This application is the U.S. national phase of PCT Application No. PCT/US2019/055527 filed on Oct. 10, 2019, the disclosure of which is incorporated in its entirety by reference herein.
Embodiments relate to an omnidirectional loudspeaker and a compression driver for use in an omnidirectional loudspeaker.
An ideal omnidirectional speaker radiates sound similarly in all directions and, from an acoustical standpoint, behaves like a pulsating sphere. Typically, in practical applications, the omnidirectionality is provided in a horizontal plane. Omnidirectional transducers and loudspeaker systems incorporating them are used for various applications such as Hi-Fi loudspeakers, alarm systems, and landscape loudspeaker systems.
Typical omnidirectional speaker systems include direct-radiating transducers having conical or dome diaphragms with corresponding “diffusers” which spread sound waves in an omnidirectional manner. The transducers are oriented in such a way that the diaphragm axis is oriented vertically, such that the sound radiation is converted to distribution in a horizontal plane. Unfortunately, direct-radiating transducers have a low efficiency, maximally a few percent. This limits the efficiency, sensitivity, and maximum sound pressure level of transducers and loudspeaker systems providing omnidirectional radiation. Furthermore, prior horn systems used for omnidirectional purposes typically include arrays of directional horns, and these systems have regions of cancellation between individual horns that result in non-uniform coverage patterns and degraded performance.
In one or more embodiments, a compression driver for an omnidirectional loudspeaker includes a magnet assembly disposed about a central axis and a diaphragm disposed coaxially above and operably connected to the magnet assembly. The compression driver further includes phasing plug including a base portion having a first side and an opposed second side facing the diaphragm, the base portion including a plurality of apertures that extend therethrough and are arranged generally circumferentially about the central axis. The phasing plug includes a raised portion extending upwardly from the base portion and defining a plurality of radially-expanding channels acoustically connected to the apertures. A compression chamber is defined between the diaphragm and the phasing plug, wherein actuation of the diaphragm by the magnet assembly generates sound waves within the compression chamber which travel through the plurality of apertures and the radially-expanding channels to create a generally horizontal 360° radiation pattern of the sound waves from the compression driver.
In one or more embodiments, an omnidirectional loudspeaker includes a lower horn member having a generally convex, upwardly-facing outer wall, an upper horn member spaced from the lower horn member and having a generally convex, downwardly-facing outer wall, and at least one compression driver connected to one of the lower or upper horn members along a central axis. The at least one compression driver includes a magnet assembly, a diaphragm operably connected to the magnet assembly, a phasing plug adjacent the diaphragm, and a compression chamber defined between the diaphragm and the phasing plug. The lower and upper horn members are coupled via the at least one compression driver in spaced relationship along the central axis to define a passageway for radiating sound waves generated by the compression driver in a generally horizontal 360° radiation pattern.
In one or more embodiments, a speaker array includes a plurality of omnidirectional loudspeakers, each omnidirectional loudspeaker including a lower horn member having a generally convex, upwardly-facing outer wall with a circumferential edge, and an upper horn member spaced from the lower horn member and having a generally convex, downwardly-facing outer wall with a circumferential edge. Each omnidirectional loudspeaker further includes at least one compression driver connected to one of the lower or upper horn members along a central axis and including a magnet assembly, a diaphragm operably connected to the magnet assembly, a phasing plug adjacent the diaphragm, and a compression chamber defined between the diaphragm and the phasing plug. The lower and upper horn members are coupled via the at least one compression driver in spaced relationship along the central axis to define a passageway for radiating sound waves generated by the compression driver in a generally horizontal 360° radiation pattern, and adjacent omnidirectional loudspeakers are assembled via the circumferential edges of the lower and upper horn members to form the speaker array.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
In one or more embodiments, an omnidirectional loudspeaker is disclosed which utilizes a compression driver for efficiently and effectively generating sound in a generally horizontal 360° radiation pattern. As compared with direct-radiating dome speakers, use of compression driver in the omnidirectional loudspeaker disclosed herein results in a ten-fold increase in efficiency and sensitivity, as well as an increase in maximum sound pressure level.
With reference first to
There are two major types of compression drivers, the first utilizing a dome diaphragm and the other using an annular flexural diaphragm 104 as disclosed herein. One advantage of annular diaphragms is the smaller radial dimensions of the moving part of the diaphragm compared to dome diaphragms having the same diameter of the moving voice coil. In a compression driver, the diaphragm 104 is loaded by a compression chamber 116 (
With continuing reference to
The base portion 120 includes a first side 124 (
In the embodiment shown in
In one or more embodiments, the raised portion 122 may have a central section 130 and a plurality of arms 132 extending outwardly therefrom. The apertures 128 may be disposed along or form an edge 134 of the central section 130, with an arm 132 extending between each adjacent pair of apertures 128. Said another way, an arm 132 may be disposed on each side of an aperture 128. In a top view, each arm 132 may be generally triangular in shape. In one or more embodiments, first arms 132a having a wider width along a circumferential direction of the phasing plug 106 may alternate with second arms 132b having a relatively narrower width along a circumferential direction of the phasing plug 106. With the triangular shape, the arms 132 are widest adjacent the edge 134 of the central section 130 and taper in width toward a perimeter 136 of the base portion 120. Of course, it is understood that the phasing plug 106 is not limited to the embodiments depicted herein, and that the base portion 120 and raised portion 122 may include other suitable shapes and configurations.
