1. Field
The present disclosure relates to microscopy, and particularly relates to super-resolution imaging microscopy in three dimensions.
2. Description of Related Art
Many of the features of interest in the fluorescence microscopy of cells are not resolved by a conventional optical microscope. This represents a fundamental barrier to progress, for example, in cancer research where imaging is used to study changes in cytoskeletal, membrane and chromosome structure, and to visualize changes in DNA, such as patterns of methylation. Super-resolution techniques allow the capture of images with a higher resolution than the classical diffraction limit. The recent proliferation of super-resolution methods reflects the recognition of this need. A category of super resolution techniques, known as “functional,” uses clever experimental techniques and known limitations on the matter being imaged to reconstruct a super-resolution image. Current approaches to overcome the Rayleigh limit either modify the signal that is emitted from the sample under investigation (Stimulated Emission Depletion (STED) microscopy, saturated excitation (SAX) microscopy, Scanning Photoemission Microscopy (SPEM), REversible Saturable OpticaL Fluorescence Transitions (RESOLFT), Photoactivated Localization Microscopy (PALM), and others) or increase the numerical aperture, most notably 4π and standing wave microscopy. While some methods have reported resolutions down to 8 nm, their practicality is severely hampered by the need for special fluorophores and/or extreme illumination light intensities, while the other methods may generally requires thin specimens.
To date, none of these methods have been found very practical for routine research or to image intracellular structures, nor can they be used with non-fluorescence imaging.
Standing waves have also been used with total internal reflection microscopy to improve lateral resolution, but this approach is often limited to one very thin section of the specimen.
In its simplest embodiment, in standing wave microscopy a mirror is placed directly behind the sample in an epi-fluorescence microscope. The sample is illuminated through the microscope objective lens. The light passes through the sample under investigation and is reflected back towards the objective lens by the mirror behind the sample. Thus the illumination light is traversing the sample twice, once from the objective lens towards the mirror and once in the opposite direction. If the distance from the sample to the mirror is less than half of the coherence length of the illumination light, an interference pattern that is periodic along the optical (Z) axis will be observed.
The important property of this interference pattern is that its period is approximately half of the wavelength of the excitation light. In standing wave microscopy, this property is used to increase the axial resolution of the microscope. The Fast Fourier Transform (FFT) of the Point Spread Function (PSF) is the optical transfer function (OTF), which is shown in
Standing wave microscopy has been demonstrated by using a second illumination path with a second, matched objective lens in the position of the condenser instead of the mirror mentioned above. This configuration is more symmetric which allows better control of the interference pattern. It also allows a number of refinements. However, it does require a substantial modification of the microscope. It is also not easy to maintain stability along both illumination paths to within a fraction of the excitation wavelength. In practice, this setup suffers from many of the difficulties that plague 4π microscopy. Standing wave microscopy can be combined with other microscopy methods, such as two-photon excitation and confocal microscopy to further improve the resolution along the z-axis and to resolve ambiguities that stem from the periodic nature of the interference pattern.
The primary limitation of standing wave microscopy sterns from the fact that the interference pattern is produced by two counter-propagating planar or nearly planar wave-fronts. Thus the interference pattern is periodic along the Z-axis only and has no significant structure in the X and Y axis. Therefore only the resolution along the Z-axis is improved, while the resolution along the X and Y axis remains unchanged. Other problems arise simply from the aliasing along the Z axis which limits sample thickness, the stability requirements, the need for closely match microscope objectives, the extensive modifications to the microscope and the need for a symmetric sample preparation between two cover-slips.
In an aspect of the disclosure, a microscopy method includes placing a specimen to be observed adjacent to a reflective diffractive optical element (RDOE). A beam of light that is at least partially coherent is focused on a region of the specimen. The beam forward propagates through the specimen and is at least partially reflected backward through the specimen. The backward reflected light interferes with the forward propagating light to provide a three dimensional interference pattern that is at least partially within the specimen. A specimen region of the interference pattern is imaged at an image detector.
In a further aspect of the disclosure, an apparatus for omnidirectional super-resolution includes a reflective diffractive optical element (RDOE) configured to reflect and diffract illuminating light, and to contact a first side of a liquid specimen having the first side and a second side, wherein the specimen contains one or more object features, a coarse positioning stage coupled to the RDOE, a fine positioning stage coupled to the coarse positioning stage and RDOE, a light source configured to illuminate and pass light through the specimen from the second side; and a camera configured to capture a one or more digital images of light reflected and diffracted from the RDOE and passing back through the specimen.
