1. Field of the Invention
The invention relates to a one-piece header assembly for connecting an implantable medical device to a body organ assisted by the medical device. The header assembly includes terminal blocks electrically connected to the distal end of intermediate conductor wires supported in the header. The proximal end of the intermediate conductor wires comprise a quick connect structure for connecting to feedthrough wires or pins exiting the medical device. Electrical leads are plugged into the terminal blocks to establish continuity from the medical device to a tip of the electrical leads inserted into a body tissue.
2. Prior Art
Implantable medical devices have feedthrough conductors in the form of pins or wires connected to the internal components of the medical device. The feedthrough wires extend through a wall of the medical device housing and are electrically insulated therefrom by a ceramic-to-metal seal or a glass-to-metal seal. Electrical continuity to a conductor lead attached to the body being assisted is established by connecting intermediate conductor wires supported by a polymeric header mounted on the medical device to the feedthrough wires and terminal blocks in the molded header. The terminal blocks then provide for plugging the conductor lead into the molded polymeric header. Examples of this type of header assembly are shown in U.S. Pat. No. 4,254,775 to Langer, U.S. Pat. No. 4,262,673 to Kinney et al., U.S. Pat. No. 4,764,132 to Stutz, Jr., U.S. Pat. No. 5,282,841 to Szyszkowski and U.S. Pat. No. 5,336,246 to Dantanarayana. However, what is needed is a quick and reliable connection between the feedthrough wires from the medical device and the intermediate conductor wires supported by the molded header. The present invention connection structures are improvements over those shown by the prior art patents.
The present invention is, therefore, directed to a header assembly for a medical device. The header assembly provides electrical connection between feedthrough wires extending from inside the medical device to a conductor lead connected to the body organ or tissue being assisted. Several different embodiments of header assemblies are described comprising structures for securing the feedthrough wires from the medical device to conductor wires in the molded header. The conductor wires are, in turn, connected to terminal blocks into which the lead wires from the body tissue are plugged into.
These features of the present invention will be apparent upon consideration of the following detailed description thereof presented in connection with the following drawings.
Referring now to the drawings,
The implantable medical device 22 comprises a housing 26 of a conductive material, such as of titanium or stainless steel. Preferably, the medical device housing 26 is comprised of mating clam shells in an overlapping or butt welded construction, as shown in U.S. Pat. No. 6,613,474 to Frustaci et al., which is assigned to the assignee of the present invention and incorporated herein by reference. The housing 26 can also be of a deep drawn, prismatic and cylindrical design, as is well known to those skilled in the art.
The housing 26 is shown in an exemplary form comprising first and second planar major face walls 28 and 30 joined together by a sidewall 32 and the header 20. The sidewall 32 curves from one end of the header 20 to the other end and is generally arcuate from face wall 28 to face wall 30. The preferred mating clam shells of housing 26 are hermetically sealed together, such as by laser or resistance welding, to provide an enclosure for the medical device including its control circuitry 34 and a power supply 36, such as a battery (the control circuitry and power supply are shown in dashed lines in
The header 20 of housing 26 has a planar upper surface 38 providing at least four openings through which respective feedthrough wires 40, 42, 44, and 46 pass. The feedthrough wires extend from a distal end positioned inside the housing 26 connected to the control circuitry 34 to respective proximal ends spaced above the header upper surface 38. The feedthrough wires 40, 42, 44, and 46 are electrically insulated from the housing 26 by respective ceramic-to-metal seals or glass-to-metal seals (not shown), as are well known by those skilled in the art.
As shown in
Those skilled in the art will readily understand that the exact shape of the molded header is exemplary. In fact, the molded header can have a myriad of different shapes only limited by the design specifications of the associated medical device and its intended use.
Each terminal block 12A, 12B, 14A, 14B has an internal cylindrically shaped bore. The terminal block pairs 12A, 12B and 14A, 14B have their internal bores aligned along the longitudinal axis of a respective bore 60, 62 leading into the polymeric header 16 from the curved upper wall 52. The structure of the bores 60, 62 will be described in detail with respect to the former bore. However, it is understood that a similar structure exists for bore 62.
In that respect, the header assembly bore 60 has a first portion 60A of a first diameter sized to receive a distal portion 24A of the conductor lead 24, a second, intermediate portion 60B of a second, greater diameter sized to receive a proximal portion 24B of the lead and a third portion 60C of a still greater diameter than the intermediate portion. Frustoconically shaped portions lead from one bore portion to the next larger bore portion. The terminal blocks 12A, 12B have lead openings of diameters somewhat larger than the first and second bore portions 60A, 60B so that the conductor lead 24 is received therein in a tight fitting, electrically stable connection.
As shown in
In a similar manner, terminal block 12B is electrically connected to the distal end of intermediate conductor wire 66. The proximal end of wire 66 residing in the inlet 65 has a step 66A. The step 66A provides a lap joint for securing the intermediate conductor wire 66 to feedthrough wire 42.
Terminal block 14A is electrically connected to the distal end of intermediate conductor wire 68. The proximal end of wire 68 has a step 68A residing in inlet 65 for securing the intermediate conductor wire to feedthrough wire 44.
