The present invention relates to a technique for opening vehicle doors of a train and platform doors at a station.
In recent years, platform doors are installed more often on the platforms of the stations. When the positions of all the vehicle doors of a train entering the platform correspond with the positions of the platform doors, the vehicle doors and the platform doors are opened/closed. In order that the positions of all the vehicle doors of a train correspond with the positions of the platform doors, the train needs to be stopped at a predetermined position on the platform of a station.
For the technique disclosed in Patent Literature 1, if a train cannot stop at a predetermined position on the platform of a station, but has stopped past a predetermined position on the platform of a station, for example, the train undergoes backward inching, such that the train moves backward to the predetermined position.
Patent Literature 1: Japanese Patent Application Laid-open No. 2002-67958
Unfortunately, Patent Literature 1 mentioned above poses a problem of requiring a long time before opening the vehicle doors as the backward inching is needed to move the train back to the predetermined position.
The present invention has been achieved to solve the above problem, and an object of the present invention is to open vehicle doors in a shorter time than conventionally required, when a train does not stop at a predetermined position on the platform of a station.
According to a first aspect of the invention, an on-board control apparatus provided in a train, the apparatus comprising: a ground-coil information storage unit to store therein information on a ground coil located on a track on which the train runs; a train-position detection unit to detect a position of the train; a train stop-position specification unit to determine a train stop position on a basis of information on the ground coil stored in the ground-coil information storage unit, and train position information detected by the train-position detection unit; a vehicle-door specification unit to determine a vehicle door of the train to be opened/closed, on a basis of the determined train stop position; and a vehicle-door information output unit to output determined vehicle door information of the train.
According to a second aspect of the invention, a platform-door control system comprising: an on-board control apparatus provided in a train and including: a ground-coil information storage unit to store therein information on a ground coil located on a track on which the train runs; a train-position detection unit to detect a position of the train; a train stop-position specification unit to determine a train stop position on a basis of information on the ground coil stored in the ground-coil information storage unit, and train position information detected by the train-position detection unit; a vehicle-door specification unit to determine a vehicle door of the train to be opened/closed, on a basis of the determined train stop position specified; and a vehicle-door information output unit to output determined vehicle door information of the train; and a platform-door control apparatus to receive the vehicle door information output from the vehicle-door information output unit, and control platform doors installed at a station.
According to the invention, an on-board control apparatus provided in a train, the apparatus comprising: a ground-coil information storage unit to store therein information on a ground coil located on a track on which the train runs; a train-position detection unit to detect a position of the train; a train stop-position specification unit to determine a train stop position on a basis of information on the ground coil stored in the ground-coil information storage unit, and train position information detected by the train-position detection unit; a vehicle-door specification unit to determine a vehicle door of the train to be opened/closed, on a basis of the determined train stop position; and a vehicle-door information output unit to output determined vehicle door information of the train. As a result, in a case where the train does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
According to the invention, a platform-door control system comprising: an on-board control apparatus provided in a train and including: a ground-coil information storage unit to store therein information on a ground coil located on a track on which the train runs; a train-position detection unit to detect a position of the train; a train stop-position specification unit to determine a train stop position on a basis of information on the ground coil stored in the ground-coil information storage unit, and train position information detected by the train-position detection unit; a vehicle-door specification unit to determine a vehicle door of the train to be opened/closed, on a basis of the determined train stop position specified; and a vehicle-door information output unit to output determined vehicle door information of the train; and a platform-door control apparatus to receive the vehicle door information output from the vehicle-door information output unit, and control platform doors installed at a station. As a result, in a case where the train does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
A track 9 is a structure on the roadbed on which the train 11 runs. Ground coils are installed on the track 9 and spaced apart from each other. An ID (ground coil information) is set for each of the ground coils. In
The train 11 includes a pickup coil 14 capable of communicating with the ground coils installed on the track 9, and a vehicle-door opening/closing unit 12 through which passengers board and deboard the train 11.
The platform-door device 51 is installed in order to prevent passengers at a station from falling onto the railway tracks. The platform-door device 51 is defined by a platform-door pocket 52 fixedly installed on the platform of a station, and a platform-door opening/closing unit 53 that is openable/closable. The platform-door device 51 operates in conjunction with the doors of the train 11 when this train has stopped at a station. When the train 11 stops at a predetermined position, the platform-door opening/closing unit 53 and the vehicle-door opening/closing unit 12 of the train 11 are opened/closed, thereby allowing passengers to board and deboard the train 11.
The platform-door control apparatus 50 monitors the state of the platform-door device 51 and the stop position of the train 11, and controls the platform-door opening/closing unit 53 of the platform-door device 51 such that the platform-door opening/closing unit 53 is opened/closed. The platform-door control apparatus 50 is connected to the ground coil P0.
Opening/closing operations of the platform-door device 51 are described below. When the train 11 stops at a predetermined stop position, the position of the pickup coil 14 overlaps the position of the ground coil P0. A positional relation that allows the pickup coil 14 positioned directly above a ground coil to communicate with the ground coil is expressed as “the position of the pickup coil 14 overlaps the position of the ground coil”. When it is determined that the train 11 stops with the position of the pickup coil 14 overlapping the position of the ground coil P0, it becomes possible for the vehicle-door opening/closing unit 12 and the platform-door opening/closing unit 53 to be opened in conjunction with each other. For example, when it is determined that the train 11 stops at a predetermined stop position, the train 11 transmits a platform-door opening command signal through the pickup coil 14 and the ground coil P0 to the platform-door control apparatus 50, such that the platform-door opening/closing unit 53 is opened. Thereafter, the platform-door control apparatus 50 transmits a reply signal through the ground coil P0 and the pickup coil 14 to the train 11. When the train 11 receives the reply signal, the vehicle-door opening/closing unit 12 is opened, thereby allowing passengers to board and deboard the train 11.
