The present invention relates to a one-dimensional nano-material/nano-phosphor hetero-structure, and more particularly to a one-dimensional nano-material/nano-phosphor hetero-structure capable of being used for various nano-analysis and diagnosis of bio-materials, and also capable of being used as a light source by using a nano-material light emitting device, and a method of preparing the same.
Continuous development of new materials and semiconductor technology entailing higher integration and smaller size of semiconductor device has reached the limit of conventional top-down art such as lithography. Therefore, there is a need for a shift from a top-down approach to a bottom-up approach in order to develop a new nano-material that has a desired function at the atomic or molecular level. The preparation of new nano-material in the bottom-up approach necessarily requires the development of a technology capable of realizing a nano-structure that has the desired function in a material.
In order to prepare a white light source, there has been research on a method of preparing white light source by binding a phosphor on a ultra-violet light emitting device chip, and another method of preparing a white light emitting device by binding three different colors of light emitting source, such as red, green, and blue, by using an ultraviolet or blue light emitting diode belonging to a nitride-semiconductor group. However, these conventional methods based on nitride-semiconductor group involve formation of a thin film at high growth temperature so they are not economically efficient when prepared into white light. Furthermore, it is impossible to embody the highly efficient green emission device. In order to overcome this problem, the present invention embodies a new structure of coating a phosphor on semiconductor nano-rods. There is a need to simplify the structure and improve the photoluminescent intensity by using nano-structures in the construction of single white light emitting nano-devices.
Nano-crystals in the shape of CdSe- or CdS-based quantum dots are being used as diagnostic material for the detection of bio-materials, such as a proteins, cancer cells, viruses, and so on. However, it has the disadvantages of containing a highly toxic substance such as Cd, having a small surface area to which reagent can attach to, and having a photoluminescent spectrum that is sensitive to and dependent on the size of the quantum dots. Therefore, there is an urgent need for the development of a nontoxic material with a larger surface area capable of attaching a phosphor with a particular photoluminescent spectrum thereto.
An aspect of the present invention is to provide a nano-material/phosphor hetero-structure comprising a single nano-structure and a method of preparing the same.
Another aspect of the present invention is to provide a nano-material/phosphor hetero-structure with highly-improved photoluminescent effects by enlarging the surface area of a phosphor coated on a one-dimensional nano-material and a method of preparing the same.
In order to accomplish the aforementioned aspects, the present invention provides a nano-material/phosphor hetero-structure including a nano-phosphor coated on the surface of a one-dimensional nano-material or a nano-material arranged on a substrate.
The present invention also provides a method of preparing the aforementioned nano-material/phosphor hetero-structure including arranging a nano-material on a substrate, and coating the surface of the above nano-material with a nano-phosphor.
The present invention provides a nano-material/phosphor hetero-structure including a phosphor coated on the surface of a one-dimensional nano-material.
In this specification, “nano-material” refers to material having a diameter or thickness within the range of several to several hundreds of nanometers and length within the range of several to several hundreds of micrometers, and is preferably 100 nm or less in thickness and tens of micrometers or less in length. A nano-phosphor is defined as being in the aforementioned range. In addition, “one dimensional” is defined as having a linear form.
According to the present invention, the aforementioned nano-material may include, but is not limited to, nano-rods, nano-tubes, nano-wires, and nano-needles.
The aforementioned phosphor can be optionally coated on either the tip or side surface of a nano-material or on the entire surface thereof. Then, with the formation of interface between the phosphor and the nano-material, a nano-material/phosphor hetero-structure can be prepared.
The aforementioned phosphor layer can be coated in a multi-layered or a multi-walled structure.
It can also be coated on a nano-material bound with a nano-magntic material.
In addition, the coated phosphor can be a red, green, or blue phosphor or a mixture thereof, or an oxide phosphor or a sulfide phosphor or a mixture thereof.
A nano-material/phosphor hetero-structure of the present invention can be usefully applied to a display, a white light source, a probe, and various recording media, as well as to a light emitting device.
It can also be used to diagnose bio-materials such as proteins, cancer cells, viruses, and so on.
The present invention is described in further detail below.
A nano-material for a nano-material/phosphor hetero-structure in the present invention may include, but is not limited to, a Group 111-Group V element-containing compound, a Group II-Group IV element-containing compound, a silicon semiconductor, carbon nano-tube, or a combination thereof. A more detailed example are ZnO, GaN, Si, InP, InAs, GaAs, Ge, carbon nano-tube, or a combination thereof. Furthermore, one or more material selected from the group consisting of Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta, Nb, Ga, In, S, Se, P, As, Co, Cr, B, N, Sb, and H can be additionally included.
