ONE COMPONENT ALLOPHANATE FORMULATIONS THROUGH BASECOAT CATALYST MIGRATION

Information

  • Patent Application
  • 20190292294
  • Publication Number
    20190292294
  • Date Filed
    March 23, 2018
    6 years ago
  • Date Published
    September 26, 2019
    5 years ago
Abstract
The present invention provides an allophanate system made by a method comprising combining a neutralized polyol with a polyuretdione resin in the presence of an optional reducer to produce a one-component allophanate composition, and contacting the one component allophanate composition with a basecoat comprising a tertiary amine catalyst. The inventive allophanate system is particularly applicable in providing coatings, adhesives, castings, composites, and sealants with good performance.
Description
FIELD OF THE INVENTION

The present invention relates, in general to polymers, and more specifically, to a one component allophanate composition used in conjunction with a basecoat containing a catalyst. After the one component allophanate composition is applied to the basecoat, the catalyst migrates to the one component allophanate composition and catalyzes the system.


BACKGROUND OF THE INVENTION

Polyurethane-forming compositions are widely used in a variety of commercial, industrial and household applications, such as in automotive clear-coat and seat cushion applications. Polyurethane systems that employ isocyanates which are pre-reacted with monofunctional reagents to form relatively thermally labile compounds are called blocked isocyanates. Uretdiones are a type of blocked isocyanate. Uretdiones are typically prepared by dimerizing isocyanate to form uretdione(s) with unreacted isocyanate end-groups which can then be extended with a polyol to form a polymeric material containing two or more uretdione groups in the polymer chain. In some literature, uretdiones are referred to as “1,3-diaza-2,4-cyclobutanones”, “1,3-diazatidin-2,4-diones”, “2,4-dioxo-1,3-diazetidines”, “urethdiones” or “uretidiones”. Typically, the polymer has few, if any, free isocyanate groups, which is achieved by controlling the stoichiometry of the polyisocyanate, polyol and by the use of a blocking agent.


Polyuretdiones may react with polyols in the presence of tertiary amine catalysts and thus do not form stable systems in terms of shelf-life. Therefore, polyuretdiones and polyols cannot form one component systems in the presence of suitable tertiary amine catalysts. To the best of the present inventors' knowledge, no one has developed a cross-linking approach using a one component allophanate composition in conjunction with a basecoat containing a catalyst in which the one component allophanate composition is applied to the basecoat, the catalyst migrates to the one component allophanate composition and catalyzes the system.


SUMMARY OF THE INVENTION

Accordingly, the present invention attempts to alleviate problems inherent in the art by providing such an alternative cross-linking approach to obtain compositions having physical properties similar to those of polyurethane compositions. Various embodiments of the inventive approach involve crosslinking polyuretdione resins with neutralized polyols in the presence of a tertiary amine catalyst. This cross-linking approach provides for the use of a one component allophanate composition in conjunction with a basecoat containing a tertiary amine catalyst in which the one component allophanate composition is applied to the basecoat, the catalyst migrates to the clear-coat and catalyzes the system.


These and other advantages and benefits of the present invention will be apparent from the Detailed Description of the Invention herein below.







DETAILED DESCRIPTION OF THE INVENTION

The present invention will now be described for purposes of illustration and not limitation. Except in the operating examples, or where otherwise indicated, all numbers expressing quantities, percentages, and so forth in the specification are to be understood as being modified in all instances by the term “about.”


Any numerical range recited in this specification is intended to include all sub-ranges of the same numerical precision subsumed within the recited range. For example, a range of “1.0 to 10.0” is intended to include all sub-ranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited in this specification is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently described in this specification such that amending to expressly recite any such sub-ranges would comply with the requirements of 35 U.S.C. § 112(a), and 35 U.S.C. § 132(a).


Any patent, publication, or other disclosure material identified herein is incorporated by reference into this specification in its entirety unless otherwise indicated, but only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material expressly set forth in this specification. As such, and to the extent necessary, the express disclosure as set forth in this specification supersedes any conflicting material incorporated by reference herein. Any material, or portion thereof, that is said to be incorporated by reference into this specification, but which conflicts with existing definitions, statements, or other disclosure material set forth herein, is only incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material. Applicant reserves the right to amend this specification to expressly recite any subject matter, or portion thereof, incorporated by reference herein.


Reference throughout this specification to “various non-limiting embodiments,” “certain embodiments,” or the like, means that a particular feature or characteristic may be included in an embodiment. Thus, use of the phrase “in various non-limiting embodiments,” “in certain embodiments,” or the like, in this specification does not necessarily refer to a common embodiment, and may refer to different embodiments. Further, the particular features or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features or characteristics illustrated or described in connection with various or certain embodiments may be combined, in whole or in part, with the features or characteristics of one or more other embodiments without limitation. Such modifications and variations are intended to be included within the scope of the present specification.


The grammatical articles “a”, “an”, and “the”, as used herein, are intended to include “at least one” or “one or more”, unless otherwise indicated, even if “at least one” or “one or more” is used in certain instances. Thus, the articles are used in this specification to refer to one or more than one (i.e., to “at least one”) of the grammatical objects of the article. By way of example, and without limitation, “a component” means one or more components, and thus, possibly, more than one component is contemplated and may be employed or used in an implementation of the described embodiments. Further, the use of a singular noun includes the plural, and the use of a plural noun includes the singular, unless the context of the usage requires otherwise.


Although compositions and methods are described in terms of “comprising” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components or steps.


In various embodiments, the present invention provides a one component allophanate composition comprising a neutralized polyol; a polyuretdione resin; and an optional reducer. In certain embodiments, the present invention provides a method of making a one component allophanate composition comprising combining a polyuretdione resin and a neutralized polyol in the presence of an optional reducer. In other embodiments, the present invention provides a system comprising a one component allophanate composition and a catalyst containing a basecoat, wherein the one component allophanate composition comprises a neutralized polyol, a polyuretdione resin and an optional reducer, and wherein the catalyst comprises a tertiary amine. In some embodiments, the present invention provides an allophanate system made by a method comprising combining a neutralized polyol with a polyuretdione resin in the presence of an optional reducer to produce a one component allophanate composition, and contacting the one component allophanate composition with a basecoat comprising a tertiary amine catalyst. Thus, the present invention provides a method for producing an allophanate polymer by the following route:




embedded image


The inventive allophanate polymer system is particularly applicable in coatings, adhesives, castings, composites, and sealants.