Various aspects of the present invention will be described herein with reference to drawings that are schematic illustrations of idealized configurations of the present invention. As such, variations from the shapes of the illustrations as a result, for example, manufacturing techniques and/or tolerances, are to be expected. Thus, the various aspects of the present invention presented throughout this disclosure should not be construed as limited to the particular shapes of elements (e.g., regions, layers, sections, substrates, etc.) illustrated and described herein but are to include deviations in shapes that result, for example, from manufacturing. By way of example, an element illustrated or described as a rectangle may have rounded or curved features and/or a gradient concentration at its edges rather than a discrete change from one element to another. Thus, the elements illustrated in the drawings are schematic in nature and their shapes are not intended to illustrate the precise shape of an element and are not intended to limit the scope of the present invention.
It will be understood that when an element such as a region, layer, section, substrate, or the like, is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. It will be further understood that when an element is referred to as being “formed” on another element, it can be grown, deposited, etched, attached, connected, coupled, or otherwise prepared or fabricated on the other element or an intervening element. In addition, when a first element is “coupled” to a second element, the first element may be directly connected to the second element or the first element may be indirectly connected to the second element with intervening elements between the first and second elements.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the drawings. It will be understood that relative terms are intended to encompass different orientations of an apparatus in addition to the orientation depicted in the drawings. By way of example, if an apparatus in the drawings is turned over, elements described as being on the “lower” side of other elements would then be oriented on the “upper” side of the other elements. The term “lower” can therefore encompass both an orientation of “lower” and “upper,” depending of the particular orientation of the apparatus. Similarly, if an apparatus in the drawing is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The terms “below” or “beneath” can therefore encompass both an orientation of above and below.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and this disclosure.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The term “and/or” includes any and all combinations of one or more of the associated listed items.
A structure and method is disclosed to achieve super-resolution in imaging microscopy by extending standing wave microscopy (SWM) into three dimensions. Unlike the conventional SWM, the new device will achieve super-resolution in all three dimensions using a simple and practical optical technique, with no special requirements regarding fluorophores or light sources, and with image acquisition times potentially allowing for live-cell imaging. A set of fluorescence images can be recorded using a regular CCD camera as a piezo stage is translated through a predefined nano-position 3-D step sequence. The image set can then be processed using high-speed sparse matrix processing algorithms to generate a 3-D super-resolution image. The approach relies on transforming the optical resolution problem into a well defined computational problem.
Omnidirectional Standing Wave Microscopy (OSWM) may provide a means of overcoming the conventional resolution limit of an optical microscope to obtain super-resolution in all three dimensions simultaneously. In an aspect of the disclosure, the mirror in an implementation of structured illumination epi-fluorescence microscopy (to produce a standing wave, resulting in axial fringes of illumination) is replaced by an inexpensive, disposable reflective diffractive optical element (RDOE). This holographic grating imposes a rich 3-D structure onto the interference pattern (“structured standing wave”, SSW) that is generated throughout the sample volume. OSWM uses this effect to subdivide the PSF of an otherwise unmodified epi-fluorescence microscope. By moving the reflective element via piezo-actuators in a controlled fashion, a series of images may be obtained by a digital camera and stored in a computer memory. The images may be computationally combined by a computer processor into one high-resolution 3-D image of the sample. Unlike previously demonstrated standing wave microscopy, OSWM can provide super-resolution in all three dimensions using a simple and practical optical technique. This approach transforms the optical resolution problem into a well defined computational problem. A 3-D reconstruction algorithms can be developed from existing 3-D reconstruction (“inverse” Radon transform) methods and implemented using high speed graphics processors to provide nearly real time 3-D images with spatial resolution below the Rayleigh limit.
In an aspect of the disclosure, an embodiment of an OSWM system 200 is shown in
Once the sample-bearing coverslip 240 has been positioned in the field of view of the microscope objective 220, a piezo stage 270 may be controlled to scan in a series of sequential steps in three dimensions. Images produced may be transmitted back through the dichroic beam splitter 210 and an emission filter 280 (optional) to an image detector/camera which may be, for example, a CCD or other type of camera 320 (as shown in
Once the sample 230 has been positioned in the field of view of the OSWM 200, a piezo-scan sequence will be initiated and a set of images will be generated and stored for post processing by a 3-D image reconstruction engine 360, i.e., a computer program of instructions, which has received the image set from the data acquisition/camera controller 330. Each image file will also contain position information of the piezo stage 270 for the reconstruction by the 3-D image reconstruction engine 360.