The train 11 illustrated in
The storage unit 103 has an on-board database (not illustrated) stored therein. The on-board database stores therein information (track information) on the track 9 on which the train 11 runs. The information on the track 9 includes ground-coil installation distance information in kilometers (ground-coil position information).
The pickup coil 14 detects an ID of the ground coil as the pickup coil 14 passes over a ground coil (as the pickup coil 14 overlaps the ground coil). This ID, which is ground coil information, is received by the ground-coil information reception unit 102. This ground coil information is output from the ground-coil information reception unit 102 to the train control unit 101.
The rate generator 13 generates pulses in accordance with the rotational speed of the wheels to calculate and output the movement amount and speed of the corresponding train to the train control unit 101.
The train control unit 101 includes a train-position detection unit 104 which is not illustrated in
The train-position detection unit 104 detects the position of a ground coil on the basis of the ground coil information from the ground-coil information reception unit 102, and defines this position of the ground coil as a reference position. The train control unit 101 counts the number of pulses generated by power generated by the rate generator 13, and uses the wheel diameter and the number of power generation pulses per revolution to thereby calculate a movement distance. The reference position described above is combined with the calculated movement distance to determine an absolute position of the corresponding train on the track 9.
Next, descriptions are given of a case where a train stops at a predetermined position in a station or the like. The train control unit 101 continuously detects the position of the corresponding train and the train speed in a given cycle, and generates a decelerating speed check pattern such that the corresponding train stops at a train stop position stored in advance in the storage unit 103. The train control unit 101 detects the current position and the train speed in a given cycle. Comparing the detected current position and train speed with the speed check pattern, the train control unit 101 adjusts a brake force, such that the train control unit 101 decelerates the corresponding train in accordance with the speed check pattern. When the train position is accurately detected, and the corresponding train responds correctly to a brake command from the train control unit 101 and is decelerated by a determined brake force, it becomes possible for the corresponding train to stop at a predetermined position in a station or the like.
Unfortunately, in some case, the train position is not accurately detected if the wheel slip or the skidding occurs after the train 11 travels past the ground coil P1 provided immediately before the ground coil P0 provided at a predetermined train stop position in the traveling direction of the train 11.
In some case, also, the corresponding train fails to correctly respond to a brake command from the train control unit 101, with the result that the corresponding train is not decelerated by a determined brake force. In this case, the corresponding train is not decelerated in accordance with the speed check pattern. If the deceleration of the corresponding train does not follow the speed check pattern, the train control unit 101 changes the brake command to control the brake force such that the deceleration follows the speed check pattern. However, a significant difference between a brake command from the train control unit 101 and the actual brake force can make it impossible for the train control unit 101 to control the brake force such that the deceleration follows the speed check pattern.
In cases such as where the train position cannot be accurately detected, or where the train 11 cannot correctly respond to a brake command from the train control unit 101, the train 11 cannot stop at a predetermined train stop position, but stops short of the predetermined train stop position in the traveling direction of the train 11, or stops past the predetermined train stop position in the traveling direction of the train 11. In these cases, the position of the pickup coil 14 does not overlap the position of the ground coil P0. As a result, the doors of the platform-door device 51 installed in a station and the doors of the train 11 cannot be opened/closed when the train stops at the station. To address this problem, an inching process of moving the train 11 forward or backward from the stop position is conventionally needed.
The on-board control apparatus 10 illustrated in
The ground-coil information reception unit 102 receives information transmitted from a ground coil through the pickup coil 14.
The ground-coil information storage unit 105 stores ground coil-related information therein in advance. The ground coil-related information includes ground-coil installation distance information in kilometers (ground-coil position information). The ground-coil information storage unit 105 may be configured separately from the storage unit 103 described above, or the storage unit 103 may include the ground-coil information storage unit 105.
The train-position detection unit 104 is a part of the train control unit 101, as described above. The train-position detection unit 104 calculates the position of the corresponding train on the basis of: the movement amount of the corresponding train output from the rate generator 13; and the ground-coil position information stored in the ground-coil information storage unit 105.
The determination unit 106 detects, from train speed information output from the train control unit 101, whether the corresponding train has stopped. For example, when the train speed information indicates a speed equal to or lower than 0.5 km/h, the determination unit 106 detects that the corresponding train has stopped. When the determination unit 106 detects that the corresponding train has stopped, the determination unit 106 determines, on the basis of most recently received ground coil information, whether the corresponding train has passed a predetermined train stop position.
The train stop-position specification unit 107 determines the stop position of the corresponding train on the basis of: the train position information calculated by the train-position detection unit 104; and the ground-coil position information stored in the ground-coil information storage unit 105. The train stop-position specification unit 107 may have a function of the determination unit 106. The determined train stop position is output to the vehicle-door specification unit 108.
On the basis of the train stop position determined by the train stop-position specification unit 107, the vehicle-door specification unit 108 determines which vehicle-door opening/closing unit 12 needs to be opened/closed among the vehicle-door opening/closing units 12 of the corresponding train, thereby providing vehicle door information to that effect. The determined vehicle door information is output to the vehicle-door information output unit 109.
The vehicle-door information output unit 109 outputs, to outside of the on-board control apparatus 10, the vehicle door information output from the vehicle-door specification unit 108, which information is indicative of the doors determined to be opened/closed. This makes it possible to open/close the vehicle-door opening/closing unit 12 corresponding to the output vehicle door information. In a case where the platform-door device 51 is installed, the determined vehicle door information is output through the pickup coil 14 and the ground coil P0 to the platform-door control apparatus 50.
