Omnidirectional structural color made from metal and dielectric layers

Information

  • Patent Grant
  • 10690823
  • Patent Number
    10,690,823
  • Date Filed
    Saturday, June 8, 2013
    10 years ago
  • Date Issued
    Tuesday, June 23, 2020
    3 years ago
Abstract
A high-chroma omnidirectional structural color multilayer structure is provided. The structure includes a multilayer stack that has a core layer, a dielectric layer extending across the core layer, and an absorber layer extending across the dielectric layer. An interface is present between the dielectric layer and the absorber layer and a near-zero electric field for a first incident electromagnetic wavelength is present at this interface. In addition, a large electric field at a second incident electromagnetic wavelength is present at the interface. As such, the interface allows for high transmission of the first incident electromagnetic wavelength and high absorption of the second incident electromagnetic wavelength such that a narrow band of reflected light is produced by the multilayer stack.
Description
FIELD OF THE INVENTION

The present invention is related to an omnidirectional structural color, and in particular, to an omnidirectional structural color provided by metal and dielectric layers.


BACKGROUND OF THE INVENTION

Pigments made form multilayer structures are known. In addition, pigments that exhibit or provide a high-chroma omnidirectional structural color are also known. However, such prior art pigments have required as many as 39 thin film layers in order to obtain desired color properties. It is appreciated that the costs associated with the production of thin film multilayer pigments is proportional to the number of layers required and the costs associated with the production of high-chroma omnidirectional structural colors using multilayer stacks of dielectric materials can be prohibitive. Therefore, a high-chroma omnidirectional structural color that requires a minimum number of thin film layers would be desirable.


SUMMARY OF THE INVENTION

A high-chroma omnidirectional structural color multilayer structure is provided. The structure includes a multilayer stack that has a core layer, which can also be referred to as a reflector layer, a dielectric layer extending across the core layer, and an absorber layer extending across the dielectric layer. An interface is present between the dielectric layer and the absorber layer, and a near-zero electric field for a first incident electromagnetic wavelength and a large electric field at a second incident electromagnetic is present at the interface. As such, the interface allows for high transmission of the first incident electromagnetic wavelength through the interface, through the dielectric layer with reflectance off of the core/reflector layer. However, the interface affords for high absorption of the second incident electromagnetic wavelength. Therefore, the multilayer stack produces or reflects a narrow band of light.


The core layer can have a complex refractive index represented by the expression RI1=n1+ik1 with n1<<k1, where RI1 is the complex refractive index, n1 is a refractive index of the core layer, k1 is an extinction coefficient of the core layer, and i is √{square root over (−1)}. In some instances, the core layer is made from silver, aluminum, gold, or alloys thereof and preferably has a thickness between 50 and 200 nanometers (nm).


The dielectric layer has a thickness of less than or equal to twice the quarter wave (QW) of a center wavelength of a desired narrow band of reflected light. In addition, the dielectric layer can be made from titanium oxide, magnesium fluoride, zinc sulfide, hafnium oxide, tantalum oxide, silicon oxide, or combinations thereof.


The absorber layer has a complex refractive index in which the refractive index is approximately equal to the extinction coefficient. Such a material includes chromium, tantalum, tungsten, molybdenum, titanium, titanium nitride, niobium, cobalt, silicon, germanium, nickel, palladium, vanadium, ferric oxide, and combinations or alloys thereof. In addition, the thickness of the absorber layer is preferably between 5 and 20 nm.


In some instances, the multilayer structure includes another dielectric layer extending across an outer surface of the absorber layer. Also, another absorber layer can be included between the core layer and the first dielectric layer. Such structures provide a high-chroma omnidirectional structural color with a minimum of two layers on a core layer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a single dielectric layer on a substrate;



FIG. 2 is high-chroma omnidirectional structural color multilayer structure according to an embodiment of the present invention;



FIGS. 3a-3d are: (a) a schematic illustration of an embodiment of the present invention; (b) a graphical representation of refractive indices for the embodiment shown in (a); (c) a graphical representation of electric field through the thickness of the embodiment shown in (a) for an incident wavelength of 650 nm; and (d) a graphical representation of electric field across the embodiment shown in (a) for an incident wavelength of 400 nm;



FIGS. 4a-4d are graphical representations of reflectance versus incident light wavelength for the embodiment shown in FIG. 3(a) when viewed at 0 and 45 degrees and with the embodiment having: (a) having a dielectric layer thickness of 1.5 QW; (b) a dielectric layer thickness of 3 QW; (c) a dielectric layer thickness of 3.6 QW; and (d) a dielectric layer thickness of 6 QW;



FIG. 5 is a graphical representation of a comparison between color properties on an a*b* color map for a targeted color area of hue equal to 280;



FIGS. 6a-6c are graphical representations for the embodiment shown in FIG. 3(a) illustrating: (a) absorbance versus incident light wavelength for the dielectric layer (L1) and absorber layer (L1) shown in FIG. 2(a); (b) reflectance versus incident light wavelength for the embodiment shown in FIG. 3(a) when viewed at 0 and 45 degrees; and (c) hue and chroma versus incident angle;



FIGS. 7a-7d are: (a) a schematic illustration of another embodiment according to the invention; (b) a graphical representation of refractive indices for the structure shown in (a); (c) a graphical representation of electric field through the thickness of the embodiment shown in (a) for an incident light wavelength of 420 nm; and (d) an electric field across the thickness of the embodiment shown in (a) a graphical representation of electric field through the thickness of the embodiment shown in (a) for an incident light wavelength of 560 nm;



FIGS. 8a-8c are graphical representations of: (a) reflectance versus incident light wavelength for the embodiment shown in FIG. 7(a) when viewed from 0 and 45 degrees; (b) absorbance versus incident light wavelength for the layers shown in the embodiment of FIG. 7(a); and (c) reflectance versus incident angle of hue and chroma for the embodiment shown in FIG. 7(a);



FIGS. 9a-9c are: (a) a schematic illustration of a 5-layer (5L) embodiment according to the present invention; (b) a schematic illustration of a 7-layer (7L) embodiment according to the present invention; and (c) a graphical representation of reflectance versus incident light wavelength for a single Al layered structure (Al Core), an Al Core+ZnS Layer structure (Al Core+ZnS), the 5-layer structure illustrated in (a) and the 7-layer structure illustrated in (b);



FIG. 10 is a graphical representation of a comparison between color properties in an a*b* color map for a target color area of hue equal to 80 for the 5-layer structure shown in FIG. 8(a) having dielectric layer(s) thickness(es) that afford(s) for reflection of the 1st and 2nd harmonics of a desired narrow band of reflected light, the 5-layer structure shown in FIG. 9(a) having dielectric layer(s) thickness(es) that afford(s) for only the 1st harmonic of a desired narrow band of reflected light, and the 7-layer structure shown in FIG. 9(a) having dielectric layer(s) thickness(es) that afford(s) for only the 1st harmonic of a desired narrow band of reflected light;



FIG. 11 is a graphical representation of a comparison between current state of the art multilayer structures and multilayer structures provided by embodiments of the present invention on an a*b* color map; and



FIGS. 12a-12b are schematic illustrations of: (a) a 5-layer multilayer structure according to an embodiment of the present invention; and (b) 7-layer multilayer structure according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

A high-chroma omnidirectional structural color multilayer structure is provided. As such, the multilayer structure has use as a paint pigment, a thin film that provides a desired color, and the like.


