BRIEF DESCRIPTION OF THE DRAWINGS
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a front view of one example of a conventional on-machine coater;
FIGS. 2A and 2B show front views of a size press arranged in a conventional on-machine coater;
FIG. 3 is a partially expanded view of FIG. 1;
FIG. 4 is a front view of the main part of an on-machine coater of the present invention showing the arrangement of the machine and the path of the web when the coating is performed using a size press;
FIG. 5 is a front view of the main part of the on-machine coater showing the arrangement of the machine and the path of the web when the coating of the lower surface of the web is performed using a post-metering style of coater (in this embodiment, a blade coater);
FIG. 6A is a partial side cross-sectional view of the re-mounting of a carrier rope in a blade coater; and
FIG. 6B is a front view of the re-mounting of a carrier rope in a blade coater.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate one embodiment of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the drawings, and more particularly to FIG. 4, there is shown, in an on-machine coater of the present invention, the arrangement of the machine and path of the web when coating is performed using the size press 3. As is shown in the diagram, the size press 3, which includes a pair of rollers provided about a web that moves continuously diagonally-downward from a paper roller f provided diagonally upward on the upstream side, is arranged in such a way that a straight line connecting the center line of the pair of rollers is essentially orthogonal to the web A. The size press 3 performs coating on the two surfaces of the web A. An air turn 4 that changes the direction of the movement of the web without contacting the web by way of an air film formed between itself and the moving web is provided diagonally downward on the downstream side of the size press 3. The path of the web A when coating is performed using the size press 3 is shown in the diagram by E. As is shown in the diagram, the path E of the web A turns diagonally upward from the air turn 4 and rises at an angle of even steeper gradient beyond a subsequent air turn 4E whereupon, by way of a paper roller 13, enters a pair of infrared dryers 11 opposingly provided about the web A used to dry the two surfaces of the web A. Leaving the infrared dryer 11, the web A passes by way of a paper roller, air turn 4C and air turn 4D before entering an air dryer 7a where it is further dried. It should be noted that the devices to the front and rear of the devices shown in FIG. 4 are essentially identical to those of FIG. 1.
The infrared dryer 11 is configured from an infrared dryer 11a used to dry the upper surface of the web A and an infrared dryer 11b used to dry the lower surface of the web A. The infrared dryer 11a is fixed while the infrared dryer 11b is of a movable type. The symbol 12 denotes a pair of arms provided on the operation side and the drive side of the machine that support the infrared dryer 11b and which turn about a fulcrum 12a provided thereabove to move the infrared dryer 11b. The symbol 12b, which denotes a turning device for turning the arm 12, uses an electromotive jack. A paper roller 13 is provided in the tip-end of the arms 12.
FIG. 5 shows, in the on-machine coater of the present invention, the arrangement of the machine and the path of the web when the lower surface of the web A is coated by a blade coater 6. The blade coater 6 is arranged on the downstream side of the air turn 4. When the coating is performed using the blade coater 6, the infrared dryer 11b used to dry the lower surface side of the web A of the infrared dryers 11 is moved in such a way as to oppose the lower surface side of the web which, beyond the blade coater 6, moves upward. The path of the web A when the coating is performed using the blade coater 6 is shown by F. As shown in the diagram, the path F of the web A turns slightly diagonally upward from the air turn 4 and thereafter, by way of two paper rollers f, f, turns slightly downward to be wound around a backing roll 6a of the blade coater 6 whereupon, in this state, the lower surface of the web A is coated by a coater head 6c. Beyond the blade coater 6, the web A moves upward whereupon, by way of the paper roller 13, a slight shift in direction of movement in the upstream direction occurs. At this time, the infrared dryer 11b used to dry the lower surface of the web A is moved to a state in which, in such a way to oppose the lower surface side of the moving web A, it is supported by the arms 12 turned in the counterclockwise direction. The web A, beyond the infrared dryer 11b, passes by way of the paper roller f into the air turn 4C. Thereafter it moves in the same manner as described with reference to FIG. 4. The symbol 14 constitutes a stopper for regulating the movement of the arms 12.
A description of the re-mounting of the carrier rope will be given hereinafter with reference to FIGS. 6A and 6B. FIG. 6A is a side cross-sectional view, and FIG. 6B is a front view thereof. The path of the carrier rope must be the same as the path of the web A. That is to say, when the path of the web A is E, the path of the carrier rope must also be E, and when the path of the web A is F, the path of the carrier rope must also be F. Accordingly, when the path of the web A is altered, the carrier rope must be re-mounted. A description of one example in which the path of the carrier rope is changed from F to E will be given hereinafter.
In FIGS. 6A and 6B, the symbol 6a denotes a backing roll of the blade coater 6. The symbol 6b denotes a bearing housing for the backing roll 6a, 6h denotes a support frame, 6d denotes a cap for fixing the bearing housing 6b, 6e denotes a bracket for supporting a rope sheave, and 6f denotes the rope sheave. Although, when the path of the carrier rope is F, the carrier rope is provided in a mounted state in the rope sheave 6f, when the carrier rope is to be re-mounted in order to change the path of the carrier rope to E, a journal bearing of the backing roll 6a forms an obstruction. Thereupon, the cap 6d is opened as shown by the broken line in the diagram and, with the backing roll 6a in a slightly floated state using hoist equipment not shown in the diagram, a small gap is formed between the bearing housing 6b and the support frame 6h whereupon, through this gap, the carrier rope need only be removed from the blade coater 6 and re-mounted.
A description of the action of this embodiment is given hereinafter. The blade coater 6 is arranged in the downstream side of the air turn 4 arranged diagonally downward on the downstream side of the size press 3. When the coating is performed using the size press 3, the two surfaces of the web A are dried by a pair of the non-contact dryers 11 opposingly provided on the downstream side of the air turn 4 about the diagonally upward-moving web A. When the coating is performed using the abovementioned post-metering style of coater 6, the dryer 11b of the abovementioned pair of non-contact dryers 11 used to dry the lower surface side of the web is moved in such a way as to oppose the lower surface side of the web A which, beyond the abovementioned blade coater 6, moves upward. The use of part of the non-contact dryers 11 can be combined to afford an economization of each of the equipment costs, maintenance costs and the space for the provision thereof and the like. Furthermore, by virtue of the fact that there is no significant difference between the length of the path of the web when the coating is performed using the size press 3 compared to when the coating is performed using the blade coater 6, where two are used the need to replace a carrier rope is eliminated and it need only to be re-mounted. The re-mounting of the carrier rope need only involve the use of hoist equipment to establish, by way of example, the backing roll 6a of the blade coater 6 in a slightly floated state.
As is described above, the use of part of the non-contact dryers can be combined to afford an economization of each of the equipment costs, maintenance costs and the space for the provision thereof and the like, and the re-mounting of the carrier rope used for carrying the web is simple.
The present invention is not restricted to the embodiments described above, and it should be understood that various changes may be made thereto within a range that does not depart from the gist of the invention. By way of example, although the non-contact dryers described in the specification are infrared dryers, air dryers may be used. In addition, although the post-metering style of coater described in the specification is a blade coater, an air-knife coater may be used.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Explanation of Symbols
- 3 Size press
- 3a Part of size press 3
- 4 Air turn
- 6 Blade coater
- 11 Infrared dryer
- 12 Turning arm
- A Web