1. Field of the Invention
The present invention relates to an improvement in an on-vehicle apparatus for use in a dedicated short-range communication system to be mounted on an automobile. More specifically, the invention relates to an on-vehicle apparatus provided with means for making use of one switch in a multifunctional way.
2. Description of the Related Art
In an automobile traveling on open roads, a Dedicated Short-Range Communication (hereinafter abbreviated as “DSRC”) system of Intelligent Transport Systems (hereinafter abbreviated as “ITS”) is getting popular. In the DSRC, the so-called on-vehicle apparatus provided with a radio communication section that performs communication with roadside radio equipment is used.
With this on-vehicle apparatus, a user (driver) can pay a turnpike toll, or can receive information regarding traffic jam situation of roads. Further, it is necessary for the on-vehicle apparatus to be mounted within easy reach of a driver so that the driver can operate it himself. Since the DSRC is a system that has recently started to be common, it is often attached to a vehicle afterward (i.e., the DSRC is attached after a vehicle has been manufactured and started in use). There are many cases where the DSRC is mounted on a dashboard onto which the DSRC is easily mounted. However, on the supposition that this apparatus may hinder vision, safety will be impaired, and therefore the on-vehicle apparatus is required to be as downsized as possible.
In order to meet such a request for downsizing, for example, an appearance of an on-vehicle apparatus is shown in FIG. 1 of the Japanese Patent Publication (unexamined) No. 150335/2000. On a front face of the on-vehicle apparatus of this drawing, there are provided two press button switches (external input sections 12, 13), a slot (5) into which a card such as cash card is inserted, and a display section (10). The two press buttons possess such single functions as are for sound volume setting or for history confirmation respectively. Further, in some apparatus, two switches have an UP/DOWN function by which a plurality of functions that are indicated on the display lined up vertically, are sequentially scrolled and selected.
In the initial stage when kind of services to be performed by a DSRC is only to pay the toll of a turnpike road, two press button switches are sufficient. However, in view of the situation that kind of services capable of being provided by a DSRC system has been increasing recently, the need to increase the number of press button switches arises.
However, this increase in number of press button switches induces the increase in panel area on the front face, which fact goes counter to the aforementioned request of downsizing. Thus, the number of press button switches cannot be increased. Consequently, a problem exists in that kind of services capable of being provided by an on-vehicle apparatus have to be limited. Moreover, since the apparatus of the above-mentioned selective type should be operated basically while visually reading characters or instruction on the display panel, it cannot be used during driving a vehicle. Thus, a further problem exits in that the apparatus of selective type cannot be basically employed as an on-vehicle apparatus.
As a matter of course, the art in which one switch has plural functions by making use of the so-called function key is generally applied to an electronic calculator or a cellular phone. However, the method of utilizing such a function key is less likely to apply without the assumption that instructions indicated on a switch face can be exactly read. Accordingly, operating a function key is difficult in DSRC on-vehicle apparatus that is often used while driving a car.
As mentioned above, according to the conventional DSRC on-vehicle apparatus, a user can use two switches, each possessing a single function for sound volume setting or for history confirmation.
It is, however, a recent increasing need that on-vehicle apparatus has multiple functions including sound volume adjustment, history confirmation, on-vehicle identification number and accumulative history, eventually resulting in the requirement for a large number of switches to be located. However, there arises a problem that the number of switches cannot be increased since such a construction is not desirable in view of the need for downsizing the on-vehicle apparatus. Moreover, there is a further problem that the increase in the number of switches brings about a sharp rise in price of the on-vehicle apparatus.
The present invention was made to solve the above-mentioned problems and has an object of providing an on-vehicle apparatus in which applicable functions can be increased to a large extent by apparently increasing the number of functions of a switch without increasing the number of switches; and the function of a switch can be switched to any of plural intended ways of use without viewing a character face on a press button or a display face at all, resulting in easy utilization.
An on-vehicle DSRC apparatus according to the invention is used in a dedicated short-range communication system of intelligent transport systems that is mounted on a vehicle traveling on a road. This DSRC on-vehicle apparatus includes: a radio communication section carrying out a communication with information radio equipment provided on a roadside; a sound volume setting section setting a sound volume of a speaker that announces information with a voice; a first switch of a press button type that is located on a panel front face and has the mentioned sound volume setting function; and a switch determination section that detects connection/disconnection situation of the mentioned first switch with an elapse of time and recognize it as a pattern in the course of the time, compares it with a plurality of the mentioned patterns having been preliminarily stored, and allots a function having been assigned to the mentioned pattern with which the current pattern is coincident to the mentioned first switch on condition that the current pattern is coincident with any of said plural patterns having been preliminarily stored.