As used herein, the term “polymer” encompasses prepolymers, oligomers and both homopolymers and copolymers; the prefix “poly” in this context referring to two or more. As used herein, the term “molecular weight”, when used in reference to a polymer, refers to the number average molecular weight, unless otherwise specified.


As used herein, the term “polyol” refers to compounds comprising at least two free hydroxy groups. Polyols include polymers comprising pendant and terminal hydroxy groups.


As used herein, the term “coating composition” refers to a mixture of chemical components that will cure and form a coating when applied to a substrate.


The terms “adhesive” or “adhesive compound”, refer to any substance that can adhere or bond two items together. Implicit in the definition of an “adhesive composition” or “adhesive formulation” is the concept that the composition or formulation is a combination or mixture of more than one species, component or compound, which can include adhesive monomers, oligomers, and polymers along with other materials.


A “sealant composition” refers to a composition which may be applied to one or more surfaces to form a protective barrier, for example to prevent ingress or egress of solid, liquid or gaseous material or alternatively to allow selective permeability through the barrier to gas and liquid. In particular, it may provide a seal between surfaces.


A “casting composition” refers to a mixture of liquid chemical components which is usually poured into a mold containing a hollow cavity of the desired shape, and then allowed to solidify.


A “composite” refers to a material made from two or more polymers, optionally containing other kinds of materials. A composite has different properties from those of the individual polymers/materials which make it up.


“Cured,” “cured composition” or “cured compound” refers to components and mixtures obtained from reactive curable original compound(s) or mixture(s) thereof which have undergone a chemical and/or physical changes such that the original compound(s) or mixture(s) is(are) transformed into a solid, substantially non-flowing material. A typical curing process may involve crosslinking.


The term “curable” means that an original compound(s) or composition material(s) can be transformed into a solid, substantially non-flowing material by means of chemical reaction, crosslinking, radiation crosslinking, or the like. Thus, compositions of the invention are curable, but unless otherwise specified, the original compound(s) or composition material(s) is(are) not cured.


The term “basecoat” means the first (undermost) layer applied to the surface of a substrate prior to application of a subsequent or finishing coat. The term encompasses basecoats, undercoats, and tiecoats.


The components useful in the present invention comprise a polyisocyanate. As used herein, the term “polyisocyanate” refers to compounds comprising at least two unreacted isocyanate groups, such as three or more unreacted isocyanate groups. The polyisocyanate may comprise diisocyanates such as linear aliphatic polyisocyanates, aromatic polyisocyanates, cycloaliphatic polyisocyanates and aralkyl polyisocyanates.


Particularly preferred in the present invention are those blocked isocyanates known as uretdiones. The uretdiones useful in the invention may be obtained by catalytic dimerization of polyisocyanates by methods which are known to those skilled in the art. Examples of dimerization catalysts include, but are not limited to, trialkylphosphines, aminophosphines and aminopyradines such as dimethylaminopyridines, and tris(dimethylamino)phosphine, as well as any other dimerization catalyst. The result of the dimerization reaction depends, in a manner known to the skilled person, on the catalyst used, on the process conditions and on the polyisocyanates employed. In particular, it is possible for products to be formed which contain on average more than one uretdione group per molecule, the number of uretdione groups being subject to a distribution. The (poly)uretdiones may optionally contain isocyanurate, biuret, allophanate, and iminooxadiazine dione groups in addition to the uretdione groups.


The uretdiones are NCO-functional compounds and may be subjected to a further reaction, for example, blocking of the free NCO groups or further reaction of NCO groups with NCO-reactive compounds having a functionality of two or more to extend the uretdiones to form polyuretdione prepolymers. This gives compounds containing uretdione groups and of higher molecular weight, which, depending on the chosen proportions, may also contain NCO groups, be free of NCO groups or may contain isocyanate groups that are blocked.


Suitable blocking agents include, but are not limited to, alcohols, lactams, oximes, malonates, alkyl acetoacetates, triazoles, phenols, imidazoles, pyrazoles and amines, such as butanone oxime, diisopropylamine, 1,2,4-triazole, dimethyl-1,2,4-triazole, imidazole, diethyl malonate, ethyl acetoacetate, acetone oxime, 3,5-dimethylpyrazole, caprolactam, N-tert-butylbenzylamine and cyclopentanone including mixtures of these blocking agents.


Examples of NCO-reactive compounds with a functionality of two or more include polyols. In some embodiments, the NCO-reactive compounds are used in amounts sufficient to react with all free NCO groups in the uretdione. By “free NCO groups” it is meant all NCO groups not present as part of the uretdione, isocyanurate, biuret, allophanate and iminooxadiazine dione groups.


The resulting polyuretdione contains at least 2, such as from 2 to 10 uretdione groups. More preferably, the polyuretdione contains from 5% to 45% uretdione, 10% to 55% urethane, and less than 2% isocyanate groups. The percentages are by weight based on total weight of resin containing uretdione, urethane, and isocyanate.


Suitable polyisocyanates for producing the uretdiones useful in embodiments of the invention include, organic diisocyanates represented by the formula





R(NCO)2


wherein R represents an organic group obtained by removing the isocyanate groups from an organic diisocyanate having (cyclo)aliphatically bound isocyanate groups and a molecular weight of 112 to 1000, preferably 140 to 400. Preferred diisocyanates for the invention are those represented by the formula wherein R represents a divalent aliphatic hydrocarbon group having from 4 to 18 carbon atoms, a divalent cycloaliphatic hydrocarbon group having from 5 to 15 carbon atoms, or a divalent araliphatic hydrocarbon group having from 7 to 15 carbon atoms.


