A. G. Bulushev et al. “Spectrally selective mode conversion at in homogeneities of optical fibers,” Sov. Tech. Phys. Lett., 14, 506-507 (1988). |
A. N. Lazarchik, “Bragg fiber lightguides,” Radiotekhnika i electronika, 1, 36-43 (1988). |
C. M. de Sterke et al., “Differential losses in Bragg fibers,” J. Appl. Phys., 76, 680-688 (1994). |
C. Moeller, “Mode converters in the Doublet III ECH microwave system,” Int. J. Electronics, 53, 587-593 (1982). |
D. Marcuse et al., “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J., 48, 3217-3232 (1969). |
D. Marcuse, “Theory of dielectric optical waveguides,” (Academic, New York, 1974). |
E. Luneville et al., “An original approach to mode converter optimum design,” IEEE Trans. Microwave Theory Tech., 46, (1998). |
E. Marcatili et al., “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J., 43, 1783-1809 (1964). |
E. Peral et al., “Supermodes of grating-coupled multimode waveguides and application to mode conversion between copropagating modes mediated by backward Bragg scattering,” J. Lightwave Tech., 17, 942-947 (1999). |
G.H. Childs, “50mm diameter TE01 mode helical waveguide optimization,” Electronics Lett., 14, 140-141 (1978). |
H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Tech., 2, 617-628 (1984). |
H. Kumric et al., “Optimized overmoded TE01-to-TM11 mode converters for high-power millimeter wave applications at 70 and 140 GHz,” Int. J. Infrared Millim. Waves, 7, 1439-1463 (1986). |
H. Kumric et al., “Optimization of mode converters for generating the fundamental TE01 mode from TE06 gyrotron output at 140 GHz,” Int. J. Electron, 64, 77-94 (1988). |
H.Yajima, “Dielectric bypass waveguide mode order converter,” IEEE J. Quantum Electronics, 15, 482-487 (1979). |
I. Gannot, et al., “Current Status of Fexible Waveguides for IR Laser Radiation Transmission”, IEEE J. Sel. Topics in Quantum Electr., IEEE Service Center, vol. 2, No. 4, pp. 880-888 (Dec. 1996); XP000694378. |
I.K. Hwang et al., “Long-period fiber gratings based on periodic microbends,” Opt. Lett., 24, 1263-1264 (1999). |
J.C. Knight et al., “Photonic band gap guidance in optical fibers” Science 282, 1476-1478 (1998). |
J. J. Refi, “Optical fibers for optical networking,” Bell Labs Technical Journal, 4,246-261 (1999). |
J. N. Blake et al., “Fiber-optic modal coupler using periodic microbending,” Opt;. Lett., 11, 177-179 (1986). |
J. S. Levine, “Rippled wall mode converters for circular waveguide,” Int. J. Infrared Millim. Waves, 5, 937-952 (1984). |
J.W. Hahn et al., “Measurement of nonreasonant third-order susceptibilities of various gases by the nonlinear interferometric technique,” J. Opt. Soc. Am. B, 12, 1021-1027 (1995). |
K. J. Bunch et al., “The helically wrapped circular waveguide,” IEE Trans. Electron Devices, 34, 1873-1884 (1987). |
K. O. Hill et al., “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett., 26, 1270-1272 (1990). |
L. Dong et al., “Intermodal coupling by periodic microbending in dual-core fibers—comparison of experiment and theory,” J. Lightwave Tech., 12, 24-27 (1994). |
L. M. Field, “Some slow-wave structures for traveling-wave tubes,” Proc. IRE, 37, 34-40 (1949). |
Lars Gruner-Nielson et al., “New dispersion compensating fiberes for simultaneous compensation of dispersion and dispersion slope of non-zero dispersion shifted fibres in the C or L band”, OFC '00. |
M. J. Buckley et al., “A single period TE02-TE01 mode converter in a highly overmoded circular waveguide,” IEEE Trans. Microwave Theory Tech., 39, 1301-1306 (1991). |
M. J. Weber et al., “Measurements of the electronic and nuclear contributions to the nonlinear refractive index of beryllium fluoride glasses,” Appl. Phys. Lett., 32, 403-405 (1978). |
M. Miyagi, et al., “Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: slab waveguide model”, IEEE J. Quantum Elec. QE-19, 136-145 (1983). |
M. Miyagi, et al., “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature”, IEEE Trans. Microwave Theory Tech. MTT-32, 513-521 (1984). |
M. Otsuka et al., “Development of mode converters for 28 GHz electron cyclotron heating system,” Int. J. Electron, 70, 989-1004 (1991). |
M. Thumm, “High powr millimeter-wave mode converters in overmoded circular waveguides using periodic wall pertubations,” Int. J. Electron., 57, 1225-1246 (1984). |
Mitsunobu Miyagi et al., “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Tech., vol. LT-2, 116-126, Apr. 1984. |
N. J. Doran et al., “Cylindrical Bragg fibers: a design and feasibility study for optical communications,” J. Lightwave Tech., 1, 588-590 (1983). |
Pochi Yeh et al., “Theory of Bragg fiber,” J. Opt. Soc. Am., vol. 68, 1196-1201 Sep. 9, 1978. |
R. F. Cregan et al., “Single-mode photonic band gap guidance of light in air,” Science, 285, 1537-1539 (1999). |
R.A. Abram et al., “Mode conversion in an imperfect waveguide,” J. Phys. A, 6, 1693-1708 (1973). |
S. Ahn et al., “Analysis of helical waveguide,” IEEE Trans. Electron Devices, 33, 1348-1355 (1986). |
S. H. Yun et al., “All-fiber tunable filter and laser based on two-mode fiber,” Opt. Lett., 21, 27-29 (1996). |
S.P. Morgan, “Theory of curved circular waveguide containing an inhomogeneous dielectric,” Bell Syst. Tech. J., 36, 1209-1251 (1957). |
T. Cardinal et al., “Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids, 256, 353-360 (1999). |
T. Iyama et al., Propagtion characteristics of a dielectric-coated coaxial helical waveguide in a lossy medium, IEEE Trans. Microwave Theory Tech., 45, 557-559 (1997). |
T. Liang et al., “Mode conversion of ultrafast pulses by grating structures in layered dielectric waveguides,” J. Lightwave Tech., 1966-1973 (1997). |
T. M. Monro et al., “Holey Optical Fibers: An efficient modal model,” IEEE J. Lightwave Technol., 17, 1093-1102 (1999). |
T. ul Hag et al., “Optimized irregular structures for spatial- and temporal-field transformation,” IEEE Trans. Microwave Theory Tech., 46, 1856-1867 (1998). |
Y. Fink et al., “A dielectric omnidirectional reflector,” Science, 282, 1679-1682 (1998). |
Y. Fink et al., “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Tech., 17, 2039-2041 (1999). |
Y. W. Li et al., “Triple-clad single-mode fibers for dispersion shifting,” IEEE J. Lightwave Technol., 11, 1812-1819 (1993). |
F. Brechet et al., “Analysis of bandpass filtering behavior of singlemode depressed-core-index photonic bandgap fibre,” Elec. Lett., 36, 870-872 (2000). |
F. Brechet et al., “Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Elec. Lett., 36, 514-515 (2000). |