having a concave, e.g., generally spherical, recess disposed in a lower surface thereof, a correspondingly shaped convex protrusion extending from an upper surface thereof, and a flange extending around the circumference thereof. In some embodiments, the damper 914 may include elongated cylindrical members.
Various embodiments may have all of the dampers be a certain shape or may include dampers with a plurality of different shapes, sizes, and/or materials. Different dampers designs may be used for specific applications and may be effectively “tuned” to manage the anticipated rotational and translational forces applied. The dampers may be variously configured to control the amount of rotational force that will cause displacement of the various liners of the helmet and may be configured such that they will tend to cause the inner liner 904 to return to its original position relative to the outer liner 902 after the force of an impact is removed from the helmet.
In some embodiments, limits or “stops” may be designed into and between the liners to prevent over-rotation or over-displacement between the layers during an impact incident. Other embodiments may use other features of the helmet to act as stops. In certain embodiments, there may be dampers of various different heights or geometries. As the inner liner 902 compresses further from its normal resting position, relative to the outer shell 918, the dampers may smoothly ramp up resistance force. For example, a certain embodiment may only have 40% of the damper engaging and offering resistance to movement at the normal resting position, but as the inner liner 902 compresses, additional dampers may engage and offer resistance to movement. The dampers 914 may also be of multiple different geometries to allow for the rate that their resistance force ramps up to vary depending on the amount of displacement of the inner liner 904. For example, the dampers 914 may include grooves and flares for such purposes.
Additionally, the damper 914 may be coupled to the second substrate 916. The second substrate 916 may be a substrate made from the same material as the first substrate 912 and/or the damper 914 or may be made from a different material. In certain embodiments, the second substrate 916 may be bonded or coupled to at least a portion of the dampers 914 and/or the outer liner 916.
Certain embodiments may not include one or both of the first substrate 912 or the second substrate 916. In embodiments with only one substrate instead of two substrates, the dampers may be coupled to the one substrate at one end and at least a portion of the dampers may contact or engage the liner at another end. In embodiments without substrates, the dampers may be coupled to at least one of the liners or may be molded into at least one of the liners.
Various other impact absorbing systems are possible.
The balls 1030 and the housings 1032 may allow for movement of the inner liner 1004 relative to the outer liner 1002. The balls 1030 may allow for movement in all directions. The balls 1030 may, in certain embodiments, be made of an elastomeric material and may compress if subjected to a force. While certain embodiments may allow the balls 1030 to roll freely, other embodiments may couple the balls 1030 to one, some or all of the inner liner 1004, the outer liner 1002, the first substrate 1012, and the second substrate 1016.
The housings 1032 may each enclose a ball or a plurality of balls. The housings 1032 may provide a limit of movement for the inner liner 1004 relative to the outer liner 1002. In certain embodiments, the housings 1032 may be made from an elastomeric material.
The first substrate 1012 and/or the second substrate 1016 may be substrates made from a relatively firm material, such as polycarbonate, to allow the balls 1030 to translate. Alternatively, the material of the first substrate 1012 and/or the second substrate 1016 may be tuned to offer a resistance to the translation of the balls 1030. In such an embodiment, the first substrate 1012 and/or the second substrate 1016 may be made from an elastomeric material so that, in a resting position, the substrate may deform where the ball 1030 contacts the substrate and thus offer a resisting force to movement of the ball 1030.
Additionally, certain embodiments may not include the housings 1032. In such embodiments, the balls 1030 may be allowed to freely roll or substrates and/or the liners may include features to contain the balls 1030 that serve the same function as the housings 1032, such as limiting the movement of the balls 1030 or ramping up resistance force to movement of the balls 1030 when the balls 1030 move away from a “center” position.
The compression damper 1134 may be an off the shelf vibration compression damper. Alternatively, the compression damper 1134 may be a custom shape. The cylindrical damper 1136 may be coupled to the compression damper 1134 or may be molded as the same part as the compression damper 1134. The cylindrical damper 1136 may be bonded or coupled to the outer liner 1102 or the inner liner 1104. In certain other embodiments, there may be multiple cylindrical dampers coupled to the compression damper 1134 and the cylindrical dampers may be coupled to both the inner liner and the outer liner.