Examples of the organic diisocyanates which are particularly suitable for the present invention include 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-2-isocyanato-methyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, α,α,α′,α′-tetramethyl-1,3- and 1,4-xylene diisocyanate, 1-isocyanato-1-methyl-4(3)-isocyanato-methyl cyclohexane, and 2,4- and 2,6-hexahydrotoluene diisocyanate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), pentane diisocyanate (PDI)—bio-based, and, isomers of any of these; or combinations of any of these. Mixtures of diisocyanates may also be used. Preferred diisocyanates include 1,6-hexamethylene diisocyanate, isophorone diisocyanate, and bis(4-isocyanatocyclohexyl)-methane because they are readily available and yield relatively low viscosity polyuretdione polyurethane oligomers.


In some embodiments, the uretdiones may comprise from 35% to 85% resin solids in the composition of present invention, excluding solvents, additives or pigments. In other embodiments, from 50% to 85% and in still other embodiments 60% to 85%. The uretdiones may comprise any resin solids amount ranging between any combinations of these values, inclusive of the recited values.


The polyols useful in the present invention may be either low molecular weight (65-399 Da, as determined by gel permeation chromatography) or high molecular weight (400 to 10,000 Da, as determined by gel permeation chromatography) materials and in various embodiments will have average hydroxyl values as determined by ASTM E222-10, Method B, of between 1000 and 10, and preferably between 500 and 50.


The polyol of the present invention includes low molecular weight diols, triols and higher alcohols and polymeric polyols such as polyester polyols, polyether polyols, polycarbonate polyols, polyurethane polyols and hydroxy-containing (meth)acrylic polymers.


The low molecular weight diols, triols and higher alcohols useful in the instant invention are known to those skilled in the art. In many embodiments, they are monomeric and have hydroxy values of 200 and above, usually within the range of 1500 to 200. Such materials include aliphatic polyols, particularly alkylene polyols containing from 2 to 18 carbon atoms. Examples include ethylene glycol, 1,4-butanediol, 1,6-hexanediol; cycloaliphatic polyols such as cyclohexane dimethanol. Examples of triols and higher alcohols include trimethylol propane and pentaerythritol. Also useful are polyols containing ether linkages such as diethylene glycol and triethylene glycol.


In various embodiments, the suitable polyols are polymeric polyols having hydroxyl values less than 200, such as 10 to 180. Examples of polymeric polyols include polyalkylene ether polyols, polyester polyols including hydroxyl-containing polycaprolactones, hydroxy-containing (meth)acrylic polymers, polycarbonate polyols and polyurethane polymers.


Examples of polyether polyols include poly(oxytetramethylene) glycols, poly(oxyethylene) glycols, and the reaction product of ethylene glycol with a mixture of propylene oxide and ethylene oxide.


Also useful are polyether polyols formed from the oxyalkylation of various polyols, for example, glycols such as ethylene glycol, 1,4-butane glycol, 1,6-hexanediol, and the like, or higher polyols, such as trimethylol propane, pentaerythritol and the like. One commonly utilized oxyalkylation method is by reacting a polyol with an alkylene oxide, for example, ethylene oxide in the presence of an acidic or basic catalyst.


Polyester polyols can also be used as a polymeric polyol component in the certain embodiments of the invention. The polyester polyols can be prepared by the polyesterification of organic polycarboxylic acids or anhydrides thereof with organic polyols. Preferably, the polycarboxylic acids and polyols are aliphatic or aromatic dibasic acids and diols.


The diols which may be employed in making the polyester include alkylene glycols, such as ethylene glycol and butylene glycol, neopentyl glycol and other glycols such as cyclohexane dimethanol, caprolactone diol (for example, the reaction product of caprolactone and ethylene glycol), polyether glycols, for example, poly(oxytetramethylene) glycol and the like. However, other diols of various types and, as indicated, polyols of higher functionality may also be utilized in various embodiments of the invention. Such higher polyols can include, for example, trimethylol propane, trimethylol ethane, pentaerythritol, and the like, as well as higher molecular weight polyols such as those produced by oxyalkylating low molecular weight polyols. An example of such high molecular weight polyol is the reaction product of 20 moles of ethylene oxide per mole of trimethylol propane.


The acid component of the polyester consists primarily of monomeric carboxylic acids or anhydrides having 2 to 18 carbon atoms per molecule. Among the acids which are useful are phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, glutaric acid, chlorendic acid, tetrachlorophthalic acid and other dicarboxylic acids of varying types. Also, there may be employed higher polycarboxylic acids such as trimellitic acid and tricarballylic acid (where acids are referred to above, it is understood that the anhydrides of those acids which form anhydrides can be used in place of the acid). Also, lower alkyl esters of acids such as dimethyl glutamate can be used.


Besides polyester polyols formed from polybasic acids and polyols, polycaprolactone-type polyesters can also be employed. These products are formed from the reaction of a cyclic lactone such as ϵ-caprolactone with a polyol with primary hydroxyls such as those mentioned above. Such products are described in U.S. Pat. No. 3,169,949.


In addition to the polyether and polyester polyols, hydroxy-containing (meth)acrylic polymers or (meth)acrylic polyols can be used as the polyol component.


Among the (meth)acrylic polymers are polymers of 2 to 20 percent by weight primary hydroxy-containing vinyl monomers such as hydroxyalkyl acrylate and methacrylate having 2 to 6 carbon atoms in the alkyl group and 80 to 98 percent by weight of other ethylenically unsaturated copolymerizable materials such as alkyl(meth)acrylates; the percentages by weight being based on the total weight of the monomeric charge.


Examples of suitable hydroxy alkyl(meth)acrylates are hydroxy ethyl and hydroxy butyl(meth)acrylate. Examples of suitable alkyl acrylates and (meth)acrylates are lauryl methacrylate, 2-ethylhexyl methacrylate and n-butyl acrylate.


In addition to the acrylates and methacrylates, other copolymerizable monomers which can be copolymerized with the hydroxyalkyl (meth)acrylates include ethylenically unsaturated materials such as monoolefinic and diolefinic hydrocarbons, halogenated monoolefinic and diolefinic hydrocarbons, unsaturated esters of organic and inorganic acids, amides and esters of unsaturated acids, nitriles and unsaturated acids and the like. Examples of such monomers include styrene, 1,3-butadiene, acrylamide, acrylonitrile, α-methyl styrene, α-methyl chlorostyrene, vinyl butyrate, vinyl acetate, alkyl chloride, divinyl benzene, diallyl itaconate, triallyl cyanurate and mixtures thereof. Preferably, these other ethylenically unsaturated materials are used in admixture with the above-mentioned acrylates and methacrylates.