A central processor 370, which may be, for example, a personal computer, is configured to run a program to control the piezo drive controller 310, image detector/camera 320 (via the data acquisition/camera controller 330), laser power supply/controller 340, microscope control interface 350, and image reconstruction engine 360 over a communications interface 375. The communication interface 375 may be a direct link, whether electrical, optical or wireless. Alternatively, the communications interface may be a network having one or more access nodes to which the elements in
The piezo drive controller 310 is coupled to the piezo stage 270 and controlled the motion and position of the piezo stage 270. The data acquisition/camera controller 330 is coupled to the camera 310 and controls and receives images from the
Like the mirror in a conventional standing wave microscope, the RDOE 250 reflects the excitation light back towards the microscope objective lens 220 and creates an interference pattern with the incident excitation wavefront throughout the sample volume viewed in the aperture of the microscope objective lens 220. However, unlike the interference pattern created by a plane mirror, the interference pattern created by the RDOE 250 has a complex, three-dimensional structure with sharp contrast in all three dimensions. This interference pattern is a function of the RDOE position that can be moved over the sample volume in a controlled, preset fashion by the piezo stage 270 under the control of the piezo drive controller 310.
A main objective in forming a profile of surface topography of the RDOE 250 is to optimize the spatial contrast in all three directions. Thus, while details of the topography may vary, a pattern of the RDOE 250 having a lateral pitch on the order of one wavelength and a modulation depth on the order of approximately one half of the wavelength can produce usable interference patterns. A RDOE 250 having a periodic deformation structure on this scale may be provided by imprint stamping a plastic substrate with a pre-formed hard master, followed by coating the plastic with a metal for high reflectivity. Other methods may be used to produce the RDOE 250, but imprint stamping enables low cost manufacture of large quantities of the RDOE 250 to uniform tolerances, so that the RDOE 250 is a disposable nontoxic commodity that can be directly exposed to biological aqueous media.
The structure of the RDOE 250 may consist of patterns that produce pseudo-random interference profiles throughout the volume of the sample 240. However structures that are periodic in two orthogonal dimensions may greatly simplify the image reconstruction. For example preliminary tests have shown that a rectangular array of pyramidal reflectors produces satisfactory results. In general, the RDOE 250 may be optimized to maximize the high spatial frequency components perpendicular to the optical axis, i.e., substantially in the plane of the cover slip 230. This needs to take the excitation wavelength, the microscope geometry and the realizable excitation wave front for a specific microscope objective 220 into account. In most practical embodiments, the excitation wave front will be converging on a point behind the sample, which is due the fact that the light traverses the objective lens which has a very short focal length. The RDOE 250 has to take this converging beam path into account to achieve good interference contrast, which depends on the intensity of the reflected illumination light is approximately equal to the incident light. This intensity modulation ratio is preferably achieved locally, not globally over the entire sample volume. This is either achieved by minimizing the distance between the sample and the RDOE 250 or by using an RDOE that focuses light like a spherical mirror, but with small distortions to create the required structure.
In SWM, the interference pattern has a very regular structure that leads to a relatively simple, direct mathematical formulation that can be solved directly yielding an axial spacing between consecutive intensity maxima in the fringe pattern. The computational requirements for OSW microscopy (OSWM) are much greater that those for ordinary standing wave microscopy (SWM).
The computational reconstruction of an image of an object of molecular scale may exploit established techniques for tomographic inverse problems such as CT & PET, each system being characterized by its system matrix. Whereas in CT each row of the system matrix represents a line integral through the image, in OSWM it represents the microscope's PSF weighted by the interference pattern. The system matrix for OSWM is very sparse and localized due to the fact that the PSF of the microscope collects light only from a small volume of the sample for each pixel of the image collected by the imaging detector (CCD camera). A primary challenge for the image reconstruction algorithm is to store the system matrix efficiently. Because the system matrix lacks full translation invariance, OSWM reconstruction is a poor fit for the Fourier transforms often used to study CT mathematically. This leaves filtered back-projection (FBP) algorithms and algebraic methods. FBP is a common algorithm used in the tomographic reconstruction of clinical data. The FBP algorithms are attractive because of the low memory requirement; however developing appropriate filters may be difficult. Therefore an algebraic reconstruction based on a preconditioned conjugate gradient method is an alternative that may be used. The Algebraic Reconstruction Technique (ART) is an iterative algorithm for the reconstruction of a two-dimensional image from a series of one-dimensional angular projections (a sinogram), used in computed tomography scanning. In numerical linear algebra the reconstruction method is called the Kaczmarz method.