The damper array 1238 may be a sheet of compressible material with internal void areas. The sheet may be designed to compress and shear when subjected to a force. The damper array 1238 may shear and/or compress in any direction. The damper array 1238 may be shaped into thin cross sections. The damper array 1238 may compress or deform linearly or may be configured to smoothly ramp resistance to compression or deformation in any force curve that may be beneficial. While the damper array 1238 includes void areas that are rectangular in shape, other embodiments of the damper array 1238 may include void areas that are of other shapes, such as circular, hexagonal, and other geometric shapes. The percentage of the damper array 1238 that is made up of the void area may be varied depending on the desired compression characteristics.
While the damper array 1238 of the helmet 1200 does not include a substrate, other embodiments of the damper array 1238 may include a first substrate and/or a second substrate. The substrates may serve to equalize the distribution of force.
The attachment damper 1440 may be coupled to the inner liner 1404, the outer liner 1402, and/or another component of the helmet 1400 (e.g., the substrate 1406). The attachment damper 1440 may, in certain embodiments, couple and position the inner liner 1404 relative to the position of the outer liner 1402. The attachment damper 1440 may be coupled to the inner liner 1404, the outer liner 1402, the substrate 1406, and/or other component of the helmet 1400 through adhesives (e.g., glues), through mechanical fasteners (e.g., pins, bolts, rivets, or other mechanical attachment components), and/or through friction or other attachment techniques (e.g., molded to or within such other components).
In certain impact situations, the inner liner 1404 may move relative to the outer liner 1402 or vice versa. The attachment damper 1440 may then, after movement of the inner liner 1404 relative to the outer liner 1402, return the inner liner 1404 and/or the outer liner 1402 to the original position or substantially the position before movement. In certain embodiments the attachment damper 1440 may also be configured to receive forces imparted to the helmet and absorb the forces. Such forces may include oblique angle forces.
The isolation damper 1442 may be coupled to the sliding disc 1444. In certain embodiments, the isolation damper 1442 may be bonded, mechanically fastened, friction fit, or coupled through other techniques to the sliding disc 1444. The sliding disc 1444 may be configured to move relative to (e.g., slide on) the inner liner 1404 and/or the outer liner 1402. For example, if the helmet 1400 is subjected to an oblique force, the inner liner 1404 may move relative to the outer liner 1402 and thus the isolation damper 1442 and the sliding disc 1444 may move relative to inner liner 1404 and/or the outer liner 1402. Accordingly, in embodiments with some or all of the isolation dampers 1442 coupled to sliding discs 1444, there may be lower resistance to lateral movement of the inner liner 1404 relative to the outer liner 1402 and, as such, lower amounts of oblique force may be transferred to the wearer. In certain such embodiments, the helmet 1400 may also include attachment dampers 1440 that may then reposition the inner liner 1404 relative to the outer liner 1402 after an impact.
The sliding discs 1444 may be configured to slide on one or more of the inner liner 1404 and/or the outer liner 1402. The sliding discs 1444 may include a sliding surface that may be of a greater surface area than that of the isolation dampers 1442 attached to the sliding discs 1444. In certain embodiments, the sliding surface may be low friction, due to the material of the sliding disc 1444 and/or due to a coating applied to the surface. Additionally, the sliding discs 1444 may be coupled to the isolation dampers 1442 through adhesives, mechanical fasteners, and/or through friction or other attachment techniques.
In the embodiment shown in
Certain embodiments may include the secondary damper 1552. In certain embodiments, the secondary damper 1552 may be disposed within the recess (e.g., within the recess opposite the lug 1550 and/or within a recess of the isolation damper 1442), but other embodiments may dispose the secondary damper 1552 elsewhere (e.g., on another portion of the outer liner 1502 and/or the inner liner 1504). For example, certain other embodiments may include a through-hole within the outer liner 1502 (e.g., at the location of the lug 1550) and the secondary damper 1552 may be disposed within the through-hole or a portion of the through-hole.
