1. Field of the Invention
The present invention relates to pulverized coal boilers and, more particularly, to a mechanism for directing coal flow to the corresponding outlet pipes of the vertical spindle mill with negligible effect on the pre-existing primary air flow distribution, the mechanism comprising an array of individually adjustable flow control elements positioned inside the discharge turret of the vertical spindle mill.
2. Description of the Background
Coal fired boilers utilize pulverizers to grind coal to a desired fineness so that it may be used as fuel for burners. In a typical large pulverized coal boiler, coal particulate and primary air flow from the pulverizers to the burners through a network of fuel lines that are referred to as coal pipes. Typically, raw coal is fed through a central coal inlet at the top of the pulverizer and falls by gravity to the grinding area at the base of the mill. Once ground (different types of pulverizers use different grinding methods), the pulverized coal is transported upwards, using air as the transport medium. The pulverized coal passes through classifier vanes within the pulverizer. These classifier vanes may vary in structure, but are intended to establish a swirling flow within the rejects cone to prevent coarse coal particles from flowing into the discharge turret of the pulverizer. The centrifugal force field set up in the rejects cone forces the coarse coal particles to drop back down onto the grinding surface until the desired fineness is met. Once the coal is ground finely enough, it is discharged and distributed among multiple pulverized coal outlet pipes and into respective fuel conduits where it is carried to the burners. Each coal pulverizer is an independent system and delivers fuel (pulverized coal) to a group of burners.
In a conventional coal pulverizer 100 as shown in
The distribution of primary air throughout the coal piping network is controlled by the flow resistances of the various coal pipes. Because of differences in pipe lengths and numbers and types of elbows in each fuel line, the different coal pipes from a pulverizer will usually have different flow resistances. It is known that fixed or adjustable vanes may be used to directly divert the coal flow distribution among the outlet pipes 111. The following references describe the use of vanes to modify coal flow distribution.
U.S. Pat. No. 4,570,549 to N. Trozzi shows a Splitter for Use with a Coal-Fired Furnace Utilizing a Low Load Burner.
U.S. Pat. No. 4,478,157 to R. Musto shows a Mill Recirculation System.
U.S. Pat. No. 4,412,496 to N. Trozzi shows a Combustion System and Method for a Coal-Fired Furnace Utilizing a Low Load Coal Burner.
Finally, U.S. Pat. No. 2,975,001 issued on Mar. 14, 1961 to Davis discloses an apparatus for dividing a main stream of pulverized coal between two branch streams. (Col. 1, lines 50-52). The apparatus may be used alone or in conjunction with a conventional slotted riffle. (Col. 1, lines 70-73). The apparatus is comprised of a combination fixed and tiltable nozzle. (Col. 1, lines 50-58). The fixed nozzle is attached to the main duct leaving the pulverizer and concentrates the coal and air flow (see claims 1-5). The concentrated coal and air flow is then directed into the tiltable nozzle with the highest concentration of coal necessarily being at the nozzle centerline. The tiltable nozzle is then “tilted” in order to direct the concentrated coal and air flow into one or the other branch stream. Guide vanes may be mounted inside the tiltable nozzle; however, this patent does not disclose adjustable guide vanes. (Col. 1, lines 58-60).
All of the foregoing references teach a form of direct diversion of the coal flow, but this likewise causes direct diversion of the air flow. It is impossible using direct diversion to increase or decrease the flow of coal into a particular outlet pipe without effecting primary air flow, or vice versa.
In contrast to an adjustable baffle approach which makes it difficult to simultaneously balance coal and primary air flow rates, the present invention makes it possible to increase or decrease the coal flow in any one of the above-described outlet pipes 111 without affecting the pre-existing air flow distribution among the outlet pipes by changing the position and/or orientation of the control vane in the region of high particle concentration. This unique approach makes it possible to balance the coal flow distribution among the outlet pipes, while eliminating the need to readjust the air flow distribution among the outlet pipes after achieving the desired coal flow rate distribution.