Suitable hydroxy-functional polycarbonate polyols may be those prepared by reacting monomeric diols (such as 1,4-butanediol, 1,6-hexanediol, di-, tri- or tetraethylene glycol, di-, tri- or tetrapropylene glycol, 3-methyl-1,5-pentanediol, 4,4′-dimethylolcyclohexane and mixtures thereof) with diaryl carbonates (such as diphenyl carbonate, dialkyl carbonates (such as dimethyl carbonate and diethyl carbonate), alkylene carbonates (such as ethylene carbonate or propylene carbonate), or phosgene. Optionally, a minor amount of higher functional, monomeric polyols, such as trimethylolpropane, glycerol or pentaerythritol, may be used.


In certain embodiments of the invention, the polyol may be a polyurethane polyol. These polyols can be prepared by reacting any of the above-mentioned polyols with a minor amount of polyisocyanate (OH/NCO equivalent ratio greater than 1:1) so that free primary hydroxyl groups are present in the product. In addition to the high molecular weight polyols mentioned above, mixtures of both high molecular weight and low molecular weight polyols such as those mentioned above may be used.


In various embodiments of the invention, the polyol is neutralized, for example by the addition of an acid scavenger. Acid scavengers should be covalently bonded to the acidic groups within the polyol. Acid scavengers can be selected from carbodiimides, anhydrides, epoxies, trialkylorthoformates, amine compounds, or oxazoline. The present inventors believe, without wishing to be bound to any specific theory, that these acid scavengers covalently bind to carboxylic and acrylic acid groups within the polyols. Such compounds are commercially available from a variety of suppliers such as for example, the monomeric carbodiimides sold under the STABAXOL trade name from Rhein Chemie, and bis-(2,6-diisopropylphenyl) carbodiimide sold as EUSTAB HS-700 by Eutec Chemical Co., Ltd.


Urethane reducers come in slow, medium and fast formulations, and may improve atomization, flow and leveling, which provide a smooth finish with less “orange peel.” Depending on the “speed” of the reducer, it may contain various combinations of compounds including, but not limited to, n-butyl acetate, ethyl acetate, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propyl acetate, 2-methoxy-1-propyl acetate, 2-ethoxyethyl acetate, n-heptane, methylcyclohexane, toluene, acetone, Varnish Makers and Painter (VM&P) naphtha, naphtha, light aliphatic solvent naphtha, acetate, isobutyl acetate, mixed xylenes, ethylbenzene, methyl ethyl ketone, dimethyl ketone, methyl n-amyl ketone, methyl isobutyl ketone, 1,2,4 trimethyl benzene, isopropylbenzene, ethyl benzene, 1-chloro-4 (triflouromethyl) benzene, propylene glycol methyl ether, and ethyl-3-ethoxy propionate.


Examples of suitable solvents include, but are not limited to aliphatic and aromatic hydrocarbons such as toluene, xylene, isooctane, acetone, butanone, methyl ethyl ketone, methyl amyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, pentyl acetate, tetrahydrofuran, ethyl ethoxypropionate, N-methyl-pyrrolidone, dimethylacetamide and dimethylformamide solvent naphtha, SOLVESSO 100 or HYDROSOL (ARAL), ethers, or mixtures thereof.


Although described in this disclosure in the context of a clear-coating composition, those skilled in the art will appreciate that the present invention would perform equally as well with pigments, dyes or other colorants included in the composition and the present invention encompasses all such embodiments.


The composition of the invention may be contacted with the basecoat by any methods known to those skilled in the art, including but not limited to, spraying, dipping, flow coating, rolling, brushing, pouring, and the like. In certain embodiments, the inventive compositions may be applied in the form of paints or lacquers onto any compatible substrate, such as, for example, metals, plastics, ceramics, glass, and natural materials. In various embodiments, the composition of the invention is applied as a single layer. In other embodiments, the inventive composition may be applied as multiple layers as needed.


Examples

The non-limiting and non-exhaustive examples that follow are intended to further describe various non-limiting and non-exhaustive embodiments without restricting the scope of the embodiments described in this specification. All quantities given in “parts” and “percents” are understood to be by weight, unless otherwise indicated. Although the present invention is described in the instant Examples in the context of a coating, those skilled in the art will appreciate it can also be equally applicable to adhesives, castings, composites, and sealants.


The following materials were used in preparing the compositions of the Examples:















POLYOL A
an aromatic free, branched hydroxyl-bearing



polyester polyol, commercially available from



Covestro as DESMOPHEN 775 XP;


ADDITIVE A
an active anti-hydrolysis agent for polyester



polyurethanes, being used as an acid scavenger for



acidic groups within the polyols, commercially



available from Rhein Chemie as STABAXOL I;


ADDITIVE B
a surface additive on polyacrylate-basis for solvent-



borne coating systems and printing inks,



commercially available from BYK Chemie as BYK



358N;


CATALYST A
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), tertiary



amine catalyst, commercially available from Air



Products as POLYCAT DBU;


URETDIONE A
a 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl



cyclohexane (isophorone diisocyanate or IPDI)-



based uretdione prepolymer, proprietary product of



Covestro LLC, having a uretdione equivalent weight



of 1,276 and a viscosity of 817 cPs in 50% butyl



acetate;


REDUCER A
a universal medium reducer, commercially



available from BASF as RM UR 50, recommended



for use in temperatures between approximately



70° F.-85° F. (21.1° C.-29.4° C.);


BASECOAT A
a black polyester refinish basecoat, commercially



available from BASF as DIAMONT RM D403









The basecoat Formulation B in Table 1 was prepared as follows. In a 200 mL plastic container 100 mL of BASECOAT A, 50 mL of REDUCER A, 0.28 parts CATALYST A were added. The resulting mixture was mixed using a FLACKTEK speed mixer for one minute followed by application using a conventional HVLP spray.