In such embodiments, the lug 1550 and/or the outer liner 1502 may be made from a material with a first rate (e.g., elasticity or spring rate). The secondary damper 1552 may be made from a material with a second rate. As such, the lugs 1550 and the secondary damper 1552 may each be tuned to provide protection at different forces and/or impact velocities. Accordingly,
In certain embodiments, the lug 1550 may be configured to engage before the secondary damper 1552 and/or vice versa. As such, for the example of
The substrate 1606 of
In the embodiment shown in
The embodiment of
Additionally, the substrate 1840A may be disposed between the inner liner 1804 and the outer liner 1802. The substrate 1840A may be coupled to or inserted into a feature of the inner liner 1804 and/or the outer liner 1802. In certain embodiments, the substrate 1840A may be coupled to the inner liner 1804 and/or the outer liner 1802 without adhesives (e.g., through a mechanical fastener, molded-in, and/or through a friction fit or insertion into an opening that may then hold the substrate 1840A). Additionally, the substrate 1840A may be configured to receive the attachment damper 1840 via features such as a friction fit or mechanical fasteners. The attachment damper 1840 may couple the inner liner 1804 and/or the outer liner 1802 to position the inner liner 1804 relative to the outer liner 1802. The embodiment shown in
The isolation damper 1442B may include a first recess 1442-3, a second recess 1442-4, and a sliding disc 1444. One or both of the first recess 1442-3 and the second recess 1442-4 may be filled or partially filled with an additional material. The additional material may include properties similar to or different from that of the main portion of the isolation damper 1442B. In certain embodiments may include additional recesses that may also be filled with materials of different properties. Additionally, while
In block 3204, an aligner may be disposed within and coupled to the outer liner. The aligner may be coupled to the outer liner via, for example, bonding, adhesives, mechanical fasteners, mold-in, or other techniques described herein. In certain embodiments the aligner may be molded into the outer liner.
In block 3206, an inner liner may be disposed within the outer liner. The inner liner may then be coupled to the aligner in block 3208 so that the outer liner, the aligner, and the inner liner may be coupled. Coupling may be via, for example, bonding, adhesives, mechanical fasteners, mold-in, or other techniques described herein. In certain such embodiments, the aligner may control the distance between portions of the outer liner and portions of the inner liner and may be configured to allow the distance to change upon receiving an impact. In certain embodiments, the inner liner, the outer liner, the aligner, and/or another components may include one or more isolation dampers and/or lugs. In embodiments where another component includes one or more isolation dampers and/or lugs, such a component may also be disposed within and/or coupled to the outer shell, the outer liner, and/or the inner liner.
Other embodiments of the impact absorbing system may include any of the impact absorbing system configurations detailed herein in various safety helmets (e.g., sports helmets, construction helmets, racing helmets, helmets worn by armed forces personnel, helmets for the protection of people such as toddlers, bicycle helmets, pilot helmets, and other helmets) as well as in various other safety equipment designed to protect a wearer. Non-limiting examples of such other safety equipment may include body armor such as vests, jackets, and full body suits, gloves, elbow pads, shin pads, hip pads, shoes, helmet protection equipment, and knee pads.
By using different materials and configurations, it is possible to adjust or tune the protection provided by helmets that use the systems of the disclosure, as would be understood by one skilled in the art. The liners and any other layers can be formed from materials with distinct flexibility, compression, and crush characteristics, and the isolation dampers can be formed from various types of elastomers or other appropriate energy absorbing materials, such as MCU. Thus, by controlling the density and stiffness of the isolation dampers and related internal constructional materials, safety helmets can be configured to strategically manage impact energy based on the known range of common head weights expected to be present in any given helmet, and by helmet size, and by any give sporting activity.
The foregoing description is presented so as to enable any person skilled in the art to make and use the invention. For purposes of explication, specific nomenclature has been set forth to provide a thorough understanding of the disclosure. However, it should be understood that the descriptions of specific embodiments or applications provided herein are provided only by way of some example embodiments of the invention and not by way of any limitations thereof. Indeed, various modifications to the embodiments will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other embodiments and applications without departing from the spirit and scope of the invention. Thus, the present invention should not be limited to the particular embodiments illustrated and described herein, but should be accorded the widest possible scope consistent with the principles and features disclosed herein.