An optimized system matrix representation for super-resolution imaging computes its elements based on the two separate components, the PSF and the interference pattern. The PSF of the microscope may be considered to be identical for each pixel of the camera. It is possible to relax this assumption and parameterize the PSF to take the X/Y position of the pixel into account. In any event, the PSF is stored only once for the entire camera, not once for each pixel. The second component is the interference pattern, which is simply stored as a non-sparse 3-D array that may be constructed from a signal measured of the probe points during the calibration. It should be noted that this array has about the same number of elements as the reconstructed image and is not of the size of the system matrix. Thus the memory requirement for this representation is reasonably small.
The function to produce the non-zero values of the system matrix first enumerates the non-zero elements of the microscope PSF. The non-zero PSF elements are then multiplied with the value of the SSW interference pattern. This value is based on the voxel location and the position of the RDOE. After a simple coordinate transform, the intensity value is retrieved from the SSW array via linear interpolation. It may be practical to use fewer elements for the SSW array and better interpolation, for example, using a table-driven Lanczos re-sampling. The Lanczos filter is a windowed form of the sinc filter. The reconstruction of a 10 μm cube can require several days of computer time on a normal PC. However, this time can be greatly reduced by transforming the code to use floating-point accelerators. Currently, one platform is the GTX 590 series graphical processing unit (GPU) developed by NVIDIA that is supported by the CUDA software framework, and which is suitable for scientific codes like this OSWM reconstruction. Each GTX 590 GPU has 1024 cores, and several of these GPUs can be used together. It is estimated that OSWM reconstruction time may be reduced to a few minutes. Additionally, very fast advances in hardware and further customized software will potentially reduce this by another order of magnitude or more.
In a further aspect of the disclosure,
In process block 620 the RDOE 250 may be positioned adjacent to the specimen at a first position prior to the start of a 3-D scan sequence. The aqueous solution may contact the RDOE 250, and the focal point may be substantially located in a volume of space containing the specimen between the coverslip 240 and the RDOE 250. The RDOE 250 may be positioned by control of a coarse positioning hexapod positioning system and a fine positioning piezo stage.
In process block 630, a coherent light source, such as a laser 345, may be focused on a region of the specimen in the field of the microscope objective 220. Provided the coherence length of the laser is greater than the interference path between the coverslip 240 and the RDOE 250, an interference pattern will be created by the coherent interference between the forward propagating laser light and the light reflected/diffracted from the RDOE 250.
In process block 640, the RDOE 250 may be scanned across a 3-D portion of the microscope objective field of view in programmed steps, where the motion is executed by the piezo stage 270. Position resolution may be on the order of tens of nanometers, or less.
In process block 650 an interference image is acquired by the camera 320 and digitized, and is then stored (in process block 660) in a file in memory associated with the computer 370.
In process block 670 a reconstruction algorithm is applied to the image files to generate a super-resolution image in 3-D of the specimen, ending the method. The resolution may be on the order of the piezo stage stepping resolution.
The 3-D image may be presented graphically in a manner substantially similar to reconstructed images acquired by PET, CAT and MRI scanning.
It may be appreciated that the apparatus and methods described herein may be applied to fast, automated image-based techniques to allow high-throughput screening of mammalian cells for sub-cellular structural information from the cytoskeleton, membranes and chromosomes, potentially with long-term benefits that include finding targets for treatment, observing and predicting responsiveness to therapy, and improving the use of cell models in drug development. An additional advantage of the disclosed methods uses in concert with the disclosed apparatus is that it can, in principle, incorporate approaches that yield even higher resolution fluorescence images, including multi-photon microscopy, STED microscopy, 4π solid angle imaging, Stochastic Optical Reconstruction Microscopy (STORM), PALM and others. While initial applications may be for biological and medical imaging, the super resolution fluorescence approach may also find applications in the rapidly growing nanomaterials area, for example in the development of advanced solar cells, battery membranes and nanoscale electronics components.
The various aspects of this disclosure are provided to enable one of ordinary skill in the art to practice the present invention. Modifications to various aspects of forming nanostructures to modify a Cu surface presented throughout this disclosure will be readily apparent to those skilled in the art of batteries, applications to other technical arts, and the concepts disclosed herein may be extended to such other applications. Thus, the claims are not intended to be limited to the various aspects of a lithium-ion battery presented throughout this disclosure, but are to be accorded the full scope consistent with the language of the claims. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”