The platform-door control apparatus 50 includes an input/output unit 501, a platform-door specification unit 502, a platform-door information output unit 503, and a platform-door storage unit 504. The platform-door specification unit 502 is connected to the input/output unit 501. The platform-door information output unit 503 is connected to the platform-door specification unit 502. The platform-door storage unit 504 is connected to the platform-door specification unit 502.
The input/output unit 501 is connected to the ground coil P0. Vehicle door information output from the train 11 is input to the input/output unit 501. The input vehicle door information is output to the platform-door specification unit 502.
The platform-door specification unit 502 determines which platform-door opening/closing unit 53 needs to be opened/closed among the platform-door opening/closing units 53 of the platform-door device 51 connected to the platform-door control apparatus 50. The determined platform door information is output to the platform-door information output unit 503.
The platform-door information output unit 503 outputs, to the platform-door device 51, the platform door information output from the platform-door specification unit 502, which information is indicative of the platform doors determined to be opened/closed. This makes it possible to open/close the determined platform-door opening/closing unit 53.
When it becomes possible to open/close the platform-door opening/closing unit 53, the input/output unit 501 outputs a reply signal to the on-board control apparatus 10.
Next, operations of the platform-door control system 1 according to the first embodiment are described. In the descriptions hereinafter, a predetermined train stop position is referred to as “target train-stop position”. The target train-stop position indicates the position of the ground coil P0 unless otherwise specified. The descriptions are made below as to, by way of example, the train 11 made up of three vehicles each including three vehicle-door opening/closing units 12. Each vehicle of the train may any number of vehicle-door opening/closing units 12, and the train 11 may be made up of any number of vehicles. In this example, the three vehicles are referred to as “first car”, “second car”, and “third car”, respectively, in that order from the front in the traveling direction of the train 11. The three vehicle-door opening/closing units 12 of each vehicle are referred to as “first vehicle-door opening/closing unit”, “second vehicle-door opening/closing unit”, and “third vehicle-door opening/closing unit”, respectively, in that order from the front in the travelling direction of the train 11. The platform-door device 51 includes any number of the platform-door opening/closing units 53. In this example, three leading platform-door opening/closing units 53 in the traveling direction of the train 11 are grouped into a single group, and there are nine platform-door opening/closing units 53 from the front in the traveling direction of the train 11. That is, because each group is made up of three platform-door opening/closing units 53, there are three groups in total. In each of the groups, the three platform-door opening/closing units 53 are referred to as “first platform-door opening/closing unit”, “second platform-door opening/closing unit”, and “third platform-door opening/closing unit”, respectively, in that order from the front.
Descriptions are given of: case (1) where the train has stopped past the target train-stop position; and case (2) where the train has stopped before the target train-stop position.
First, case (1) is described.
The determination unit 106 detects that the corresponding train has stopped in which case the determination unit 106 determines that the corresponding train has stopped past the target train-stop position as the most recently received ground coil information is a signal from the ground coil P0.
On the basis of: the train position information calculated by the train-position detection unit 104; and the ground-coil position information on the ground coil P0 stored in the ground-coil information storage unit 105, the train stop-position specification unit 107 determines how far past the ground coil P0 the corresponding train has stopped. For example, the train stop-position specification unit 107 determines that the corresponding train has stopped three meters past the ground coil P0. The determined train stop position is output to the vehicle-door specification unit 108.
On the basis of the determined train stop position, the vehicle-door specification unit 108 determines which vehicle-door opening/closing unit 12 needs to be opened/closed among the vehicle-door opening/closing units 12 of the corresponding train. For example, when the corresponding train has stopped three meters past the ground coil P0, the vehicle-door specification unit 108 determines that all of the vehicle-door opening/closing units 12 other than the first vehicle-door opening/closing unit 12 of the first car are to be opened/closed, and then outputs vehicle door information to that effect to the vehicle-door information output unit 109.
The vehicle-door information output unit 109 outputs the determined vehicle door information through the pickup coil 14 and the ground coil P0 to the platform-door control apparatus 50.
The platform-door control apparatus 50 receives the vehicle door information output from the train 11, and determines, on the basis of the vehicle door information, the platform-door opening/closing unit 53 to be opened/closed. For example, the platform-door control apparatus 50 determines that all of the platform-door opening/closing units 53 other than the third platform-door opening/closing unit 53 of the third group are to be opened/closed. After the determined platform-door opening/closing units 53 are opened, the determined vehicle-door opening/closing units 12 are opened, thereby allowing passengers to board and deboard the train 11.
In
Next, case (2) is described.
The determination unit 106 detects that the corresponding train has stopped in which case the determination unit 106 determines that the corresponding train has stopped between the ground coil P1 and the ground coil P0 rather than past the target train-stop position as the most recently received ground coil information is a signal from the ground coil P1, not from the ground coil P0.
On the basis of: the train position information calculated by the train-position detection unit 104; and the ground-coil position information on the ground coil P1 stored in the ground-coil information storage unit 105, the train stop-position specification unit 107 determines how far short of the ground coil P0 the corresponding train has stopped. Specifically, because the ground-coil position information on the ground coil P1, the ground-coil position information on the ground coil P0, and the train position information have been obtained, it is possible to determine how far short of the ground coil P0 the corresponding train has stopped. For example, assume that the distance between the ground coil P0 and the ground coil P1 is 10 meters. In this case, when the corresponding train has stopped seven meters past the ground coil P1, the train stop-position specification unit 107 determines that the corresponding train has stopped three meters short of the ground coil P0. The determined train stop position is output to the vehicle-door specification unit 108.