The high-chroma omnidirectional structural color multilayer structure includes a core layer and a dielectric layer extending across the core layer. In addition, an absorber layer extends across the dielectric layer with an interface therebetween. The thickness of the absorber layer and/or dielectric layer is designed and/or fabricated such that the interface between the two layers exhibits a near-zero electric field at a first incident electromagnetic wavelength and a large electric field at a second incident electromagnetic wavelength—the second incident electromagnetic wavelength not being equal to the first incident electromagnetic wavelength.


It should be appreciated that the near-zero electric field at the interface affords for a high percentage of the first incident electromagnetic wavelength to be transmitted therethrough, whereas the large electric field affords for a high percentage of the second incident electromagnetic wavelength to be absorbed by the interface. In this manner, the multilayer structure reflects a narrow band of electromagnetic radiation, e.g. a narrow reflection band of less than 400 nanometers, less than 300 nanometers, or less than 200 nanometers. In addition, the narrow reflection band has a very low shift of its center wavelength when viewed from different angles, e.g. angles between 0 and 45 degrees, 0 and 60 degrees and/or 0 and 90 degrees.


The core layer is made from a material such that its complex refractive index has a refractive index that is much less than an extinction coefficient for the material where the complex refractive index is represented by the expression RI1=n1+ik1, and n1 is the refractive index of the core layer material, k1 is the extinction coefficient of the core layer material and i is the square root of −1. Materials that fall within this criterion include silver, aluminum, gold, and alloys thereof. In addition, the thickness of the core layer can be between 10 and 500 nanometers in some instances, between 25 and 300 nanometers in other instances, and between 50 and 200 nanometers in yet other instances.


The dielectric layer has a thickness of less than or equal to twice the quarter wave (2 QW) of a center wavelength of the narrow reflection band. In addition, the dielectric layer can be made from a titanium oxide (e.g., TiO2), magnesium fluoride (e.g., MgF2), zinc sulfide (e.g., ZnS), hafnium oxide (e.g., HfO2), niobium oxide (e.g., Nb2O5), tantalum oxide (e.g., Ta2O5), silicon oxide (e.g., SiO2), and combinations thereof.


Regarding the absorber layer, a material having a refractive index generally equal to an extinction coefficient for the material is used. Materials that meet this criteria include chromium, tantalum, tungsten, molybdenum, titanium, titanium nitride, niobium, cobalt, silicon, germanium, nickel, palladium, vanadium, ferric oxide, and/or alloys or combinations thereof. In some instances, the thickness of the absorber layer is between 5 and 50 nanometers, while in other instances the thickness is between 5 and 20 nanometers.


Regarding the electric field across a thin film structure and a desired thickness of a dielectric layer, and not being bound by theory, FIG. 1 is schematic illustration of a dielectric layer 4 having a total thickness ‘D’, an incremental thickness ‘d’ and an index of refraction ‘n’ on a substrate or core layer 2 having a index of refraction ns. Incident light strikes the outer surface 5 of the dielectric layer 4 at angle θ relative to line 6 which is perpendicular to the surface and reflects from the outer surface 5 at the same angle. Incident light is transmitted through the outer surface 5 and into the dielectric layer 4 at an angle θF relative to the line 6 and strikes the surface 3 of substrate layer 2 at an angle θs as shown in the figure.


For a single dielectric layer, θsF and the electric filed (E) can be expressed as E(z) when z=d. From Maxwell's equations, the electric field can be expressed for s polarization as:

E(d)={u(z),0,0}exp(ikαy)|z=d  (1)

and for p polarization as:











E




(
d
)


=



{

0
,

u


(
z
)


,


-

α


ɛ
~



(
z
)






v


(
z
)




}



exp


(

i





k





α





y

)





|

z
=
d







(
2
)








where






k
=


2

π

λ






and λ is a desired wavelength to be reflected. Also, α=ns sin θs where ‘s’ corresponds to the substrate in FIG. 1. As such,

|E(d)|2=|u(z)|2exp(2ikαy)|z=d  (3)

for s polarization and













E


(
d
)




2

=



[





u


(
z
)




2

+





α

n




v


(
z
)





2


]



exp


(

2

i





k





α





y

)





|

z
=
d







(
4
)








for p polarization.


It is appreciated that variation of the electric field along the Z direction of the dielectric layer 4 can be estimated by calculation of the unknown parameters u(z) and v(z) where it can be shown that:











(



u




v



)


z
=
d


=


(




cos





φ





(

i
/
q

)


sin





φ






i





q





sin





φ




cos





φ




)




(



u




v



)



z
=
0

,
substrate







(
5
)








Using the boundary conditions u|z=0=1, v|z=0=qs, and the following relations:

qs=ns cos θs for s-polarization  (6)
qs=ns/cos θs for p-polarization  (7)
q=n cos θF for s-polarization  (8)
q=n/cos θF for p-polarization  (9)
φ=k·n·d cos(θF)  (10)

u(z) and v(z) can be expressed as:























u


(
z
)





z
=
d


=


u




z
=
0



cos





φ

+
v




z
=
o




(


i
q


sin





φ

)







=




cos





φ

+



i
·

q
s


q


sin





φ











and




(
11
)



















v


(
z
)





z
=
d


=



i





qu





z
=
0



sin





φ

+
v




z
=
0



cos





φ






=




i





q





sin





φ

+


q
s


cos





φ









(
12
)








Therefore:
















E


(
d
)




2

=




[



cos
2


φ

+



q
s
2


q
2




sin
2


φ


]



e

2

i





k





α





γ









=




[



cos
2


φ

+



n
s
2


n
2




sin
2


φ


]



e

2

i





k





α





γ










(
13
)








for s polarization with φ=k·n·d cos(θF), and:
















E


(
d
)




2

=



[



cos
2


φ

+



n
s
2


n
2




sin
2


φ

+



α
2

n



(



q
s
2



cos
2


φ

+


q
2



sin
2


φ


)



]







=



[



(

1
+



α
2



q
s
2


n


)



cos
2


φ

+


(



n
s
2


n
2


+



α
2



q
2


n


)



sin
2


φ


]








(
14
)








for p polarization where:









α
=



n
s


sin






θ
s


=

n





sin






θ
F







(
15
)








q
s

=


n
s


cos






θ
s









and




(
16
)







q
s

=

n


cos






θ
F












(
17
)








Thus for a simple situation where θF=0 or normal incidence, φ=k·n·d, and α=0:

















E


(
d
)




2






for





s


-


polarization

=







E


(
d
)




2






for





p


-


polarization







=



[



cos
2


φ

+



n
s
2


n
2




sin
2


φ


]







=



[



cos
2



(

k
·
n
·
d

)


+



n
s
2



n
2










sin
2



(

k
·
n
·
d

)




]

















(
18
)


























(
19
)











which allows for the thickness ‘d’ to be solved for when the electric field is zero.