The coating Formulation B in Table 1 was prepared as follows. POLYOL A had been reacted with ADDITIVE A prior to formulation. In a 500 mL plastic container 23.96 parts of the POLYOL A and ADDITIVE A reaction mixture, 0.94 parts ADDITIVE B, 8.51 parts n-butyl acetate, 161.85 parts URETDIONE A and 120 parts REDUCER A were added. The resulting mixture was mixed using a FLACKTEK speed mixer for one minute followed by application using a conventional HVLP spray.


Iron phosphate treated ACT B1000 4″×12″ (10.2 cm×30.5 cm) test panels were sprayed with a polyurethane automotive primer before receiving basecoat followed by one component coating. Thickness of black polyester basecoat was 2 mils (50 μm) wet and thickness of the one component coating was 5 mils (125 μm) wet (2 mils (50 μm) dry). The resulting panels were used to test for microhardness and MEK double rubs.


Films were cured at room temperature (21° C.-24° C.) for four days and for five weeks before testing.


Microhardness (Marten's hardness) measurements were done using FISCHERSCOPE H100C instrument according to the method described in DIN EN ISO 14577. Microhardness readings were taken under a 20 mN test load run to a maximum of 5 μm indentation depths over a 20 second application time. Results reported are an average of three readings for each formulation.


MEK double rubs were measured according to ASTM D4752-10(2015). Results reported are an average of three readings for each formulation.


Viscosities of the formulations in Table II were measured according to ASTM D7395-07(2012) using a BROOKFIELD RST Rheometer at 25° C., 100 s−1 shear rate for two minutes with a RST-50-1 spindle. “Initial viscosity” refers to the viscosity of the composition at the time it was made and “3 day viscosity” refers to the viscosity of the composition after 3 days of being stored at the specified temperature and the specified container type. The viscosity measurements after storing at higher temperatures were measured after the formulation was left to cool to room temperature.


As can be appreciated by reference to Table I, Examples A through E receive the same one component coating over basecoats that have different amounts of catalysts. The basecoat in Example A does not contain any catalyst; Examples B through E has incrementally increased amounts of catalyst added to the basecoat. Because the one component coating is the same for each system and has no catalysts, one component coating curing is only triggered by the catalyst migrating from the basecoat. By looking at microhardness and MEK double rubs results, it will be apparent to those skilled in the art that as the amount of catalyst in basecoat is increased, coating performance is improved significantly postulating that the one component coating curing is through migration of tertiary amine catalyst from the basecoat.















TABLE I







A
B
C
D
E
















Basecoat












BASECOAT A (mL)
100
100
100
100
100


REDUCER A (mL)
50
50
50
50
50


CATALYST A
0
0.28
0.55
0.83
1.10







One Component Coating












POLYOL A
23.72
23.72
23.72
23.72
23.72


ADDITIVE A
0.24
0.24
0.24
0.24
0.24


ADDITIVE B
0.94
0.94
0.94
0.94
0.94


n-butyl acetate (BA)
8.51
8.51
8.51
8.51
8.51


URETDIONE A
161.85
161.85
161.85
161.85
16.85


(50% in BA)


REDUCER A
120
120
120
120
120







Microhardness (N/mm2)












4 Days
0.7
0.7
1.1
1.8
4.8


5 Weeks
7.1
10.9
16.0
20.5
28.7







MEK Double Rubs












4 Days
4
5
7
11
13


5 Weeks
6
9
19
36
66









Table II summarizes the viscosities of the one component coating used in examples A through E in Table I. The one component coating has all the components mixed except the catalyst. To demonstrate that the inventive coating can be supplied as one component, it was placed in glass and tin containers and left at those temperatures for nine weeks. It will be apparent to those skilled in the art that none of the containers stored at any temperatures showed signs of viscosity increase thus showing that the inventive coating can be stored as one component.









TABLE II







Viscosity (cPs)












Tin can
Tin can
Glass jar
Glass jar



(50° C.)
(40° C.)
(50° C.)
(40° C.)

















Initial
30
30
30
30



3 Days
31
27
28
26



1 Week
30
27
31
27



2 Weeks
27
29
27
25



3 Weeks
28
27
27
29



5 Weeks
27
28
27
29



6 Weeks
29
26
25
27



7 Weeks
25
27
27
26



8 Weeks
26
27
27
24



9 Weeks
26
27
26
28










The one component allophanate polymers produced by the present invention are believed to be particularly applicable for coatings, adhesives, castings, composites, and sealants.


This specification has been written with reference to various non-limiting and non-exhaustive embodiments. However, it will be recognized by persons having ordinary skill in the art that various substitutions, modifications, or combinations of any of the disclosed embodiments (or portions thereof) may be made within the scope of this specification. Thus, it is contemplated and understood that this specification supports additional embodiments not expressly set forth herein. Such embodiments may be obtained, for example, by combining, modifying, or reorganizing any of the disclosed steps, components, elements, features, aspects, characteristics, limitations, and the like, of the various non-limiting embodiments described in this specification. In this manner, Applicant reserves the right to amend the claims during prosecution to add features as variously described in this specification, and such amendments comply with the requirements of 35 U.S.C. § 112(a), and 35 U.S.C. § 132(a).


Various aspects of the subject matter described herein are set out in the following numbered clauses:


1. A one component allophanate composition comprising a neutralized polyol a polyuretdione resin and optionally a reducer.


2. The one component allophanate composition according to clause 1, wherein the neutralized polyol comprises the reaction product of a polyol and an acid scavenger.


3. The one component allophanate composition according to clause 1, wherein the composition further includes an additive package selected from the group consisting of flow control additives, wetting agents, and solvents.


4. The one component allophanate composition according to one of clauses 1 to 3, wherein the polyuretdione resin comprises the reaction product of catalytic dimerization of an isocyanate.


5. The one component allophanate composition according to clause 4, wherein the isocyanate is selected from the group consisting of 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-2-isocyanato-methyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, α,α,α′,α′-tetramethyl-1,3- and 1,4-xylene diisocyanate, 1-isocyanato-1-methyl-4(3)-isocyanato-methyl cyclohexane, and 2,4- and 2,6-hexahydrotoluene diisocyanate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), pentane diisocyanate (PDI)—bio-based, and, isomers of any of these.


