This application generally relates to onboarding of Virtual Network Functions (VNFs) in a system employing a Network Function Virtualization (NFV) architecture. More specifically, the application relates to onboarding a VNF which includes multiple Virtual Network Function Components (VNFCs) in a single Virtual Deployment Unit (VDU).
Network Function Virtualization (NFV) based architectures offer a way to design and deploy telecommunication network services. In the past, the functions that make up these services have been tightly coupled to the proprietary hardware on which they execute. NFV based architectures decouple the software implementation of these functions from the underlying infrastructure. The software typically runs in virtual machines or containers, under the control of a hypervisor or operating system which run on commercial off-the-shelf (COTS) servers. This approach has the promise of significant reductions in capital and operational expenses for service providers as custom hardware is no longer required and scaling is provided through additional software deployments, not a provisioning of new physical equipment.
The European Telecommunications Standard Institute (ETSI) network functions virtualization (NFV) industry specification group (ISG) has defined a reference NFV architecture. ETSI took an approach that enables existing management infrastructure such as Operational Support Systems (OSS)/Business Support Systems (BSS) and Element Management Systems (EMS) to remain in place. The standard is focused on getting Network Services (NSs) and Virtual Network Functions (VNFs) deployed on a cloud-based infrastructure, while leaving traditional Fault, Configuration, Accounting, Performance and Security (FCAPS) to be managed by EMS and OSS/BSS. Even with this focus, the details of many important aspects of the functionality are not specified.
One example embodiment provides a method that includes one or more of constructing a VNF package that includes one or more VDUs composed of one or more VNFCDs, generating a VNF package archive, receiving the VNF package archive containing the VNF package at an NFV MANO module, validating the VNF package archive, onboarding one or more traditional VNF package components including a file of a VNFD and at least one software artifact, onboarding one or more VNFC components associated with the one or more VDUs in the VNF package, and enabling the VNFD in a VNF Catalog.
Another example embodiment provides a system that includes a memory communicably coupled to a process, wherein the processor is configured to perform one or more of construct a VNF package that includes one or more VDUs composed of one or more VNFCDs, generate a VNF package archive, receive the VNF package archive that contains the VNF package at an NFV MANO module, validate the VNF package archive, onboard one or more traditional VNF package components that includes a file of a VNFD and at least one software artifact, onboard one or more VNFC components associated with the one or more VDUs in the VNF package, and enable the VNFD in a VNF Catalog.
A further example embodiment provides a non-transitory computer readable medium comprising instructions, that when read by a processor, cause the processor to perform one or more of constructing a VNF package that includes one or more VDUs composed of one or more VNFCDs, generating a VNF package archive, receiving the VNF package archive containing the VNF package at an NFV MANO module, validating the VNF package archive, onboarding one or more traditional VNF package components including a file of a VNFD and at least one software artifact, onboarding one or more VNFC components associated with the one or more VDUs in the VNF package, and enabling the VNFD in a VNF Catalog.
In an NFV architected system, functions that were tied to specialized hardware in the past are decoupled so that their software implementations can be executed in virtualized containers running on COTS hardware. These decupled software implementations are called Virtual Network Functions (VNFs). Each of these functions is made up of one or more software components which are known as VNF Components (VNFCs). In the current architectural standards, VNFCs are mapped one to one with a virtual machine/container. A description of this mapping, which describes the VNFC software, operating system, etc. that will be deployed together, is known as a Virtual Deployment Unit (VDU). The rationale for limiting a VDU to a single VNFC is that the hosting VM or container provides limits to the underlying resources that the VNFC can consume. One downside to this approach however is the resource overhead required for each VM/container. This can be very problematic when trying to deploy a VNF onto a hardware platform with minimal resources. Another downside is the number of VMs/containers that have to be managed. Given this, there exists a need to onboard a VNF which includes a VDU that contains multiple VNFCs.
It will be readily understood that the instant components and/or steps, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of the embodiments of at least one of a method, system, component and non-transitory computer readable medium, as represented in the attached figures, is not intended to limit the scope of the application as claimed but is merely representative of selected embodiments.