The inventive multilayer structures can include a five layer structure with a central core layer with a pair of dielectric layers on opposite sides of the core layer and a pair of absorber layers extending across an outer surface of the dielectric layers. A seven layer multilayer structure is included in which another pair of dielectric layers extend across outer surfaces of the two absorber layers. A different seven layer structure is included in which the initial five layer structure described above includes a pair of absorber layers that extend between opposite surfaces of the core layer and the dielectric layer. In addition, a nine layer multilayer structure is included in which yet another pair of absorber layers extend between the opposite surfaces of the core layer and the dielectric layer for the seven layer structure described above.


Turning now to FIG. 2, an embodiment of a high-chroma omnidirectional structural color multilayer structure is shown generally at reference numeral 10. The multilayer structure 10 has a core or reflector layer 100 with a dielectric layer 110 extending across an outer surface 102 of the reflector layer 100. In addition, an absorber layer 120 extends across the dielectric layer 110 with an interface 112 therebetween. As shown in FIG. 2, incident light is transmitted to and strikes the multilayer structure 10 and reflected light is reflected therefrom.


With reference to FIG. 3, a specific embodiment is shown in FIG. 3(a) in which the core layer 100 is made from aluminum, the dielectric layer 110 is made from ZnS, and the absorber layer 120 is made from chromium FIG. 3(b) provides a graph showing the refractive index for the aluminum core layer 100, the ZnS dielectric layer 110, and the chromium absorber layer 120. Also shown in FIG. 3(b) are the thicknesses of the dielectric layer 110 (60 nm) and the absorber layer 120 (5 nm).



FIGS. 3(c) and 3(d) provide a graphical illustration of the electric field (|E|2 in %) as a function of the thickness of the multilayer structure shown in FIG. 3(a). As shown in FIGS. 3(c) and 3(d), at a wavelength of 650 nm, a relatively large electric field exists at the interface between the ZnS dielectric layer and the chromium absorber layer. In contrast, at an incident wavelength of 400 nm, the electric field is near-zero at the interface between the ZnS dielectric layer and the chromium absorber layer. For the purposes of the instant disclosure, the term “near-zero” is defined to be less than 25% |E|2 in some instances, less than 10% |E|2 in other instances, and less than 5% in yet other instances.


It is appreciated from the graphical representations shown in FIGS. 3(c) and 3(d) that wavelengths within the 400 nm region will pass through the interface 112, whereas wavelengths within the 650 nm region will be absorbed at the interface 112. As such, a narrow band of reflected electromagnetic radiation is produced by the multilayer structure 10 by the transmission of electromagnetic radiation in the 400 nm range through the interface 112, through the ZnS dielectric layer 110, reflection from the core layer 100, and subsequent transmission of the reflected electromagnetic radiation through the dielectric layer 110, interface 112, and absorber layer 120. In this manner, a narrow band of reflected light is provided and thus affords for a structural color.


Regarding omnidirectional behavior of the multilayer structure 10, the thickness of the dielectric layer 110 is designed or set such that only the first harmonics of reflected light is provided. In particular, and referring to FIG. 4, FIG. 4(a) illustrates the reflection characteristics of the multilayer structure 10 when viewed from 0 and 45 degrees and the dielectric layer 110 has a thickness of 1.5 QW of the desired 400 nm wavelength which equates to 67 nm. As shown in FIG. 4(a), and as opposed to FIGS. 4(b)-4(d), only the first harmonics of the reflected narrow band of electromagnetic radiation is provided. In particular, for dielectric layer thicknesses greater than 2 QW, second, third, and fourth harmonics. Therefore, the thickness of the dielectric layer 110 is critical in order to provide an omnidirectional structural color.


Turning now to FIG. 5, a comparison of color properties for a multilayer structure can be examined using an a*b* color map that uses the CIELAB color space. It is appreciated that the CIELAB color space is a color-opponent space with dimension L* for lightness and a* and b* for the color-opponent dimensions, based on nonlinearly compressed CIE space XYZ color space coordinates. The a* axis is perpendicular to the b* axis and forms the chromaticity plane, the L* axis is perpendicular to the chromaticity plane and the L* axis in combination with the a* and b* axes provide a complete description of the color attributes of an object such as purity, hue and brightness. Using layman's terms, a highly colorful stimulus (color) is seen by the human eye as vivid and intense, while a less colorful stimulus appears more muted, closer to gray. With no “colorfulness” at all, a color is a “neutral” gray and an image with no colorfulness is typically referred to as an image in grayscale or a grayscale image. In addition, three attributes—colorfulness (also known as chroma or saturation), lightness (also known as brightness), and hue—colors can be described.


The color map shown in FIG. 5 has a targeted color area of hue equal to the inverse tangent of (b*/a*)=280. The lines shown in the figure correspond to color travel when viewed from between 0 to 80 degrees. In addition, the lines corresponded to first and second harmonics related to dielectric layer thicknesses of 1.67 QW and 3 QW, respectively. As shown in the figures, the lines corresponding to the first harmonic and 1.67 QW dielectric layer thickness correspond to a lower angular shift of hue and thus a more desired omnidirectional behavior of the multilayer structure.


Referring to FIG. 6, FIG. 6(a) provides a graphical representation of absorption versus incident electromagnetic radiation wavelength for the dielectric layer 110 and the absorber layer 120. As shown in the figure, the absorber layer 120 has a very low percentage of absorption at an incident wavelength of approximately 400 nm and a very high absorption for incident wavelengths in the 600-700 nm range. In addition, there is a relatively sharp increase in absorption between the 400 nm to 600-700 nm range, which provides a sharp cutoff of light wavelengths passing through the dielectric layer 110 to be reflected by the core layer 100. This sharp cutoff corresponds to the graphical representation shown in FIG. 6(b) in which a single narrow band of electromagnetic radiation is reflected in the visible spectrum in the 400 nm range. FIG. 6(b) also illustrates that there is a very low shift in the center wavelength (400 nm) of the reflected band of electromagnetic radiation when viewed from 0 and 45 degrees. It is appreciated that the narrow band of reflected electromagnetic radiation has a width of less than 200 nm at a location measured at 50% of reflectance compared to the maximum reflectance point/wavelength. In addition, the narrow reflected band has a width of less than 100 nm when measured at 75% of the maximum reflectance for the 400 nm wavelength.


With respect to the hue and chroma of the multilayer structure, FIG. 6(c) illustrates a very small change in the hue and chroma as a function of incident viewing angle. In addition, the chroma is maintained between 58 and 60 for all angles between 0 and 45.


Turning now to FIG. 7, another embodiment of the present invention is shown at reference numeral 20 in FIG. 7(a). The multilayer structure 20 has a second dielectric layer 130 that extends across an outer surface of the absorber layer 120. FIG. 7(b) provides a graphical representation of the index of refraction for the various layers of the structure 20 whereas FIG. 7(c) illustrates the electric field as a function of the thickness along the structure 20 for an incident wavelength of 420 nm. Finally, FIG. 7(d) provides a graphical representation of the electric field as a function of thickness across the multilayer structure 20 for an incident wavelength of 560 nm. As shown in FIGS. 7(c) and 7(d), the electric field is near-zero for the 420 nm wavelength but is relatively large or high for the 560 nm wavelength. As such, an omnidirectional narrow band of reflected electromagnetic radiation is provided by the multilayer structure 20.