On the basis of the determined train stop position, the vehicle-door specification unit 108 determines which vehicle-door opening/closing unit 12 needs to be opened/closed among the vehicle-door opening/closing units 12 of the corresponding train. For example, when the corresponding train has stopped three meters short of the ground coil P0, the vehicle-door specification unit 108 determines that all of the vehicle-door opening/closing units 12 other than the third vehicle-door opening/closing unit 12 of the third car are to be opened/closed and then outputs vehicle door information to that effect to the vehicle-door information output unit 109.
The vehicle-door information output unit 109 outputs the determined vehicle door information through the pickup coil 14 and the ground coil P0 to the platform-door control apparatus 50.
The platform-door control apparatus 50 receives the vehicle door information output from the train 11, and determines, on the basis of the vehicle door information, the platform-door opening/closing unit 53 to be opened/closed. For example, the platform-door control apparatus 50 determines that all of the platform-door opening/closing units 53 other than the first platform-door opening/closing unit 53 of the first group are to be opened/closed. After the determined platform-door opening/closing units 53 are opened, the determined vehicle-door opening/closing units 12 are opened, thereby allowing passengers to board and deboard the train 11.
As described above, the platform-door control system 1 according to the first embodiment determines the vehicle-door opening/closing unit 12 to be opened/closed, and the platform-door opening/closing unit 53 to be opened/closed regardless of the stop position of the train 11. This makes it possible to open the vehicle doors and the platform doors in a shorter time than conventionally required.
Next, a description is made below as to determination of the vehicle-door opening/closing unit 12 to be opened/closed. A crew member of the train 11 can perform an operation of opening or not opening a specific vehicle-door opening/closing unit 12, thereby determining which vehicle-door opening/closing unit 12 needs to be opened/closed. The train stop position determined by the train stop-position specification unit 107 may correspond to the vehicle-door opening/closing unit 12 to be opened/closed.
For example, in case (1) described above, the train 11 has stopped three meters past the ground coil P0, leading to X=3. Accordingly, the pattern 2 is selected, such that the first vehicle-door opening/closing unit 12 of the first car is not opened/closed, but the remaining vehicle-door opening/closing units 12 are opened/closed. In case (2) described above, the train 11 has stopped three meters short of the ground coil P0, leading to X=−3. Accordingly, the pattern 4 is selected, such that the third vehicle-door opening/closing unit 12 of the third car is not opened/closed, but the remaining vehicle-door opening/closing units 12 are opened/closed.
The vehicle-door specification unit 108 includes a vehicle-door opening/closing pattern selection unit that selects, from among the opening/closing patterns of the vehicle-door opening/closing units 12 stored in the storage unit 103, an opening/closing pattern corresponding to the train stop position determined by the train stop-position specification unit 107. The vehicle-door specification unit 108 outputs the selected vehicle door opening/closing pattern, which is vehicle door information, to the vehicle-door information output unit 109. The opening/closing patterns of the vehicle-door opening/closing units 12 may be stored in a storage unit other than the storage unit 103.
Next, a description is made below as to determination of the platform doors to be opened/closed. The platform-door control apparatus 50 outputs platform door information corresponding to the vehicle door information output from the train 11. This makes it possible to open/close a specific platform-door opening/closing unit 53.
In a case where vehicle door information b is output from the train 11, the pattern 2 is selected as an opening/closing pattern of the platform doors, such that the third platform-door opening/closing unit 53 of the third group is not opened/closed, but the remaining platform-door opening/closing units 53 are opened/closed.
The platform-door specification unit 502 reads the platform door opening/closing patterns from the platform-door storage unit 504, selects an opening/closing pattern corresponding to the vehicle door information output from the train 11, determines the platform-door opening/closing unit 53 to be opened/closed, and outputs the determined information to the platform-door information output unit 503. The platform door opening/closing patterns may be stored in a storage unit other than the platform-door storage unit 504.
As described above, the on-board control apparatus 10 according to the first embodiment is provided in the train 11, and includes: the ground-coil information storage unit 105 that stores therein information on a ground coil located on the track 9 on which the train 11 runs; the train-position detection unit 104 that detects the position of the train 11; the train stop-position specification unit 107 that determines the train stop position on the basis of information on the ground coil stored in the ground-coil information storage unit 105, and the train position information detected by the train-position detection unit 104; the vehicle-door specification unit 108 that determines the vehicle-door opening/closing unit 12 of the train 11 to be opened/closed, on the basis of the determined train stop position; and the vehicle-door information output unit 109 that outputs the determined vehicle door information on the train 11. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
The on-board control apparatus 10 according to the first embodiment further includes: the determination unit 106 that determines whether the train 11 has passed a target train-stop position on the basis of the information of the ground coil and the train position information; and a train-stop detection unit that detects that the train 11 has stopped. The information on the ground coil includes first ground coil information on the first ground coil 5 provided at the target train-stop position, and second ground coil information on the second ground coil 6 provided immediately before the first ground coil 5 in the traveling direction of the train 11. When the train-stop detection unit detects that the train 11 has stopped, the determination unit 106 determines, on the basis of the train position information, the first ground coil information, and the second ground coil information, that the train 11 has not passed the target train-stop position as the train 11 is positioned between the position of the first ground coil 5 and the position of the second ground coil 6, and determines the position where the train 11 has stopped, as a train stop position. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
The on-board control apparatus 10 according to the first embodiment further includes the storage unit 103 storing therein vehicle door opening/closing patterns of the train 11. The vehicle-door specification unit 108 includes: the vehicle-door opening/closing pattern selection unit that selects, from among the vehicle door opening/closing patterns stored in the storage unit 103, a vehicle door opening/closing pattern based on the train stop position determined by the train stop-position specification unit 107; and a vehicle-door opening/closing pattern output unit that outputs the selected vehicle door opening/closing pattern. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