In the DSRC on-vehicle apparatus of above constitution, not only one switch can be used as a multi-functional switch, but also a user can switch multi-functions thereof without viewing displays on a panel face or characters on the switches. Consequently, it is possible to achieve price-reduction, and to achieve downsizing of the on-vehicle apparatus.
Further, in this DSRC on-vehicle apparatus, one switch can be used as that bears both functions of sound volume setting and utilization history confirmation depending on insertion or pulling out of a card, thereby enabling to achieve the usage that fits the feeling of user. In addition, it comes to be unnecessary to store the procedure of the switch being pressed, thereby enabling to simplify the constitution of a switch determination section 1.
Other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
Embodiment 1.
According to an on-vehicle DSRC apparatus of the present invention, just one switch can be used as that performs a plurality of functions (ten functions). However, for easier comprehension, according to this first preferred embodiment, an embodiment of making use of one switch as that has simple three functions is hereinafter described.
In addition, the usage of a card read section 7 is described from the descriptions of Embodiment 3 on.
The data processing section 14 is a device serving various functions with a plurality of software. For reasons of description, however, only a timer 11 and a sound volume adjustment section 12 are shown, and the constitution of the data processing section 14 is described.
Voice of an on-vehicle DSRC apparatus makes a guide to the effect that a vehicle can go through a tollbooth of entrance in a normal manner, and vocalizes a toll having been used at a tollbooth of exit. Normally, the mentioned first switch is used for adjusting a sound volume in which this information is vocalized. Further, a sound volume can be set step-by-step every time the first switch 5 is pressed.
At an initial stage in which a power supply is turned on, the first switch 5 possesses a function as a sound volume setting device directing the sound volume setting section 4 to change a level of the sound volume (hereinafter referred to as “first intended use”).
In the on-vehicle DSRC apparatus, utilization history such as toll is stored in a card not shown. It is necessary for a user to read out the utilization history thereof to confirm an amount of balance. In that case, by pressing the first switch 5 according to a pressing procedure (of which details are described later) that has been preliminarily stored in the mentioned switch determination section 6, the first switch 5 can be used as a switch not for setting a sound volume but for reading out the utilization history (hereinafter referred to as “second intended use”).
Now, a procedure of pressing the mentioned first switch 5 is described.
Normally, in the case where a user sets a sound volume with the first switch 5, the switch is not pressed continuously so long. The reason comes from the fact that in case of the switch continuing to be pressed for a long time period, a sound volume is set to be the maximum or the minimum, and does not change any more. Then, in the case where this switch is utilized for a different use, a specific procedure (hereinafter referred to as “pattern”) in which a user is less likely to press the switch at ordinary times is preliminarily stored. For example, the way of pressing based on a long press such as the case of pressing the first switch long continuously for not less than 3 seconds, or the case of pressing twice the first switch for not less than 2 seconds in series with a short time period interposed between these two long presses, has been stored. Thus, it is arranged such that, in the case where the first switch is pressed according to the mentioned procedure, the first switch 5 can be used as a switch for an intended use other than the use for sound volume setting.
Operation of the switch determination section 6 for switching uses of the first switch is described with reference to an operation flowchart of
Also in the case where the first switch 5 is used for calling an on-vehicle apparatus identification number, making a call of error log, or confirming an accumulative charge other than the sound volume setting (the first use) and the utilization history (the second use), procedures of pressing the first switch as described above have been preliminarily determined. Further, supposing that the first switch 5 is set so as to function as an utilization history switch in the case of pressing long continuously for not less than 3 seconds, and so as to function as the other switch in the case of pressing it three times in 1 second, one switch can be used as plural switches. Further, it is preferable that the switch returns to the function of the original sound volume setting in the case where the switch is not used for a predetermined time period. However, it is also preferable that the procedures of pressing the switch have been preliminarily determined as described above, and the current procedure thereof is determined by the switch determination section 6 to return the switch to the function of sound volume setting. Furthermore, it is also preferable that in the case of turning a power supply switch, not shown, OFF, the switch is returned to the function of sound volume setting at the next time of turning the power supply switch ON.
As a result of such arrangement, a plurality of uses can be set with the first switch 5 that is provided on a panel face as shown in
Embodiment 2.