Referring to FIG. 8, FIG. 8(a) provides a graphical representation of the shift in the center wavelength (400 nm) of the single reflected band of electromagnetic radiation in the visible spectrum from the structure shown in FIG. 9(a) when viewed from 0 and 45 degrees. The absorption versus incident electromagnetic radiation wavelength for the dielectric layer 110 and the absorber layer 120 is shown in FIG. 8(b) and the hue and chroma as a function of viewing angle shown in FIG. 8(c).


Referring now to FIG. 9, schematic illustrations of two multilayer structures are shown at reference numerals 12 and 22. The multilayer structure 12 shown in FIG. 9(a) is essentially identical to the embodiment 10 discussed above except that there is another dielectric layer 110a and absorber layer 120a on an opposite side of the core layer 100. In addition, the multilayer structure 22 shown in FIG. 9(b) is essentially the same as the multilayer structure 20 discussed above except for another dielectric layer 110a, absorber layer 120a, and dielectric layer 130a on an opposite side of the core layer 100. In this manner, the core layer 100 has both external surfaces covered by a multilayer structure.


Referring to the graphical plot shown in FIG. 9(c), reflectance versus incident electromagnetic radiation wavelength is shown for just an aluminum core layer (Al Core), an aluminum core layer plus a ZnS dielectric layer (Al Core+ZnS), a five layer aluminum core plus ZnS plus chromium structure (Al Core+ZnS+Cr (5L)) as shown by embodiment 12, and a seven layer aluminum core plus ZnS plus chromium plus ZnS structure (Al Core+ZnS+Cr+ZnS (7L)) as illustrated by embodiment 22. As shown in the figure, the seven layer structure 22 with the pair of dielectric layers and the absorber layer therebetween provides a more narrow and well defined reflection band of electromagnetic radiation compared to the other structures.



FIG. 10 provides an a*b* color map for a five layer structure that has dielectric thicknesses that afford for second harmonics, a five layer structure that has dielectric thicknesses that afford for only a first harmonic, and a seven layer structure with dielectric layer thicknesses that afford for only a first harmonic. As shown by the dotted circle in the figure which represents the target color area, the lines correspond to the seven layer structure with the first harmonic correspond to lower angular shift of hue when compared to the lines representing the other structures.


A comparison of current state of the art layered structures, two five layer structures that have a dielectric layer with an optical thickness of greater than 3 QW (hereafter referred to as 5 layer>3 QW) and a seven layer structure having at least one dielectric layer with an optical thickness of less than 2 QW (hereafter referred to as 7 layer<2 QW structure) and produced or simulated according to an embodiment of the present invention is shown on an a*b* color map in FIG. 11. As shown in the figure, the current state of the art structures and 5 layer>3 QW structures are greatly improved upon by the 7 layer<2 QW structure disclosed herein. In particular, the chroma (C*=√{square root over (a2+b2)}) is greater for the 7 layer<2 QW structure than for the 5 layer>3 QW structure. In addition, the hue shift (Δθ) is approximately half for the 7 layer<2 QW structure (Δθ1) compared to the 5 layer>3 QW structure (Δθ2).


Table 1 below shows numerical data for the 5 layer>3 QW and 7 layer<2 QW structures. It is appreciated that those skilled in the art recognize that a 1 or 2 point increase in chroma (C*) is a significant increase with a 2 point increase being visually recognizable to the human eye. As such, the 6.02 point increase (16.1% increase) exhibited by the 7 layer<2 QW structure is exceptional. In addition, the hue shift for the 7 layer<2 QW structure (15°) is approximately half the hue shift of the 5 layer>3 QW structure (29°). Thus given the approximately equal lightness (L*) between the two structures, the 7 layer<2 QW structure provides a significant and unexpected increase in color properties compared to prior art structures.













TABLE 1







Property
5 layer (>3 QW)
7 Layer (<2 QW)









L*
36.03
36.85



C*
37.42
43.44



Hue
279°  
281°  



Color Shift
29° 
15° 










Another embodiment of a high chroma omnidirectional structural color multilayer structure is shown generally at reference numeral 14 in FIG. 12(a). The multilayer structure 14 is similar to the embodiment 10 except for additional absorber layers 105 and 105a between the reflector layer 100 and the dielectric layers 110 and 110a, respectively. Another embodiment is shown at reference numeral 24 in FIG. 12(b) which is similar to embodiment 20 except for the addition of the absorber layers 105, 105a between the reflector or core layer 100 and the dielectric layers 110, 110a, respectively.


Pigments from such multilayer structures can be manufactured as a coating on a web with a sacrificial layer having subsequent layers of materials deposited thereon using any kind of deposition method or process known to those skilled in the art including electron-beam deposition, sputtering, chemical vapor deposition, sol-gel processing, layer-by-layer processing, and the like. Once the multilayer structure has been deposited onto the sacrificial layer, freestanding flakes having a surface dimension on the order of 20 microns and a thickness dimension on the order of 0.3-1.5 microns can be obtained by removing the sacrificial layer and grinding the remaining multilayer structure into flakes. Once the flakes have been obtained, they are mixed with polymeric materials such as binders, additives, and base coat resins to prepare omnidirectional structural color paint.


The omnidirectional structural color paint has a minimum color change with a hue shift of less than 30 degrees. Such a minimum hue shift should be appreciated to appear to be omnidirectional to a human eye. The definition of hue as tan−1(b*/a*) where a* and b* are color coordinates in the lab color system.


In summary, the omnidirectional structural color pigment has a reflector or core layer, one or two dielectric layers, and one or two absorber layers with at least one of the dielectric layers having a typical width greater than 0.1 QW but less than or equal to 2 QW where the control wavelength is determined by the target wavelength at the peak reflectance in the visible spectrum. In addition, the peak reflectance is for the first harmonic reflectance peak and provides a single reflected band in the visible spectrum. In some instances, the width of the one or more dielectric layers is greater than 0.5 QW and less than 2 QW. In other instances, the width of one or more dielectric layers is greater than 0.5 QW and less than 1.8 QW.


The above examples and embodiments are for illustrative purposes only and changes, modifications, and the like will be apparent to those skilled in the art and yet still fall within the scope of the invention. As such, the scope of the invention is defined by the claims.