6. The one component allophanate composition according to one of clauses 1 to 5, wherein the reducer is selected from the group consisting of n-butyl acetate, ethyl acetate, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propyl acetate, 2-methoxy-1-propyl acetate, 2-ethoxyethyl acetate, n-heptane, methylcyclohexane, toluene, acetone, VM&P naphtha, naphtha, light aliphatic solvent naphtha, acetate, isobutyl acetate, mixed xylenes, ethylbenzene, methyl ethyl ketone, dimethyl ketone, methyl n-amyl ketone, methyl isobutyl ketone, 1,2,4 trimethyl benzene, isopropylbenzene, ethyl benzene, 1-chloro-4 (triflouromethyl) benzene, propylene glycol methyl ether, and ethyl-3-ethoxy propionate and combinations thereof.


7. The one component allophanate composition according to one of clauses 2 to 6, wherein the acid scavenger is covalently bonded to acidic groups within the polyol and is selected from the group consisting of carbodiimides, anhydrides, epoxies, trialkylorthoformates, amine compounds, oxazolines, and combinations thereof.


8. The one component allophanate composition according to one of clauses 2 to 7, wherein the polyol is selected from the group consisting of polyalkylene ether polyol, polyester polyols hydroxyl containing polycaprolactones, hydroxyl-containing (meth)acrylic polymers, polycarbonate polyols, polyurethane polyols and combinations thereof.


9. One of a coating, an adhesive, a casting, a composite, and a sealant comprising the allophanate composition according to one of clauses 1 to 8.


10. A method of applying the allophanate composition made according to one of clauses 1 to 9 to a substrate, wherein the method comprises at least one of spraying, dipping, flow coating, rolling, brushing, and pouring.


11. A method of making a one component allophanate composition comprising: combining a polyuretdione resin and a neutralized polyol in the presence of an optional reducer.


12. The method according to clause 11 further including adding an additive package selected from the group consisting of flow control additives, wetting agents, and solvents.


13. The method according to clause 11, wherein the polyuretdione resin comprises the reaction product of catalytic dimerization of an isocyanate.


14. The method according to clause 13, wherein the isocyanate is selected from the group consisting of 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-2-isocyanato-methyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, α,α,α′,α′-tetramethyl-1,3- and 1,4-xylene diisocyanate, 1-isocyanato-1-methyl-4(3)-isocyanato-methyl cyclohexane, and 2,4- and 2,6-hexahydrotoluene diisocyanate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), pentane diisocyanate (PDI)—bio-based, and, isomers of any of these.


15. The method according to one of clauses 11 to 14, wherein the reducer is selected from the group consisting of n-butyl acetate, ethyl acetate, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propyl acetate, 2-methoxy-1-propyl acetate, 2-ethoxyethyl acetate, n-heptane, methylcyclohexane, toluene, acetone, VM&P naphtha, naphtha, light aliphatic solvent naphtha, acetate, isobutyl acetate, mixed xylenes, ethylbenzene, methyl ethyl ketone, dimethyl ketone, methyl n-amyl ketone, methyl isobutyl ketone, 1,2,4 trimethyl benzene, isopropylbenzene, ethyl benzene, 1-chloro-4 (triflouromethyl) benzene, propylene glycol methyl ether, and ethyl-3-ethoxy propionate and combinations thereof.


16. The method according to one of clauses 11 to 15, wherein the neutralized polyol comprises the reaction product of a polyol and an acid scavenger.


17. The method according to clause 16, wherein the acid scavenger is covalently bonded to acidic groups within the polyol and is selected from the group consisting of carbodiimides, anhydrides, epoxies, trialkylorthoformates, amine compounds, oxazolines, and combinations thereof.


18. The method according to clause 16, wherein the polyol is selected from the group consisting of polyalkylene ether polyol, polyester polyols hydroxyl containing polycaprolactones, hydroxyl-containing (meth)acrylic polymers, polycarbonate polyols, polyurethane polyols and combinations thereof.


19. One of a coating, an adhesive, a casting, a composite, and a sealant comprising the allophanate composition according to one of clauses 11 to 18.


20. A method of applying the allophanate composition made according to one of clauses 11 to 19 to a substrate, wherein the method comprises at least one of spraying, dipping, flow coating, rolling, brushing, and pouring.


21. A system comprising: a one component allophanate composition and a catalyst containing a basecoat, wherein the one component allophanate composition comprises a neutralized polyol, a polyuretdione resin and an optional reducer, and wherein the catalyst comprises a tertiary amine.


22. The system according to clause 21, wherein the tertiary amine is an amidine.


23. The system according to clause 21, wherein the tertiary amine is selected from the group consisting of one selected from the group consisting of 1,8-diazabicyclo[5.4.0]undec-7-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1,4,5,6-tetrahydro-1,2-dimethylpyrimidine, 1,2,4-triazole, sodium derivative and 2-tert-butyl-1,1,3,3-tetramethylguanidine, and combinations thereof.


24. The system according to clause 21, wherein the neutralized polyol comprises the reaction product of a polyol and an acid scavenger.


25. The system according to clause 21, wherein the polyol is selected from the group consisting of polyalkylene ether polyols, polyester polyols hydroxyl containing polycaprolactones, hydroxyl-containing (meth)acrylic polymers, polycarbonate polyols, polyurethane polyols, and combinations thereof.


26. The system according to one of clauses 21 to 25, wherein the system further includes an additive package selected from the group consisting of flow control additives, wetting agents, and solvents.


27. The system according to one of clauses 21 to 26, wherein the polyuretdione resin comprises the reaction product of catalytic dimerization of an isocyanate.


28. The system according to clause 27, wherein the isocyanate is selected from the group consisting of 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-2-isocyanato-methyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, α,α,α′,α′-tetramethyl-1,3- and 1,4-xylene diisocyanate, 1-isocyanato-1-methyl-4(3)-isocyanato-methyl cyclohexane, and 2,4- and 2,6-hexahydrotoluene diisocyanate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), pentane diisocyanate (PDI)—bio-based), and, isomers of any of these.