The platform-door control system 1 according to the first embodiment includes the on-board control apparatus 10 provided in the train 11, and the platform-door control apparatus 50. The on-board control apparatus 10 includes: the ground-coil information storage unit 105 that stores therein information on a ground coil located on the track 9 on which the train 11 runs; the train-position detection unit 104 that detects the position of the train 11; the train stop-position specification unit 107 that determines the train stop position on the basis of information on the ground coil stored in the ground-coil information storage unit 105, and the train position information detected by the train-position detection unit 104; the vehicle-door specification unit 108 that determines the vehicle door of the train 11 to be opened/closed, on the basis of the determined train stop position; and the vehicle-door information output unit 109 that outputs the determined vehicle door information of the train 11. The platform-door control apparatus 50 receives the vehicle door information output from the vehicle-door information output unit 109, and controls platform doors installed at a station. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
In the platform-door control system 1 according to the first embodiment, the on-board control apparatus 10 includes: the determination unit 106 that determines whether the train 11 has passed a target train-stop position, on the basis of the information on the ground coil and the train position information; and the train-stop detection unit that detects that the train 11 has stopped. The information on the ground coil includes first ground coil information on the first ground coil 5 provided at the target train-stop position, and second ground coil information on the second ground coil 6 provided immediately before the first ground coil 5 in the traveling direction of the train 11. When the train-stop detection unit detects that the train 11 has stopped, the determination unit 106 determines, on the basis of the train position information, the first ground coil information, and the second ground coil information, that the train 11 has not passed the target train-stop position as the train 11 is positioned between the position of the first ground coil 5 and the position of the second ground coil 6, and determines the position where the train 11 has stopped, as a train stop position. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
In the platform-door control system 1 according to the first embodiment, the on-board control apparatus 10 includes the storage unit 103 storing therein the vehicle door opening/closing patterns of the train 11. The vehicle-door specification unit 108 includes: the vehicle-door opening/closing pattern selection unit that selects, from among the vehicle door opening/closing patterns stored in the storage unit 103, a vehicle door opening/closing pattern based on the train stop position determined by the train stop-position specification unit 107; and the vehicle-door opening/closing pattern output unit that outputs the selected vehicle door opening/closing pattern. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
In the platform-door control system 1 according to the first embodiment, the platform-door control apparatus 50 includes: the platform-door specification unit 502 that determines the door of the platform doors to be opened/closed; and the platform-door information output unit 503 that outputs information on the platform door determined by the platform-door specification unit 502. The platform-door control apparatus 50 controls opening/closing of the platform doors on the basis of information on the determined platform door output from the platform-door information output unit 503. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
In the platform-door control system 1 according to the first embodiment, the vehicle-door information output unit 109 outputs the vehicle door opening/closing pattern that is vehicle door information, the platform-door control apparatus 50 includes the platform-door storage unit 504 storing therein the platform door opening/closing patterns, and the platform-door specification unit 502 determines, from the platform-door storage unit 504, the platform door opening/closing pattern corresponding to the vehicle door opening/closing pattern. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
The ground coil PB is installed on the track 9 ahead of the ground coil P0 in the traveling direction of the train 11. The distance between the ground coil P0 and the ground coil PB is equivalent to the length of a single vehicle of the train 11. Similarly to the ground coil P0, the ground coil PB is connected to the platform-door control apparatus 50.
Operations of the platform-door control system 2 according to the second embodiment are described below. Descriptions in the operations of the second embodiment are the same as those of the first embodiment unless otherwise specified.
The train-position detection unit 104 calculates the position of the corresponding train on the basis of: the movement amount of the corresponding train output from the rate generator 13; and the ground-coil position information on the ground coil P0 stored in the ground-coil information storage unit 105. The train-position detection unit 104 then outputs, to a train stop-position specification unit 207, train position information which is the calculated position of the corresponding train.
The determination unit 106 detects, from train speed information output from the train control unit 101, whether the corresponding train has stopped. For example, when the train speed information indicates a speed higher than 0.5 km/h, the determination unit 106 determines that the corresponding train has not stopped. When the determination unit 106 detects that the corresponding train has not stopped, the determination unit 106 determines, on the basis of most recently received ground coil information, whether the corresponding train has passed the target train-stop position. The determination unit 106 detects that the corresponding train has not stopped in which case the determination unit 106 determines that the corresponding train has passed the target train-stop position as the most recently received ground coil information is a signal from the ground coil P0.
When the determination unit 106 detects that the corresponding train has not stopped and thus determines that the corresponding train has passed the target train-stop position, then the train stop-position specification unit 207 determines the stop position of the corresponding train as a position of the ground coil PB, on the basis of: the train position information calculated by the train-position detection unit 104; the ground-coil position information on the ground coil P0; and the ground-coil position information on the ground coil PB stored in the ground-coil information storage unit 105.
When the train stop-position specification unit 207 determines the stop position of the corresponding train as a position of the ground coil PB, the train control unit 101 newly generates a speed check pattern such that the corresponding train can stop at the position of the ground coil PB. Then the train control unit 101 decelerates the corresponding train in accordance with the newly generated speed check pattern to thereby stop the corresponding train at the position of the ground coil PB. At this time, the position of the pickup coil 14 of the corresponding train overlaps the position of the ground coil PB.
The train stop position determined by the train stop-position specification unit 207 is output to the vehicle-door specification unit 108.