Claims
  • 1. A high-chroma omnidirectional structural color multilayer structure comprising: a multilayer stack having: a core layer;a dielectric layer extending across said core layer; andan absorber layer extending across said dielectric layer with an interface therebetween;said interface between said dielectric layer and said absorber layer having a near-zero electric field at a first incident electromagnetic wavelength and a large electric field at a second incident electromagnetic wavelength, said second incident electromagnetic wavelength not equal to said first incident electromagnetic wavelength,said multilayer stack having a single narrow reflection band with a full width half maximum (FWHM) width of less than 200 nanometers in the visible spectrum and a minimum color change with a hue shift of less than 30 degrees when viewed from angles between 0 and 45 degrees that provides a high-chroma omnidirectional structural color;said dielectric layer having a thickness of less than or equal to 2 quarter wave (QW) of a center wavelength of said narrow reflection band.
  • 2. The high-chroma omnidirectional structural color multilayer structure of claim 1, wherein said core layer has a complex refractive index represented by the expression RI1=n1+ik1 with n1<<k1, where RI1 is said complex refractive index, n1 is a refractive index of said core layer, k1 is an extinction coefficient of the said core layer and i is −1.
  • 3. The high-chroma omnidirectional structural color multilayer structure of claim 2, wherein said core layer is made from a material selected from the group consisting of silver, copper, chromium aluminum, gold and alloys thereof.
  • 4. The high-chroma omnidirectional structural color multilayer structure of claim 3, wherein said core layer is made from a material selected from the group consisting of said aluminum and said alloys thereof.
  • 5. The high-chroma omnidirectional structural color multilayer structure of claim 4, wherein said core layer has a thickness between 50 and 200 nm.
  • 6. The high-chroma omnidirectional structural color multilayer structure of claim 1, wherein said dielectric layer contains at least one of TiO2, MgF2, ZnS, HfO2, Nb2O5, Ta2O5, SiO2 and combinations thereof.
  • 7. The high-chroma omnidirectional structural color multilayer structure of claim 6, wherein said dielectric layer is ZnS.
  • 8. The high-chroma omnidirectional structural color multilayer structure of claim 7, wherein said absorber layer has a complex refractive index represented by the expression RI2=n2+ik2 with n2≈k2, where RI2 is said complex refractive index, n2 is a refractive index of said dielectric layer, k2 is an extinction coefficient of the said absorber layer.
  • 9. The high-chroma omnidirectional structural color multilayer structure of claim 8, wherein said absorber layer is made from a material selected from at least one of chromium, tantalum, tungsten, molybdenum, titanium, titanium nitride, niobium, cobalt, silicon, germanium, nickel, palladium, vanadium, ferric oxide and alloys thereof.
  • 10. The high-chroma omnidirectional structural color multilayer structure of claim 9, wherein said absorber layer is made from at least one of said chromium and said alloys thereof.
  • 11. The high-chroma omnidirectional structural color multilayer structure of claim 10, wherein said absorber layer has a thickness between 5 and 20 nm.
  • 12. The high-chroma omnidirectional structural color multilayer structure of claim 11, further comprising another dielectric layer extending across an outer surface of said absorber layer.
  • 13. The high-chroma omnidirectional structural color multilayer structure of claim 12, further comprising another absorber layer between said core layer and said dielectric layer.
  • 14. The high-chroma omnidirectional structural color multilayer structure of claim 11, further comprising another absorber layer between said core layer and said dielectric layer.
  • 15. A high-chroma omnidirectional structural color multilayer structure comprising: a multilayer stack having: a core layer having a first outer surface and an oppositely disposed spaced apart second outer surface;a first dielectric layer extending across said first outer surface and a second dielectric layer extending across said second outer surface of said core layer; anda first absorber layer extending across said first dielectric layer and a second absorber layer extending across said second dielectric layer;said multilayer stack having a near-zero electric field at a first interface between said first absorber layer and said first dielectric layer and at a second interface between said second absorber layer and said second dielectric layer;said multilayer stack having a single narrow reflection band with a full width half maximum (FWHM) width of less than 200 nanometers in the visible spectrum and a minimum color change with a hue shift of less than 30 degrees when viewed from angles between 0 and 45 degrees that provides a high-chroma omnidirectional structural color;said dielectric layer having a thickness of less than or equal to 2 quarter wave (QW) of a center wavelength of said narrow reflection band.
  • 16. The high-chroma omnidirectional structural color multilayer structure of claim 15, wherein said core layer is made from a material selected from the group consisting of aluminum and alloys thereof.
  • 17. The high-chroma omnidirectional structural color multilayer structure of claim 16, wherein said core layer has a thickness between 50 and 200 nm.
  • 18. The high-chroma omnidirectional structural color multilayer structure of claim 15, wherein said dielectric layer contains at least one of TiO2, MgF2, ZnS, HfO2, Nb2O5, Ta2O5, SiO2 and combinations thereof.
CROSS REFERENCE TO RELATED APPLICATIONS

The instant application is a continuation-in-part (CIP) of U.S. patent application Ser. No. 13/760,699 filed on Feb. 6, 2013, which in turn is a CIP of U.S. patent application Ser. No. 13/021,730 filed on Feb. 5, 2011, which in turn is a CIP of U.S. patent application Ser. No. 12/974,606 (now U.S. Pat. No. 8,323,391) filed on Dec. 21, 2010, which in turn is a CIP of U.S. patent application Ser. No. 12/388,395 filed on Feb. 18, 2009, which in turn is a CIP of U.S. patent application Ser. No. 11/837,529 (now U.S. Pat. No. 7,903,339) filed on Aug. 12, 2007. The instant application is also a CIP of U.S. patent application Ser. No. 12/893,152 filed on Sep. 29, 2010, which in turn is a CIP of U.S. patent application Ser. No. 12/467,656 filed on May 18, 2009. The instant application is also a CIP of U.S. patent application Ser. No. 12/793,772 filed on Jun. 4, 2010. The instant application is also a CIP of U.S. patent application Ser. No. 13/572,071 filed on Aug. 10, 2012, which in turn is a CIP of U.S. patent application Ser. No. 13/021,730 filed on Feb. 5, 2011, which in turn is a CIP of U.S. patent application Ser. No. 12/793,772 filed on Jun. 4, 2010, which in turn is a CIP of U.S. patent application Ser. No. 11/837,529 filed on Aug. 12, 2007 (now U.S. Pat. No. 7,903,339). The instant application is also a CIP of U.S. patent application Ser. No. 13/014,398 filed Jan. 26, 2011, which in turn is a CIP of U.S. patent application Ser. No. 12/793,772 filed on Jun. 4, 2010, which in turn is a CIP of U.S. patent application Ser. No. 12/686,861 filed on Jan. 13, 2010, which in turn is a CIP of U.S. patent application Ser. No. 12/389,256 filed on Feb. 19, 2009 (now U.S. Pat. No. 8,329,247).