It is, therefore, a main object of the present invention to provide an improved apparatus for on-line coal flow control in vertical spindle mills and, specifically, for the on-line balancing and control of pulverized coal flow into the multiple pulverized coal outlet pipes of pressurized vertical spindle mills.
It is another object to eliminate coal flow imbalances at crucial points in a pulverized coal boiler system using an on-line adjustment capability that does not disturb any pre-existing primary air flow balance among the multiple coal pipes, thereby reducing pollutant emissions and improving combustion efficiency.
It is another object to simplify the coal flow balancing process and eliminate the need of adjustments to the primary air flows between the outlet pipes after achieving the desired coal flow rates between the coal pipes.
It is still another object to maintain a balanced coal flow distribution among the pulverized coal outlet pipes despite mill load changes, eliminating or automating the need for re-adjusting the flow control element positions as the mill coal loading changes.
It is still another object to provide an improved apparatus for on-line coal flow control in vertical spindle mills that can readily be installed within an existing pressurized vertical spindle pulverizer (within the discharge turret).
It is still another object to provide an improved apparatus for on-line coal flow control in vertical spindle mills that contributes no significant pressure drop to the flow system.
In accordance with the present invention, an improved apparatus for on-line coal flow control in vertical spindle mills is described which comprises a plurality of independently adjustable flow control elements and a means for adjusting the positioning and/or orientation of those flow control elements. Each flow control element is positioned within the discharge turret of the pulverizer at some appropriate vertical distance from the entrance to the coal outlet pipes. Each flow control element includes an independently adjustable rod seated on the side of the discharge turret of the coal pulverizer and connected to the flow control element horizontally or, alternately, seated on the top of the discharge turret and connected to the flow control element vertically. The flow control elements can be independently rotated by +/−90 degrees about the a horizontal radial axis with respect to the turret, and can also be moved back and forth in the horizontal plane as well as up and down in the vertical plane. Therefore, each flow control element has three degrees-of-freedom: one rotational and two linear displacements. A combination of rotational and linear movements is used to control the coal flows in each pulverized coal outlet pipe, and the flow control elements have neutral positions at which the pre-existing coal and primary air flow distributions between the pulverized coal outlet pipes are undisturbed.
The foregoing apparatus provides on-line balancing and control of pulverized coal flows into the multiple pulverized coal outlet pipes of a pulverizer, thereby improving boiler performance by making it possible to operate the boiler with reduced pollutant levels (e.g. NOx, CO) and increased combustion efficiency.
Other objects, features, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiment and certain modifications thereof when taken together with the accompanying drawings in which:
It is imperative for good combustion that any flow control mechanism incorporated in a vertical spindle mill as described above have little or no effect on the distribution of primary air. However, most coal boilers use baffles or orifice-type flow restrictors in individual pipes which have precisely this direct effect. Specifically (and referring back to
The flow in the pulverized coal outlet pipes 111 is categorized as dilute phase pneumatic conveyance in which air and micron size particles flow together. The density of the coal particles is almost 1,400 times higher than that of the air. The particulate and air flows show significant differences when they flow together in a pipe due to this enormous density difference. The air flow can quickly respond to the geometrical changes in the pipe layout while it takes longer times for particles.
The present invention relies on the fact that a phase separation between air and coal flows occurs within the discharge turret as shown in the CFD simulation results (
Each individual flow control element 200 is adjustably mounted for independent linear positioning up and down along the walls of the discharge turret 108, radially in and out from the walls of the discharge turret 108, and rotationally. In the illustrated embodiment this is accomplished by mounting each individual flow control element 200 on an articulated positioning rod 210 which is pivotally and slidably retained in a rod seat 214 inside the wall of the discharge turret 108. The rods 210 pass through an aperture in the wall of the turret and are rigidly affixed to the corresponding flow control element 200. Each independently adjustable positioning rod 210 is retained in a substantially horizontal position in the rod seat 214 which may be one or more sealed bushings or bearings. The rod seat permits the rod to slide horizontally in and out of the turret wall in a radial direction relative to the vertical axis of the turret in order to permit radial adjustment of the flow control element 200 position. Once adjusted to the desired horizontal (radial) position the rod may be locked in place. The rod seat 214 further permits rotation of the positioning rod 210 about its primary axis by +/−90 degrees thereby adjusting the orientation of the rigidly attached flow control element within the coal flow stream of the turret. Once rotationally adjusted to the desired orientation the rod may also be locked in place. Locking of the rod 210 horizontal (radial) position is independent of rotational movement/locking of the rod 210.