Although the first switch 5 bears plural uses in the foregoing first embodiment, only two ways are shown as an example thereof. To increase functions of the switch up to a number of several tens, it is required that several tens kinds of press states (patterns) to be identified that are described in the foregoing first embodiment are determined. Herein, a specific manner of determination is shown as an example.
When Morse codes are manually punched through the first switch 5, a speed of the punching or a ratio between dash and dot varies depending upon person. However, even if the punching is carried out in various speeds, it is possible in the known art heretofore to arrange that the switch determination section 6, which is shown in
By allotting respective Morse codes of
Embodiment 3.
In the case where the first switch 5 is pressed long, for example, for not less than 3 seconds (Yes in Step S2) and where the card is in the state of being inserted in Step S10 (the state in which the card switch 8 is ON), Use 4 is determined (Step S2a). On the contrary, in the case where the card is not inserted in Step S10, Use 3 is determined in Step S2b.
In the case where the first switch 5 is pressed three times in 1 second (Step S4) and where the card is inserted, Use 8 is determined in Step S4a. In the case where the card has not been inserted yet, use 7 is determined in Step S4b. It is possible to arbitrarily determine what function is specifically assigned to each use.
In the case where such determinations as mentioned above continue in sequence, the current press state does not correspond to any pattern described in
In the above descriptions, the switch total determination section 10 of
Embodiment 4.
Referring now to
Also in this case, the procedures of ON and OFF of the card switch 8 to have been stored preliminarily in the card switch determination section 9 are arranged to be those not coincident just by the normal insertion or pulling out of a card. For example, in the case of inserting or pulling out a card three times within 1 second, or in the case of repeating three times the operation of inserting the card again within 1 second after the card has been pulled out, the mentioned first switch 5 is caused to function as that for the other intended use (function) having been specifically determined.
For easy understanding, with reference to
A determination example of the card switch 8 to be determined in accordance with the way of the card switch 8 being pressed is the same as in
Embodiment 5.
Referring now to
The mentioned examples of combination are shown in
That is, the determination of a function of the first switch 5 is carried out based on an insertion pattern of the card having been conducted before (or immediately before) the determination. In case of causing the first switch 5 to provide multiple functions with operation patterns thereof, there may be a problem in that it is hard for an operator to remember the patterns. However, by employing the combinations of
Embodiment 6.
In each of the embodiments described heretofore, there is a possibility of forgetting to which use the first switch has been set in the case where no operation is carried out for a while after the first switch is switched from a basic function (for example, sound volume setting) to the other use. It may be an idea to indicate a determined use on the display at the time of determining the use as a matter of course. However, a driver can hardly afford to confirm it during driving a vehicle.
To meet this, there is provided a timer 11 that regulates a time period while a determined function can be used after a function of the first switch 5 has been determined by the switch determination section 6 in
Furthermore, it is also preferable to return to the original sound volume setting function when a time period that is determined by the timer 11 has passed after detecting that the card has been pulled out based on the result of determination made by the card switch determination section 9.
Embodiment 7.
With reference to
For example, in the case where sound volumes are adjusted into three stages, data is set with respect to the sound volume setting section and the sound source drive from the sound volume adjustment section so as to cause the sound source drive to vocalize “first” in a small sound volume at the first stage, “second” in a medium sound volume at the second stage, and “third” in a large sound volume at the third stage.
In this manner, it is possible for a user to confirm a sound volume level intended to set by himself with both number announce and actual volume, thereby enabling to set an optimum sound volume without fail.
Furthermore, it is preferable not to represent a vocalization content with “first, second . . . ”, but to set a vocalization content to be in a buzzer sound such as “feeping” (of which frequency becomes high as a sound volume level elevates). Further, it is preferable to indicate contents in the other way of vocalization.
Embodiment 8.
Referring now to
At this time, it is also preferable to announce, e.g., “it is determined to be the second” in order to notify again a user of which sound volume has been determined.
An on-vehicle DSRC apparatus according to this invention is not limited to applications of specific functions/uses of a switch, described in the foregoing embodiments, but can be utilized for more different functions/different uses, not described herein.
While the presently detailed embodiments of the present invention have been shown and described. It is to be understood that these disclosures are for the purpose of illustration and that various changes and modifications may be made without departing from the scope of the invention as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
P2004-128437 | Apr 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6753773 | Mizuno | Jun 2004 | B2 |
6829531 | Lee | Dec 2004 | B2 |
6861958 | Kasagi | Mar 2005 | B2 |
20040178929 | Toyama | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
2000-099780 | Apr 2000 | JP |
2002-150335 | May 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20050239429 A1 | Oct 2005 | US |