US Referenced Citations (199)
Number Name Date Kind
3247392 Thelen Apr 1966 A
3650790 Klenke et al. Mar 1972 A
3769515 Clark, Jr. Oct 1973 A
3885408 Clark, Jr. May 1975 A
3910681 Elliott et al. Oct 1975 A
3953643 Cheung et al. Apr 1976 A
4079605 Bartels Mar 1978 A
4449126 Pekker May 1984 A
4525028 Dorschner Jun 1985 A
4544415 Franz et al. Oct 1985 A
4556599 Sato et al. Dec 1985 A
4613622 Moeller et al. Sep 1986 A
4643518 Taniguchi Feb 1987 A
4673914 Lee Jun 1987 A
4705839 Martin Nov 1987 A
4714308 Sawamura et al. Dec 1987 A
4753829 Panush Jun 1988 A
4756602 Southwell et al. Jul 1988 A
4868559 Pinnow Sep 1989 A
4896928 Perilloux et al. Jan 1990 A
5007710 Nakajima et al. Apr 1991 A
5043593 Tsutsumi et al. Aug 1991 A
RE33729 Perilloux Oct 1991 E
5132661 Pinnow Jul 1992 A
5138468 Barbanell Aug 1992 A
5214530 Coombs et al. May 1993 A
5245329 Gokcebay Sep 1993 A
5279657 Phillips et al. Jan 1994 A
5283431 Rhine Feb 1994 A
5323416 Bhat et al. Jun 1994 A
5423912 Sullivan et al. Jun 1995 A
5424119 Phillips et al. Jun 1995 A
5437931 Tsai et al. Aug 1995 A
5472798 Kumazawa et al. Dec 1995 A
5491470 Veligdan Feb 1996 A
5522923 Kimura et al. Jun 1996 A
5543665 Demarco Aug 1996 A
5561420 Kleefeldt et al. Oct 1996 A
5569332 Glatfelter et al. Oct 1996 A
5569353 Zodrow Oct 1996 A
5569535 Phillips et al. Oct 1996 A
5570847 Phillips et al. Nov 1996 A
5571624 Phillips Nov 1996 A
5653792 Phillips et al. Aug 1997 A
5691844 Oguchi et al. Nov 1997 A
5700550 Uyama et al. Dec 1997 A
5759255 Venturini et al. Jun 1998 A
5768026 Kiyomoto et al. Jun 1998 A
5850309 Shirai et al. Dec 1998 A
5889603 Roddy et al. Mar 1999 A
5982078 Krisl et al. Nov 1999 A
6049419 Wheatley et al. Apr 2000 A
6055079 Hagans et al. Apr 2000 A
6130780 Joannopoulos et al. Oct 2000 A
6150022 Coulter et al. Nov 2000 A
6156115 Pfaff et al. Dec 2000 A
6157480 Anderson et al. Dec 2000 A
6157489 Bradley, Jr. et al. Dec 2000 A
6157498 Takahashi Dec 2000 A
6164777 Li et al. Dec 2000 A
6180025 Schoenfeld et al. Jan 2001 B1
6215592 Pelekhaty Apr 2001 B1
6242056 Spencer et al. Jun 2001 B1
6243204 Bradley, Jr. Jun 2001 B1
6249378 Shimamura et al. Jun 2001 B1
6310905 Shirai Oct 2001 B1
6331914 Wood, II et al. Dec 2001 B1
6383638 Coulter et al. May 2002 B1
6387457 Jiang et al. May 2002 B1
6387498 Coulter et al. May 2002 B1
6399228 Simpson Jun 2002 B1
6433931 Fink et al. Aug 2002 B1
6451414 Wheatley et al. Sep 2002 B1
6475273 Zimmermann et al. Nov 2002 B1
6534903 Spiro et al. Mar 2003 B1
6565770 Mayer et al. May 2003 B1
6569527 Calhoun et al. May 2003 B1
6574383 Erchak et al. Jun 2003 B1
6596070 Schmidt et al. Jul 2003 B1
6618149 Stirton Sep 2003 B1
6624945 Fan et al. Sep 2003 B2
6667095 Wheatley et al. Dec 2003 B2
6686042 LeGallee Feb 2004 B1
6753952 Lawrence et al. Jun 2004 B1
6844976 Firon et al. Jan 2005 B1
6873393 Ma Mar 2005 B2
6887526 Arlt et al. May 2005 B1
6894838 Mizrahi et al. May 2005 B2
6903873 Joannopoulos et al. Jun 2005 B1
6913793 Jiang et al. Jul 2005 B2
6927900 Liu et al. Aug 2005 B2
6997981 Coombs et al. Feb 2006 B1
7052762 Hebrink et al. May 2006 B2
7064897 Hebrink et al. Jun 2006 B2
7098257 Rink et al. Aug 2006 B2
7106516 Lotz et al. Sep 2006 B2
7123416 Erdogan et al. Oct 2006 B1
7141297 Condo et al. Nov 2006 B2
7184133 Coombs et al. Feb 2007 B2
7190524 Grawert et al. Mar 2007 B2
7215473 Fleming May 2007 B2
7236296 Liu et al. Jun 2007 B2
7267386 Hesch Sep 2007 B2
7326967 Hsieh et al. Feb 2008 B2
7329967 Nozawa et al. Feb 2008 B2
7352118 Chowdhury et al. Apr 2008 B2
7367691 Lin May 2008 B2
7410685 Rosenberger et al. Aug 2008 B2
7413599 Henglein et al. Aug 2008 B2
7446142 Meisenburg et al. Nov 2008 B2
7452597 Bujard Nov 2008 B2
7483212 Cho et al. Jan 2009 B2
7638184 Yaoita et al. Dec 2009 B2
7667895 Argoitia et al. Feb 2010 B2
7699350 Heim Apr 2010 B2
7699927 Henglein et al. Apr 2010 B2
7745312 Herner et al. Jun 2010 B2
7847342 Fukuzumi et al. Dec 2010 B2
7851580 Li et al. Dec 2010 B2
7859754 Falicoff Dec 2010 B2
7863672 Jin et al. Jan 2011 B2
7903339 Banerjee et al. Mar 2011 B2
7929730 Huang et al. Apr 2011 B2
7980711 Takayanagi et al. Jul 2011 B2
8013383 Kidoh et al. Sep 2011 B2
8257784 Grayson et al. Sep 2012 B2
8313798 Nogueira et al. Nov 2012 B2
8323391 Banerjee et al. Dec 2012 B2
8329247 Banerjee et al. Dec 2012 B2
8350314 Fukuzumi et al. Jan 2013 B2
8440014 Kitamura et al. May 2013 B2
8446666 Kurt et al. May 2013 B2
8542441 Ouderkirk et al. Sep 2013 B2
8593728 Banerjee et al. Nov 2013 B2
8599464 Park Dec 2013 B2
8619365 Harris et al. Dec 2013 B2
8736959 Grayson et al. May 2014 B2
9063291 Banerjee et al. Jun 2015 B2
20010022151 Sliwinski et al. Sep 2001 A1
20020030882 Vitt et al. Mar 2002 A1
20020096087 Glausch Jul 2002 A1
20020117080 Okutsu et al. Aug 2002 A1
20020129739 Yanagimoto et al. Sep 2002 A1
20030002157 Someno Jan 2003 A1
20030059549 Morrow et al. Mar 2003 A1
20040047055 Mizrahi et al. Mar 2004 A1
20040156984 Vitt et al. Aug 2004 A1
20040179267 Moon et al. Sep 2004 A1
20040191540 Jakobi et al. Sep 2004 A1
20040246477 Moon et al. Dec 2004 A1
20040252509 Lin Dec 2004 A1
20040263983 Acree Dec 2004 A1
20040265477 Nabatova-Gabain et al. Dec 2004 A1
20050126441 Skelhorn Jun 2005 A1
20050132929 Raksha et al. Jun 2005 A1
20050152417 Lin Jul 2005 A1
20050235714 Lindstrom Oct 2005 A1
20050264874 Lin Dec 2005 A1
20060006402 Hsieh et al. Jan 2006 A1
20060023327 Coombs et al. Feb 2006 A1
20060030656 Tarng et al. Feb 2006 A1
20060081858 Lin et al. Apr 2006 A1
20060145172 Su et al. Jul 2006 A1
20060155007 Huber Jul 2006 A1
20060159922 O'Keefe Jul 2006 A1
20060222592 Burda Oct 2006 A1
20070097509 Nevitt et al. May 2007 A1
20070221097 Tarng et al. Sep 2007 A1
20090046368 Banerjee et al. Feb 2009 A1
20090082659 Ham et al. Mar 2009 A1