The instant features, structures, or characteristics as described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, the usage of the phrases “example embodiments”, “some embodiments”, or other similar language, throughout this specification refers to the fact that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment. Thus, appearances of the phrases “example embodiments”, “in some embodiments”, “in other embodiments”, or other similar language, throughout this specification do not necessarily all refer to the same group of embodiments, and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
In addition, while the term “message” may have been used in the description of embodiments, the application may be applied to many types of network data, such as, packet, frame, datagram, etc. The term “message” also includes packet, frame, datagram, and any equivalents thereof. Furthermore, while certain types of messages and signaling may be depicted in exemplary embodiments they are not limited to a certain type of message, and the application is not limited to a certain type of signaling.
Disclosed herein are various embodiments for implementing and/or utilizing lifecycle management of VNF components. A VNF is the implementation of a network function that can be deployed in an NFV architecture. VNFs can be viewed as service building blocks which may be used by one or more Network Services (NSs). Examples of VNFs include, but are not limited to, firewall, application acceleration, Deep Packet Inspection (DPI), Session Initiation Protocol (SIP) user agent, and Network Address Translation (NAT).
Each VNF specifies its deployment and operational behavior in a deployment template known as a VNF Descriptor (VNFD). This descriptor along with the VNF software bundle are delivered to an NFV management system in an archive known as a VNF Package. A VNF may be implemented using one or more VNF Components (VNFCs). A VNFC is an internal component of a VNF that provides a subset of that VNF's functionality. The main characteristic of a VNFC is that it maps n:1 with a Virtualized Container (VC) when the function is deployed. The term Virtualized Container (VC) is used herein to describe a Virtual Machine (VM) or operating system container. VNFCs are in turn made up of one or more software modules. Each module may spawn one or more operating system processes when deployed.
A VNF instance (VNFI) is a run-time instantiation of the VNF software resulting from completing the instantiation of its VNFCs and the connectivity between them. As multiple instances of a VNF can exist in the same domain, the terms VNF and VNF Instance (VNFI) may be used interchangeably herein. Similarly, VNFC instance (VNFCI) is a run-time instantiation of a VNFC deployed in a particular VC. It has a lifecycle dependency with its parent VNFI. As multiple instances of a VNFC can exist in the same domain, the terms VNFC and VNFC Instance (VNFCI) may also be used interchangeably herein.
In one embodiment, the VNF module 104 may correspond with a network node in a system and may be free from hardware dependency. The NFVI module 106 is configured to provide virtual compute, storage and network resources to support the execution of the VNFs. The NFVI module 106 may comprise COTS hardware, accelerator components where necessary and/or a software layer which virtualizes and abstracts underlying hardware. For example, the NFVI module 106 may comprise one or more of a virtual compute module 120, a virtual storage module 122, a virtual networking module 124 and a virtualization layer 118. The virtualization layer 118 may be operably coupled to hardware resources 126 including, but not limited to compute hardware 128, storage hardware 130 and network hardware 132. The NFV MANO module 108 is configured to orchestrate and to manage physical and/or software resources that support the infrastructure virtualization. The NFV MANO module 108 is configured to implement virtualization specific management tasks for the NFV framework 100. The NFV MANO module 108 is supplied a set of VNF packages 110 each of which includes but is not limited to a VNF Descriptor (VNFD) and a VNF software bundle. This VNFD is a set of metadata that describes VNF to VNFC structure and underlying infrastructure requirements. Additionally, the MANO module 108 may be supplied a set of Network Service Descriptors (NSDs) 110, each of which is a set of metadata that describe the relationship between services, VNFs and any underlying infrastructure requirements. The NSDs and VNF packages 110 are owned by and stored in the OSS/BSS 102, but are used to interwork with the MANO module 108.