Rod Seat 214 is further slidably retained to the wall of the turret so as to be slidable in a vertical (up and down) plane. Sliding of the rod seat 214 is independent of and does not affect the rotational orientation of the positioning rod 210 within the seat, but may affect the radial position of the flow control element 200 within the wall of the turret inasmuch as the walls of the turret 108 may be inclined (funnel shaped) as shown. Sliding of the rod seat 214 in a vertical (up and down) plane may be accomplished as shown by journaling the rod seat 214 bushing or bearing into a linear motion guide track 218 for slidable translation there along, the track 218 is in turn being mounted along an outside surface of the outer wall of the turret 108. Lateral translation of the rod seat 214 vertically in the track 218 necessarily translates the attached positioning rod 210 and flow control element 200 in the vertical thereby adjusting its position upstream relative to the inlets of the outlet pipes. Once positioned vertically as desired the rod seat 214 is preferably locked in position, and this locking of the rod seat 214 position is independent of movement/locking of the rod 210 in any other degree of freedom.
The aperture through which the positioning rod enters the turret wall 108 may be appropriately elongated in a slot configuration to accommodate vertical movement due to sliding of the rod seat 214. An overlapping gasket or other suitable means of sealing portions of the slot not occupied by the position rod 210 may be used to prevent pressure loss in the turret or dust expulsion at the aperture. In an alternate embodiment (not pictured) the aperture may be eliminated by mounting the track 218, rod seat 214 and rod 200 strictly on an inside surface of the outer wall of the turret 108. However, inside mounting of the rod seat 214 sacrifices the independent radial and vertical translation of the flow control element 200 in favor of correlated lateral and vertical translation of the flow control element 200 as the rod seat 214 is moved up or down the sloped outer wall of the turret 108.
Movement of the rod seat 214 and/or positioning rod 210 is accomplished by a positioning actuator 240 which may be any suitable positioning actuator providing precision 2-axis translation and 1-axis rotation adjustment for independent linear positioning of the rod 210 and rod seat 214 up and down along the walls of the discharge turret 108, radially in and out from the walls of the discharge turret 108, and rotationally. Positioning actuator 240 may be a combination of a track positioner for positioning of the rod 210 and rod seat 214 up and down along the track 218, a linear actuator for pushing/pulling the rod 210 radially in and out from the walls of the discharge turret 108, and a rotary actuator for rotating the rod 210. Positioning actuator 240 may include one or a combination of hydraulic actuators, hydraulic motors, electric motors, or manual adjustment knobs, or other means capable of opposing the forces applied to the flow control elements by the coal, and to a lesser extent the air, moving through the turret.
Coal mass flow sensors 252 and air flow sensors 254 may be placed within individual coal pipes to monitor coal distribution and air flow, respectively, and to automatically and individually adjust the positions of the flow control elements 200 to maintain the desired distribution between the various outlet pipes 111. In this case the positioning actuators 240 slave to a control device 260 which implements automatic control and positioning logic. The control device 260 may be tied to, or part of, the vertical spindle mill central control system. This control device 260 may comprise a suitable programmable logic controller (PLC), a distributed control system (DCS), a central computer, a series of interconnected discrete control components, or any combination thereof.
One skilled in the art should recognize that downstream conditions may further comprise or incorporate monitoring of burner and/or exhaust gas performance and conditions (such as temperature, NOx emissions, CO emissions, and exhaust particulate content) in order to optimize coal distribution to the burners. Monitoring of downstream conditions by any of a variety of sensors and corresponding automatic adjustment of the coal flow control elements 200 may be accomplished using control device 260. The control device 260 receives sensor monitoring information as input from the downstream sensors 252, 254 or others, and determines the optimum position of the flow control elements 200 in real time. The control device 260 then actuates the positioning actuator 240 to move the flow control elements 200 into the position necessary to achieve the determined optimum conditions.