The present invention has no particular limits to the kind of phosphor used as long as it is nano-sized. However, a phosphor containing a rare earth element or a transition element can be preferably used in the present invention. The aforementioned phosphor may be an oxide or a sulfide. For example, it can be a combination of a red phosphor such as CaS:Eu, ZnS:Sm, Y2O2S:Eu, Gd2O3:Eu, Y2O3:Eu, and the like, a green one such as ZnS:Tb, ZnS:(Cu,Al), ZnS:Ce, Cl, Gd2O2S:Tb, SrGa2S4:Eu, Y2SiO5:Tb, and the like, a blue one such as SrS:Ce, ZnS:Tm, YSiO5:Ce, ZnS:(Ag,Al), and the like, white light such as YAG (Yttrium Aluminum Garnet), and various oxides and sulfides. The method of coating nano-phosphor onto a nano-material may include, but is not limited to, any common dry or wet method. The above dry coating methods include chemical vapor deposition (CVD), as well as a physical growth methods such as sputtering, thermal or e-beam evaporation, pulse laser deposition, and molecular beam epitaxy. The above wet coating methods include various methods such as the sol-gel method, spin coating, dip coating, and so on. It is preferable to dry and remove the solvent after wet coating.
After the aforementioned coating process, a hetero-structure deposited with a nano-phosphor on a nano-material can be heat treated to improve its photoluminescent efficiency, if necessary. The heat treatment can be performed under an oxidizing atmosphere such as oxygen, air, and so on, under an inert atmosphere such as argon, or under a reducing atmosphere such as nitrogen, hydrogen, or a mixture thereof.
According to an embodiment of the present invention, a phosphor can be coated after arranging the aforementioned nano-material on a substrate. As shown in
It is preferable for the aforementioned nano-material to be arranged at an angle of 45° to 90° to the surface of the substrate, and more preferable to be arranged at right angles to the surface of the substrate.
In order to attach the nano-material on the substrate 2, various deposition methods can be used. For example, a zinc oxide nano-material can be prepared by an metal organic chemical vapor deposition method, where a nano-material is deposited and grown on the substrate by putting a zinc-containing metal organic compound and an oxygen-containing gas or an oxygen-containing organic material into the reactor, and reacting at a temperature of 1,200° C. or less and at normal pressure or less.
This kind of metal organic chemical vapor deposition makes it easy to prepare hetero-structures with a variety of deposited materials, there is no possibility of leaving a metal catalyst residue on the tip of the nano-material since metal catalysts are not used, and it enables nano-material to grow along one direction in uniform thickness and length and allows control of the diameter to be under 200 nm and preferably down to several nanometers.
As shown in
As shown in
As shown in
In addition, as shown in
According to the present invention, a light source emitting red, green, or blue light can be obtained by using oxides, sulfides, or organic phosphors that are red, green, or blue in color, and white light can be obtained by depositing a combination of the above red, green, and blue photoluminescent material on the surface of a nano-material. Accordingly, the present invention can improve the function of a photoluminescent(light emitting) device, including a white light photoluminescent(light emitting) device, by establishing a nano-material/nano-phosphor hetero-structure on a nano-material.
The nano-material/phosphor hetero-structure of the present invention can be applied to various light devices or electronic devices by coating a phosphor on the large surface area of a one-dimensional nano-material. In particular, a phosphor with a larger surface area can have greatly increased photoluminescent intensity, and can be used in various photoluminescent diodes, such as a white light source.
From here on, the present invention is illustrated in further detail based on the following examples. However, the following examples only illustrate the present invention, and it goes without saying that the present invention is not limited thereto.
Zinc oxide nano-rods were grown on an A12O3 substrate by the metal organic chemical vapor deposition method. Dimethyl zinc and O2 were used as reaction material and argon was used as the transporting gas. The aforementioned O2 and dimethyl zinc gas were put into each reactor through separate individual paths where their flow speeds were regulated within the range of 20 to 100 sccm and 1 to 10 sccm respectively. Zinc oxide nano-rods were deposited and grown on the substrate by chemically reacting the precursor of the aforementioned reaction material in the reactor. The pressure was maintained at 1 to 760 torr and the temperature at 200 to 700° C. in the reactor during the approximately one-hour period in which the nano-rods were grown.
Next, 1) a ZnS:(Cu,Al) phosphor (Example 1), 2) a ZnS:(Ag,Al) phosphor (Example 2), and 3) an Y2O3:Eu phosphor (Example 3) were deposited onto the nano-rods in a thickness of 100 to 500 nm through laser molecular beam epitaxy. The deposition process was done by starting the laser ablation after vacuum pumping the chamber with a turbo molecular pump (TMP) down to a pressure of 10-7 torr, and then, sufficiently stabilizing the sample by maintaining it for about 10 minutes at the desired growth temperature. Here, the temperature for the growth was regulated within the wide range between room temperature to hundreds of degrees.
The photoluminescence of zinc oxide nano-rods deposited with a phosphor of Y2O3:Eu, ZnS (Ag, Al), or ZnS (Cu, Al) prepared according to Examples 1 to 3, was measured to evaluate their optical properties. Here, a He-Cd laser with a wavelength of 325 nm was used as a source.
A nano-material/phosphor hetero-structure of the present invention prepared by using the larger surface area of a one-dimensional material has the potential of application to a variety of devices and materials due to the larger area of light emission. The possibility of great increase in the photoluminescent intensity of a phosphor with a larger surface area, especially allows its use as a photoluminescent diode device, such as a white light source, or a bio-diagnostic device.
Although the present invention has been described in detail hereinabove in connection with certain exemplary embodiments, it should be understood that the invention is not limited to the disclosed embodiments, but is intended to cover various modifications that may be made within the spirit and scope of the present invention by one of ordinary skill in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0008210 | Feb 2004 | KR | national |