In one embodiment, the NFV MANO module comprises an NFV orchestrator (NFVO) module 134, a VNF manager (VNFM) 136, and a virtualized infrastructure manager (VIM) 138. The NFVO 134, the VNFM 136 and the VIM 138 are configured to interact with each other. Further, the VNFM 136 may be configured to interact with and to manage the VNF module 104 and the VIM 138 may be configured to interact with and manage the NFVI module 106. The orchestrator module 134 is responsible for the lifecycle management of network services. Supported lifecycle operations include one or more of instantiating, scaling, updating and terminating network services. The VNFM 136 is responsible for the lifecycle management for a set of VNFs 114 and all of their components (VNFCs) 116. Supported lifecycle operations include one or more of instantiating, scaling, updating and terminating VNFs. A VNFM may manage one or more types of VNFs 114. The VIM 138 is responsible for controlling and managing NFVI 106 compute, storage and network resources usually within an operator's infrastructure domain. Additionally, VIMs 138 may be partitioned based on an operator's Points of Presence (PoPs), i.e., physical locations. The network service (NS) catalog 140, stores the network services which are managed by the orchestrator module 134. Each stored service may include, but is not limited to, the NSD 110 that defines the service. The VNF catalog 142 stores the VNFs which are used to build network services. Each stored VNF may include, but is not limited to, the VNF package 110 that includes the VNFD and VNF software bundle. This catalog is accessed by both the NFVO 134 and VNFM Managers 136. The resource catalog 144 stores the list of virtual and physical infrastructure resources in the NFVI 106 including the mapping between them. This catalog is accessed by both the NFVO 134 and the VIMs 138.
In addition to the VDUs 202, the VNFD 200 also includes internal Virtual Link Descriptors (VLD) 216 which describe the network connectivity requirements between VNFCs within a VNF. Additionally, the VNFD 200 includes external network Connection Point Descriptors (CPD) 218 which describe requirements networking ports to be used for VNF 114 (See
In accordance with one or more embodiments of the present application,
In accordance with one or more embodiments of the present application,
The exemplary VNF Package Archive 500 embodiment includes a VNFD specification file 502. In one embodiment, this file is expressed in Yet Another Modeling Language (YAML). The name of the file will reflect the VNF being delivered. Additionally, the package archive 500 may include a manifest file 504, which lists the entire contents of the archive. In one embodiment, the manifest 504 will also include a hash of each included file. Further, a signing certificate, including a VNF provider public key, may also be included 506 to enable verification of the signed artifacts in the archive 500. Additionally, a change log file 508 may be included that lists the changes between versions of the VNF. A licenses directory 510 may also be included that holds the license files 512 for all the applicable software component contained in the various software images 526. An artifacts directory 514 may be present to hold scripts and binary software images delivered in this package archive 500. Under the artifacts directory, a scripts directory 516 may be present to hold the VNF lifecycle management scripts 518.
In accordance with one or more embodiments of the present application, the archive 500 may include a hierarchical directory structure 520 for organization of all VDU artifacts under the artifacts directory 514. Under directory 520 may be a directory 522 for each specific VDU/VC. Under directory 522 may be a directory 524 for VDU/VC software image files 526. Further, under directory 522 may be a directory 528 for VDU/VC upgrade script files 530. Additionally, there may be a VNFC directory 532, which contains a directory for each specific VNFC 534 included in the VDU. In one embodiment, the name of directory 534 will match that of the ID field 302 (See
It should be understood that though a very hierarchical organization structure is depicted in this embodiment, other embodiments with flatter organization structures are equally applicable so long as the corresponding load and script descriptors in the VNFD 404 (See
Compute node 602 is comprised of a Central Processing Unit (CPU) module 608, a memory module 610, a disk module 612 and a network interface card (NIC) module 614. As further shown in
Each VC 606 is comprised of a series of virtual resources that map to a subset of the physical resources on the compute nodes 602. Each VC is assigned one or more virtual CPUs (vCPUs) 622, an amount of virtual memory (vMem) 624, an amount of virtual storage (vStorage) 626 and one or more virtual NICs (vNIC) 628. A vCPU 622 represents a portion or share of a physical CPU 608 that are assigned to a VM or container. A vMem 624 represents a portion of volatile memory (e.g. Random Access Memory) 610 dedicated to a VC. The storage provided by physical disks 612 are divided and assigned to VCs as needed in the form of vStorage 626. A vNIC 628 is a virtual NIC based on a physical NIC 614. Each vNIC is assigned a media access control (MAC) address which is used to route packets to an appropriate VC. A physical NIC 614 can host many vNICs 628.
In the case of a VM, a complete guest operating system 630 runs on top of the virtual resources 622-628. In the case of an operating system container, each container includes a separate operating system user space 630, but shares an underlying OS kernel 604. In either embodiment, typical user space operating system capabilities such as secure shell and service management are available.