20090153953 Banerjee et al. Jun 2009 A1
20090161220 Banerjee et al. Jun 2009 A1
20090241802 Nemoto et al. Oct 2009 A1
20090303044 Furuichi et al. Dec 2009 A1
20090321693 Ohkuma et al. Dec 2009 A1
20100064938 Voit et al. Mar 2010 A1
20100208338 Banerjee et al. Aug 2010 A1
20100209593 Banerjee et al. Aug 2010 A1
20100213485 McKenzie et al. Aug 2010 A1
20110091658 Banerjee et al. Apr 2011 A1
20110113984 Fuller, Jr. et al. May 2011 A1
20110128616 Banerjee et al. Jun 2011 A1
20110134515 Banerjee et al. Jun 2011 A1
20110214733 den Boer et al. Sep 2011 A1
20110228399 Ohnishi Sep 2011 A1
20110299154 Grayson et al. Dec 2011 A1
20120050848 Carlson et al. Mar 2012 A1
20120107584 Eibon et al. May 2012 A1
20120307369 Banerjee et al. Dec 2012 A1
20130148221 Banerjee et al. Jun 2013 A1
20130213260 Kunii Aug 2013 A1
20130250403 Maeda Sep 2013 A1
20130265668 Banerjee et al. Oct 2013 A1
20140018439 Gruner et al. Jan 2014 A1
20140111861 Banerjee et al. Apr 2014 A1
20140211303 Banerjee et al. Jul 2014 A1
20140368918 Banerjee et al. Dec 2014 A1
20150138641 Delst et al. May 2015 A1
20150138642 Banerjee et al. May 2015 A1
Foreign Referenced Citations (74)
Number Date Country
1527100 Sep 2004 CN
1741246 Mar 2006 CN
101027365 Aug 2007 CN
101765791 Jun 2010 CN
102132214 Jul 2011 CN
102803174 Nov 2012 CN
103502333 Jan 2014 CN
103507322 Jan 2014 CN
103874939 Jun 2014 CN
104380150 Feb 2015 CN
104619668 May 2015 CN
2106613 Aug 1971 DE
19823732 Dec 1999 DE
141143 May 1985 EP
H0246366 Feb 1990 JP
H0312605 Jan 1991 JP
H05241017 Sep 1993 JP
H06016965 Jan 1994 JP
H06118229 Apr 1994 JP
07034324 Feb 1995 JP
H07258579 Oct 1995 JP
H8-259840 Oct 1996 JP
H10202813 Aug 1998 JP
H1112489 Jan 1999 JP
H11101913 Apr 1999 JP
H11504953 May 1999 JP
2000220331 Aug 2000 JP
2000329933 Nov 2000 JP
2002080749 Mar 2002 JP
2002090522 Mar 2002 JP
2003053875 Feb 2003 JP
2003329824 Nov 2003 JP
2004505158 Feb 2004 JP
2004134743 Apr 2004 JP
2004510013 Apr 2004 JP
2004512394 Apr 2004 JP
2005513207 May 2005 JP
2005144925 Jun 2005 JP
2006506518 Feb 2006 JP
2006097426 Apr 2006 JP
3799696 Jul 2006 JP
2006193738 Jul 2006 JP
2006285196 Oct 2006 JP
2007065232 Mar 2007 JP
2007510022 Apr 2007 JP
2007133325 May 2007 JP
2007183525 Jul 2007 JP
2008038382 Feb 2008 JP
2008508404 Mar 2008 JP
2008510866 Apr 2008 JP
2008526002 Jul 2008 JP
2008191592 Aug 2008 JP
2008209520 Sep 2008 JP
2008230218 Oct 2008 JP
2008257777 Oct 2008 JP
2009427633 Feb 2009 JP
2009511725 Mar 2009 JP
2010502433 Jan 2010 JP
2010526015 Jul 2010 JP
2010191431 Sep 2010 JP
4948706 Jun 2012 JP
2013518946 May 2013 JP
2014237819 Dec 2014 JP
2015120350 Jul 2015 JP
2016027095 Feb 2016 JP
2016049777 Apr 2016 JP
9936258 Jan 1999 WO
9942892 Aug 1999 WO
0012634 Mar 2000 WO
2000022466 Apr 2000 WO
0031571 Jun 2000 WO
02054030 Jul 2002 WO
03062871 Jul 2003 WO
2015153043 Oct 2015 WO
Non-Patent Literature Citations (76)
Entry
Bing-Xin Wei et al., “Detrimental Thixotropic Thinning of Filter Cake of SiO2—Al2O3 Composite Coated TiO2 Particles and Its Control”, Industrial & Engineering Chemistry Research, Sep. 27, 2011, 50, pp. 13799-13804.
Hongqiang et al, “Disordered dielectric high reflectors with broadband from visible to infrared,” Applied Physics Letters, American Institute of Physics, Melville, NY, US, vol. 74, No. 22, dated May 31, 2009.
Xifre-Perez et al, “Porous silicon mirrors with enlarged omnidirectional band gap,” Journal of Applied Physics, American Institute of Physics, Melville, NY, US, vol. 97, No. 6, dated Mar. 9, 2005.
“Laser 2000 Gmbttp://www.laser2000.de/fileadmin/Produkdaten/SK_WEB/Datenblaetter_SEM/SEMROCK-StopLine-Notchfilterpdf, accessed Feb. 2, 2010”.
Bendiganavale A.K., Malshe, V.C., “Infrared Reflective Inorganic Pigments”, Recent Patents on Chemical Engineering, 2008, 1, 67-79.
D.P. Young, Jr., et al. “Comparison of Avian Responses to UV-Light Reflective Paint on Wind Turbines,” National Renewable Energy Laboratory, Subcontract Report, Jan. 2003.
Maier, E.J. “To Deal With the Invisible: On the biological significance of ultraviolet sensitivity in birds.” Naturwissenschaften 80: 476-478, 1993.
Nison, J., “Twinkle, Twinkle Little Star,” Asia Pacific Coating Journal, Feb. 2004.
Fink, Joel “A Dielectric Omnidirectional Reflector”, E.L. Thomas, Science, vol. 282, Nov. 27, 1988.
Lin, Weihua, “Design and Fabrication of Omnidirectional Reflectors in the Visible Range” Journal of Modern Optics, vol. 52, No. 8, 1155 (2005).
Chen, Kevin M. “Si02/Ti02 Omnidirectional Reflector and Microcavity Resonator Via the Sol-Gel Method”, Appl. Phys. Lett., vol. 75, No. 24, Dec. 13, 1999.
Almedia, R.M., “Photonic Bandgap Materials and Structures by Sol-Gel Processing”, Journal of Non-Crystalline Solids, 405-499 (2003).
Decourby, R.G., “Planar Omnidirectional Reflectors in Chalcogenide Glass and Polymer” Optics Express, 6228, Aug. 8, 2005.
Clement, T.J., “Improved Omnidirectional Reflectors in Chalcogenide Glass and Polymer by Using the Silver Doping Tachnique”, Optics Express, 14, 1789 (2006).
Bryant, A., “All-Silicon Omnidirectional Mirrors Based on One-Dimensional Crystals”, Appl. Phys. Lett. vol. 82, No. 19, May 12, 2003.
Chigrin, D.N., “Observation of Total Omnidirectional Reflection From a One-Dimensional Dielectric Lattice”, Appl. Phys. A. 68, 25-28 (1999).
Park, Y., “GaAs-based Near-infrared Omnidirectional Reflector”, Appl. Phys. Lett., vol. 82, No. 17, Apr. 28, 2003.
H-Y Lee, “Design and Evaluation of Omnidirectional One-Dimensional Photonic Crystals”, Journal of Appl. Phys. vol. 93, No. 2, Jan. 15, 2003.
Banerjee, Debasish, “Narrow-band Omnidirectional Structural Color”, SAE World Congress 01-1049 (2008).
U.S. Appl. No. 13/760,699, filed Feb. 6, 2013.
U.S. Appl. No. 13/572,071, filed Aug. 10, 2012.