This application is a continuation of U.S. patent application Ser. No. 16/442,384, filed on Jun. 14, 2019 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” which in turn claims the benefit of and priority to U.S. Provisional Patent Application No. 62/861,260, filed on Jun. 13, 2019 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS” and U.S. Provisional Patent Application No. 62/685,895, filed on Jun. 15, 2018 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” all of which are incorporated herein by reference in their entirety. U.S. patent application Ser. No. 16/442,384 is a continuation-in-part of U.S. patent application Ser. No. 15/186,418, filed on Jun. 17, 2016 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/186,418 is a continuation-in-part of U.S. patent application Ser. No. 14/607,004, filed on Jan. 27, 2015 (now U.S. Pat. No. 9,820,525 issued Nov. 21, 2017) and entitled “HELMET OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS,” and claims the benefit of and priority to U.S. Provisional Patent Application No. 62/181,121, filed on Jun. 17, 2015 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” and U.S. Provisional Patent Application No. 62/188,598, filed on Jul. 3, 2015, entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” all of which are incorporated herein by reference in their entirety. U.S. patent application Ser. No. 14/607,004 is a continuation of U.S. patent application Ser. No. 13/368,866, filed Feb. 8, 2012 (now U.S. Pat. No. 8,955,169 issued Feb. 17, 2015) and entitled “HELMET OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS,” which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 13/368,866 claims the benefit of and priority to U.S. Provisional Patent Application No. 61/462,914, filed on Feb. 9, 2011 and entitled “HELMET OMNI-DIRECTIONAL ENERGY MANAGEMENT SYSTEM,” and U.S. Provisional Patent Application No. 61/554,351, filed on Nov. 1, 2011 and entitled “HELMET OMNI-DIRECTIONAL ENERGY MANAGEMENT SYSTEM,” all of which are incorporated herein by reference in their entirety. This application is a continuation of U.S. patent application Ser. No. 17/086,290, filed on Oct. 30, 2020 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” which in turn is a continuation of International Patent Application No. PCT/US2019/030072, filed on Apr. 30, 2019 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” all of which are incorporated herein by reference in their entirety. The International Patent Application No. PCT/US2019/030072, filed on Apr. 30, 2019 claims priority to and the benefit of U.S. Provisional Patent Application No. 62/665,427 filed May 1, 2018 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 17/086,290 is a continuation-in-part of U.S. patent application Ser. No. 16/792,172 filed on Feb. 14, 2020, which is a continuation of U.S. patent application Ser. No. 15/186,418 filed on Jun. 17, 2016 (now U.S. Pat. No. 10,561,192 issued Feb. 18, 2020) and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” all of which are incorporated herein by reference in their entirety. U.S. patent application Ser. No. 15/186,418 claims the benefit of and priority to U.S. Provisional Patent Application No. 62/181,121 filed on Jun. 17, 2015 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS” and U.S. Provisional Patent Application No. 62/188,598 filed on Jul. 3, 2015 and entitled “OMNIDIRECTIONAL ENERGY MANAGEMENT SYSTEMS AND METHODS,” all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62861260 | Jun 2019 | US | |
62685895 | Jun 2018 | US | |
61462914 | Feb 2011 | US | |
61554351 | Nov 2011 | US | |
62665427 | May 2018 | US | |
62181121 | Jun 2015 | US | |
62188598 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16442384 | Jun 2019 | US |
Child | 17722249 | US | |
Parent | 13368866 | Feb 2012 | US |
Child | 14607004 | US | |
Parent | 17086290 | Oct 2020 | US |
Child | 13368866 | US | |
Parent | PCT/US2019/030072 | Apr 2019 | US |
Child | 17086290 | US | |
Parent | 15186418 | Jun 2016 | US |
Child | 16792172 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15186418 | Jun 2016 | US |
Child | 16442384 | US | |
Parent | 14607004 | Jan 2015 | US |
Child | 15186418 | US | |
Parent | 16792172 | Feb 2020 | US |
Child | 17086290 | US |