29. The system according to one of clauses 21 to 28, wherein the reducer is selected from the group consisting of n-butyl acetate, ethyl acetate, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propyl acetate, 2-methoxy-1-propyl acetate, 2-ethoxyethyl acetate, n-heptane, methylcyclohexane, toluene, acetone, VM&P naphtha, naphtha, light aliphatic solvent naphtha, acetate, isobutyl acetate, mixed xylenes, ethylbenzene, methyl ethyl ketone, dimethyl ketone, methyl n-amyl ketone, methyl isobutyl ketone, 1,2,4 trimethyl benzene, isopropylbenzene, ethyl benzene, 1-chloro-4 (triflouromethyl) benzene, propylene glycol methyl ether, and ethyl-3-ethoxy propionate and combinations thereof.


30. The system according to clause 24, wherein the acid scavenger is covalently bonded to acidic groups within the polyol and is selected from the group consisting of carbodiimides, anhydrides, epoxies, trialkylorthoformates, amine compounds, oxazolines, and combinations thereof.


31. One of a coating, an adhesive, a casting, a composite, and a sealant comprising the system made according to one of clauses 21 to 30.


32. A method of applying the system according to one of clauses 21 to 31 to a substrate, wherein the method comprises at least one of spraying, dipping, flow coating, rolling, brushing, and pouring.


33. An allophanate system made by a method comprising: combining a neutralized polyol with a polyuretdione resin in the presence of an optional reducer to produce a one component allophanate composition, and contacting the one component allophanate composition with a basecoat comprising a tertiary amine catalyst.


34. The allophanate system according to clause 33 wherein the tertiary amine catalyst comprises an amidine.


35. The allophanate system according to clause 33, wherein the tertiary amine is selected from the group consisting of one selected from the group consisting of 1,8-diazabicyclo[5.4.0]undec-7-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1,4,5,6-tetrahydro-1,2-dimethylpyrimidine, 1,2,4-triazole, sodium derivative and 2-tert-butyl-1,1,3,3-tetramethylguanidine, and combinations thereof.


36. The allophanate system according to one of clauses 33 to 35, wherein the neutralized polyol comprises the reaction product of a polyol and an acid scavenger.


37. The allophanate system according to clause 36, wherein the polyol is selected from the group consisting of polyalkylene ether polyols, polyester polyols, hydroxyl containing polycaprolactones, hydroxyl-containing (meth)acrylic polymers, polycarbonate polyols, polyurethane polyols, and combinations thereof.


38. The allophanate system according to one of clauses 33 to 37, further including an additive package selected from the group consisting of flow control additives, wetting agents, and solvents.


39. The allophanate system according to one of clauses 33 to 38, wherein the polyuretdione resin comprises the reaction product of catalytic dimerization of an isocyanate.


40. The allophanate system according to clause 39, wherein the isocyanate is selected from the group consisting of 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-2-isocyanato-methyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, α,α,α′,α′-tetramethyl-1,3- and 1,4-xylene diisocyanate, 1-isocyanato-1-methyl-4(3)-isocyanato-methyl cyclohexane, and 2,4- and 2,6-hexahydrotoluene diisocyanate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), pentane diisocyanate (PDI)—bio-based, and, isomers of any of these.


41. The allophanate system according to one of clauses 33 to 40, wherein the reducer is selected from the group consisting of n-butyl acetate, ethyl acetate, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propyl acetate, 2-methoxy-1-propyl acetate, 2-ethoxyethyl acetate, n-heptane, methylcyclohexane, toluene, acetone, VM&P naphtha, naphtha, light aliphatic solvent naphtha, acetate, isobutyl acetate, mixed xylenes, ethylbenzene, methyl ethyl ketone, dimethyl ketone, methyl n-amyl ketone, methyl isobutyl ketone, 1,2,4 trimethyl benzene, isopropylbenzene, ethyl benzene, 1-chloro-4 (triflouromethyl) benzene, propylene glycol methyl ether, and ethyl-3-ethoxy propionate and combinations thereof.


42. The allophanate system according to clause 36, wherein the acid scavenger is covalently bonded to acidic groups within the polyol and is selected from the group consisting of carbodiimides, anhydrides, epoxies, trialkylorthoformates, amine compounds, oxazolines, and combinations thereof.


43. One of a coating, an adhesive, a casting, a composite, and a sealant comprising the allophanate system according to one of clauses 33 to 42.


44. A method of applying the allophanate system made according to one of clauses 33 to 43 to a substrate, wherein the method comprises at least one of spraying, dipping, flow coating, rolling, brushing, and pouring.