On the basis of the determined train stop position, the vehicle-door specification unit 108 determines which vehicle door needs to be opened/closed among the vehicle-door opening/closing units 12 of the corresponding train. Because the distance between the ground coil P0 and the ground coil PB is equivalent to the length of a single vehicle of the train 11, the vehicle-door specification unit 108 determines that the vehicle-door opening/closing units 12 of the first car are not to be opened/closed, but the vehicle-door opening/closing units 12 of the second and third cars are to be opened/closed, and outputs vehicle door information to that effect to the vehicle-door information output unit 109.
The vehicle-door information output unit 109 outputs the determined vehicle door information through the pickup coil 14 and the ground coil PB to the platform-door control apparatus 50.
The platform-door control apparatus 50 receives the vehicle door information output from the train 11, and determines, on the basis of the vehicle door information, the platform-door opening/closing unit 53 to be opened/closed. For example, the platform-door control apparatus 50 determines all of the platform-door opening/closing units 53 other than the platform-door opening/closing units 53 of the third group are to be opened/closed. After the platform doors of the determined platform-door opening/closing units 53 are opened, the determined vehicle-door opening/closing units 12 are opened, thereby allowing passengers to board and deboard the train 11.
In the second embodiment, the distance between the ground coil P0 and the ground coil PB is equivalent to the length of a single vehicle of the train 11. However, the distance is not limited thereto. Since the ground-coil position information on the ground coil P0 and the ground-coil position information on the ground coil PB are stored in advance in the ground-coil information storage unit 105, it is possible to calculate the distance between the ground coil P0 and the ground coil PB. It is only required that the train stop-position specification unit 207 determine the train stop position corresponding to the calculated distance.
The on-board control apparatus 20 according to the second embodiment includes the determination unit 106 that determines whether the train 11 has passed the target train-stop position, on the basis of the information on the ground coil and the train position information. The information on the ground coil includes first ground coil information on the first ground coil 5 provided at the target train-stop position, and third ground coil information on the third ground coil 7 provided immediately ahead of the first ground coil 5 in the traveling direction of the train 11. When the train 11 is positioned between the position of the first ground coil 5 and the position of the third ground coil 7, the determination unit 106 determines, on the basis of the train position information, the first ground coil information, and the third ground coil information, that the train 11 has passed the target train-stop position, and thus determines the position of the third ground coil 7, as a train stop position. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
In the platform-door control system 2 according to the second embodiment, the on-board control apparatus 20 includes the determination unit 106 that determines whether the train 11 has passed the target train-stop position, on the basis of the information on the ground coil and the train position information. The information on the ground coil includes the first ground coil information on the first ground coil 5 provided at the target train-stop position, and the third ground coil information on the third ground coil 7 provided immediately ahead of the first ground coil 5 in the traveling direction of the train 11. When the train 11 is positioned between the position of the first ground coil 5 and the position of the third ground coil 7, the determination unit 106 determines, on the basis of the train position information, the first ground coil information, and the third ground coil information, that the train 11 has passed the target train-stop position, and thus determines the position of the third ground coil 7, as a train stop position. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
Operations of the platform-door control system 3 according to the third embodiment are described below. Descriptions in the operations of the third embodiment are the same as those of the first and second embodiments unless otherwise specified.
The train-position detection unit 104 calculates the position of the corresponding train on the basis of: the movement amount of the corresponding train output from the rate generator 13; and the ground-coil position information on the ground coil P0 stored in the ground-coil information storage unit 105. The train-position detection unit 104 then outputs the calculated position of the corresponding train, which is train position information, to a train stop-position specification unit 307.
The determination unit 106 detects, from train speed information output from the train control unit 101, whether the corresponding train has stopped. For example, when the train speed information indicates a speed higher than 0.5 km/h, the determination unit 106 determines that the corresponding train has not stopped. When the determination unit 106 detects that the corresponding train has not stopped, the determination unit 106 determines, on the basis of most recently received ground coil information, whether the corresponding train has passed the target train-stop position. The determination unit 106 detects that the corresponding train has not stopped, in which case the determination unit 106 determines that the corresponding train has passed the target train-stop position as the most recently received ground coil information is a signal from the ground coil P0.
When the determination unit 106 detects that the corresponding train has not stopped and thus determines that the corresponding train has passed the target train-stop position, then the train stop-position specification unit 307 determines the stop position of the corresponding train as a position where the second pickup coil 16 overlaps the ground coil P0, on the basis of: the train position information calculated by the train-position detection unit 104; and the ground-coil position information of the ground coil P0 stored in the ground-coil information storage unit 105.
When the train stop-position specification unit 307 determines the stop position of the corresponding train as a position where the second pickup coil 16 overlaps the ground coil P0, the train control unit 101 newly generates a speed check pattern such that the corresponding train can stop at the position where the second pickup coil 16 overlaps the ground coil P0. Then, the train control unit 101 decelerates the corresponding train in accordance with the newly generated speed check pattern to stop the corresponding train with the second pickup coil 16 at the position of the ground coil P0.
The train stop position determined by the train stop-position specification unit 307 is output to the vehicle-door specification unit 108.
On the basis of the determined train stop position, the vehicle-door specification unit 108 determines which vehicle-door opening/closing unit 12 needs to be opened/closed among the vehicle-door opening/closing units 12 of the corresponding train. Because the distance between the first pickup coil 15 and the second pickup coil 16 is equivalent to the length of a single vehicle of the train 11, the vehicle-door specification unit 108 determines that the vehicle-door opening/closing units 12 of the first car are not to be opened/closed, but the vehicle-door opening/closing units 12 of the second and third cars are to be opened/closed, and outputs vehicle door information to that effect to the vehicle-door information output unit 109.
The vehicle-door information output unit 109 outputs the determined vehicle door information through the pickup coil and the ground coil P0 to the platform-door control apparatus 50.