As illustrated, the presently-preferred shape of the flow control elements 200 is a substantially flat plate having an oblique trapezoidal shape, the oblique angle conforming to the slope of the discharge turret outer wall 108. The upper-outer edge of each flow control element 200 is truncated (such as rounded) to allow at least +/−90 degree rotation without obstruction when fully retracted against the discharge turret 108 outer wall. The flow control element 200 position is considered to be 0 degrees when it is positioned vertically (inline parallel to the outlet pipes 111).
With reference to
Rotation of the flow control element 1200 with respect to the horizontal radial axis of the turret may be accomplished by an electronically controlled stepper motor or hydraulic motor within the flow control element 1200. In an alternate embodiment, opposing parallel thrust arms 99 may be inserted into the positioning rod 1210 which is hollow in this embodiment, as depicted in
The preferred shape, size, and geometrical details of the flow control elements 200 (and 1200) as well as the preferred distance from the entrance to the pulverized coal outlet pipes 111 to the flow control elements 200 were quantitatively determined by laboratory tests using a laboratory scale vertical spindle mill type pulverizer having four outlet pipes 111 and configured with four flow control elements 200. During the experiments both the distribution of pulverized coal into the individual pulverized coal outlet pipes and primary air flow were monitored. The results indicated that the positioning the flow control elements 200 within the discharge turret 108 upstream of the entrance to the pulverized coal outlet pipes 111 provides the most efficient method for controlling the distribution of pulverized coal flows among the outlet pipes while having a negligible effect on air flow distribution.
In all cases the shape, size, and distance of the flow control elements from the outlet pipes (both laterally and upstream) may be predetermined by testing and cataloging the results for a particular pulverizer in light of the different dimensions and internal configuration of the particular pulverizer. Test results confirm the effectiveness of the present invention in controlling the coal flow distribution, without affecting the pre-existing air flow distribution.
With combined reference to
Laboratory experiments were also performed to investigate the effect of coal flow loading on the effectiveness of the present invention. The experiments were performed for a coal flow loading range of +/−30 percent at a constant primary air flow rate. Coal flow loading variations within +/−30 percent were found to have a negligible effect on the existing coal and primary air flow distributions once the coal flow rates between the pulverized coal outlet pipes were balanced. The coal and the primary air flow imbalances between the outlet pipes remained within +/−5.0 percent. This is a very useful feature of the present invention since it eliminates the need for re-adjusting the flow control element positions as the mill coal loading changes. In addition, no noticeable increase in pressure drop due to the flow control elements and their adjustments was measured during the experiments.
It is also noteworthy that in some vertical spindle mills, there are two, three, or more outlet streams. It should be understood that the present invention encompasses system configurations in addition to those described above (for 2 or more outlet pipes 111).
Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiments herein shown and described will obviously occur to those skilled in the art upon becoming familiar with said underlying concept. It is to be understood, therefore, that the invention may be practiced otherwise than as specifically set forth in the appended claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 11,385,016 filed Mar. 20, 2006, which was a continuation in part of U.S. patent application Ser. No. 10/936,401 filed Sep. 8, 2004, which was a continuation-in-part of U.S. patent application Ser. No. 10/258,630 (now U.S. Pat. No. 6,789,488), filed Oct. 24, 2002, which is from International PCT Application PCT/US01/12842, corresponding to U.S. Patent Application Ser. No. 60/199,300, filed 24 Apr. 2000 and Ser. No. 60/265,206, filed: 31 Jan. 2001, which are each incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60199300 | Apr 2000 | US | |
60265206 | Feb 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11385016 | Mar 2006 | US |
Child | 12456854 | US | |
Parent | 10936401 | Sep 2004 | US |
Child | 11385016 | US | |
Parent | 10258630 | Oct 2002 | US |
Child | 10936401 | US |