Terminal block 14B is electrically connected to the distal end of intermediate conductor wire 70. The proximal end of wire 70 has a step 70A residing in inlet 65 for securing the intermediate conductor wire to feedthrough wire 46.
While header 16 is illustrated having two pairs of terminal blocks, this is for illustrative purposes only. Those skilled in the art will realize that the header can have one pair of terminal blocks, or more than two pairs. Also, the terminal blocks need not be provided in pairs. Instead, a header bore can be in communication with only one terminal block, or with more than two aligned blocks.
Terminal blocks 12B and 14B are each provided with respective inner annular grooves 72 and 74. Respective collapsible coil springs 76, 78 are nested in the grooves 72, 74 to help ensure that the terminal blocks 12B, 14B are electrically connected to the conductor leads 24 received in the bores 60, 62.
The front wall 48 of the molded header 16 is provided with an oval shaped raised land 80. A pair of passageways 82 and 84 enter the raised land 80 to communicate with the respective terminal blocks 12A, 14A. The passageways 82, 84 are aligned perpendicularly with the longitudinal axes of the bores 60, 62. Passageway 82 leads to a threaded aperture 86 (
The thusly described molded header 16 is mounted on the medical device 22 with the support plate 18 contacting the upper surface 38 of the header 20. The support plate 18 has an opening 18A (
A similar electrical connection is made by welding feedthrough wire 42 to step 66A of conductor wire 66, feedthrough wire 44 to step 68A of conductor wire 68 and feedthrough wire 46 to step 70A of conductor wire 70. In this manner, electrical continuity is established between the control circuitry 34 of the medical device 22 and the terminal blocks 12A, 12B, 14A and 14B through respective intermediate conductor wires 64, 66, 68 and 70.
Inlet 65 in the molded header 16 (
In use, the medical device is positioned in a body, such as a human or animal, to assist a body function. A suture opening 90 is provided in the molded header 16 to aid in securing the medical device 22 inside the body. The physician then plugs a conductor lead 24 into each bore 60, 62 in molded header 16. The distal end (not shown) of the co-axial conductor opposite that of the lead 24 has already been positioned in a body tissue, such as a heart muscle, for transmitting physiological information to the medical device and for administering a medical theory as needed.
An example of this is in a cardiac defibrillator where the medical device may monitor the heart rate for extended periods of time. When a potentially fatal irregular, rapid heartbeat known as tachyarrhythmia is detected, the defibrillator delivers an electrical shock to the heart. The electrical shock is transmitted from the control circuitry 34 through the feedthrough wires 40, 42, 44 and 46 and intermediate conductor wires 64, 66, 68 and 70. These conductors are electrically connected to the terminal blocks 12A, 12B, 14A and 14B into which the conductor leads 24 are plugged.
In any event, conductor wire 100 is preferably a unitary member having a circular cross-section perpendicular to its length extending from a distal end (not shown) electrically secured to a terminal block, for example block 12A, to an opposite proximal end 10A. The proximal end 100A of the conductor wire 100 resides in the inlet 65 of the molded header 16. The proximal end 100A comprises a head 102 of a larger diameter than the remaining length of the wire 100. The head 102 is a cylindrically shaped portion of a length somewhat less than the depth of inlet 65. A bore 104 is provided in head 102 aligned along the longitudinal axis thereof.
As shown in
It is also within the scope of the present invention that the spring need not be of a coil structure. As shown in
Now, it is therefore apparent that the present invention accomplishes its intended objects. While embodiments of the present invention have been described in detail, that is for the purpose of illustration, not limitation.
This application claims priority based on provisional applications Ser. No. 60/423,787, filed Nov. 5, 2002.
Number | Name | Date | Kind |
---|---|---|---|
4010759 | Boer | Mar 1977 | A |
4010760 | Kraska et al. | Mar 1977 | A |
4041956 | Purdy et al. | Aug 1977 | A |
4057068 | Comben | Nov 1977 | A |
4182345 | Grose | Jan 1980 | A |
4254775 | Langer | Mar 1981 | A |
4262673 | Kinney et al. | Apr 1981 | A |
4471783 | Buffet | Sep 1984 | A |
4764132 | Stutz, Jr. | Aug 1988 | A |
5070605 | Daglow et al. | Dec 1991 | A |
5076270 | Stutz, Jr. | Dec 1991 | A |
5086773 | Ware | Feb 1992 | A |
5103818 | Maston et al. | Apr 1992 | A |
5282841 | Szyszkowski | Feb 1994 | A |
5336246 | Dantanarayana | Aug 1994 | A |
5549653 | Stotts et al. | Aug 1996 | A |
5643328 | Cooke et al. | Jul 1997 | A |
5662692 | Paspa et al. | Sep 1997 | A |
5741313 | Davis et al. | Apr 1998 | A |
5755743 | Volz et al. | May 1998 | A |
5871514 | Wiklund et al. | Feb 1999 | A |
5980973 | Onyekaba et al. | Nov 1999 | A |
6026325 | Weinberg et al. | Feb 2000 | A |
6052623 | Fenner et al. | Apr 2000 | A |
6817905 | Zart et al. | Nov 2004 | B2 |
Number | Date | Country |
---|---|---|
0 006 281 | Jan 1980 | EP |
Number | Date | Country | |
---|---|---|---|
20040093038 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
60423787 | Nov 2002 | US |