The platform-door control apparatus 50 receives the vehicle door information output from the train 11, and determines, on the basis of the vehicle door information, the platform-door opening/closing unit 53 to be opened/closed. For example, the platform-door control apparatus 50 determines that all of the platform doors other than the platform-door opening/closing units 53 of the third group are to be opened/closed. After the platform doors of the determined platform-door opening/closing units 53 are opened, the determined vehicle-door opening/closing units 12 are opened, thereby allowing passengers to board and deboard the train 11.
In the third embodiment, the distance between the first pickup coil 15 and the second pickup coil 16 is equivalent to the length of a single vehicle of the train 11. However, the distance is not limited thereto. It is only required that the distance between the first pickup coil 15 and the second pickup coil 16 be stored in advance in the storage unit 103. It is only required that the train stop-position specification unit 307 determine the train stop position corresponding to the distance stored in advance in the storage unit 103.
The on-board control apparatus 30 according to the third embodiment includes the determination unit 106 that determines whether the train 11 has passed the target train-stop position, on the basis of the information on the ground coil and the train position information. The train 11 includes a plurality of pickup coils including the first pickup coil 15 and the second pickup coil 16 arranged in that order in the traveling direction of the train 11 (the direction of an arrow 8 in
In the platform-door control system 3 according to the third embodiment, the on-board control apparatus 30 includes the determination unit 106 that determines whether the train 11 has passed the target train-stop position, on the basis of the information on the ground coil and the train position information. The train 11 includes a plurality of pickup coils including the first pickup coil 15 and the second pickup coil 16 arranged in that order in the traveling direction of the train 11. When the determination unit 106 determines that the train 11 has passed the target train-stop position, on the basis of: the information on the ground coil P0 received by the first pickup coil 15; and the train position information, the train stop-position specification unit 307 determines the train stop position such that the second pickup coil 16 is at the position of the ground coil P0. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
The station position-information storage unit 410 stores therein position information on stations (station position information) located along the service route on which the train 11 runs. Examples of the stored station position information include distance information in kilometers at one end and at the other end of the platform of the station. Because the distance information in kilometers at one end of the platform of the station and the distance information in kilometers at the other end are stored, it is possible to calculate the length of the platform of the station. Examples of the stored station position information may also include distance information in kilometers at one end and at the other end of the platform-door device 51 installed at the station. Because the distance information in kilometers at one end and at the other end of the platform-door device 51 is stored, it is possible to calculate the entire length of the platform-door device 51 installed on the platform. The station position-information storage unit 410 may be configured separately from the storage unit 103 described above, or the storage unit 103 may include the station position-information storage unit 410.
Next, operations of the platform-door control system 4 according to the fourth embodiment are described. Descriptions in the operations of the fourth embodiment are the same as those of the first to third embodiments unless otherwise specified. In the following descriptions, a case where the train 11 has stopped past the target train-stop position is explained as an example.
The train-position detection unit 104 calculates the position of the corresponding train on the basis of: the movement amount of the corresponding train output from the rate generator 13; and the ground-coil position information on the ground coil P0 stored in the ground-coil information storage unit 105. The train-position detection unit 104 then outputs the calculated position of the corresponding train, which is train position information, to a train stop-position specification unit 407.
The determination unit 106 detects that the corresponding train has stopped in which case the determination unit 106 determines that the corresponding train has stopped past the target train-stop position as the most recently received ground coil information is a signal from the ground coil P0.
The train stop-position specification unit 407 determines how far past the ground coil P0 the corresponding train has stopped, on the basis of: the train position information calculated by the train-position detection unit 104; and the ground-coil position information on the ground coil P0 stored in the ground-coil information storage unit 105. The determined train stop position is output to the vehicle-door specification unit 108.
On the basis of the determined train stop position and the station position information stored in the storage unit 103, the vehicle-door specification unit 108 determines which vehicle-door opening/closing unit 12 needs to be opened/closed among the vehicle-door opening/closing units 12 of the corresponding train. For example, in
The vehicle-door information output unit 109 outputs the determined vehicle door information through the pickup coil 14 and the ground coil P0 to the platform-door control apparatus 50.
The platform-door control apparatus 50 receives the vehicle door information output from the train 11, and determines, on the basis of the vehicle door information, the platform-door opening/closing unit 53 to be opened/closed. After the determined platform-door opening/closing units 53 are opened, the determined vehicle-door opening/closing units 12 are opened, thereby allowing passengers to board and deboard the train 11.
The on-board control apparatus 40 according to the fourth embodiment includes the station position-information storage unit 410 that stores therein station position information that indicates position information on a station, and the vehicle-door specification unit 108 determines the vehicle doors of the train 11 to be opened/closed, on the basis of: the station position information stored in the station position-information storage unit 410; and the train stop position. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
In the platform-door control system 4 according to the fourth embodiment, the on-board control apparatus 40 includes the station position-information storage unit 410 that stores therein station position information that indicates position information on a station, and the vehicle-door specification unit 108 determines the vehicle doors of the train 11 to be opened/closed, on the basis of: the station position information stored in the station position-information storage unit 410; and the train stop position. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
It is preferable to apply the platform-door control system according to the first to fourth embodiments to a wireless train control system. The first embodiment is described here as an example.
The platform-door control system 1 illustrated in
The traffic control device 60 is installed on the ground. The traffic control device 60 receives information from a plurality of ground control devices 80, manages the positions of the trains 11 running on all the railway lines, and transmits a departure command to each of the trains 11 via the ground wireless device 90.
The ground transmission path 70 allows for exchange of information between the ground control devices 80, and uses the information to control the interval between the train 11 and another train 11 running outside the management area.