U.S. Appl. No. 13/021,730, filed Feb. 5, 2011.
U.S. Appl. No. 12/793,772, filed Jun. 4, 2010.
U.S. Appl. No. 12/388,395, filed Feb. 18, 2009.
U.S. Appl. No. 13/014,398, filed Jan. 26, 2011.
Sajeev John et al., “Photonic Band Gap Materials: A Semiconductor for Light”, Department of Physics, University of Toronto, p. 1-23; 2001.
Distributed Bragg Reflector; en.wikipedia.org/wiki/Bragg_reflector (2005).
Photonic Crystal; en.wikipedia.org/wiki/Photonic_crystals (2003).
Tikhonravov, et al., “Application of the Needle Optimization Technique to the Design of Optical Coatings”, Applied Optics, Optical Society of America, 1996, pp. 5493-5508, vol. 35, No. 28.
Tikhonravov, Alexander V. et al., “Optical Coating Design Algorithm Based on the Equivalent Layers Theory”, Applied Optics: vol. 45, No. 7; Mar. 2006; pp. 1530-1538.
Kaminska, Kate et al., “Birefringent Omnidirectional Reflector”, Applied Optics, vol. 43, No. 7, Mar. 2004, pp. 1570-1576.
Deopura, M. “Dielectric Omnidirectional Visible Reflector,” Optics Letters, Aug. 1, 2001, vol. 16, No. 15.
Schmid, Raimund and Mronga, Norbert, “A New Generation of Sparkling Effect Pigments”, Paint & Coatings Industry; Oct. 2004, vol. 20 Issue 10, p. 118-121.
Office Action dated Sep. 5, 2018 pertaining to Japanese Patent Application No. 2014-117702.
Office Action dated Jun. 4, 2019 pertaining to Japanese Patent Application No. 2014-117702.
Office Action dated Sep. 30, 2018 pertaining to Chinese Patent Application No. 201410693385.4.
Office Action dated Apr. 22, 2019 pertaining to Chinese Patent Application No. 201410693385.4.
Office Action dated Sep. 21, 2018 pertaining to German Patent Application No. 10 2014 119 261.3.
Office Action dated Feb. 5, 2019 pertaining to Japanese Patent Application No. 2016-559529.
Office Action dated Jul. 12, 2018 pertaining to Chinese Patent Application No. 201580026216.8.
Office Action dated Apr. 1, 2019 pertaining to Chinese Patent Application No. 201580026216.8.
Office Action dated Oct. 9, 2019 pertaining to Chinese Patent Application No. 201580026216.8.
International Preliminary Report on Patentability dated Oct. 4, 2016 pertaining to PCT/US2015/018640, filed Mar. 4, 2015.
International Search Report and Written Opinion dated May 29, 2015 pertaining to PCT/US2015/018640, filed Mar. 4, 2015.
Office Action dated Nov. 2, 2018 pertaining to Chinese Patent Application No. 201510498432.4.
Office Action dated Jun. 28, 2019 pertaining to Chinese Patent Application No. 201510498432.4.
Office Action dated Dec. 3, 2019 pertaining to Chinese Patent Application No. 201510498432.4.
Office Action dated May 28, 2019 pertaining to Japanese Patent Application No. 2015-160731.
Office Action dated Mar. 20, 2018 pertaining to Japanese Patent Application No. 2015-169044.
Office Action dated Feb. 8, 2018 pertaining to German Patent Application No. 102015113535.3.
Office Action dated Sep. 4, 2018 pertaining to Chinese Patent Application No. 201510624641.9.
Office Action dated Nov. 5, 2019 pertaining to Japanese Patent Application No. 2016-014076.
Office Action dated Jul. 16, 2019 pertaining to Chinese Patent Application No. 201610040211.7.
Office Action dated Oct. 29, 2018 pertaining to Chinese Patent Application No. 201610397388.2.
Office Action dated Jun. 4, 2019 pertaining to Chinese Patent Application No. 201610397388.2.
Office Action dated May 29, 2018 pertaining to Japanese Patent Application No. 2016-113282.
Office Action dated Apr. 16, 2019 pertaining to Japanese Patent Application No. 2016-113282.
Office Action dated Oct. 29, 2018 pertaining to Chinese Patent Application No. 201610397718.8.
Office Action dated Jun. 5, 2018 pertaining to Japanese Patent Application No. 2016-113434.
Office Action dated Oct. 25, 2018 pertaining to Chinese Patent Application No. 201610395759.3.
Office Action dated Jun. 4, 2019 pertaining to Chinese Patent Application No. 201610395759.3.
Office Action dated May 29, 2018 pertaining to Japanese Patent Application No. 2016-113285.
Office Action dated Apr. 16, 2019 pertaining to Japanese Patent Application No. 2016-113285.
Office Action dated Jul. 10, 2019 pertaining to Chinese Patent Application No. 201710284783.4.
Office Action dated Sep. 18, 2018 pertaining to Japanese Patent Application No. 2017-085886.
Office Action dated Jun. 4, 2019 pertaining to Japanese Patent Application No. 2017-085886.
Office Action dated Jan. 23, 2013 pertaining to Japanese Patent Application No. 2008-208255.
Office Action dated Feb. 26, 2014 pertaining to Japanese Patent Application No. 2008-208255.
Office Action dated Sep. 30, 2014 pertaining to Japanese Patent Application No. 2008-208255.
Office Action dated Jan. 30, 2017 pertaining to Japanese Patent Application No. 2010-114777.
Office Action dated Jan. 29, 2015 pertaining to Japanese Patent Application No. 2011-126545.
Office Action dated Jun. 23, 2015 pertaining to Japanese Patent Application No. 2011-126545.
Office Action dated Jan. 27, 2014 pertaining to Japanese Patent Application No. 2011-213056.
Office Action dated Nov. 20, 2014 pertaining to Japanese Patent Application No. 2011-213056.
Office Action dated Aug. 15, 2017 pertaining to Japanese Patent Application No. 2013-167895.
Office Action dated Feb. 20, 2018 pertaining to Japanese Patent Application No. 2013-167895.
Related Publications (1)
Number Date Country
20130265668 A1 Oct 2013 US
Continuation in Parts (6)
Number Date Country
Parent 13760699 Feb 2013 US
Child 13913402 US
Parent 13572071 Aug 2012 US
Child 13760699 US
Parent 13021730 Feb 2011 US
Child 13572071 US
Parent 12793772 Jun 2010 US
Child 13021730 US
Parent 12388395 Feb 2009 US
Child 12793772 US
Parent 11837529 Aug 2007 US
Child 12388395 US