One or more VNFC instances (VNFCIs) 632 and 634 may reside in VC 606. In accordance with one or more embodiments of the present application, the VNFCIs 632 and 634 are instances of different types of VNFCs. In some embodiments the VNFCIs 632-634 are composed of multiple operating system processes 636-642. In one embodiment each VNFCI 632 or 634 may be installed and managed as an operating system service. In another embodiment, a VNFCI 632 or 634 may be managed by a local NFV based software agent.
In one embodiment, a server 644, running a virtualization layer with a shared kernel 646, provides one or more VCs, at least one of which hosts an EMS 648 which is responsible for one or more of the fault, configuration, accounting, performance and security (FCAPS) services of one or more VNFCIs 632-634. The server 644 has one or more NICs 650 which provide connectivity to an internal network 616 over which all incoming and outgoing messages travel. There may be many EMSs in a system 600. An EMS 648 sends and receives FCAPS messages 652 to/from all VNFCIs 632-634 that it is managing.
In one embodiment, a server 654 hosts an OSS/BSS 656 which is responsible for managing an entire network. It is responsible for consolidation of fault, configuration, accounting, performance and security (FCAPS) from one or more EMSs 648. The server 654 has one or more NICs 658 which provide connectivity to an internal network 616 over which all incoming and outgoing messages travel. The OSS/BSS 656 exchanges FCAPS messages 660 to maintain a network wide view of network faults, performance, etc. Additionally, the OSS/BSS 656 understands and manages connectivity between elements (VNFCIs in this case), which is traditionally beyond the scope of an EMS 648. In accordance with one or more embodiments of the present application, an OSS/BSS 656 also manages network services and VNFs through an NFV Orchestrator (NFVO) 666.
In accordance with one or more embodiments of the present application, a server 662, running a virtualization layer with a shared kernel 664, provides one or more VCs, at least one of which hosts an NFVO 666. The server 662 has one or more NICs 668 which provide connectivity to an internal network 616 over which all incoming and outgoing messages travel. The NFVO 666 provides the execution of automated sequencing of activities, task, rules and policies needed for creation, modification, removal of network services or VNFs. Further, the NFVO 666 provides an API 670 which is usable by other components for network service and VNF lifecycle management (LCM).
In accordance with one or more embodiments of the present application, a server 672, running a virtualization layer with a shared kernel 674, provides one or more VCs, hosting one or more catalogs used by the NFVO 666. These include, but are not limited to, a Network Services (NS) Catalog 676 and a VNF Catalog 678. The server 672 has one or more NICs 680 which provide connectivity to an internal network 616 over which all incoming and outgoing messages travel. The NS Catalog 676 maintains a repository of all on-boarded Network Services. The NS Catalog 676 provides a catalog interface 682 that enables storage and retrieval of Network service templates, expressed as Network Service Descriptors (NSDs). The VNF Catalog 678 maintains a repository of all on-boarded VNF packages. In one embodiment VNF packages are provided in accordance with VNF Package format 400 (see
In accordance with one or more embodiments of the present application, a server 686 running a virtualization layer with a shared kernel 688, provides one or more VCs, at least one of which hosts an VNFM 690. The server 686 has one or more NICs 691 which provide connectivity to an internal network 616 over which all incoming and outgoing messages travel. The VNFM 690 supports VNF configuration and lifecycle management. Further it provides interfaces 692 for these functions that the NFVO 666 utilizes to instantiate, start, stop, etc. VNFs. In one embodiment, the VNFM 690 retrieves VNF package archives 500 (See
In accordance with one or more embodiments of the present application, a server 694 running a virtualization layer with a shared kernel 695, provides one or more VCs, at least one of which hosts a VIM 696 which is responsible for managing the virtualized infrastructure of the NFV System 600. The server 694 has one or more NICs 697 which provide connectivity to an internal network 616 over which all messages travel. There may be many VIMs 696 in a system 600. The VIM 696 provides resource management interfaces 698 which are utilized by the VNFM 690 and the NFVO 666. In a preferred embodiment, the VIM 696 extracts and caches VC images stored in VNF Packages archives 500 (See
In computing node 700 there is a computer system/server 702, which is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with computer system/server 702 include, but are not limited to, personal computer systems, server computer systems, thin clients, thick clients, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputer systems, mainframe computer systems, and distributed cloud computing environments that include any of the above systems or devices, and the like.