With reference to
As best shown in
At least one of the lower and upper horn members 202, 204 includes a recess 218 which may be generally cylindrical and sized to at least partially receive the compression driver 100. The recess 218 may be defined by a generally planar floor member 220 and an upstanding wall structure 222 connected to and at least partially surrounding the floor member 220, where the recess 218 includes an opening 224 adjacent the outer wall 206, 212 of the corresponding horn member 202, 204. The compression driver 100 may be disposed or mounted within the recess 218, such as by one or more fasteners engaging the floor member 220, for generating sound energy and directing it in an axial direction.
With continuing reference to
The lower horn member 202 limits the propagation of sound energy in a first axial direction (i.e., downwardly), and the upper horn member 204 limits the propagation of sound energy in a second axial direction (i.e., upwardly). The lower and upper horn members 202, 204 thus provide acoustical loading for the compression driver 100 and control of the directivity in the vertical plane. In combination, the lower and upper horn members 202, 204 define a passageway 228 therebetween to direct the flow of sound energy radially, where the acts like a radial horn providing omnidirectional coverage, extending 360° about the central axis 108 to direct the flow of sound energy generated by the compression driver 100 to radiate 360° outwardly horizontally in all directions.
Of course, it is understood that directional identifiers such as upper and lower and upwardly and downwardly used herein are not intended to be limiting, and are simply used to provide an exemplary environment for the components of the omnidirectional loudspeaker 200 as disclosed herein.
Each omnidirectional loudspeaker 200 is suitable as a stand-alone acoustical unit but, if a system of higher sound pressure level output is desired, a plurality of omnidirectional loudspeakers 200 may be assembled or vertically stacked in modular fashion, one above the other, to form an omnidirectional speaker array 300 as illustrated in
The ends of the speaker array 300 can be left open as illustrated in
Applications for the compression driver 100, omnidirectional loudspeaker 200 and speaker array 300 described herein include, but are not limited to, landscape sound systems, Hi-Fi systems, home lifestyle loudspeaker systems, public address systems, alarm and warning sound systems, portable audio Bluetooth-based loudspeakers, high-powered pendant speakers, negative directivity ceiling speakers, or other applications where omnidirectionality is desired or required. Compared with direct-radiating dome speakers, use of the compression driver 100 in the omnidirectional loudspeaker 200 disclosed herein results in a ten-fold increase in efficiency and sensitivity, as well as an increase in maximum sound pressure level. The compression driver 100 and omnidirectional loudspeaker 200 provide uniform sound radiation at all frequencies over a full 360° coverage area, are easily scalable for different sizes of voice coils and diaphragms, and provide a modular system for the construction of customized speaker arrays.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/055527 | 10/10/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/071488 | 4/15/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4134471 | Queen | Jan 1979 | A |
4496021 | Berlant | Jan 1985 | A |
4908601 | Howze | Mar 1990 | A |
5253301 | Sakamoto et al. | Oct 1993 | A |
5359158 | Queen | Oct 1994 | A |
8469140 | Graber | Jun 2013 | B1 |
8670585 | Valtchev et al. | Mar 2014 | B2 |
9245513 | Dimitrov | Jan 2016 | B1 |
20080192972 | Lewallen | Aug 2008 | A1 |
20130228393 | Sterling et al. | Sep 2013 | A1 |
20150319515 | Devantier et al. | Nov 2015 | A1 |
20160309257 | Liu et al. | Oct 2016 | A1 |
20180054671 | Voishvillo | Feb 2018 | A1 |
20190174224 | Chen | Jun 2019 | A1 |
20190222925 | Ha et al. | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
106470372 | Mar 2017 | CN |
108605182 | Sep 2018 | CN |
109565628 | Apr 2019 | CN |
109889960 | Jun 2019 | CN |
2021071488 | Apr 2021 | WO |
Entry |
---|
European Office Action for Application No. 19 797 875.2, dated May 27, 2024, 10 pages. |
International Search Report for PCT/US2019/055527, Prepared by the European Patent Office, mailing date Jun. 24, 2020, 6 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2019/055527, dated Apr. 12, 2022, 15 pages. |
International Search Report and Written Opinion for Application No. PCT/US2020/062459, dated Jul. 28, 2021, 19 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2020/062459, dated Jun. 8, 2023, 14 pages. |
Chinese Office Action with English translation for Application No. 201980101221.9, dated Jul. 31, 2024, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20240080616 A1 | Mar 2024 | US |