Claims
  • 1. A one component allophanate composition comprising: a neutralized polyol;a polyuretdione resin; andan optional reducer.
  • 2. The one component allophanate composition according to claim 1, wherein the neutralized polyol comprises the reaction product of a polyol and an acid scavenger.
  • 3. The one component allophanate composition according to claim 2, wherein the polyol is selected from the group consisting of polyalkylene ether polyols, polyester polyols, polycaprolactones, hydroxyl-containing (meth)acrylic polymers, polycarbonate polyols, polyurethane polyols and combinations thereof.
  • 4. The one component allophanate composition according to claim 1, wherein the composition further includes an additive package selected from the group consisting of flow control additives, wetting agents, and solvents.
  • 5. The one component allophanate composition according to claim 1, wherein the polyuretdione resin comprises the reaction product of catalytic dimerization of an isocyanate.
  • 6. The one component allophanate composition according to claim 5, wherein the isocyanate is selected from the group consisting of 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-2-isocyanato-methyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, α,α,α′,α′-tetramethyl-1,3- and 1,4-xylene diisocyanate, 1-isocyanato-1-methyl-4(3)-isocyanato-methyl cyclohexane, and 2,4- and 2,6-hexahydrotoluene diisocyanate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), pentane diisocyanate (PDI)—bio-based, and, isomers of any of these.
  • 7. The one component allophanate composition according to claim 1, wherein the reducer is selected from the group consisting of n-butyl acetate, ethyl acetate, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propyl acetate, 2-methoxy-1-propyl acetate, 2-ethoxyethyl acetate, n-heptane, methylcyclohexane, toluene, acetone, VM&P naphtha, naphtha, light aliphatic solvent naphtha, acetate, isobutyl acetate, mixed xylenes, ethylbenzene, methyl ethyl ketone, dimethyl ketone, methyl n-amyl ketone, methyl isobutyl ketone, 1,2,4 trimethyl benzene, isopropylbenzene, ethyl benzene, 1-chloro-4 (triflouromethyl) benzene, propylene glycol methyl ether, and ethyl-3-ethoxy propionate and combinations thereof.
  • 8. The one component allophanate composition according to claim 2, wherein the acid scavenger is covalently bonded to acidic groups within the polyol and is selected from the group consisting of carbodiimides, anhydrides, epoxies, trialkylorthoformates, amine compounds, oxazolines, and combinations thereof.
  • 9. A method of making a one component allophanate composition comprising: combining a polyuretdione resin and a neutralized polyol in the presence of an optional reducer.
  • 10. The method according to claim 9 further including adding an additive package selected from the group consisting of flow control additives, wetting agents, and solvents.
  • 11. The method according to claim 9, wherein the neutralized polyol comprises the reaction product of a polyol and an acid scavenger.
  • 12. The method according to claim 11, wherein the acid scavenger is covalently bonded to acidic groups within the polyol and is selected from the group consisting of carbodiimides, anhydrides, epoxies, trialkyl-orthoformates, amine compounds, oxazolines, and combinations thereof.
  • 13. The method according to claim 11, wherein the polyol is selected from the group consisting of polyalkylene ether polyols, polyester polyols hydroxyl containing polycaprolactones, hydroxyl-containing (meth)acrylic polymers, polycarbonate polyols, polyurethane polyols and combinations thereof.
  • 14. The method according to claim 9, wherein the polyuretdione resin comprises the reaction product of catalytic dimerization of an isocyanate.
  • 15. The method according to claim 14, wherein the isocyanate is selected from the group consisting of 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-2-isocyanato-methyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, α,α,α′,α′-tetramethyl-1,3- and 1,4-xylene diisocyanate, 1-isocyanato-1-methyl-4(3)-isocyanato-methyl cyclohexane, and 2,4- and 2,6-hexahydrotoluene diisocyanate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), pentane diisocyanate (PDI)—bio-based, and, isomers of any of these.
  • 16. The method according to claim 9, wherein the reducer is selected from the group consisting of n-butyl acetate, ethyl acetate, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propyl acetate, 2-methoxy-1-propyl acetate, 2-ethoxyethyl acetate, n-heptane, methylcyclohexane, toluene, acetone, VM&P naphtha, naphtha, light aliphatic solvent naphtha, acetate, isobutyl acetate, mixed xylenes, ethylbenzene, methyl ethyl ketone, dimethyl ketone, methyl n-amyl ketone, methyl isobutyl ketone, 1,2,4 trimethyl benzene, isopropylbenzene, ethyl benzene, 1-chloro-4 (triflouromethyl) benzene, propylene glycol methyl ether, and ethyl-3-ethoxy propionate and combinations thereof.
  • 17. An allophanate system made by a method comprising: combining a neutralized polyol with a polyuretdione resin in the presence of an optional reducer to produce a one component coating, andcontacting the one component coating with a basecoat comprising a tertiary amine catalyst.
  • 18. The allophanate system according to claim 17, wherein the neutralized polyol is the reaction product of a polyol and an acid scavenger.
  • 19. The allophanate system according to claim 17, wherein the acid scavenger is covalently bonded to acidic groups within the polyol and is selected from the group consisting of carbodiimides, anhydrides, epoxies, trialkylorthoformates, amine compounds, oxazolines, and combinations thereof.
  • 20. The allophanate system according to claim 18, wherein the polyol is selected from the group consisting of polyalkylene ether polyols, polyester polyols, hydroxyl containing polycaprolactones, hydroxyl-containing (meth)acrylic polymers, polycarbonate polyols, polyurethane polyols and combinations thereof.
  • 21. The allophanate system according to claim 17 further including an additive package selected from the group consisting of flow control additives, wetting agents, and solvents.
  • 22. The allophanate system according to claim 17, wherein the polyuretdione resin comprises the reaction product of catalytic dimerization of an isocyanate.
  • 23. The allophanate system according to claim 22, wherein the isocyanate is selected from the group consisting of 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-2-isocyanato-methyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane (isophorone diisocyanate or IPDI), bis-(4-isocyanatocyclohexyl)methane, 1,3- and 1,4-bis(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl-cyclohexyl)-methane, α,α,α′,α′-tetramethyl-1,3- and 1,4-xylene diisocyanate, 1-isocyanato-1-methyl-4(3)-isocyanato-methyl cyclohexane, and 2,4- and 2,6-hexahydrotoluene diisocyanate, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), pentane diisocyanate (PDI)—bio-based, and, isomers of any of these.
  • 24. The allophanate system according to claim 17, wherein the reducer is selected from the group consisting of n-butyl acetate, ethyl acetate, 2-methoxy-1-methylethyl acetate, 1-methoxy-2-propyl acetate, 2-methoxy-1-propyl acetate, 2-ethoxyethyl acetate, n-heptane, methylcyclohexane, toluene, acetone, VM&P naphtha, naphtha, light aliphatic solvent naphtha, acetate, isobutyl acetate, mixed xylenes, ethylbenzene, methyl ethyl ketone, dimethyl ketone, methyl n-amyl ketone, methyl isobutyl ketone, 1,2,4 trimethyl benzene, isopropylbenzene, ethyl benzene, 1-chloro-4 (triflouromethyl) benzene, propylene glycol methyl ether, and ethyl-3-ethoxy propionate and combinations thereof.
  • 25. The allophanate system according to claim 17, wherein the tertiary amine catalyst is an amidine.
  • 26. The allophanate system according to claim 17, wherein the tertiary amine is selected from the group consisting of one selected from the group consisting of 1,8-diazabicyclo[5.4.0]undec-7-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1,4,5,6-tetrahydro-1,2-dimethylpyrimidine, 1,2,4-triazole, sodium derivative and 2-tert-butyl-1,1,3,3-tetramethylguanidine, and combinations thereof.
  • 27. One of a coating, an adhesive, a casting, a composite, and a sealant comprising the allophanate system according to claim 17.