Computer system/server 702 may be described in the general context of computer system-executable instructions, such as program modules, being executed by a computer system. Generally, program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types. Computer system/server 702 may be practiced in distributed cloud computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed cloud computing environment, program modules may be located in both local and remote computer system storage media including memory storage devices.
As shown in
Bus 708 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnects (PCI) bus.
Computer system/server 702 typically includes a variety of computer system readable media. Such media may be any available media that is accessible by computer system/server 702, and it includes both volatile and nonvolatile media, removable and non-removable media.
The system memory 706 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) 710 and/or cache memory 712. Computer system/server 702 may further include other removable/non-removable, volatile/non-volatile computer system storage media. By way of example only, storage system 714 can be provided for reading from and writing to a non-removable, non-volatile magnetic media (not shown and typically called a “hard drive”). Although not shown, a magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk (e.g., a “floppy disk”), and an optical disk drive for reading from or writing to a removable, non-volatile optical disk such as a CDROM, DVD-ROM or other optical media can be provided. In such instances, each can be connected to bus 708 by one or more data media interfaces. As will be further depicted and described below, memory 706 may include at least one program product having a set (e.g., at least one) of program modules that are configured to carry out the functions of various embodiments as described herein.
Program/utility 716, having a set (at least one) of program modules 718, may be stored in memory 706 by way of example, and not limitation, as well as an operating system, one or more application programs, other program modules, and program data. Each of the operating system, one or more application programs, other program modules, and program data or some combination thereof, may include an implementation of a networking environment. Program modules 718 generally carry out the functions and/or methodologies of various embodiments as described herein.
Aspects of the various embodiments described herein may be embodied as a system, method, component or computer program product. Accordingly, aspects of the embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the embodiments may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Computer system/server 702 may also communicate with one or more external devices 720 such as a keyboard, a pointing device, a display 722, etc.; one or more devices that enable a user to interact with computer system/server 702; and/or any devices (e.g., network card, modem, etc.) that enable computer system/server 702 to communicate with one or more other computing devices. Such communication can occur via I/O interfaces 724. Still yet, computer system/server 702 can communicate with one or more networks such as a local area network (LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via network adapter 726. As depicted, network adapter 726 communicates with the other components of computer system/server 702 via bus 708. It should be understood that although not shown, other hardware and/or software components could be used in conjunction with computer system/server 702. Examples, include, but are not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and data archival storage systems, etc.
In general, the routines executed to implement the embodiments, whether implemented as part of an operating system or a specific application; component, program, object, module or sequence of instructions will be referred to herein as “computer program code”, or simply “program code”. The computer program code typically comprises one or more instructions that are resident at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processors in a computer, causes that computer to perform the steps necessary to execute steps or elements embodying the various aspects of the embodiments. Moreover, while the embodiments have and herein will be described in the context of fully functioning computers and computer systems, the various embodiments are capable of being distributed as a program product in a variety of forms, and that the embodiments apply equally regardless of the particular type of computer readable media used to actually carry out the distribution. Examples of computer readable media include but are not limited to physical, recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., CD-ROM's, DVD's, etc.), among others, and transmission type media such as digital and analog communication links.
In addition, various program code described herein may be identified based upon the application or software component within which it is implemented in specific embodiments. However, it should be appreciated that any particular program nomenclature used herein is merely for convenience, and thus the embodiments should not be limited to use solely in any specific application identified and/or implied by such nomenclature. Furthermore, given the typically endless number of manners in which computer programs may be organized into routines, procedures, methods, modules, objects, and the like, as well as the various manners in which program functionality may be allocated among various software layers that are resident within a typical computer (e.g., operating systems, libraries, APIs, applications, applets, etc.), it should be appreciated that the embodiments are not limited to the specific organization and allocation of program functionality described herein.
The exemplary environment illustrated in
In accordance with one or more embodiments of the present application,
Once the VNF package 400 (See
In step 806, an NFVO 666 (See
In step 810, the NFVO 666 (See
Once the VNFD file 502 (See
In step 812, and in accordance with one or more embodiments of the present application, VNFC components/artifacts are located and processed. In some embodiments, the NFVO 666 (See
In step 814, the VNFD in enabled in the VNF catalog 676 (See
Number | Date | Country | |
---|---|---|---|
63010663 | Apr 2020 | US |