The ground control device 80 receives data transmitted from the train 11 through the ground wireless device 90. For example, the ground control device 80 receives train position information from the train 11, and recognizes, from the received train position information, the position of the train 11. The received train position information is transmitted to the traffic control device 60 through the ground transmission path 70, so that the traffic control device 60 is capable of managing the position where the train 11 is running on the railway line.
The ground control device 80 receives vehicle door information from the train 11 through the ground wireless device 90, and transmits the received vehicle door information to the platform-door control apparatus 50. Accordingly, platform door information corresponding to the vehicle door information is output to the platform-door device 51, so that the specified platform-door opening/closing unit 53 is controllably opened/closed.
The ground wireless device 90 communicates with the on-board wireless device included in the train 11.
The train 11 illustrated in
When the platform-door control system according to the first to fourth embodiments is applied to a wireless train control system, it is possible to wirelessly transmit determined vehicle door information to the platform-door control apparatus 50 even in a case where the train 11 has stopped at a position where the pickup coil 14 does not overlap the ground coil P0. It is also possible for the platform-door control apparatus 50 to output platform door information corresponding to the vehicle door information, to the platform-door device 51. After the determined platform-door opening/closing units 53 are opened, the determined vehicle-door opening/closing units 12 are opened, thereby allowing passengers to board and deboard the train 11. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
In the first to fourth embodiments, it is preferable to use a speed sensor instead of the rate generator 13, or use the speed sensor in combination with the rate generator 13.
A speed sensor 19 is a device that detects the movement amount of the corresponding train and the speed of the corresponding train by using reflection of electromagnetic waves. The electromagnetic waves include radio waves and light. The speed sensor 19 includes an output unit that irradiates the rail surface with electromagnetic waves, and a detection unit that detects the electromagnetic waves reflected from the rail surface. The speed sensor 19 can detect the movement amount of the corresponding train in a non-contact manner. The speed sensor 19 is also capable of calculating the speed of the corresponding train, from the detected movement amount of the corresponding train. A Doppler sensor can be illustrated as an example of the speed sensor 19. The speed sensor 19 is not limited to any specific sensor provided that the sensor is capable of detecting the movement amount of the corresponding train and the speed of the corresponding train by using reflection of electromagnetic waves, instead of using rotation of the wheels.
The movement amount of the corresponding train and the speed of the corresponding train which are detected by the detection unit of the speed sensor 19 are input to the train control unit 101. The train control unit 101 calculates the position of the corresponding train on the basis of: the movement amount of the corresponding train detected by the speed sensor 19; and ground coil information. The calculated position of the corresponding train is treated as train position information. The speed of the corresponding train detected by the speed sensor 19 is treated as train speed information.
Because the speed sensor 19 is a sensor that does not use rotation of the wheels, the speed sensor 19 is less likely to be affected by wheel slip or skid. A sheet is laid on the rail surface on which the train 11 runs, thereby providing the reflective rail surface with more uniform quality and thus improving the detection accuracy. Particularly, a sheet is laid at a predetermined train stop position on the rail surface, thereby making it possible to obtain more accurate train position information and train speed information.
The accuracy in detecting the train position and train speed is improved not only by using the train position information and train speed information obtained on the basis of the detection results provided by the speed sensor 19, but also by combining the use of the train position information and train speed information obtained on the basis of the detection results provided by the rate generator 13. At a location where the accuracy of the sensor using reflection of electromagnetic waves can be ensured, the train control unit 101 can use detection results provided by the speed sensor 19 using reflection of electromagnetic waves, which sensor is less likely to be affected by wheel slip or skid. At a location where it is difficult to ensure the accuracy of the speed sensor 19 using reflection of electromagnetic waves, the train control unit 101 can use detection results provided by the rate generator 13.
In the first to fourth embodiments, use of the speed sensor 19 makes it possible to obtain more accurate train position information and train speed information. This improves the accuracy in detecting the train position by the train-position detection unit 104 and in detecting the stop of the train 11 by the determination unit 106. As a result, in a case where the train 11 does not stop at a predetermined position on the platform of a station, the vehicle doors can be opened in a shorter time than conventionally required.
In the first to fourth embodiments described above, the configuration of the on-board control apparatus and the platform-door control apparatus 50 includes at least a processor, a memory, a receiver, and a transmitter. Operations of the respective devices can be implemented by software.
In the present invention, the respective embodiments can be arbitrarily combined with each other, or the embodiments are modified or omitted as appropriate within the scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/011400 | 3/22/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/173142 | 9/27/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9487212 | Adam et al. | Nov 2016 | B1 |
20050279891 | Ebuchi | Dec 2005 | A1 |
20180001917 | Kaede | Jan 2018 | A1 |
20180327005 | Yamamoto | Nov 2018 | A1 |
20190039634 | Tokumaru | Feb 2019 | A1 |
20190315382 | Tokumaru | Oct 2019 | A1 |
20200013286 | Tsuchida | Jan 2020 | A1 |
20200262300 | Tokumaru | Aug 2020 | A1 |
20210139053 | Tokumaru | May 2021 | A1 |
Number | Date | Country |
---|---|---|
2002067958 | Mar 2002 | JP |
2002321618 | Nov 2002 | JP |
2016124365 | Jul 2016 | JP |
Entry |
---|
International Search Report (PCT/ISA/210) dated Jun. 20, 2017, by the Japan Patent Office as the International Searching Authority for International Application No. PCT/JP2017/011400. |
Written Opinion (PCT/ISA/237) dated Jun. 20, 2017, by the Japan Patent Office as the International Searching Authority for International Application No. PCT/JP2017/011400. |
Office Action dated Feb. 5, 2021 issued in corresponding Indian Patent Application No. 201927036597 (5 pages). |
Number | Date | Country | |
---|---|---|---|
20210139053 A1 | May 2021 | US |